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Abstract. The problem of the null-modes existence and
some particularities of their interaction with nonlinear
vortex-wave-like structures is discussed. We show that the
null-modes are fundamental elements of nonlinear wave
fields. The conditions under which null-modes can mani-
fest themselves are elucidated. The Rossby-Hasegawa-Mima
(RHM) model is used for the illustration of features of null-
modes-waves interactions.

1 Introduction

The purpose of the paper is to consider features of wave in-
teractions in inhomogeneous, anisotropic, nonlinear media in
a case when proper values,ωk, for interacting wave modes,
ak, turn to zero in some domain ofk-space. We present a
new approach to solving the problem based on the Hamil-
tonian formulation of fluid dynamics (see Appendix A). We
analytically study a new class of structures that can exist in
two-dimensional flows governed by equations similar to the
Rossby-Hasegava-Mima (RHM) ones (Hasegava and Mima,
1977; Kadomtsev, 1965; Similon and Sudan, 1990; Krall and
Trivelpiece, 1973; Petviashvili and Pohotelov, 1989). These
structures, termed below null-modes, turn out to be an im-
portant element in the theory of wave interactions and pro-
voke a variety of intriguing questions. One task is to un-
derstand what physical reality corresponds to the basic state
(null-modes) of the wave system when the proper values,ωk,

for interacting wave modes,ak, become zero in some domain
of thek-space. Another one is to explore how the presence
of null-modes modifies the wave interaction process as com-
pared to the analogous well-studied process in homogeneous
media. Finally, how does one develop field variables for the
proper functions evolving in such a situation? Answers to
these questions are of fundamental interest because so far all
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modern theories of wave interactions have been formulated
in terms of normal modesak.

Before proceeding further, let us remind the reader that
the concept of interacting waves is extensively used in wave
physics and provides explanations for numerous collective
effects. Its essence is that wave interaction is effectively real-
ized only when the so-called resonance conditions on phases
(frequencies and wave vectors) of interacting waves are sat-
isfied (see for example Zakharov et al., 1985 and references
therein).

For instance, in hydrodynamical systems, as experiments
show (seeKadomtsev, 1965; Petviashvili and Pohotelov,
1989, and References therein), stationary flows sometimes
appear as a result of intense field fluctuations. In geophysics,
it is well-known that stationary (zonal) flows in atmospheres
of rotating planets always coexist with intense surrounding
wave fields. Based on the analogies from other branches
of wave physics, it was once natural to assume that one of
the principal mechanisms for stationary flow generation is
the nonlinear interactions of waves. However, in geophys-
ical hydrodynamics, application of the traditional approach
to concrete situations is sometimes accompanied by difficul-
ties. For example, the attempt to explain the appearance of
stationary flows in the framework of three-wave resonance
interaction of waves governed by the Rossby equations has
failed: it has been shown that such a three-wave mechanism
of interactions cannot be responsible for generation of sta-
tionary flows (seeLonguet-Higgins and Gill, 1969; Pedlosky,
1986).

This theoretical result has instigated the approach which is
developed below.

Let us remind the reader a few important facts. There
exist various versions of the so-called Hamilton approach
(HA) to field systems (see Dirac, 1958; Bogolubov and
Shirkov, 1959; Lundgreen, 1963; Seliger and Whitham,
1968; Bretherton, 1970; Zakharov et al., 1985; Holm et al.,
1985; Abarbanel et al., 1986; Salom, 1988; Dubrovin and
Novikov, 1989; Goncharov and Pavlov, 1993; Zakharov and
Kuznezov, 1997, and references theirein).
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The canonical version of the HA uses the following ba-
sic assumptions: the system under consideration is described
by a set of canonical variables, symbolically marked here
by p andq. Generally, more than one pair of variables ex-
ists. The Fourier transformation of field variables fromx-
space intok-space,(p, q)→(p∗

k
, qk) is achieved, in or-

der to identify the spectral wave components. A disper-
sion relationship between the frequency and the wave vec-
tor of the components is given byω=ωk. Normal variables,
ak, a

∗

k
, are introduced by a linear transformation from(p, q)

to (ak, a
∗

k
) as coefficients for developingp, q over corre-

sponding eigenfunctions,fk(x). In a homogeneous medium,
fk(x)∼ exp ik · x. The Hamiltonian of the system is the full
energy expressed in terms of canonical variables,H [p, q].

In terms of normal variables, the quadratic part of the
Hamiltonian developed in a functional series with respect
to field variables,H [p, q]=H2+H3+... , is presented as
H2=

∫
dk ωkaka−k and equations for normal modes evolu-

tion have the form∂tak=−iδH/δa∗

k
and∂ta∗

k
=+iδH/δak.

Here, a∗

k
=a−k, δH/δu is a functional derivative with re-

spect to field variableu.One assumes that 0<H [p, q]<+∞,

which means that there are not of field perturbations at infin-
ity: a physical problem of wave interactions is always con-
sidered in terms of wave packets.

Difficulties do not arise when the frequency of a wave
mode depends on the absolute value of the wave vec-
tor, ωk=ω|k|, i.e. when the medium is homogeneous and
isotropic. In this case, the HamiltonianH2 is positive and
remains positive when transformationk→−k is made. Diffi-
culties appear when the media is anisotropic and proper value
ωk depends on any particular direction, for example, when
ωk∼kx . Such a dependence follows, for instance, from the
linearized version of Eq. (6). Obviously, in this case, result-
ing frequency cannot be simply introduced into the expres-
sion forH2 becauseH2 becomes null in this case. There is
also no support or a motivated physical reason for including
the absolute value|ωk| intoH2.

For this reason only, a detailed analysis of the problem is
essential.

The paper aims to achieve several goals: (i) to formulate,
in a brief and relatively complete form, the fundamentals of
one of the Hamilton approach versions; (ii) to formulate the
concept of normal modes when the Hamiltonian of a system
is defined by an operator expression; (iii) to introduce the
canonical variables; (iv) to apply the developed methodology
to the enigmatic physical phenomenon. It should be noted
that without complying with certain rules, the procedure for
introducing canonical variables, and normal variables as a
consequence, is not as elementary as it could be expected.

In this article we perform the study in terms of general-
ized potentials (“canonical” field variables)p andq, when
the transition from field variables (velocities components)
(v1, v2) to (p, q) is carried out, on the one hand, with-
out a decrease of phase space dimension and, on the other
hand, complying with the gauge invariance of the theory (see
Sect. 3).

