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Abstract. The propagation of nonlinear surface waves in
channels of smoothly variable in space cross section is stud-
ied theoretically and by means of numerical computations.
The mathematical model describing wave evolution is based
on the generalized Korteweg-de Vries equation with addi-
tional terms due to spatial inhomogeneity and energy dissi-
pation. Specifically we consider channels of variable depth
and width. The breaking of Riemann waves and the disinte-
gration of hydraulic jumps into trains of solitons have been
examined. The results obtained can be useful in particular
for the understanding some peculiarities of bore (mascaret)
formation, viscous evolution and disintegration into solitons
in inhomogeneous channels or rivers.

1 Introduction

The problem of shallow water wave propagation in rivers,
channels or canals has been a matter of interest for at least
the two last centuries. John Scott Russell apparently was the
first who observed solitary wave propagations in the Union
Canal near Edinburgh in 1838 Ablowitz and Segur (1981);
Whitham (1974). As an observant researcher, he described
in his first Report not only the fact itself of the solitary wave
existence (“well defined heap of water ... over a foot hight
and thirty feet long”) but also its gradual decay due to viscos-
ity and structural stability against the channel inhomogeneity
and curvature. Since that first observation many interesting
and important results have been obtained. There is no room
here to mention all the relevant publications dealing with the
problem, therefore we only refer to the most appropriate ar-
ticles. Despite significant progress in the understanding of
the dynamics of surface waves in rivers and channels many
problems of practical interest still remain unsolved.

Attempts to apply classical results of shallow water the-
ory to real situations meet with serious difficulties related to
the necessity to take into account wave dissipation, boundary
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conditions at the riverbed of a complex cross section, river
bending, variability of the river depth and width, etc. All
these factors lead to a further development of classical shal-
low water models, described by Boussinesq, Saint Venant or
Korteweg-de Vries equations (KdV), which become nonin-
tegrable. The role of approximate methods and numerical
modelling increases significantly in such situations.

In this article we consider the problem of shallow water
wave propagation in a channel of smoothly variable in space
cross section. We assume a channel of rectangular cross sec-
tion and take into account variations of its depth or width, its
bending and wave dissipation. In Sect. 2 we introduce the
main model equation which is the generalized KdV equation
containing additional terms describing the above mentioned
effects. Some properties of the model equation are discussed.
In Sect. 3 we study the breaking of Riemann waves due to
the nonlinearity. The influence of different types of viscous
losses in channels of linearly varying depth and width are
taken into account. In Sect. 4 we consider the formation of
solitons from an initial hydraulic jump due to the effect of
dispersion. In particular, we study the dependence of the dis-
tance of first soliton emergence from a step-wise perturba-
tion on the amplitude of the perturbation and the depth of the
channel. Section 5 is devoted to study the formation of a soli-
ton from small initial disturbances in inhomogeneous chan-
nels. In Sect. 6 we present soliton-amplitude decay laws for
different types of dissipation. The numerical results, given in
Sect. 7, illustrate the evolution of the bore into a train of soli-
tons in a channel of variable depth or width and the influence
of different types of dissipations. We present our conclusions
in Sect. 8.

2 The model

Let us consider long water waves of relatively small ampli-
tude in a channel of rectangular cross section. The KdV
model equation describing such perturbations can be de-
rived from the Boussinesq equations of shallow water theory
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Whitham (1974). We will not repeat here the well-known
derivation of the equation and one can see for example the
careful calculation done by Das Das (1985) for the case of
a uniform channel of arbitrary cross section. We will mod-
ify this equation to describe waves in a channel whose sec-
tion varies smoothly in space (gradually varying depth or/and
width) and consider simple damping terms. In addition, we
assume that the channel may smoothly bend in space. To
take this into account, we use a curvilinear coordinate frame
so that the undisturbed free surface is taken as thez = 0
plane with the axisz directed vertically and intersecting the
channel bottom. The axisx is directed along the channel and
may smoothly bend in space (it is so-called the ray coordi-
nate – the distance along the ray from some fixed point). The
axis y is directed across the channel perpendicular both to
the axesx andz. The axesx, y andz form an orthogonal
coordinate frame at each point in space.

Let h(x) be the unperturbed depth of the channel at the
equilibrium andl(x) – the width of the channel. We assume
there is no mean flow in the channel so that the water is at
rest in the absence of perturbations.

2.1 Generalized KdV equation for the boundary Cauchy
problem

We first consider the classical KdV equation for a rectilin-
ear channel of rectangular cross section, uniform in space
(see for instance Das, 1985; Kakutani and Matsuuchi, 1975;
Miles, 1975, as well as Ablowitz and Segur, 1981):

∂η

∂t
+ (c0 + a1η)

∂η

∂x
+ a2

∂3η

∂x3
= 0 , (1)

whereη(t, x) is the perturbation of the water surface;c0 =
√

gh is the velocity of long linear waves,g is the acceleration
due to gravity;a1 = 3c0/(2h); a2 = c0h

2/6.
In the present form Eq. (1) is suitable for the solution of an

initial Cauchy problem, i.e. it is supposed that water elevation
η is known everywhere in space at a given instant of time,
η(0, x) = 8(x), where8(x) is a given function. In such
a case one can calculate the further evolution in time of the
initial perturbation by means of Eq. (1). This approach is
usually used in the mathematical study of Eq. (1) and related
equations Ablowitz and Segur (1981).

In practice however, researchers usually deal with mea-
surements of time series of water elevations at some fixed
pointsη(t, xi) and want to predict the further spatial devel-
opment of the perturbation propagating along the channel if
it is known as a function of time, at the boundary of the do-
main of interest (see, e.g. Osborne, 1995). The correspond-
ing mathematical problem can be called a boundary Cauchy
problem for the KdV equation presented in signalling coordi-
nates (see below). So, we assume that the water elevation is a
given function of time at the boundaryx = 0: η(t, 0) = 8(t)

while atx > 0 the elevation is zero (the water surface is un-
perturbed), and aim to predict its further evolution in space
by means of the appropriate modification of Eq. (1).

Note, that as was shown in Merchant and Smyth (1991,
2002) the initial-boundary problem described above can be
considered, in principle, within the framework of Eq. (1).
But such a problem statement is more difficult, in our opin-
ion, than the consideration of a boundary Cauchy problem
within the signalling coordinates. Only relatively simple so-
lutions for the initial-boundary problem were obtained so far
by means of approximate asymptotic method Merchant and
Smyth (1991, 2002), while in the signalling coordinates the
entire powerful kit of exact methods (including inverse scat-
tering transform, Hirota method, Darboux and Bäclund trans-
formations, etc.) can be used. Note also that the accuracy of
the KdV equation in the traditional form (1) and in the sig-
nalling coordinates is the same. Therefore, it is quite reason-
able to use the most simple and advanced approach based on
the KdV equation in signalling coordinates.

To obtain the suitable modification of the KdV equation,
let us first rewrite Eq. (1) in the following equivalent form:

∂η

∂x
+

1

c0

∂η

∂t
+

a1

c0
η

∂η

∂x
+

a2

c0

∂3η

∂x3
= 0 . (2)

Then, we point out that the derivation of KdV equation as-
sumes that in the zero-order approximation wave processes
obey the simple wave equation

∂η

∂t
+ c0

∂η

∂x
= 0 (3)

and all other effects (nonlinearity, dispersion, dissipation,
etc.) appear as small corrections to this equation in the next
approximations. This implies that the following relationship
between derivatives

∂

∂x
= −

1

c0

∂

∂t
(4)

which follows from Eq. (3), can be used for the higher-order
approximations. Hence, one can replace the spatial deriva-
tives by time derivatives in the nonlinear (∼ a1) and disper-
sive (∼ a2) terms. As a result, Eq. (1) takes the following
form in the signalling coordinates (cf. Osborne, 1995)

∂η

∂x
+

1

c0

∂η

∂t
−

a1

c2
0

η
∂η

∂t
−

a2

c4
0

∂3η

∂t3
= 0 . (5)

This equation allows a further generalization. First of all,
the effect of the channel inhomogeneity can be taken into
account. This effect is important from the practical point of
view because natural channels or rivers are never rectilinear
in reality but rather curved. However, if the channel bend is
smooth enough, i.e.λ/R � 1, whereλ is a characteristic
wave length andR is the curvature radius of a channel, then
Eq. (5) is still applicable, but the axisx is no more a Cartesian
one. It must be replaced by the curvilinear “ray” coordinate
directed along the channel axis orthogonal at each of its point
to the other two axes,y andz (Fig. 1). A similar approach
was used for the description of sea waves in a coastal zone
with a nonuniform bottom which results in the formation of
curvilinear waveguides Pelinovsky et al. (1993).
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Fig. 1. Sketch of a channel bend and a curvilinear coordinate frame.