The article is structured as follows: Sect. 2 specifies the
basic model and establishes some general results. In Sect. 3,
we discuss the canonical formulation of the Hamiltonian de-
scription for fluid dynamics of nonlinear, dispersive, non-
homogeneous media. The Hamiltonian formulation for a
Rossby-Hasegawa-Mima-like wave model is also proposed.
The crucial importance of the proper introduction of normal
variables in such systems is highlighted in Sect. 4. We con-
sider the RHM-model as an example to which the HA can
be directly applied to obtain analytical results. In Sect. 5, we
discuss a linear approximation and explain where the null-
modes hide. In Sect. 6, the features of three-wave inter-
actions are analyzed. A nonlinear collision of three wave
packets is considered in Sect. 7. The null-mode mechanism
of flow generation is considered in Sect. 8 and in Sect. 9,
where all obtained results are discussed. In summary, we
have found that specific structures (null-modes) can exist in
strongly nonlinear and anisotropic wave systems. These not
evolving in time structures (in linear approximation with re-
spect to fields perturbations) correspond to the basic phys-
ical state when the stream-function,9, is zero. The struc-
tures cannot be uncovered when one works with linearized
equations, and, in some sense, they may be considered as
“sleeping” ones. However, their presence can be observed
when nonlinear interactions are taken into account with spe-
cific resonant conditions. One goal of the work was to
find the conditions when such structures could be brought
to light, in order to experimentally observe a generation of
null-modes (i.e. observe the phenomenon of generation of
time-independent flows by interacting wave fields). The real-
ization of these conditions is so difficult that without prelim-
inary theoretical analysis the effect may neither be guessed,
nor observed experimentally.

2 Basic model

We consider a two-dimensional fluid motion, typical exam-
ples of which are large scale horizontal motions in planet
atmospheres, hydrodynamical motions of a strongly magne-
tized plasma, etc. Such motions are described in the frame-
work of the two-dimensional model of an incompressible
perfect fluid. The velocity field is characterized in such a sit-
uation by two components only,v=(v1, v2, 0). The suppres-
sion of the third velocity component,v3, can be caused by
several physical causes. The evolution equations in this case
are traditionally formulated in terms of generalized vortic-
ity � which is introduced by the relation�=curl v. For two-
dimensional motions, only one component of vorticity,�3, is
not null. The condition of incompressibility,div v≡∂i vi=0,
permits to introduce the stream-function,9, via the relation
vi=εij∂j9, wherei, j=1,2, εij is an antisymmetrical unit
tensor,ε12=1= − ε21, ε11=ε22=0.

The evolution of two-dimensional vorticity-like systems
are governed by the equation

∂t� = −(v · ∇)�, (1)



V. Goncharov and V. Pavlov: Null modes effect in Rossby wave model 283

which can be written as

∂t� = −(∂2ψ)∂1�+ (∂1ψ)∂2�, (2)

The right part of this equation can be rewritten in terms
of Jacobian,J [a, b], where the Jacobian is defined as
J [a, b]=∂1a ∂2b−∂2a ∂1b≡εij∂ia∂jb. Equation (2) con-
serves the full energy of the fluid motion

H =
1

2

∫
dx ρψ�. (3)

We suppose that all field variables and their derivatives, i.e.
all perturbations, vanish in infinity. Also, background sta-
tionary flows are presumed to be absent.

The generalized vorticity,�, and the stream-function,ψ,
are related in general case by the operator relationship

� = L̂9. (4)

The specification of a concrete physical model is assured by
a relation between the stream-function and vorticity.

So, for a two-dimensional Euler equation, the indicated
relationship has the form�=−1ψ, i.e. L̂ψ≡−1ψ. Here,
1=∂2

x+∂
2
y the two-dimensional Laplacian. Below we will

frequently usex≡x1, y≡x2.

There exist other models (for example, the mod-
els of so-called “screened” vortices) with the operator
L̂=−(1−1/a2), wherea is some space scale defined by the
choice of the model. Such models are largely used to de-
scribe (i) different plasma motions based on the Hasegawa-
Mima equation ((Hasegava and Mima, 1977; Similon and
Sudan, 1990)), (ii) axial electronic vortices (Krall and Triv-
elpiece, 1973), (iii) the quasi-geostrophic barotropic motions
(see below), etc. There exist even more complex examples
(Gruzinov, 1992).

Let us provide as an illustration one visual example. In
the geo-astrophysical context, it is typical to use a quasi-
geostrophic barotropic model defined by the relationship

� = L̂9 + βy, β =
2ω0

a
cosϑ0. (5)

Here, L̂ can be given byL̂=−(1−1/a2). The term linear
in y accounts, in the first approximation, for the sphericity
effect (β-effect), i.e. the variation of the Coriolis force with
latitudeϑ. Equation (5) is used in analyzing large-scale mo-
tions in an atmosphere considered as a thin layer of a fluid
rotating with the angular velocityω0. Let us note that Eq. (2)
describes in this context two-dimensional fluid motions even
if L̂ and9 depend on the vertical coordinatez.

Equations (2–4) form the closed system of equations for
�,9.

Below, we consider the simplest case of two-dimensional
motions where the stationary density,ρs=ρ0, is independent
on the vertical coordinatez. In the integralH, after integrat-
ing on z, z-dependence vanishes. Choosing mass, distance,
time scales for whichρ0=1, a=1, β=1 and scaling the full

energy to obtain a dimensionless expression forH, the di-
mensionless stream-function,ψ , will be governed by the di-
mensionless evolution equation in the planex, y

∂t (1− 1)ψ + ∂xψ + J [ψ,1ψ] = 0. (6)

where the vorticity and the stream-function are related by the
relationship

� = −(1− 1)ψ + y. (7)

The full energy of the fluid is then transformed into

H → H =
1

2

∫
dx ψ� = −

1

2

∫
dx ψ(1− 1)ψ. (8)

3 Hamiltonian approach

The model governed by Eqs. (2–4) (see also Eqs. (6–8)) illus-
trates the Hamiltonian system with a finite number of fields
and with a continual number of degrees of freedom charac-
terized by the indexx. For this reason, functional derivatives
with respect to field variables are used. To address the is-
sue we use the version of the HA given in Goncharov and
Pavlov (1984, 1993, 1997, 1998, 2001, 2002) and Pavlov et
al. (2001). Information on supplementary bibliography can
be found in Zakharov et al. (1985).

We will call the system a Hamiltonian one if it evolves
according to

∂tui = {ui, H } =

∫
dx′

{ui, u
′

j }
δH

δuj (x′)
. (9)

Here, the Hamiltonian of the system,H , is the quantity-
energy-functionally dependent on the fields,ui, the operator
δ/δu is the operator of the functional derivative. The deriva-
tives of dynamical variables,F [u], are calculated by using
the relationδui(x)/δuj (x′)=δij δ(x−x′).

The Hamiltonian structure of the system described by
Eq. (9) includes the Hamiltonian given by the total energy,
H , and the functional Poisson bracket{. , .}. This bracket
is antisymmetric, bilinear, and satisfies the functional Jacobi
identity presented symbolically in the following form

{A, {B , C}} + {B, {C , A}} + {C, {A , B}} = 0, (10)

Condition Eq. (10) must be obligatory satisfied for Hamilto-
nian systems.

Conservation of energy follows from the given formula-
tion of governing equations, since−∂tH={H,H }=0.