The next, more important point, is the variability in space
of the channel parameters. The depthh, channel widthl,
wave speedc0, etc. are not constants in general, but depend
on the spatial ray coordinatex. This leads not only to an
x-dependence of the coefficients of the Eq. (5) but also to
the appearance of an additional term. To derive this term,
we note first that the constructing generalized KdV equation
contains additively the terms describing different effects such
as nonlinearity, dispersion, dissipation, inhomogeneity, etc,
because all these effects are assumed small and the same or-
der of smallness. This assumption allows us to derive the
corresponding terms in the equation separately from others.
The key point to derive the inhomogeneous term is the law
of energy flux conservation across the channel cross sectional
area. Time averaged density of wave energy integrated over
the channel depth can be readily obtained in the linear ap-
proximationE = ρgη2/2 Mei (1983); Stepanyants (1985),
whereρ is fluid density. Hence, the total energy flux across
the channel cross section is

Q = c0(x) E l(x) = 1/2ρgc0(x) l(x) η2(x) = const. (6)

By differentiating Eq. (6) overx one obtains

∂η

∂x
+

η

2c0l

∂(c0l)

∂x
= 0. (7)

This equation describes wave amplitude variation in a chan-
nel of variable cross section, wave amplitude can vary in
space both due to variation of the channel width,l(x), and
due to variation of channel depth becausec0(x) =

√
gh(x).

We assume that the channel inhomogeneity is smooth
enough so that the second term in Eq. (7) is of the same or-
der of smallness as nonlinear and dispersive terms in Eq. (5)
and, hence, it can be included into that Eq. (5) additively. Of
course, a strict mathematical derivation of such a generalized
KdV equation can be done on the basis of a regular asymp-
totic method (see, e.g. Ostrovsky, 1974; Pelinovsky, 1996)

but it is beyond the scope of this article. Actually, such sort of
equations are very well-known already for a long time (see,
e.g. Grimshaw, 1970; Ostrovsky and Pelinovsky, 1970), and
we just remind the reader how different physical effects give
rise to separate terms in the generalized KdV Eq. (8) written
below.

In addition to the inhomogeneity effect, we also take into
account a small dissipation assuming again that the corre-
sponding term in the generalized KdV equation is of the same
order of smallness as other small terms. We present dissi-
pation by some generalized functionF(η) in the right-hand
side of the model equation, leaving the discussion of a pos-
sible structure of the corresponding viscous term to the next
subsection.

So, the combination of all effects mentioned above leads
eventually to the following model equation

∂η

∂x
+

1

c0(x)
[1 − α(x)η]

∂η

∂t
− β(x)

∂3η

∂t3

+
η

21(x)

d1(x)

dx
= −F(η) , (8)

where

α(x) =
a1(x)

c0(x)
=

3

2h(x)
, β =

a2(x)

c4
0(x)

=
h2(x)

6c3
0(x)

;

1(x) = c0(x)l(x) . (9)

The function1(x) is the analog of the ray divergence factor
in the theory of sea waves in an inhomogeneous coastal zone
Pelinovsky (1996). An equation similar to Eq. (8) including
inhomogeneity and viscous terms has been strictly derived in
Grimshaw (1981) for long nonlinear internal waves in strati-
fied shear flows. Surface waves can be considered as a lim-
iting case of internal waves in a two-layer fluid with a sharp
density interface and a zero density upper layer.

Wave dynamics in channels or rivers essentially depends
also on the shape of initial perturbations (we are using the
term “initial” but in fact we consider perturbations given at a
fixed pointx0 as was already pointed out). Other important
factors are the amplitude and duration of the perturbation as
well as external parameters determining the coefficients of a
generalized KdV Eq. (8). Unfortunately, Eq. (8) is too com-
plex to analyze its solutions in general, therefore we consider
some most typical and important wave processes which can
occur in the natural condition; these processes we will study
here in detail.

2.2 Models of dissipation

There are several different models of dissipation, unfortu-
nately none of them has been thoroughly examined experi-
mentally for surface waves. There are a few articles where
dissipation of long nonlinear waves was studied experimen-
tally in laboratory conditions (see about that in Ablowitz and
Segur, 1981) but the applicability of the results obtained to
natural conditions is doubtful. The most frequently used
models for practical estimations of wave decay are listed in
this subsection.
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In the simplest case, the dissipative term in the right-hand
side of Eq. (8) is frequency independent, we will call this
model the Rayleigh dissipation Pelinovsky et al. (1993):

F(η) = γ0(x)η, where γ0(x) =
3ν

4c0(x)h2(x)
, (10)

andν (m2/s) is the turbulent viscosity of water which is usu-
ally an empirical parameter. It varies in a wide range from
0.2 to 30 m2/s Holloway et al. (1997), while the usual molec-
ular viscosity is only 10−6 m2/s. Essentially the same dissi-
pation in shallow water has been recently considered in Wu
and Tian (2000).

A more complex case corresponds to Chezy model of
wave dissipation Pelinovsky et al. (1993); Holloway et al.
(1997, 1999):

F(η) = γc(x)|η|η, where γc(x) =
k

h2(x)
, (11)

k ≈ 1.5 · 10−3 is an empirical dimensionless coefficient de-
scribing friction on the bottom. Equations containing this
type of losses have been widely used to describe stationary
flows in river hydraulics and the dynamics of wave breaking
in a surf zone (see, e.g. Leontjev, 1989; Voltsinger et al.,
1989, and references therein).

Sometimes a dissipation of the Reynolds type is consid-
ered with some effective turbulent viscosity instead of a
molecular one. This leads to the appearing of Burgers vis-
cous term in the generalized KdV Eq. (8) (Holloway et al.,
1997):

F(η) = −γ2(x)
∂2η

∂t2
, where γ2(x) =

ν

c3
0

(12)

andν(m2/s) is again an empirical coefficient of effective tur-
bulent viscosity as above.

It is interesting to note that the same term describes energy
losses by linear surface waves due to scattering on bottom
roughness (Dyatlov and Pelinovsky, 1990). The dissipative
coefficient can be calculated analytically in this case:

γ2 =
3

c2
0(x)

[
aav

h(x)

]2

, (13)

whereaav is the average height of bottom roughness and
3 is the characteristic scale of irregularities (both these pa-
rameters can bex-dependent in principle). Unfortunately,
this model is not applicable to the description of nonlinear
wave scattering (Benilov and Pelinovsky, 1988), and cur-
rently there is no simple modification for this case.

The most rigorous study of energy losses caused by wa-
ter friction on the channel bottom and side walls leads to
a KdV equation with the integral viscous term in the form
(Das, 1985; Kakutani and Matsuuchi, 1975; Miles, 1975)

F(η) =
a3

4c0
√

π c0Re

·

+∞∫
−∞

1 − sgn(t − t ′)
√

|t − t ′|

∂η(t ′, x)

∂t ′
dt ′. (14)

A similar viscous term has been derived in Grimshaw (1981)
for internal waves in shear flow. Actually this term com-
bines dissipative and dispersive features. The expression for
the coefficienta3 can be found in Kakutani and Matsuuchi
(1975) and Miles (1975) for a channel of rectangular cross
section and in Das (1985) for a channel of arbitrary cross sec-
tion. Despite the fact that the derivation of this term seems
to be the most accurate, its applicability to real natural or
laboratory situations of water wave decay has not been con-
firmed yet either experimentally or numerically. In addition,
this integral term makes the KdV equation difficult to analyze
in general, meanwhile the approximate solutions describing
smooth decay of solitary and periodic waves in a homoge-
neous channel have been obtained in Kakutani and Matsu-
uchi (1975) and Miles (1976). We will not consider this type
of dissipation in the present article, it is mentioned here just
for the completeness.

2.3 Conservation laws

Equation (8) does not belong to the class of completely inte-
grable models even in the absence of dissipation. However,
in the dissipationless case, whenF(η) = 0, it possesses at
least two integrals of motion.

The first one corresponds to the mass conservation in the
homogeneous medium and can be treated as conservation of
the mass flux in the inhomogeneous case (this integral of mo-
tion remains valid when Burgers viscosity is included):

11/2(x)

∫
η dt = const. (15)

The integral is taken over a wave period for periodical per-
turbations or from minus to plus infinity for solitary pertur-
bations vanishing at the infinity.

The second conserved quantity corresponds to the energy
conservation in the homogeneous medium whereas in the in-
homogeneous case it can be treated as conservation of the
energy flux:

1(x)

∫
η2 dt = const. (16)

From these conservation laws, one can estimate how the
amplitude of a given initial perturbation varies in space. In
particular, a linear dispersionless perturbation has a duration
T which is independent of its amplitudeA. In this case both
these integrals give the same law of wave amplitude varia-
tion with distance if the depth and width of the channel are
known. Consider for example a perturbation

η(x, t) = Af (τ/T ) , τ = t −

x∫
0

dx′

c0(x′)
, (17)

wheref is a dimensionless function describing wave profile.
Substituting this expression into one of the above integrals,
(15) or (16), say into (16) for certainty, one obtains

1(x)A2(x)T

∫
f 2(θ) dθ = const. (18)
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It readily follows then

A(x) ∼ 1−1/2(x) ∼ h−1/4(x)l−1/2(x) . (19)

The well-known Green’s law,A(x) ∼ h−1/4(x), follows
from this formula in the particular case of a channel of a
constant width. The dependence of wave amplitude on the
channel width at a constant depth is more strong than on the
depth,A(x) ∼ l−1/2(x).

In the nonlinear case the situation turns to be a bit more
complex because wave duration and amplitude are usually
linked with each other. For a KdV soliton of the form

η(x, t) = A sech2

1
T

t −

x∫
0

dx′

V (x′)

 (20)

there are relationships between the amplitude and dura-
tion (see, e.g. Ablowitz and Segur, 1981; Karpman, 1973;
Whitham, 1974),T =

√
12c0β/αA, and between the ampli-

tude and wave velocity,

V = c0/(1 − αA/3) ≈ c0(1 + αA/3) .

In the nonlinear case only the second integral of mo-
tion (16) gives the correct formula for soliton amplitude
variation with distance. Strictly speaking this dependence
must be derived by successive application of the asymptotic
method (see, e.g. Ostrovsky, 1974) based on the smallness
of the inhomogeneity, the characteristic width of a soliton is
assumed to be small in comparison with the scale of the in-
homogeneity. However, a long and tedious asymptotic pro-
cedure leads to the same result as follows from the varia-
tional approach using Eq. (16) but not Eq. (15). The reason is
that as it evolves in an inhomogeneous medium the soliton is
gradually destroyed and generates behind itself a nonsoliton
perturbation in the form of a shelf. This perturbation appar-
ently contributes significantly to the mass flux (15) but not so
much to the energy flux (16). Therefore, by substituting the
soliton expression (20) into Eq. (16) and neglecting the shelf,
one obtains instead of Eq. (18)

1(x)A2(x)T (x)

+∞∫
−∞

sech4(θ) dθ

= 1(x)A3/2(x)

√
c0(x)β(x)

α(x)
= const. (21)

Using the expressions (9) for the coefficients of the KdV
equation, one readily obtains

l(x)h3/2(x)A3/2(x) = const

or (22)

A(x) ∼ l−2/3(x)h−1(x) .

For channels of variable depth and constant width this
implies a nonlinear analog of Green’s lawA(x) ∼

h−1(x), T (x) ∼ h3/2(x) (see Ostrovsky and Pelinovsky,
1970, 1975, where generalized Green’s laws were obtained
both for solitary and for periodic perturbations). When the
width of the channel varies and the depth is constant, Eq. (22)
givesA(x) ∼ l−2/3(x), T (x) ∼ l1/3(x).

2.4 Simplification of the main Eq. (8)

First of all, let us exclude the inhomogeneous term from
Eq. (8) using the transformation:

u(x, t) = s(x)η(x, t), where s(x) =

√
1(x)

1(0)
. (23)

The resultant equation takes the form:

∂u

∂x
+

1

c0(x)

[
1 −

α(x)

s(x)
u

]
∂u

∂t
− β(x)

∂3u

∂t3

= −s(x)F

[
u

s(x)

]
. (24)

As a next step, one can remove the linear term in the above
equation using the transformation of independent variables:

τ = t −

x∫
0

dx′

c0(x′)
, ξ = x. (25)

The equation takes the form

∂u

∂ξ
− p(ξ)u

∂u

∂τ
− β(ξ)

∂3u

∂τ3
= −F(u). (26)

where

p(ξ) =
α(ξ)

c0(ξ)s(ξ)
, F(u) = s(ξ)F

[
u

s(ξ)

]
.

Note, that if the functionF(u) is linear (which is the case,
e.g. of Rayleigh or Reynolds dissipation), thenF(u) ≡

F(u).
Further simplification can be made if one considers a

boundary condition in a two-parametric form (note that
u(0, τ ) ≡ η(0, t)):

u(0, τ ) = U8(τ/T ) (27)

whereU is a characteristic amplitude of the “initial” pertur-
bation,T is its characteristic duration and8 is a dimension-
less function describing the shape of the perturbation given
at the boundaryx = 0.

Making the new transformation

ζ =
U

T

ξ∫
0

p(ξ ′) dξ ′ , θ =
τ

T
, v =

u

U
, (28)

one can reduce Eq. (26) to the dimensionless form:

∂v

∂ζ
− v

∂v

∂θ
−

1

σ 2(ζ )

∂3v

∂θ3
= −

1

Rd

F(v) . (29)

whereσ 2(ζ ) = p(ζ )UT 2/β(ζ ) is the Ursell’s parameter,
Rd = p(ζ )U/T is the dissipation parameter (the analog of
Reynolds number in hydrodynamics), and functionF(v) is
given by one of the three kinds of dissipations mentioned
above, Eqs. (10)–(12), or by their combinations:

F(v) ={
3ν

4c0(ζ )h2(ζ )
v ;

kU

s(ζ )h2(ζ )
|v|v

ν

T 2c3
0(ζ )

∂2v

∂θ2

}
. (30)
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Table 1. Dependence of the different damping coefficients onζ for a channel of linearly decreasing depth

Type of Coefficient Normalized
dissipation coefficient

Rayleigh g0 ≡
1

Rd

3ν

4c0(ζ )h2(ζ )
=

νT

2Uh0
gh

0(ζ ) gh
0(ζ ) = 1 + Whζ

Chezy gc ≡
1

Rd

kU

s(ζ )h2(ζ )
=

2

3

√
g

h0
T kgh

c (ζ ) gh
c (ζ ) = (1 + Whζ )2/3

Reynolds g2 ≡
1

Rd

ν

T 2c3
0(ζ )

=
2

3

ν

UTg
gh

2(ζ ) gh
2(ζ ) = (1 + Whζ )−1/3

-1.0 -0.8 -0.6 -0.4 -0.2 -0.0 0.2 0.4 0.6 0.8 1.0

Whζ

0.4

0.8

1.2

1.6

2.0

D
is

si
pa

tiv
e 

co
ef

fi
ci

en
ts

1

2

3

Fig. 2. Dependences of the normalized dissipative coefficients
gh

0(ζ ), gh
c (ζ ) andgh

2(ζ ) labeled respectively 1,2 and 3, on the nor-
malized distanceWhζ for a channel of variable depth.

2.4.1 Relative effectiveness of different types of
dissipations

Let us compare the relative effectiveness of the different
types of dissipations in an inhomogeneous channel. Suppose
first that the depth of the channel decreases linearly:

h(x) = h0(1 − κhx), where 0≤ x ≤ Xor ≡ 1/κh, (31)

while its width remains constant. In this case, one can cal-
culate the different dissipative terms in the right-hand side
of Eq. (29) withF(v) given by Eq. (30). The correspond-
ing dissipation coefficientsg0, gc andg2 are presented in
Table 1 in the normalized form as functions of the variable
Whζ whereWh = κhT

√
gh3

0/(2U).
The dependences of the above defined normalized coef-

ficientsgh
0(ζ ), gh

c (ζ ) andgh
2(ζ ) on ζ are shown in Fig. 2,

respectively as curves 1, 2 and 3.
As one can see, the coefficients of Rayleigh and Chezy

dissipation increase with distance as the wave propagates to-
wards the shallower part of the channel, while the coefficient
of Reynolds viscosity decreases. Note also that the total con-
tribution of each dissipative term depends not only on the
values of the coefficients but also on the local wave parame-
ters (amplitude and duration in general) so that the relative
strength of the different dissipative terms can vary differ-
ently. As an example, let us estimate the ratio of Reynolds

to Rayleigh dissipations for a KdV soliton in a channel of
variable depth:

Reynolds dissipation

Rayleigh dissipation
=

ν

T 2c3
0(ζ )

∂2v

∂θ2
:

3νv

4c0(ζ )h2(ζ )

=
4

3

h(ζ )

gT 2

1

v

∂2v

∂θ2
≈

4

3

h(ζ )

gT 2T 2(ζ )
, (32)

whereT (ζ ) is the soliton duration in dimensionless vari-
ables. Taking into consideration the “nonlinear Green’s law”
for KdV solitons (see Sect. 2.3) and the relationship between
the soliton amplitudeA and its duration which in the dimen-
sionless variables is

T 2(ζ ) =
12

σ 2(ζ )A(ζ )
=

4h2
0

3gT 2U
(1 + Whζ )−13/3 ,

one finally obtains

Reynolds dissipation

Rayleigh dissipation
=

U

h0
(1 + Whζ )3. (33)

Hence, the relative strength of the Reynolds dissipation with
respect to the Rayleigh one smoothly increases with distance
for a KdV soliton.

Note that the Ursell dispersion parameter increases in the
same proportion

σ 2(ζ ) =
9gUT 2

h2
0

(1 + Whζ )3 . (34)

Let us suppose now that the width of the channel decreases
linearly:

l(x) = l0(1 − κlx) , where 0≤ x ≤ Xor ≡ 1/κl , (35)

while the depth remains constant. Using again the formulae
above and denotingWl = T c0hκl/(2U), the same term as
Wh, one obtains the dependences given in Table 2.