3.1 Noncanonical formulation

Systems which evolve according to Eqs. (2–4), give an ex-
ample of such Hamiltonian systems. In fact, Eqs. (2–4) can
be rewritten as

∂t� = {�,H } =

∫
dx′

{�,�′
}
δH

δ�
′
. (11)
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Let us show how the bracket{�,�′
} is calculated for con-

crete situations. Using expressions (8) and (11), we obtain
that

{�,H } =

∫
dx′ ψ ′

{
�,�′

}
. (12)

Here and further, the prime indicates that a field variable
depends on the primed two-dimensional space coordinate
x′

=(x′, y′).On the other hand, using Eq. (2), we can exclude
∂t� from Eq. (11). The following step is to introduce the Ja-
cobian under the integration operator where the properties
of delta function are used. The regrouping of the integrand
terms (all field variables vanish at infinity) yields∫
dx′ ψ ′

[
J
(
δ
(
x − x′

)
, �
)
−
{
�,�′

}]
= 0. (13)

The expression in the square brackets is zero because
Eq. (13) is satisfied for anyψ. Therefore, the Poisson bracket
for the potential vorticity� can be written as{
�,�′

}
= J

(
δ
(
x − x′

)
, �
)
. (14)

This expression satisfies the Jacobi requirement, Eq. (10),
which are necessary for Poisson brackets. The result,
Eq. (14), can be obtained also by the direct calculation of
the bracket on the canonical basis.

However, the formulation in terms of vorticity is some-
times uncomfortable because the Poisson bracket for such
systems is functionally dependent of the field variables. By
this reason, the canonical formulation of the problem is
sometimes more preferable.

3.2 Canonical formulation of RHM-like wave model

The initial physical system is described by evolution equa-
tions of Euler which are formulated in terms of “measurable”
physical variables, i.e. in terms of velocitiesv1, v2 . Below,
we will describe the same system in terms of canonical vari-
ablesp, q for which the functional Poisson brackets have the
form :

{
p, q ′

}
=δ(x −x′),

{
p, p′

}
=
{
q, q ′

}
=0, i.e. when

the corresponding Poisson’s brackets for field variables are
independent on field variables. Such a choice is presented as
more “natural” because the transitionv1, v2→p, q conserves
the same number of field variables, i.e. the same dimension
of the phase space. In this case, an evolution of the system
based on Eq. (6) will be described by an alternative, cano-
nical, form. It signifies that the canonical variables satisfy
equations

∂tq =
δH

δp
, ∂tp = −

δH

δq
, (15)

where the HamiltonianH , the total energy expressed in terms
of canonical field variablesp, q, is given by

H = −
1

2

∫
dx ψ(p, q)(1− 1)ψ(p, q), (16)

and whereψ is expressed in terms ofq, p. Variablesq, p
have the meaning of the generalized coordinate and momen-
tum, respectively.

In this context, some comments on the subject must be
made.

What is the essence of the proposal “to introduce canoni-
cal variables”? Obviously, one possible way is to express the
field variables, for examplevi, in terms of generalized poten-
tials,p, q, which satisfy some (canonical) conditions. Thus,
the problem is reduced to a search of a functional dependence
vi [p, q]. The dependence and corresponding canonical vari-
ables of such a type are known as Clebsh representations. It
was A. Clebsh (1859) who pioneered using of similar trans-
formations for a hydrodynamical velocity in an incompress-
ible fluid (see for exampleLamb, 1932). For some (sim-
plest) systems, the canonical variables (potentials)q andp
for incompressible fluid are introduced byvk=∂k8+p∂kq

(a review of more complex situations is given inGoncharov
and Pavlov(1993)). Constraintdiv v=0 signifies that the
potential8 can be eliminated from consideration because
for an incompressible fluid we have18=−∂i(p∂iq). The
vorticity is defined via the Clebsh potential by the expres-
sion�i=εijk∂jp∂kq. For two-dimensional flows,i=3 and
the tensor Levy-Civitaεijk becomesε3jk≡εjk. However, it
is clear that there is some functional arbitrary rule for choos-
ing of a canonical basis(p, q) for the given physical field
vi . To remove this arbitrary rule, one postulates that the the-
ory must possess the gauge invariance. The criterion for
removing the arbitrary rule is a possibility of the existence
of such canonical transformations under which all physical
(measured) quantities of the theory are kept invariant. This
principle is called the principle of gauge invariance, gener-
ates in turn some specific laws of conservation which elim-
inate an over-determination of the system. The existence of
such laws means, from a geometrical standpoint, that an evo-
lution of the system is realized on some surface in the sym-
plectic spacep, q which is fixed by indicated lows of conser-
vation.

One can show that the relationship between the velocity
componentsv1, v2 and the potentialsp, q is given by the
sufficiently cumbersome nonlinear differential-integral ex-
pression

(1− 1) vk = εkn∂n
(
εij∂iq∂jp + ∂2p + x2∂1q

)
, (17)

Let us demonstrate this formula for a single pair of cano-
nical variablesp, q, i.e. for plane flows when only one pair
of potentials is used. In this case, we have:

� = J (p, q) = εij∂ip∂jq. (18)

The variablesq,p composing the canonical basis have mean-
ing of the canonical coordinate and the canonical momen-
tum, respectively. Thus, evolution equations formulated in
terms of canonical variablesp, q are given by

∂tp = −
δH

δq
, ∂tq =

δH

δp
. (19)

After calculating the functional derivatives ofH, one finds
that

∂tp = J (p,ψ) , ∂tq = J (q, ψ) . (20)
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Let us consider a quasi-geostrophic model (see Sect. II)
with β 6=0 The basic dimensionless relationship between the
stream-function and the generalized vorticity is given by

� = L̂ψ + x2, (21)

which is expressed by Eq. (18) too. For this reason, we
have the expression which gives a relationship between the
stream-function and canonical variablesp andq

L̂ψ + x2 = J (q, p) . (22)

Let us suppose now that a state of dynamical equilibrium ex-
ists. The equilibrium values of variables corresponding to
this state are marked by indexs. Let us suppose that the back-
ground flow is absent, i.e.ψs=0. However, even ifψs=0,
the problem arises for determining the nontrivial equilibrium
values for the canonical variables (see for exampleGon-
charov, 1984). So, we can find from Eqs. (20) and (18) that
the stationary state,ψs=0, is determined by

∂tps = 0, ∂tqs = 0, (23)

x2 = J (ps, qs) , (24)

where Eq. (24) follows from the two definitions of the vor-
ticity presented above. Evidently, the solutions of Eq. (23)
are two time-independent functions which satisfy only one
Eq. (24). For this reason, we can choose one of the potentials
ps or qs arbitrarily. Choosing the functionps as

ps = x1, (25)

we obtain

qs =
1

2
x2

2. (26)

All physical (“measurables”) fields do not change in this
case.

Now, it is convenient to introduce new canonical variables

p′
= p − ps, q ′

= q − qs, (27)

which in the equilibrium regime satisfy to the condition
p′
s=q

′
s=0.

In terms of perturbationsp′, q ′, relationship (18) and (20)
are written as

L̂ψ = x2∂1q
′
+ ∂2p

′
+ J

(
q ′, p′

)
, (28)

∂tq
′
=
δH

δp′
= J

(
q ′

+ x1, ψ
)
, (29)

∂tp
′
= −

δH

δq ′
= J

(
1

2
x2

2 + p′, ψ

)
. (30)

Omitting the prime, one sees that Eq. (28) is transformed into
Eq. (17) if we apply to Eq. (28) operatorεij∂j .

Let us move now intok-space, using the symmetric
Fourier transforms defined by the formula

Zk =

∫
dx

2π
Z(x) exp(−ik · x).

The goal of such a transformation is, first, to obtain the dis-
persion relationship for wave components and, second, to ap-
ply the results of the theory to interacting wave components
with fixed wave vectors.

In this case, according to Eqs. (15–17), the Fourier com-
ponents evolution is governed by nonlinear equations

∂tqk =
δH

δp∗

k

, ∂tp
∗

k = −
δH

δqk

, (31)

The asterisk(∗) denotes the complex conjugate.
Concerning a possibility of the Fourier transformations,

we have supposed that the background flows are absent and
all field variables (perturbations) vanish rapidly in infin-
ity, i.e. even|x|ψ→0 when|x|→∞. Such a supposition is
largely used in the framework of traditional approaches in
physics when models of wave packets are considered. In
this case, all physical operators are transformed according
to Â(x,∇)→Âk(−i∇k, ik).Multiplying Eq. (17) by the ex-
ponent, integrating over the space coordinate and neglecting
terms in infinity, we can find that the stream-function com-
ponentψk and the canonical variables’ componentsqk, pk

are related by the relationship

ψk = −
1

k2
+ 1

[
iσpk − κ

∂qk

∂σ

+

∫
dk1dk2

2π
qk1pk2(σ1κ2 − σ2κ1)δ(k1 + k2 − k)

]
. (32)

Here,κ andσ are longitudinal and transversal components
of the wave vectork, i.e.k=(κ, σ ). The operators act on all
variables which are positioned to the right of them.

The Hamiltonian is given by the simple expression

H [p, q] =
1

2

∫
dk
(
k2

+ 1
)

|ψk|
2 , (33)

where the functionψk has to be expressed in terms of the
canonical variablesqk, pk.

The Hamiltonian Eq. (33) is the functional polyn̂omial of
the fourth order with respect to field (canonical) variablesqk,
pk. It can be written as

H [p, q] = H2[p, q] +H3[p, q] +H4[p, q], (34)

whereH2[p, q] describe linear effects, andH3,4[p, q] non-
linear effects of interacting perturbations into the system.

4 Normal variables

The problem of introducing normal variables is not trivial
because operator combinations appear in Eq. (32). Similar
combinations will appear inH2[p, q].

Let us write Eqs. (31) in a matrix form

∂tuk = −iĴ
δH

δu+

k

, (35)
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where
(
+
)

denotes the Hermitian conjugate. The column

vectorsuk and so-called symplectic matrix̂J are arranged
as

u =

(
pk

qk

)
, Ĵ =

(
0 −i

i 0

)
. (36)

The Poisson brackets can be written as{
uk,u

+

k′

}
= −iĴ δ

(
k − k′

)
. (37)

Let us consider small field perturbations relative to basic
unperturbed state. In this case, the leading term into the
HamiltonianH is the quadratic termH2[p, q] with respect
to canonical variablesp and q. This approximation corre-
sponds to the linear approximation for evolution equations.
ForH2[p, q], we can write the following representation

H2 =
1

2

∫
dk u+

k
Ĥkuk, (38)

The matrix operatorĤk have the following structure

Ĥk =

(
Ak B̂k

B̂+

k
Ĉk

)
, (39)

where matrix elementAk is a function ofσ and κ, while
elementsB̂k and Ĉk are operators. These elements are ex-
pressed by

Ak =
σ 2

k2
+ 1

, (40)

B̂k =
iσκ

k2
+ 1

∂

∂σ
, Ĉk = −

∂

∂σ

κ2

k2
+ 1

∂

∂σ
. (41)

By definition (see below), normal variablesak (t) are in-
troduced as coefficients in decomposition

uk = f̂ kak + f̂
∗

−ka
∗

−k, (42)

wheref k, f ∗

−k are vector-column eigenfunctions.
In terms of normal variables, the two equations of evolu-

tion Eq. (35) are transformed into

∂tak = −i
δH

δa∗

k

, ∂ta
∗

k = i
δH

δak

. (43)

In linear approximation,H→H2. The Hermitian matrix
operatorĤk at Eq. (38) has a typical structure Eq. (39).
Considering the fact that̂H is Hermitian,H2 is real, and
uk=u∗

−k
, one sees that

Ĥk = Ĥ+

k
= Ĥ ∗

−k.

It means that

Âk = Â+

k
= Â∗

−k, Ĉk = Ĉ+

k
= Ĉ∗

−k, B̂k = B̂∗

−k. (44)

Substituting Eq. (38) into the Hamiltonian Eqs. (35), we
obtain the linear equation(
Ĵ ∂t + iĤk

)
uk = 0. (45)

To formulate the problem on eigenfunctions and eigenval-
ues, we must substituteuk=f̂ k exp(−iω t) in Eq. (45), as-
suming that, in general, the eigenvectorsf̂ k are operators
non-commuting with the eigenvaluesω=ωk. In doing so, we
obtain

Ĥkf̂ k − Ĵ f̂ kωk = 0, (46)

It should be noted that as far asf̂ kωk 6=ωkf̂ k, this prob-
lem cannot be reformulated in the form(
Ĥk − ωk Ĵ

)
f̂ k = 0

which is traditional for expressions with no operators.
Using the propertiesĤk=Ĥ

∗

−k
, Ĵ=−Ĵ ∗, we can derive

from Eq. (46) the dual linear problem

Ĥkf̂
∗

−k + Ĵ f̂
∗

−kω−k = 0. (47)

Comparing Eq. (46) with Eq. (47) shows that ifωk andf̂ k

are an eigenvalue and an eigenvector then−ω−k and f̂
∗

−k

are too. Therefore, all the eigenvalues and the eigenvectors
of problem Eq. (46) have dual nature and can be split into
such pairs. In the simplest case when a model has only one
wave branch, the problem Eq. (46) has a single pair of eigen-

vectors
(
f̂ k, f̂

∗

−k

)
and a corresponding pair of eigenvalues

(ωk,−ω−k).
In this case, according to general theory tenets (Goncharov

and Pavlov, 1993), because matriceŝHk andĴ are Hermitian
and, in addition,Ĥk is positively determined, there are good
grounds for believing that, on the one hand, the eigenvec-
tors f̂ k andf̂

∗

−k form the system of orthonormal functions
subjected to the conditions

f̂
+

k Ĵ f̂ k = 1, f̂
+

k Ĵ f̂
∗

−k = 0, (48)

on the other hand, all the eigenvalues are real, i.e.=ωk=0.
Thus, normal variablesak (t) are introduced as coefficients

in decomposition of the column vectoruk on the eigenvec-

tors
(
f̂ k, f̂

∗

−k

)
by Eq. (42).