The normalized coefficientsgl
0(ζ ), gl

c and gl
2(ζ ) are

shown in Fig. 3 as curves 1, 2 and 3 respectively.
The coefficients of Rayleigh and Reynolds dissipation de-

crease with distance as the wave propagates towards the nar-
rower part of the channel, while the coefficient of Chezy dis-
sipation remains constant. The ratio of Reynolds to Rayleigh
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Table 2. Dependence of the different damping coefficients onζ for a channel of linearly decreasing width

Type of Coefficient Normalized
dissipation coefficient

Rayleigh g0 ≡
1

Rd

3ν

4c0h2
=

3

4

T

p(ζ )U

ν

c0h2
=

νT

2Uh
gl

0(ζ ) gl
0(ζ ) = 1 −

2
3Wlζ

Chezy gc ≡
1

Rd

kU

s(ζ )h2
=

2

3

√
g

h
T kgl

c(ζ ) gl
c(ζ ) = 1

Reynolds g2 ≡
1

Rd

ν

T 2c3
0

=
ν

UTp(ζ )c3
0

=
2

3

ν

UTg
gl

2(ζ ) gl
2(ζ ) = 1 −

2
3Wlζ
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Fig. 3. Dependences of the normalized dissipative coefficients
gl

0(ζ ), gl
c and gl

2(ζ ) labeled respectively 1,2 and 3, on the nor-
malized distanceWlζ for a channel of variable width.

dissipations for a KdV soliton in a channel of variable width
is:

Reynolds dissipation

Rayleigh dissipation
=

2

3

ν

gT U

∂2v

∂θ2
:

νT v

2Uh

=
4

3

h

gT 2

1

v

∂2v

∂θ2
≈

4

3

h

gT 2T 2(ζ )
. (36)

Taking into consideration the “nonlinear Green’s law” for
KdV solitons in a channel of variable width (see the end of
the Sect. 2.3), one obtains

Reynolds dissipation

Rayleigh dissipation
=

U

h

(
1 −

2

3
Wlζ

)−7/3

. (37)

Again the relative strength of the Reynolds dissipation
with respect to the Rayleigh one smoothly increases with dis-
tance for a KdV soliton. Both dependences (33) and (37),
for a channel of variable depth and variable width, respec-
tively, are shown in Fig. 4 (curves 1 and 2). Both these ratios
increase as the wave propagates towards the shallower and
narrower part of the channel.

The Ursell parameter is given by

σ 2(ζ ) =
9gUT 2

h2

(
1 −

2

3
Wlζ

)−1

. (38)
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Fig. 4. The ratio of the Reynolds dissipation to the Rayleigh one
normalized toU/h0 versus the dimensionless distanceWh,lζ for
a KdV soliton propagating in a channel of linearly varying depth
(curve 1) and width (curve 2) and analogous dependencies for the
normalized Ursell parameters (34) (curve 3) and (38) (curve 4).

The normalized Ursell parameters,σ 2(ζ )h2
0/(9gUT 2),

are also shown in Fig. 4 for both the variable depth or width
cases described by Eqs. (34) and (38) (curves 3 and 4 respec-
tively).

The model Eq. (8) or its dimensionless version (29) is the
base for our study of nonlinear waves in an inhomogeneous
channel. In the subsequent sections we will analyze it subject
to some specific “initial” conditions.

3 Breaking of Riemann waves

We consider first very long and smooth perturbations for
which dispersive effects are insignificant. This means that
the corresponding dispersive term (∼ β) in Eq. (24) can be
dropped. Let us omit the dissipation for a while. The influ-
ence of different types of dissipation on the breaking phe-
nomenon will be briefly discussed at the end of this section.
So, Eq. (24) withβ = 0 andF(η) = 0 reduces to:

∂u

∂x
+

1

V (u, x)

∂u

∂t
= 0 , (39)

where

V (u, x) =
c0(x)

1 − α(x)u/s(x)
. (40)
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Suppose that atx = 0 the boundary condition is given by
a smooth function8(t). An exact solution of Eq. (39) can be
presented in the implicit form (Whitham, 1974):

u(x, t) = 8(τ) ,

where (41)

τ = t −

x∫
0

[
1 −

α(x′)u(x′, t)

s(x′)

]
dx′

c0(x′)
.

According to the theory of nonlinear waves (see, e.g.
Whitham, 1974), the evolution of a smooth “initial” per-
turbation described by this solution (41) leads in general
to the development of a discontinuity in the wave profile,
ut = ux = ∞. The distance at which the discontinuity ap-
pears,Xb, is calculated as the minimum root of the transcen-
dental equation (cf. Whitham (1974))

∂

∂t

t +

Xb∫
0

[
1 −

α(x)

s(x)
8(t)

]
dx

c0(x)

 = 0 , (42)

which results in

Xb∫
0

α(x)

s(x)c0(x)
dx = M−1

d ,

where (43)

Md = max

∣∣∣∣d8(t)

dt

∣∣∣∣ .

For a detailed analysis of this formula one should specify
the character of the channel inhomogeneity and wave profile
at the given boundary.

3.1 A channel of linearly decreasing depth

Let us assume that the depth of the channel decreases linearly
with x in accordance with Eq. (31), and the channel widthl is
constant. Then, the parameters(x) ∼

√
c0(x) ∼

4
√

1 − κhx,
so that from Eq. (43) one obtains

3

2h0
√

gh0

Xb∫
0

(1 − κhx)−7/4 dx = M−1
d . (44)

The integral in Eq. (44) can be readily calculated and the
breaking distanceXb can be found explicitly

Xb

X0
=

1

κhX0

[
1 −

(
1 +

3

4
κhX0

)−4/3
]

≈ 1 −
7

8
κhX0 , (45)

whereX0 is the wave-breaking distance in the homogeneous
case whenκh = 0:

X0 =
2

3

h0
√

gh0

Md

. (46)
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Fig. 5. Dependencies of the normalized breaking distances of a Rie-
mann wave,Xb/X0, on the normalized gradients of channel depth
κhX0 (line 1) and channel widthκlX0 (line 1′). Curve 3 depicts
the normalized distance to the channel origin,Xor/X0, where its
depth or width turns to zero according to the linear models (31),
(35). Lines 2 and 2′ show the influence of the Rayleigh dissipation
on wave breaking (see Sect. 3.3.1).

Assuming that the perturbation at the boundaryx = 0 is
sinusoidal:8(t) = A sinωt (Md = Aω) and putting

A = 1 m , h0 = 10 m,

g = 9.8 m s−2 , ω = 0.5 s−1 , (47)

one readily obtains that in a channel of uniform depth the
breaking distance isX0 ≈ 131 m, while in a hypothetic chan-
nel of fast decreasing depth, so thatκh = 5 · 10−3 m−1, this
distance isXb ≈ 109 m. In general,Xb depends smoothly
on κh, it decreases monotonically whenκh grows (Fig. 5).
The breaking distance always remains less than the distance
to the origin of the channelXor = 1/κh, where the depth
is zero (see Eq. 31). The dependence ofXor on κh is also
shown in the same Fig. 5 in normalized variables (see curve
3). Only in the limit κh → ∞ does the breaking distance
approachXor . So a decrease of the depth cannot prevent
the breaking phenomenon, on the contrary, it even stimulates
it because the role of nonlinearity, responsible for the wave
breaking, increases when the channel depth decreases.

The situation is different if the channel depth increases.
As follows from Eq. (45),Xb infinitely increases whenκh

is negative and approaches the critical valueκcr = −
4
3X−1

0 .
For the sinusoidal perturbation with parameters (47),κcr =

−0.01 m−1. Wave breaking is impossible if the depth of the
channel increases too fast so that the depth gradientκh < κcr .

3.2 A channel of linearly decreasing width

Similar formulae can be derived for a channel of linearly de-
creasing width, Eq. (35), where depth is assumed constant.
By substitution ofl(x) in Eq. (43) and simple manipulations
one can readily obtain

Xb

X0
=

1

κlX0

[
1 −

(
1 −

κlX0

2

)2
]

= 1 −
κlX0

4
. (48)

In the limiting caseκl = 0 Eq. (48) yields again the ex-
pression for the homogeneous channel, given by Eq. (46).
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The dependence ofXb on κl is linear and weaker than onκh

(compare lines 1 and 1′ in Fig. 5). In particluar,Xb is smaller
in this case than for a variable width. For the parameters con-
sidered in the previous section we getXb = 31 m.

Wave breaking always formally occurs for negativeκl but
the breaking distance increases to infinity for large negative
κl . For positiveκl , the breaking distance is always less than
the distance to the channel origin,Xor , and both these values
coincide whenκlX0 = 2 (lines 1′ and 3 in Fig. 5 cross at this
point). For the sinusoidal initial perturbation with parame-
ters (47), the corresponding value ofκl is κci = 0.015 m−1.
For larger values ofκl , the breaking distance further de-
creases and remains smaller than the distance to the channel
origin. It formally turns to zero whenκl = 4/X0. Therefore,
when the gradient of channel narrowingκl is close to 4/X0 a
sinusoidal wave will break almost immediately.

So, both a narrowing of the channel and a decrease of its
depth cause wave breaking, although in a different manner. It
is interesting that the increase of channel width cannot com-
pletely prevent wave breaking (see line 1′ in Fig. 5 for the
negative values ofκl). It merely leads to smooth increasing of
breaking distance. In reality, however, the governing Eq. (39)
is not valid in the vicinity of the breaking pointXb because its
solutions become multi-valued (Whitham, 1974). In this case
a correct description of wave process needs to take into con-
sideration either dissipation or dispersion effects. The disper-
sion effects lead to creation of solitary waves and this process
will be studied in the next Sect. 4. And now we shall briefly
discuss the influence of dissipative effects on the breaking
phenomenon.