Using orthonormality property Eq. (48), from Eq. (42) it
is easy to obtain the relations

ak = f̂
+

k Ĵuk = −u+

−k
Ĵ f̂

∗

k, (49)

and next, by employing Eq. (37), to calculate

{ak, a
∗

k′} = −iδ
(
k − k′

)
, {ak, ak′} = 0. (50)

On the basis Eq. (50), the matrix equation of motion
Eq. (35) takes form

∂tak = −i
δH

δa∗

k

, ∂ta
∗

k = i
δH

δak

. (51)

To find solutions forf̂ andωk in an explicit form in what
follows we assume for simplicity that matrix elementAk is
a usual function while matrix elementŝBk, andĈk are non-
commuting operators.
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In this case one can show that according to Eq. (46) eigen-
vectorf̂ k is given by

f̂ k =

(
−A−1

k

(
B̂k + iωk

)
1

)
εk, (52)

The eigenvalueωk and the normalizing factorεk , in turn,
can be found from orthonormality conditions Eq. (48) which
is convenient to reformulate, using Eq. (52), as

ωk − ω−k = −i
(
AkB̂

+

k
A−1

k
− B̂k

)
, (53)

ω−kωk = Ak

(
Ĉk − B̂+

k
A−1

k
B̂k

)
, (54)

|εk|
2

= (ωk + ω−k)
−1Ak. (55)

Here,ωk is the eigenvalue of the problem,εk is a normaliza-
tion coefficient. To find the eigenvalueωk and the normaliz-
ing factorεk, we must resolve conditions Eqs. (53–55) with
Eqs. (39) and (41), which lead to

ωk − ω−k = −
κ

k2
+ 1

, (56)

ω−kωk = 0, (57)

|εk|
2

=
σ 2(

k2
+ 1

)
(ωk + ω−k)

. (58)

From Eqs. (56–58), we find

ωk = −
κθ (−κ)

k2
+ 1

, εk = σ |κ|−1/2 , (59)

whereθ (κ) is the Heaviside function:θ (κ)=1 if κ≥0, and
θ (κ)=0 if κ<0. This law of wave dispersion is shown in
Fig. 1. For κ≤0 it describes the well-known Rossby-like
waves. The domain ofκ>0 corresponds to so-called null
modes.

Summing up this section, we list the basic relationships

qk = σ |κ|−1/2 (ak−a
∗

−k

)
, (60)

pk = −i |κ|1/2 sign (κ)

[(
∂

∂σ
+
θ (κ)

σ

)
ak

−

(
∂

∂σ
+
θ (−κ)

σ

)
a∗

−k

]
. (61)

The stream-function is defined via the normal variables by
expression

ψk = − |κ|−1/2 (ωkak+ω−ka
∗

−k

)
−

1

2π
(
k2

+ 1
)

×

∫
dk1dk2pk2qk1 (σ1κ2 − σ2κ1) δ (k − k1−k2) . (62)

wherepk, qk have to be expressed by Eq. (61).
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4

8
-4

0

κ

σ

Fig. 1. A general dispersion law for the Rossby-like waves and null
modes.

5 Linear approximation

In the linear approximation, when interaction of Rossby-like
waves is ignored, the Hamiltonian takes form

H2 =

∫
dk ωk |ak|

2 > 0, (63)

and, as earlier discussed, is positively defined sinceωk≥0 in
accordance with Eq. (59). Due to the presence ofθ (−κ)-
function in the dispersion law Eq. (59), null modes defined
above as normal modes with positive components ofκ, are
eliminated in a linear approximation. Once initially estab-
lished, these modes remain unchanged without any phys-
ical consequences or effects because, in accordance with
Eq. (62), in a linear approximation we have

ψ (x) = −
1

2π
Re
∫
dk |κ|−1/2ωkake

ikx

≡ ψR + ψNM , (64)

and hence they make zero contribution to the stream-
function,ψNM=0, even if their amplitudes are distinct from
zero.

As we shall see later, this is no longer the case in a nonlin-
ear approximation.

The null-modes correspond to the state with9=0. How-
ever, using the traditional consideration where governing
equations are formulated in terms of a stream-function, it
is very difficult to guess to which physical reality the states
with 9=0 correspond. On the other hand, discovering that
the stream-function9=9[p, q] depends in reality on ca-
nonical field variables(p, q) which arise from transition
(v1, v2)→(p, q), it becomes clear that, even when9[p, q]

is null, it does not automatically follow thatp and q are
also equal to zero. A physical reality, withp, q 6=0 assur-
ing 9[p, q]=0, can exist: the stream-function can turn to
zero, for example, when field amplitudes (normal variables)
or other characteristics of the wave field vanish in a certain
domain ofk-space (null-modes). In this connection, it be-
comes clear that null-modes can in principle be initiated by
some nonlinear wave interactions.
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6 Three-wave interactions

To find the types of wave interactions admissible by normal
waves dispersion Eq. (59), we must consider resonance con-
ditions which take null modes into account. Becauseωk≥0,
and hence the so-called waves of the negative energy are ab-
sent, the main contribution at the first order of perturbation
theory is made by the three-wave interactions corresponding
to the resonance conditions

k − k1 − k2 = 0, ωk − ωk1 − ωk2 = 0, (65)

which describe decay processes(0→1+2) and inverse
processes-merging(1+2→0).

Of special interest are the interactions between two
Rossby-like waves and a null mode which arise whenever
one of wave-vectors, for examplek2, has a positive compo-
nentκ2 while componentsκ andκ1 are negative. In this case,
wave-vectors of interacting Rossby-like modes form a locus
where

ωk = ωk1. (66)

According to Eq. (66), the tips of vectorsk andk1 must lie on

the circle with radiusr=
√
ω−2

k
/4−1 and the center at point(

−ω−1
k
/2, 0

)
as graphically represented in Fig.2.

In order to proceed further, we must also know the Hamil-
tonian of the three-wave interactions which is responsible
for resonance Eq. (65), and ignore all other feasible non-
resonant terms which can be eliminated with the aid of the
canonical transformation. Thus, we arrive at the Hamiltonian
with a general structure

H3 =
1

2

∫
dkdk1dk2

(
a∗

kak1ak2Vk,k1,k2)+ c.c
)

×δ (k − k1 − k2) , (67)

where functionVk,k1,k2 is called the interaction factor or cou-
pling coefficient. The coupling coefficientVk,k1,k2 can be
obtained by expanding Eq. (33) into a functional power se-
ries of normal variables with subsequent collecting of terms
proportionate toa∗aa and aa∗a∗. Because our interest is
only in resonance interactions, functionVk,k1,k2 is defined
only on the surface described by Eq. (65). Therefore, if we
restrict ourselves to the three-wave interactions, terms pro-
portional to(ωk−ωk1−ωk2) can be omitted in the computa-
tion of Vk,k1,k2.

After some algebra, we find

Vk,k1,k2 =
i (σ1κ2 − κ1σ2)

2π
√

|κκ1κ2|

{(
ωk1σ2 − ωk2σ1

)
×

(
κ

σ
θ (κ)+

κ1

σ1
θ (κ1)+

κ2

σ2
θ (κ2)

)
+
(
ωk1κ2 − ωk2κ1

)
− (σ1κ2 − κ1σ2)

×

(
∂ωk

∂σ
−
∂ωk1

∂σ1
−
∂ωk2

∂σ2

)}
. (68)
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Fig. 2. Locus of the null-mode wave-vector tails merging with a
Rossby-like mode. Dashed-line vectork2 denotes the null mode,
solid-line vectorsk andk1 denote the Rossby-like modes.

7 Nonlinear collision of three wave packets

We consider the interaction of three narrow-band wave pack-
ets whose typical wave-vectorsk1, k2, k3 satisfy the reso-
nance conditions

k1 = k2 + k3, ωk1 = ωk2 + ωk3. (69)

Let us assume that

a (k) = a1 (k)+ a2 (k)+ a3 (k) ,

where each ofan is nonzero only ifq=k−kn are small. Fast
dependence ont andx for each wave packet is excluded with
transformation

cn (q) = an (kn + q) expi
(
ωkn t − knx

)
.

Following the standard procedure (see, e.g.Zakharov and
Kuznetsov, 1986), using new variables

un (x) = (2π)−1
∫
dq cn (q) e

iq·x

which have significance of complex envelopes for wave-
trains, and using a band narrowness of the wave packets, we
obtain

H =
i

2

3∑
n=1

vn

∫
dxun∇u

∗
n + V

∫
dxu∗

1u2u3 + c.c., (70)

where envelope velocitiesvn and interaction coefficientV
which is a function of the wave-vectorsk1, k2, k3, are ex-
pressed as

vn = ∂ωkn/∂kn

=

(
k2
n + 1

)−2 {
κ2
n − σ 2

n − 1, 2κnσn
}
, (71)

V = Vk1,k2,k3. (72)
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Now, let us consider interaction between two Rossby-like
wave packetsk, k1 and the null mode packetk2. So far as in
this caseκ1, κ2<0 butκ3>0, from Eq. (68) we have

V = −
i (σ2κ3 − κ2σ3)

2

2π
√

|κ1κ2κ3|

(
∂ωk1

∂σ1
−
∂ωk2

∂σ2

)
. (73)

The space-time evolution of the packets can be described
from equations

∂tuj = −i
δH

δu∗

j

,

which take the form

∂tu1 + v1∇u1 = −iV u2u3,

∂tu2 + v2∇u2 = −iV ∗u1u
∗

3,

∂tu3 = −iV ∗u∗

2u1. (74)

8 Null-mode mechanism of flow generation

As shown byLonguet-Higgins and Gill(1969), the mech-
anism of a direct triad resonance which takes into account
only Rossby-like modes, cannot be responsible for exciting
zonal flows if weak corrections for sideband resonance are
ignored. This conclusion is completely confirmed by our re-
sults and is readily apparent from Eq. (68) whereby coupling
coefficientVk1,k2,k3 vanishes ask1=k2.

As will be shown later, in contrast to the cited works, our
approach which uses the null-mode concept admits the gen-
eration of zonal flows due to direct triad resonance Eq. (69)
involving two Rossby-like wave packetsk1, k2 and a packet
of null modek3. These resonances are governed by the sys-
tem of three nonlinear Eqs. (69) which in general can be
solved by inverse scattering method when initial envelopes
are non-overlapping. Using this technique,Zakharov(1976)
obtained special solution describing a physically important
effect – a parametric decay of a pump wave into secondary
waves.

8.1 Noncoplanar casev1×v2 6=0

Consideru1, u2 as envelopes of Rossby-like waves fixed in
the initial stage att→−∞ when the null-mode packetu3
is absent. Then, using characteristic coordinatesτ1, τ2, τ3
defined as

x = −v1τ1 − v2τ2, t = −τ1 − τ2 − τ3, (75)

Zakharov’s solution can be presented in the form

u1 =
1

V

f2f3

1 + (F1 + F2) F3
,

u2 =
1

V

f1f3

1 + (F1 + F2) F3
,

u3 = −
i

V

f ∗

1 f2F3

1 + (F1 + F2) F3
, (76)

wherefi=fi (τi) are arbitrary, square-integrable, complex
functions, andFi are determined by

F1 =

+∞∫
τ1

ds |f1|
2 , F2 =

τ2∫
−∞

ds |f2|
2 ,

F3 =

+∞∫
τ3

ds |f3|
2 . (77)

To interpret correctly the initial-value problem in terms of
characteristic coordinatesτ1, τ2, τ3, we note that due to the
minus signs in Eq. (75), fixing any two of the characteristic
coordinates would send the third characteristic coordinate to
+∞ if t→−∞, or to−∞ if t→+∞. Thus, the initial states
will be located where any one of the characteristic coordi-
nates approaches+∞, and the final states will be located
where any one of the characteristic coordinates approaches
+∞. Therefore, quantities

u+

i = lim
τi→+∞

ui, u−

i = lim
τi→−∞

ui, (78)

correspond to the initial and final profiles, respectively.
Considering the integral characteristic

I+

i =

∫
dx
∣∣u+

i

∣∣2 , I−

i =

∫
dx
∣∣u−

i

∣∣2 (79)

as initial and final intensities of the packets, we can obtain a
convenient formula for their calculation

I±

i = si
g1/2

V

×

∫
dτjdτk∂j∂k ln

(
1 + (F1 + F2) F3|τi=±∞

)
, (80)

wheresi=sign ∂iFi andg1/2
=

√
v2

1v
2
2 − (v1v2)

2 is the Jaco-
bian of transformation Eq. (75).

Denoting

Yi =

∫
+∞

−∞

ds |fi |
2 , i = 1,2,3, (81)

we can compute the initial and final integral intensities of the
wave packets.

As shown byZakharov(1976), in the initial stage when
the wave packetu3 is absent, the integral intensities ofu1,
u2, andu3 are determined as

I+

1 = −
g1/2

V

∫
dτ2dτ3∂2∂3 ln (1 + F2F3)

=
g1/2

V
ln (1 + Y2Y3) , (82)

I+

2 =
g1/2

V

∫
dτ2dτ3∂1∂3 ln (1 + (F1 + Y2) F3)

=
g1/2

V
ln

(
1 +

Y1Y3

1 + Y2Y3

)
, (83)

I+

3 = 0. (84)
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In final stage we have all three packets with intensities

I−

1 = −
g1/2

V

∫
dτ2dτ3∂2∂3 ln (1 + (Y1 + F2) F3)

=
g1/2

V
ln

(
1 +

Y2Y3

1 + Y1Y3

)
, (85)

I−

2 =
g1/2

V

∫
dτ2dτ3∂1∂3 ln (1 + F1F3)

=
g1/2

V
ln (1 + Y1Y3) , (86)

I−

3 = −
g1/2

V

∫
dτ2dτ3∂1∂2 ln (1 + (F1 + F2) Y3)

=
g1/2

V
ln

(
1 +

Y 2
3Y1Y2

1 + Y3 (Y1 + Y2)