3.3 Influence of dissipation on wave breaking

3.3.1 Rayleigh dissipation

Let us start with the simplest kind of dissipation, the
Rayleigh dissipation, described by Eq. (10). The correspond-
ing equation is

∂u

∂x
+

1

V (u, x)

∂u

∂t
= −

3

4

ν

c0(x)h2(x)
u . (49)

This equation also has an exact solution which can be pre-
sented in the implicit form (cf. Whitham, 1974):

u(x, t) = exp

−
3

4
ν

x∫
0

dξ

c0(ξ)h2(ξ)

8(τ) , where (50)

τ = t −

x∫
0

{
1 −

α(x′)

s(x′)

exp

−
3

4
ν

x′∫
0

dξ

c0(ξ)h2(ξ)

8(t)

}
dx′

c0(x′)
.

For the breaking distance,Xb, now we have (cf. Eq. 43):

Xb∫
0

α(x)

s(x)c0(x)
exp

−
3

4
ν

x∫
0

dξ

c0(ξ)h2(ξ)

 dx = M−1
d . (51)

In the case of variable depth channel, by substitution of
h(x) from Eq. (31) and simple algebra, the integral (50) can
be analytically calculated to give

u(x, t) = exp

{
−

ν

2κhh
2
0

√
gh0

[
(1 − κhx)−3/2

− 1
]}

8(τ) ,

where (52)

τ = t −
2

κh

√
gh0

[
1 − (1 − κhx)1/2

]
+u(x, t) exp

[
ν(1 − κhx)−3/2

2κhh
2
0

√
gh0

]√
2π

νκh

√
gh0

×

[
erf

{√
ν

2κhh
2
0

√
gh0

(1 − κhx)−3/4

}

− erf

{√
ν

2κhh
2
0

√
gh0

} ]
,

and erf(x) =
2

√
π

x∫
0

e−ξ2
dξ is the standard error function.

Equation (51) for the breaking distance reduces to:√
2γ0(0)

3κh

{
erf

[√
2γ0(0)

3κh

(1 − κhXb)
−3/4

]
− erf

√
2γ0(0)

3κh

}

=
γ0(0)X0

√
π

exp

[
−

2γ0(0)

3κh

]
(53)

where the dissipative coefficientγ0(x) is defined in Eq. (10).
Effects induced by viscosity are manifest as follows. The

breaking distance increases with increasing viscosity. The
critical condition when wave breaking begins impossible at
negative depth gradients is modified and at small viscosities
(γ0(0)X0 � 1) takes the form:κhX0 ≤ −4/3+4γ0(0)X0/9.

For positive depth gradients, wave breaking becomes im-
possible if the breaking distanceXb, reaches the distance to
the channel origin,Xor , or in other words, whenκhXb = 1.
Taking into account that erf(x) ≤ 1 and using Eq. (53), this
condition can be presented in the following transcendental
form:

γ0(0)X0 =
√

π

√
2γ0(0)

3κh

·

[
1 − erf

√
2γ0(0)

3κh

]
exp

(
2γ0(0)

3κh

)
. (54)

For small viscosities, the wave breaking distance can be
calculated from Eq. (53) by means of a perturbation tech-
nique resulting in:
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Xb

X0
≈

1

κhX0

{
1 −

[
1 +

3

4
κhX0

+
3

4
κhX0

(
1 +

κhX0

4

)
γ0(0)X0

2

]−4/3}
. (55)

The influence of viscosity on wave breaking in a channel
of linearly varying depth is illustrated in Fig. 5 (compare
lines 1 and 2 calculated atγ0(0)X0 = 0.3). As one can see,
the correction caused by viscosity leads to the increase of
the breaking distance although the general dependence of
Xb onκh remains the same as in the inviscid case.

In the case of a channel of variable width, by substitu-
tion of l(x) from Eq. (35) and simple algebra, the condition
determining the breaking distance (51) can be presented as

κlXb∫
0

exp

(
−

3

4

νξ

κlc0h2

)
dξ

√
1 − ξ

=
2

3

c0κlh

Md

≡ κlX0. (56)

Unfortunately, this integral cannot be expressed through ele-
mentary functions. However, if one assumes that|κlXb| � 1
(this can be checked afterwards), the integral in Eq. (56) can
be calculated approximately by decomposing the integrand
into a Taylor series to yield

κlXb∫
0

[
1 +

(
1 −

2γ0

κl

)
ξ

2

]
dξ

≡ κlXb +

(
1 −

2γ0

κl

)
(κlXb)

2

4
≈ κlX0. (57)

The solution of this equation is

Xb

X0
≈

2

κlX0

√
1 + κlX0 (1 − 2γ0/κl) − 1

1 − −2γ0/κl

. (58)

In Fig. 5 the solution (58) is depicted by the dashed line 2′ for
γ0/κl = 0.1. As one can see, viscosity leads to an increase of
the breaking distance which can then become formally larger
thanXor so that breaking becomes impossible. This corre-
sponds in Fig. 5 to the intersection of curves 2′ and 3.
The range of validity of Eq. (58) is restricted by the condition
|κlXb| � 1 (see above) which results in|κlX0| � 1.

3.3.2 Chezy dissipation

The main governing equation in this case is

∂u

∂x
+

1

V (u, x)

∂u

∂t
= −

k

h2(x)s(x)
|u|u . (59)

This equation can also be solved analytically and the exact
solution presented in the following implicit form:

u(x, t) = 8(t)

1 + k|8(t)|

x∫
0

dξ

h2(ξ)s(ξ)

−1

. (60)

The breaking distance,Xb, at which the discontinuity ap-
pears, is such that (cf. Eq. 43):

Xb∫
0

1 + k|8(t)|

x∫
0

dξ

h2(ξ)s(ξ)

−2
α(x) dx

s(x)c0(x)
= M−1

d . (61)

This transcendental equation is too complex to be analyzed
in general. However, in the case of a channel of linearly ta-
pered width, a solution of this equation can be found explic-
itly. Using again Eq. (35) after simple manipulations one
obtains
Xb

X0
=

1

1 − k min[|8|]X0/h2

·

(
1 −

κlX0

1 − k min[|8|]X0/h2

)
= 1 − κlX0 , (62)

where the natural condition min[|8(t)|] = 0 is applied.
Several interesting observations follow from this solution.

As was pointed out in Pelinovsky (1996), in the homoge-
neous case Chezy dissipation cannot prevent wave breaking
which occurs at the point whereu(x, t) = 0. Moreover,
breaking distance in the viscous caseXb is exactly the same
as in the inviscid one,X0.

3.3.3 Reynolds dissipation

The governing equation in this case is a generalized Burgers
equation Whitham (1974):

∂u

∂x
+

1

V (u, x)

∂u

∂t
=

ν

c3
0(x)

∂2u

∂t2
. (63)

Exact solutions of this inhomogeneous equation are not
known in general. Nevertheless, some estimations and quali-
tative description of wave evolution can be made by approxi-
mating the equation by a pure Burgers equation with constant
coefficients

∂u

∂x
+

1

c0

(
1 −

3

2

u

h0

)
∂u

∂t
=

ν

c3
0

∂2u

∂t2
, (64)

that is completely integrable by means of the Hopf-Cole
transformation and its solutions are very well studied (see,
e.g. Whitham, 1974). We give its most important properties
in connection with river wave dynamics.

– The equation does not give rise to wave breaking at all.
In the process of evolution, an initial perturbation steep-
ens until it reaches some extreme value which depends
on the dissipation parameterν. The smaller the param-
eterν, the thinner the wave front.

– A sinusoidal initial perturbation evolves into a saw-
tooth wave with a thin frontal part and a long almost
linear rear part.

– The dissipation takes place only on the frontal part of a
saw-tooth wave where the wave profile differs from the
linear function (the second derivative in the right-hand
side of Eq. (64) responsible for the dissipation, is zero
for linear functions).
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– The equation possesses stationary solutions in the form
of shock waves which can be considered as models of
tidal bores (mascaret) moving along the river from its
mouth.

To conclude this section on the role of dissipation on
wave breaking, its influence depends on the model used.
Rayleigh dissipation increases the breaking distance of Rie-
mann waves and eliminates breaking if the channel depth or
width decrease too fast. Chezy dissipation does not impact
on wave breaking at all, while Reynolds dissipation always
prevents wave breaking and gives rise to either triangle (saw-
tooth) waves or step-wise shock waves. In the next section
we consider the influence of dispersion on steep waves in
the case when Eq. (8) cannot be reduced to the simple wave
equation (39). As a model we consider a step-wise initial
profile which can be generated by a tide. Dispersion leads to
the disintegration of such a step-wise perturbation into stable
particle-like nonlinear waves – solitons. This process is very
well-known (see, e.g. Whitham, 1974), and we study it in
the particular case of a channel of decreasing depth or width.
We also study the influence of different types of dissipation
on the disintegration of a step-wise perturbation and on the
emergence of solitons.