)
. (87)

It is convenient to introduce the renormalized intensities

J±

i = g−1/2V I±

i (88)

Then, eliminating quantitiesY1, Y2, Y3 from Eqs. (82–87),
we can express final intensitiesJ−

i (i=1,2,3) in terms of
the initial ones as

J−

1 = J+

1 + J+

2 − ln
[
1 + eJ

+

1

(
eJ

+

2 − 1
)]
, (89)

J−

2 = ln
[
1 + eJ

+

1

(
eJ

+

2 − 1
)]
, (90)

J−

3 = −J+

2 + ln
[
1 + eJ

+

1

(
eJ

+

2 − 1
)]
. (91)

8.2 Coplanar case

In a coplanar case whenv1×v2=0, Eqs. (74) become

u̇1 + v1∂u1/∂ξ = −iV u2u3, (92)

u̇2 + v2∂u2/∂ξ = −iV ∗u1u
∗

3, (93)

u̇3 = −iV ∗u1u
∗

2. (94)

and describe the evolution in time and one spatial dimension
of the three-wave resonant interaction. The spatial variable
ξ used as a coordinate along the line of propagationv1, is
related tox by expression

ξ = x cosϕ + y sinϕ, (95)

As shown in Fig.2, angleϕ defines the direction of the prop-
agation(−π/2<ϕ<π/2). Together with frequencyω1, it can
be used for parameterization of the resonant triplet

k3 = 2r (cosϕ, sinϕ) , (96)

k1,2 = −
1

2ω1
(1, 0)±

1

2
k3, (97)

wherer=
√
ω−2

1 /4−1.
We consider the situation when in the initial stage at

t→−∞, Rossby-like wave packetsu1, u2 are localized at in-
finities (ξ=±∞) and the null-mode packetu3 is absent. Ve-
locities of the wave packets can be evaluated from relations

v1,2 = |∂ωk/∂k|k=k1,2
=

4ω3
1r

2ω1r cosϕ ∓ 1
. (98)

which show thatv1<0 andv2>0. Thus, these packets move
towards each other and after some time collide generating
null-mode packetu3. At the final stage att→∞, when
Rossby-like wave packets run away into infinities, all that re-
mains in the interaction region is the immovable null-mode
packetu3 which will never leave the place of its creation.
This situation corresponds to the special solution

u1 = −
2p1

√
−v1 (v2 − v1)

VD

×

(
eη2 +

p1v1 − p2v2

p1v1 + p2v2
e−η2

)
, (99)

u2 = −
2p2

√
v2 (v2 − v1)

VD

×

(
eη1 −

p1v1 − p2v2

p1v1 + p2v2
e−η1

)
, (100)

u3 = −i
4p1p2 (v2 − v1)

√
−v1v2

V (p1v1 + p2v2)D
, (101)

where

η1 = p1 (ξ − v1t − ξ1) , (102)

η2 = p2 (ξ − v2t − ξ2) , (103)

D =
(
eη1 + e−η1

) (
eη2 + e−η2

)
−

4p1p2v2v1

(p1v1 + p2v2)
2
e−η1−η2, (104)

Solutions of this sort were first considered byZakharov and
Manakov(1973). According to Eqs. (99) and (100), wave
packetsu1, u2 are characterized by arbitrary amplitudesb2,
but the widths of the packets are related. From Eqs. (102) and
(103) it follows that if l is the width of packetu1, the width of
packetu2 is v1/v2 times smaller, where in accordance with
Eq. (98), v1/v2≥1.

9 Estimates and conclusion

After the two original wave packets,u1 andu2, beat against
each other for some time, they escape from the interaction
region leaving behind the null-mode packet,u3. Thus, at the
final stage, in accordance with Eq. (76), we have the residual
field

ā = u−

3 = −
i

V

f ∗

1 f2Y3

1 + (F1 + F2) Y3
. (105)

Because this disturbance is immovable, it will never leave the
place of its creation.

Using Eq. (76) and assuming that̄a is a slow variable, i.e.
∂ā/∂x=∂ā/∂y=0, we can compute residual fields. At first,
from Eqs. (60) and (61), we obtain

q = σ3 |κ3|
−1/2 ā exp(ik3x)+ c.c., (106)

p = −κ3 |κ3|
−1/2

(
y +

i

σ3

)
ā exp(ik3x)+ c.c., (107)
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Next, from Eq. (17) we find the stream-function

ψ = ψ̄ exp(2ik3x)+ c.c., (108)

where its envelopēψ is expressed as

ψ̄ =
iσ3 |κ3| ā

2

4k2
3 + 1

. (109)

To gain greater insight into the physical significance of
the results, we make some numerical estimates for an ocean
model. In geostrophic approximation, the basic parame-
ters are defined asa=

√
gh/f, β=∂2f, where f , g and

h denote the Coriolis force, the acceleration of gravity
and the mean depth of layer. Choosinga=50 km (baro-
clinic Rossby radius), we consider middle latitudes where
β=10−13 cm−1s−1. Then, in accordance with Eq. (5), we
find the scales of lengthL and timeT under which model
parametersa anβ become unity:

L = a = 50 km, T = (βa)−1
= 2 · 106 s. (110)

Let us suppose that in the initial state two Rossby-
wave packets with wave vectorsk1={−1.59,2.45}
and k2={−5.45, 1.41} move with velocities
v1={−0.049,−0.086} and v2={0.025,−0.014}, and
have ψ0

1=1.2·10−2 and ψ0
2=2.6·10−5, respectively. As

numerical simulation shows, these packets generate a
null-mode packet withk3={3.86,1.03} andψ0

3=2.3·10−4.

Let us conclude with a few remarks. In this paper, we
have considered the simplest model which possesses both
strong dispersion and strong inhomogeneity and nonlinear-
ity. However, this model has permitted us to show how the
null-mode concept changes traditional ideas about the influ-
ence of nonlinear interactions. We have also discussed the
basis for the proposed approach and highlighted important
non-trivial generalization for the operator expressions of nor-
mal variables.

The choice of the method is motivated by several reasons.
Successful solution of a problem of theoretical physics often
depends on which descriptive formalism, i.e. the mathemati-
cal framework, is chosen (seeZakharov, 1985). In fact, there
may exist several analytical approaches which under consis-
tent application lead to the same final result. Theoreticians,
however, often tend to be biased in favor of one while instinc-
tively resisting attempts aiming to explore others: they claim
that new approaches do not contribute anything new. Con-
sequently, not all possible analytical frameworks are treated
equally and some get pushed out by the others. As an exam-
ple, in medieval times European universities developed sev-
eral coexisted algorithms for arithmetic division, but all of
them except for the single one are obsolete nowadays. How-
ever, the prevailing method should not be the one that is most
habitual. The “best” scheme should be the one that is most
adequate for the problem in question. In fact, after the pe-
riod of implementation and adaptation, the framework itself
may start affecting the style of thinking and enriching sci-
entific language. Finally, it may begin to define the way in
which new physical problems are stated. This happened, for

instance, with the Feynmann diagram technique which orig-
inally seemed to be merely a simplification method in the
perturbation theory.

The analogous situation has happened with the HA which
is based on the fundamental fact that governing equations
of a hydrodynamical system possess a hidden Hamiltonian
structure.

Appendix A Hamilton approach

There exist different methods which use the adjective
”Hamiltonian”, and there are numerous papers with titles
where the adjective “Hamiltonian” is used. That is why,
when talking about the Hamiltonian method, it is neces-
sary to define more precisely which one of the versions
is implied. The so-called “Hamiltonian principle” and the
so-called “Hamiltonian description” can mean different ap-
proaches.

The point of the departure for one of the approaches is
the integral (action) of a hydrodynamical system taken in the
form

S =

∫
dt L[ui, ∂tui]

≡

∫
dt{

(∫
dxÂj [u; x, x1]∂tuj (x1)

)
−H [u]}. (A1)

Here,L is the Lagrangian of the hydrodynamical system,H

is the Hamiltonian of the same system,∂tuk is the partial
derivative of a field variable with respect to time. Variations
of the action,S, with respect to hydrodynamical field vari-
ablesu=(uk) lead to the evolution equationδS=0, which is
equivalent to∫
dx1ω̂ik[u; x, x1] ∂tuk(x1) =

δH

δui(x)
. (A2)

Here, δ/δum are the operator of functional derivation,
ωik is the symplectic form defined by the condition
ω̂ik[x, x1]=δÂi[u(x1)]/δuk(x)−δÂk[u(x)]/δui(x1).

The approach proceeding from the extremum of Eq. (A1)
and based on the use of equations Eq. (A2) has a wide dis-
semination. Reviews on applications of the variational prin-
ciple of least action with a hydrodynamical Lagrangian den-
sity, can be found in works ofBretherton(1970); Henyey
(1983); Salmon(1988) (see also publications relevant to this
aspect inAbarbanel et al.(1986); Holm et al.(1985) and ref-
erences therein; in context of the Hamiltonian formulation of
Rossby wave model see for instanceLynch (2002)).

The other version of the Hamiltonian description proceeds
from the evolution equations in the form

∂tui(x) = {ui, H }

≡

∫
dx1{ui(x), uj (x1)}

δH

δuj (x1)
. (A3)

Here,{ui(x), uj (x1)} is the functional Poisson bracket,H
is the Hamiltonian of the hydrodynamical system (gener-
ally speaking, the full energy of a fluid). This latter form
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seems to be preferable sometimes from the physical point of
view since it arises naturally in many known hydrodynamical
models.

A particular case, the canonical form of the Hamilton ap-
proach, is given by the set of equations in terms of functional
derivatives

∂tqi =
δH

δpi
, ∂tpi = −

δH

δqi
, (A4)

whereqi, pi, i=1, 2, ...N are canonical variables, andH is
the Hamiltonian of the system.

Equations (A2) and (A3) would become equivalent if there
existed a one-to-one transformation, i.e. if there existed rela-
tion∫
dx2 ω̂ij [u; x1, x2] {uj (x2), uk(x3)}

= δikδ(x1 − x3). (A5)

Such a scenario is realized when the functional Poisson
brackets are non-degenerated. In this case, it would be ab-
solutely irrelevant which of the formulations was taken as a
point of departure.

However, for systems with degenerated functional Poisson
brackets{uj , u′

k}, which admit solutions of{uj , Ck}=0 for
CasimirsCk, transformations Eq. (A5) are impossible. Such
a situation is observed for hydrodynamical models (see, for
example, Arnold, 1978).

If from the beginning one is forced to work within the class
of models determined by evolution Eqs. (A2), it is necessary
to go through the process not only of searching for the ca-
nonical variables, but also ascertaining their connection with
physically-observed field quantities (for example, one needs
to elucidate the sense of multi-valued Clebsch representa-
tions), then invent models of hydrodynamic systems with un-
usual properties, and so on.

Even if the necessary structure of the Lagrangian is
guessed or selected in some intuitive way, the use of the vari-
ational principle Eq. (A1) requires the formulation of addi-
tional postulates concerning latent constraints, the physical
interpretation of which is not always obvious.

In the historical context, the Hamiltonian description in the
forme of Eq. (A3) is directly driven from physically-based
presumptions about the type of evolution of hydrodynami-
cal systems and their internal properties (seeGoncharov and
Pavlov, 1997).

The Hamiltonian approach Eq. (A3) was initially devel-
oped in fluid dynamics mainly for pragmatic goals, as a me-
thod of solving some concrete hydrodynamical problems.
For example, it appears to be very effective in finding non-
linear evolution equations for interacting waves (for details,
see Zakharov et al., 1985). It was immediately noticed that
the Hamiltonian method possesses a number of advantages in
comparison with traditional approaches. In particular, a) the
Hamiltonian approach is not tied to a particular choice of
“field coordinates”. Specific features of a medium turn out to
be unessential to a large extent; b) many versions of the per-
turbation theory may be simplified and standardized; c) the

method is rather economical because an asymptotic expan-
sion can be made in the beginning; d) the physical meaning
of the results of calculations obtained for a particular system
can be easily revealed. In early 1970s, (see workZakharov
and Faddeev, 1971), it became apparent that the majority of
nonlinear evolution equations integrated by the inverse scat-
tering method possess a Hamiltonian structure, i.e. they are
the infinite-dimensional analogues of the Hamilton equations
of classical mechanics.

Approximately at the same time the general physical es-
sence of the Hamiltonian approach was realized. It became
clear that in classical physics many of the conservative mod-
els which use a field concept, possess a hidden Hamilto-
nian structure. Many hydrodynamical models happened to
be among them.

The construction and successful use of canonical vari-
ables for studying surface gravity wavesZakharov(1968)
presented one of the most impressive examples of the ap-
plication of the Hamiltonian approach in hydrodynamics and
gave an impetus to elaborate the general wave theory for non-
linear, dispersive media in the framework of the canonical
Hamiltonian formalism. The issue of determining canonical
variables was essential to the development of the Hamilto-
nian method. For many fluid dynamic systems, the canonical
variables in Clebsch representation have been introduced in
an intuitive way (examples are given inSeliger and Whitham,
1968; Zakharov and Kuznezov, 1997). There even exists an
opinion that the canonical variables may only be guessed (see
L’vov, 1994). In reality, it is not correct, there exists a regu-
lar procedure for finding canonical variables (seeGoncharov
and Pavlov, 1993, 1997).

If the Hamiltonian approach Eq. (A3) merely offered a
new vision of familiar results, it would deserve little atten-
tion. However, enough evidence has accumulated that the
Hamiltonian approach, together with the methods of mod-
ern classical mechanics (seeDubrovin and Novikov, 1989;
Arnold, 1978), comprise a powerful tool for fluid dynamics
research. Conservation laws, stability conditions, asymptotic
approximations and useful variable transformations, all ac-
quire logical motivation and transparency that is often lack-
ing when the corresponding manipulations are applied di-
rectly to the traditional evolution equations.
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