4 Bore disintegration into KdV solitons

Rivers which flow to the open oceans are usually affected by
tidal effects. Tidal motions generate intensive water flows
which can propagate upstream on tens of kilometers in the
form of step-wise perturbations (hydraulic jumps) analogous
to shock waves in acoustics. This phenomenon is known as
a bore or a mascaret in French. In the process of propagation
the bore undergoes dissipation, dispersive disintegration, en-
hancement due to decrease of the river width and depth, in-
fluence of nonlinear effects, etc. We study these effects here
both theoretically and by means of numerical modelling.

First of all, consider bore disintegration into solitons in a
channel of constant parameters within the framework of KdV
equation. This equation follows from Eq. (24) if one omits
energy dissipation (F(η) ≡ 0). The functions(x) ≡ 1 in this
case (see Eq. 23) and the resultant equation is:

∂η

∂x
+

1

c0
(1 − αη)

∂η

∂t
− β

∂3η

∂t3
= 0 , (65)

where coefficientsc0, α, β are given by Eq. (9) with constant
value ofh.

Let us suppose that the bore can be represented by a Heav-
iside function of amplitudeU . Making the transformation

v =
η

U
; ξ = x

√
α3U3

βc3
0

; τ =

√
αU

βc0

(
t −

x

c0

)
, (66)

one can reduce this equation to the dimensionless form:

∂v

∂ξ
− v

∂v

∂τ
−

∂3v

∂τ3
= 0 . (67)

The boundary condition for the functionv is just the unit
Heaviside function in this case:v(0, τ ) = H(τ). As the
boundary perturbation, i.e. the Heaviside function, does not
contain any temporal parameter, the Cauchy problem for
Eq. (67) does not contain any free parameters. So we can
describe the disintegration of a step-wise function into soli-
tons in the dimensional variables by solving the problem for
Eq. (67) once in the dimensionless variables. Then one can
return to the dimensional variables for each different set of
parameters and in particluar, for each different initial ampli-
tudeU .

An interesting practical problem is the determination of
the distance when the first soliton emerges from the “initial”
step-wise perturbation. This distance cannot be determined
exactly because the soliton emerges gradually and, formally
speaking, it completely appears only at infinity. But one can
suggest different practical criterions when the first pulse can
be considered as a KdV soliton with a good accuracy, e.g.
when its amplitude amounts 90% of the theoretical value or
when the local minimum of the wave field behind it amounts
to 10% of its maximum. This last criterion has been used by
one of the authors in Pelinovsky and Stepanyants (1981) to
study experimentally the process of disintegration of a step-
wise perturbation into solitons using an electromagnetic LC-
transmission line. In any case, if the dimensionless distance
ξs of the first soliton emergence has been determined some-
how, then in the original variablesu, x, t the dimensional dis-
tanceXs can be expressed using the relation betweenx and
ξ in Eq. (66):

Xs = ξs

√
βc3

0

α3U3
. (68)

The problem of disintegration of a step-wise perturbation
in a homogeneous medium was studied by different authors
Gurevich and Pitaevskii (1974); Khruslov (1975); Merchant
and Smyth (1991); Pelinovsky and Stepanyants (1981). It
was confirmed that this process is self-similar. The pertur-
bation evolves into an infinite sequence of solitons whose
amplitudes eventually amount to double the amplitude of
the initial perturbation and the time delay between them
growths logarithmically with distance Khruslov (1975). Es-
sentially the same problem has been studied for surface grav-
ity waves in Merchant and Smyth (1991) by means of the
initial-boundary value problem for the original KdV Eq. (1),
rather than for its signalling version Eq. (67). Note that
the same problem of bore disintegration for surface capillary
waves uses a slightly different technique within the frame-
work of the initial-boundary value problem Merchant and
Smyth (2002).

The dimensionless distance when the first soliton emerges
according to the criterion suggested in Pelinovsky and Stepa-
nyants (1981) has been estimated using numerical calcula-
tions and data from the transmission line mentioned above to
beξs ≈ 45. So, the dimensional distanceXs can be presented
in our case as a function of channel depthh and amplitude of
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Table 3. The dispersion coefficientB for different variations of the
depth or width of the channel

Variable Depth Width

Linear Bdl(ξ) =

(
1 +

3
4

ξ

ξ̄

)−3
Bwl(ξ) = 1 −

1
2

ξ

ξ̄

Exponential Bde(ξ) =

(
1 +

7
4

ξ

ξ̄

)−9/7
Bwe(ξ) =

(
1 +

1
2

ξ

ξ̄

)−1

initial perturbationU :

Xs = 45U−3/2

√
βc3

0

α3
= 10h5/2U−3/2 . (69)

By substitutionU = 1 m, h = 10 m, one obtainsXs ≈

3160 m while for the same depth andU = 2 m this distance
is about three times shorter,Xs ≈ 1120 m. It changes much
more when the channel depth varies, for example,U = 1 m
and h = 5 m, giveXs ≈ 559 m. Note also that we have
verified directly from numerical simulations the dependence
of Xs onβ given by Eq. (69) and the agreement is very good.

In inhomogeneous media the determination ofXs is more
complex because the problem is not self-similar but depends
on the characteristic scale of inhomogeneity. Unfortunately,
there are no analytical solutions in this case in general. How-
ever, if the inhomogeneity is very smooth so that its charac-
teristic length is much greater thanXs , then Eq. (69) still can
be used as a rough estimation of the first soliton emergence.

In the general case of an inhomogeneous channel the fol-
lowing approach to the problem of bore disintegration can be
developed. Let us start again from Eq. (24) omitting energy
dissipation (F(u) ≡ 0) but bearing in mind that the original
variableη(x, t) is now linked to the auxiliary variableu(x, t)

by Eq. (23). Assume again that the boundary perturbation
is the Heaviside function of the amplitudeU and make the
transformation:

v =
u

U
; ξ = U3/2

√
α(0)

β(0)c0(0)

x∫
0

α(x′) dx′

c0(x′)s(x′)
;

τ =

√
Uα(0)

β(0)c0(0)

t −

x∫
0

dx′

c0(x′)

 . (70)

In the new variables the KdV equation takes the form

∂v

∂ξ
− v

∂v

∂τ
− B(ξ)

∂3v

∂τ3
= 0 , (71)

where

B(ξ) = s(ξ)

[
h(ξ)

h(0)

]2

with the boundary conditionv(0, τ ) = H(τ).
We consider two main situations, a linear or exponential

decrease of the depthh (resp. the widthw) of the chan-
nel in the formh = h0(1 − κhx) or h = h0e

−κhx (resp.

0.0 0.4 0.8 1.2 1.6 2.0

0.2

0.4

0.6

0.8

1.0

B

de

wl

we

Ξ

dl

Fig. 6. The dependence of the dispersion parameterB of Eq. (71)
and Table 3 for channels of linearly decreasing depth (dl), expo-
nentially decreasing depth (de) linearly decreasing width (wl) and
exponentially decreasing width (we).

l = l0(1 − κlx) andl = l0e
−κlx). The two types of variation

present different features and a linear decay can be consid-
ered as a first approximation to the exponential decay. Note
also that according to Mazumber and Bose (1995), “tidal
rivers generally taper at an exponential rate”, and data for
Hugli River, India agree with this statement very well, pro-
viding l0 = 21.5km, κl = 2.7 · 10−5 m−1.

We present in Table 3 the expressions for the dispersion
coefficientB obtained for the different types of variation. All
these expressions can be cast in the formB(4) where4 =

ξ/ξ̄ where the normalized̄ξ is

ξ̄ =
9

2

U3/2

κh
5/2
0

, (72)

whereκ is the corresponding gradient of depth or width vari-
ations.

The behaviour ofB from Table 3 is displayed in Fig. 6 as
a function of the normalized variable4. In all the cases pre-
sentedB decreases as one moves upstream going to larger
ξ so that nonlinearity will increasingly dominate dispersion.
This will cause solitons to form earlier than in the homoge-
neous case so that the distance of first soliton emerging will
be smaller than the one given by Eq. (69) which can be con-
sidered as an upper bound.

One can see thatB(4) decreases faster when the depth of
the channel is decreased rather than the width so that in the
former situation nonlinear effects are reinforced leading for
this case to an even smaller distance of first soliton emerging.
We observe the same effect as for the breaking distance of
Riemann waves discussed in Sect. 3. Note also that a linear
decay of the width gives rise to a pathological vanishing ofB

for ξ = 2ξ̄ , this feature is absent in the case of an exponential
taper of the river width.

The influence of dissipation on this decomposition process
has not been studied so far, however it is very well-known
that Reynolds dissipation can result in the formation of a
bore with a stationary front, either oscillatory or monotonic
(Whitham, 1974). We study the process of bore disintegra-
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tion into solitons numerically in Sect. 7 both without dissipa-
tion and with different types of dissipation.

5 Soliton creation from small perturbations

Let us assume now that the initial perturbation has a small
amplitudeU or durationT so that the parameterσ 2 defined
in Eq. (29) is much smaller than 12 – the soliton generic
value (Ablowitz and Segur, 1981; Pelinovsky and Stepa-
nyants, 1981; Whitham, 1974). Whenσ 2

� 12 the disper-
sion term dominates the nonlinear one in Eq. (29) and, hence,
the nonlinear term can be omitted (we also neglect the dissi-
pation effects). As a result, Eq. (29) reduces to the variable
coefficient linearized KdV equation:

∂v

∂ζ
−

1

σ 2(ζ )

∂3v

∂θ3
= 0 . (73)

By means of the transformation

χ =

ζ∫
0

dζ ′

σ 2(ζ ′)
, ϑ = −θ (74)

the equation can be further reduced to the constant coeffi-
cients one:

∂v

∂χ
+

∂3v

∂ϑ3
= 0 . (75)

The asymptotic solution of this equation is very well-
known and can be expressed through the Airy function
(Karpman, 1973):

v(χ, θ) =
1

√
π(3χ)1/3

Ai

[
ϑ

(3χ)1/3

]
. (76)

Note, that this solution is universal and does not depend on
the detailed form of the initial perturbation. In the variables
ζ , θ the solution is

v(ζ, θ) =
1

√
π

3

ζ∫
0

dζ ′

σ 2(ζ ′)

−1/3

·Ai

−θ

3

ζ∫
0

dζ ′

σ 2(ζ ′)

−1/3 . (77)

According to this solution, the amplitude and duration of
the perturbation vary as

U(ζ ) ∼

 ζ∫
0

dζ ′/σ 2(ζ ′)

−1/3

,

T (ζ ) ∼

 ζ∫
0

dζ ′/σ 2(ζ ′)

1/3

, (78)

so that the total wave mass is conserved during the wave
evolution, M ∼ U(ζ )T (ζ ) = const. Considering the so-
lution (77) as an “initial” perturbation at each spatial point,
one can define a “current” value of the Ursell parameter
σ 2

cur(ζ ) ∼ U(ζ )T 2(ζ ) (cf. with the formula after Eq. 29).
This parameter does not remain constant in general but varies
in space. If it growths, the perturbation becomes larger so

that the nonlinear term∼ v
∂v

∂θ
in Eq. (29) cannot be ne-

glected anymore and must be taken into account. From a
practical point of view, the front part of the perturbation
evolves into a KdV soliton in this case. The distance for
which the “current” Ursell parameter reaches its “soliton”
value,σ 2

s = 12, can be taken as the distanceζs of soliton
creation from a small initial perturbation. This distance can
be estimated from the following equation (Pelinovsky and
Stepanyants, 1981):

σ 2
cur(ζs) ≡

p(ζ )

β(ζ )
U(ζ )T 2(ζ )

=
p(ζs)

β(ζs)

(U0T
2
0 )2/3

√
π

3

ζs∫
0

β(ζ ′)dζ ′

p(ζ ′)

1/3

= 12 , (79)

whereU0 andT0 are respectively the initial amplitude and
duration of the given perturbation.

Further development can be done if the channel inhomo-
geneity is specified. Suppose again that the channel depth
decreases linearly with distance. Substituting the expressions
for p(ζ ) andβ(ζ ) and after some algebra one can obtain a
transcendental equation for the distanceXe at which a soliton
emerges:[
1 − (1 − κhXe)

3/2
]1/3

(1 − κhXe)9/4
=

4
√

π

91/3g1/2

κ
1/3
h h

11/6
0

U0T0
. (80)

By substitution into this equation of the following param-
eters:

h0 = 10 m, κh = 10−4 m−1, U0 = 1 m, T0 = 1 s,

corresponding toσ 2
≈ 1 � 12, one obtainsXe = 4637 m.

The channel depth at this distance ish = 5.4 m
If the inhomogeneity is a linear decrease of the channel

width, then the distance of soliton emerging can be estimated
from the equation:

(κlXe)
1/3

(1 − κlXe)1/4
=

27/3√π

3

κ
1/3
l h7/3

c0U0T0
. (81)

For the same parameters as above, assumingh = 10 m,
κl = 10−4 m−1, it follows from Eq. (81)Xe = 9880 m. At
this distance the channel width isl = 12 m while initially it
wasl0 = 1000 m.

Note in addition that for some dependences of the parame-
tersp(ζ ) andβ(ζ ), the Ursell parameter can remain constant
or even decrease withζ . This means that a small-amplitude
initial perturbation will not evolve into a soliton, and can
be completely described within the framework of the linear
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theory. This is the case in particular, if the channel depth
increases (instead of decreasing) faster thanh(ζ ) ∼ ζ 1/2

and the width remains constant. In the dimensional vari-
able the critical dependence of a channel depth on distance is
h(x) ∼ x4/15.

6 Adiabatic decay of KdV solitons

Let us assume that the initial perturbation is a KdV soliton
and calculate its decay in an homogeneous channel due to
the different types of dissipation listed in Sect. 2.2. We there-
fore consider Eq. (8) with constant coefficients omitting the
last term in the left-hand side since1 is constant. We also
assume the dissipation to be small enough so that the approx-
imate approach of Sect. 2.3 based on conservation laws can
be applied again. As a trial solution of Eq. (8) we consider
a KdV soliton described by Eq. (20). This solution is exact
if the dissipation is absent (F(η) = 0). In the spirit of the
adiabatic approach, it is assumed that for small dissipation
the structure of the soliton is preserved unchanged but that
its parameters vary in space. The variation of the soliton am-
plitude can be obtained from the equation of energy balance.

Consider first Rayleigh dissipation described by Eq. (10)
for the functionF(η). Multiplying Eq. (8) byη and integrat-
ing it overt from minus to plus infinity, one obtains

d < η2 >

dx
= −2γ0 < η2 > , (82)

where

< η2 > =

+∞∫
−∞

η2(x, t) dt .

By substitution of the soliton solution, Eq. (20), into this
equation and taking into account the relationship between the
soliton amplitude and duration, one obtains

dA

dx
= −

4

3
γ0 A . (83)

The solution of this equation leads to the very well-known
result (see, e.g. Ott and Sudan, 1970; Pelinovsky, 1971):
soliton amplitude decays exponentially in space with an ex-
ponent of decay 4/3 times greater than in the linear case

A(x) = A0 exp

[
−

4

3
γ0(x − x0)

]
. (84)

In a similar way the decay of the soliton amplitude can be
found for Chezy, Reynolds and other types of dissipations
(cf., for instance, Kakutani and Matsuuchi (1975); Ott and
Sudan (1970); Pelinovsky (1971)). We summarize the results
in Table 4 using expressions for the decay coefficientsγ0, γc

andγ2 (see Eqs. 10 to 12). We also include into the Table the
decay law for the integral dissipation obtained in Kakutani
and Matsuuchi (1975); Miles (1976).

In the case of integral dissipation (the last row of the ta-
ble), ν stands for the kinematic viscosity of water, while in

the cases of Rayleigh and Reynolds dissipation,ν must be
replaced by some effective turbulent viscosity as mentioned
in Sect. 2.2.

In all cases except Rayleigh dissipation, the soliton ampli-
tude for large distances does not depend on the initial value
A0 and decays algebraically. The decay law for Chezy and
Reynolds dissipation is proportional tox−1, while for the in-
tegral dissipation it is proportional tox−4. In this last case the
soliton amplitude for large distances strongly depends on the
channel depth,A ∼ h8, while for Chezy dissipationA ∼ h2

and for Reynolds dissipationA ∼ h7/2.
The effect of dissipation on nonlinear wave trains was de-

scribed in Myint and Grimshaw (1995) using modulation the-
ory. Unfortunately, the set of equations obtained for the mod-
ulation parameters of the nonlinear wave are too complex to
be analyzed even in a uniform medium. This is why we re-
stricted ourselves to the case of a single soliton.

The combination of dissipation and inhomogeneity results
in an increase or a decrease of the soliton amplitude with
distance. For some special conditions, these two effects
can compensate each other and soliton amplitude can remain
constant. To illustrate this we consider here the simplest case
of Rayleigh dissipation in an inhomogeneous medium. Ap-
plying again the energy balance equation, one obtains from
Eq. (8)

1

2

d

dx
< η2 > +

1

2

< η2 >

1

d1

dx
= −γ0(x) < η2 > . (85)

The solution of this equation can be presented in a closed
form

< η2 > 1(x) = < η2
0 > 10 exp

−2

x∫
x0

γ0(x
′) dx′

, (86)

whereη0 and10 stand for that the corresponding variables
atx = x0.

By substituting in Eq. (86) the soliton solution Eq. (20)
and using Eqs. (9), (10) for the parametersα, β, γ0 and1,
one obtains

A(x) = A0
h0

h(x)

(
l0

l(x)

)2/3

exp

−

x∫
x0

ν dx′

c0(x′)h2(x′)

 . (87)

This formula generalizes Green’s law, Eq. (22), and
Rayleigh dissipation law Eq. (84) for a KdV soliton. As-
sumingν = const, one readily obtains from Eq. (87) for a
channel of variable depth but constant width that the soliton
amplitude remains unchanged,A = A0, if

h(x) = h0

1 −
5

2

ν√
gh

5/2
0

(x − x0)

2/5

. (88)

If the depth decreases faster than described by this for-
mula, soliton amplitude will increase, otherwise it will de-
crease. Similar conditions can be derived for other types of
dissipation.
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Table 4. Dissipation laws for soliton amplitude for different types of dissipation

Type of dissipation Soliton amplitude decay

Rayleigh A(x) = A0 exp

[
−

4

3
γ0(x − x0)

]
= A0 exp

[
−

ν
√

gh5/2
(x − x0)

]

Chezy A(x) =
A0

1 +
16
15γcA0(x − x0)

=
A0

1 +
16
15

k
h2 A0(x − x0)

Reynolds A(x) =
A0

1 +
2
5

g

h2 γ2A0(x − x0)
=

A0

1 +
2
5

ν√
gh7/2 A0(x − x0)

Integral dissipation A(x) =
A0[

1 + 0.1677(1 + h/l)
4

√
A0ν

2

g h−2(x − x0)

]4

7 Numerical modelling

We studied numerically the propagation of long surface
waves in a nonuniform channel using the dimensionless
Eq. (29). An explicit central-difference scheme was used (the
details are given in Pelinovsky et al., 1993). This scheme is
second-order accurate both in space and time and is condi-
tionally stable provided1x ∼ 1t3, where1x and1t are
the spatial and temporal steps. The simple models of dissipa-
tion (10)–(12) were taken into account. The modification of
this conservative finite-difference scheme for KdV equation
to account for the dissipative terms (10) or (11) is straightfor-
ward. For the Burgers type dissipation described by Eq. (12),
the Duffort-Frankel discretization was used (MacKraken and
Dorn, 1975). It keeps the scheme accuracy and explicitness.
Assuming no dissipation we first describe soliton formation
in a channel of linearly decreasing depth and compare the
situations of exponentially decreasing depth and width. Af-
ter that we show the influence of dissipation in the particular
example of a channel of linearly decreasing depth.

We assume that the initial perturbation is the step-wise
function:

η(0, t) =
U0

2

(
1 + tanh

t − t0

T0

)
, (89)

whereU0 is the amplitude,t0 is the conditional instant of
time when the front of the perturbation arrives at the point
of observation andT0 is the characteristic front duration. (In
fact we used a combination of such step-wise functions with
amplitudes of opposite signs and shifted fronts so that the
initial perturbation was pulse-like with very long duration,

so that the rear slope of the pulse did not affect the wave
processes occurring in the frontal zone.)

Throughout the section we choose the following values for
the parameters:h0 = 10 m andU0 = 1 m.

In a first experiment we consider a channel with a linear
depth gradientκh = 10−3 m−1. Time dependence of the so-
lution to the KdV Eq. (29) at different locations are shown
in Fig. 7. Specifically on the top panel we present the so-
lution v(ξ, τ ) in the reduced variables forξ = 0, ξ = 18
and ξ = 30. Notice how the front part of the bore gives
rise to solitons. The leading pulse is well formed despite
ξ = 30 < 45 and its amplitude is larger than 2 due to the in-
homogeneity effect (B(ξ) < 1). The bottom panel of Fig. 7
shows the solution for water surface perturbationη(x, t) in
the laboratory frame for the two last locationsx = 532
(ξ = 18) andx = 644 (ξ = 30). Notice the main fea-
tures of the transformations (23) and (25), the amplification
of the wave due to the inhomogeneity and the time shift due
to Galilean transformation.

We now compare the two types of channel inhomogeneity
for the same gradientκ = 10−3 m−1. We chose an expo-
nential decrease of the width or depth. From Table 3 and
Fig. 6 we know that a decrease of the channel depth will give
rise to a smaller dispersion parameterB(ξ) than when the
width is decreased. We then expect a smaller distance of
emergence of the first soliton. Figure 8 shows the plot of wa-
ter surface perturbationη(x, t) for x = 103 m for a channel
of exponentially decreasing depth and exponentially decreas-
ing width. As expected, narrow and high solitons are well
formed in the first case while they are just emerging from the
initial step-wise perturbation in the second case. Once soli-
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Fig. 7. Bore decomposition into solitons for a channel of linearly
decreasing depth. The top panel shows time dependence of the so-
lution v(ξ, τ ) in the reduced coordinates for the initial condition
ξ = 0 (curve 0),ξ = 18 (curve 1) andξ = 30 (curve 2). The bot-
tom panel shows the corresponding perturbation of water surface in
the laboratory frameη(x, t) for the last two values ofξ , x = 532 m
(ξ = 18) andx = 644 m (ξ = 30).
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Fig. 8. Dependence of water surface perturbationη(x, t) on time at
x = 103 m for a channel of exponentially decreasing depth (curve
1) and exponentially decreasing width (curve 2).

tons are created they evolve practically independently from
each other and their amplitudes varies according to the non-
linear Green’s lawA ∼ h−1(x)l−2/3(x) (see Eq. 22 in the
Sect. 2.3). This is clearly seen on of Fig. 9 where the leading
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Fig. 9. The leading pulse amplitude shown in Fig. 8 as a function
of x computed numerically (symbols) for a channel of linearly de-
creasing depth (dl), exponentially decreasing depth (de) and expo-
nentially decreasing width (we). The corresponding Green’s laws
(22) are given for each case in solid lines.

pulse amplitude has been plotted for a linear decrease of the
depth (dl), an exponential decrease of the depth (de) and an
exponential decrease of the width (we).

We now consider the influence of dissipation in the par-
ticular case of a channel of linearly decreasing depthκh =

10−4 m−1. Fig. 10 shows time dependence of the water-
surface perturbationη(x, t) for x = 1080 m (top panel) and
x = 2930 m (bottom panel). The inviscid solution is shown
in solid line while the one obtained for a Chezy damping of
k = 10−3 is presented in broken line. Note how the ampli-
tudes of the solitons are strongly reduced by the damping.
As the soliton velocities are related to their amplitudes (see
the relationships after Eq. 20), there are temporal phase shifts
between the corresponding solitons in the viscid and inviscid
cases. These shifts increase gradually with distance as can
be seen in Fig. 10.

The first soliton, once it is formed, evolves almost inde-
pendently from the other solitons. Its amplitude increases
in accordance with the nonlinear Green’s law,A ∼ h−1(x)

(see Sect. 2.3). This dependence has been confirmed in the
numerical modelling and is depicted in Fig. 11 (compare the
solid line 1 and the dashed line asymptotically approaching
the solid one). In the first stage of the bore evolution, the am-
plitude of the perturbation grows mainly due to the formation
of a soliton. According to the theory for a uniform channel,
the first soliton at the front is the biggest and is twice as large
as the amplitude of the initial perturbation (in the absence of
dissipation) (Karpman, 1973). Note that even an infinitely
small Reynolds dissipation reduces the maximum amplitude
of the perturbation (undular bore) which cannot exceed 1.5
times the amplitude of the initial perturbation in the case of
a uniform channel (Chu et al., 1983; Tsuji, 1991).

A strong enough dissipation can prevent infinite amplitude
increase and can lead to wave vanishing. For a weaker dissi-
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Fig. 10. Bore disintegration into solitons without dissipation
(curves 1) and with Chezy dissipation (curves 2). The top panel cor-
responds tox = 1080 m, while the bottom one is forx = 2930 m.

pation, the amplitude of the soliton can continue to grow due
to the decrease of the channel depth or width. As described
in Sect. 6, a soliton can propagate with a constant amplitude
when the channel inhomogeneity and dissipation act in op-
posite ways and their parameters are related properly. In our
case for the parameters we chose for calculations, the curves
labelled 0, 2 and 3 in Fig. 11 reach their maximums and then
gradually decrease. We putν = 10−2 m2/ s, k = 10−3 and
implemented three independent runs for models (10)–(12).
As one can see, the Chezy dissipation causes the strongest
decrease of the soliton amplitude, while the Reynolds dissi-
pation has a very weak effect.

8 Conclusion

In this article we have used a generalized KdV equation
to describe long nonlinear waves in channels of rectangular
cross section smoothly bending in space and having a vari-
able depth and width. Three different empirical models of
dissipation were taken into account and systematically stud-
ied.

We studied analytically and numerically the breaking of
long nonlinear waves in an inhomogeneous channel, the dis-
integration of a bore into solitons and the evolution of small

Fig. 11.Maximum amplitude of a step-wise perturbation in the pro-
cess of its disintegration into solitons. The solid line 1 depicts the
theoretical prediction of soliton amplitude dependence on distance
when dissipation is neglected. The different numerical calculations
shown correspond to no dissipation (∗), Rayleigh dissipation (×),
Chezy dissipation (?) and Reynolds dissipation (◦).

initial perturbations into solitons. In particular, we deter-
mined the breaking distance of a Riemann wave in a channel
of variable depth or width. We showed that a decrease of the
depth of the channel induces breaking earlier than the same
decrease of the width. In the case when the dispersion effect
becomes important the bore decomposes into solitons on a
characteristic distance which we estimate and compute pre-
cisely when the channel inhomogeneity is known. A constant
decrease of the depth or width of the channel reduces this dis-
tance as opposed to the homogeneous case. A decrease of the
depth causes the decomposition to happen sooner than when
the width is decreased. Finally, we have confirmed numeri-
cally that once solitons are formed they evolve independently
of each other according to nonlinear Green’s laws.

Since a reliable model for wave dissipation in channels
is not known, we consider different reasonable models and
compare their effect. We have examined in detail the three
most popular models of dissipation: Rayleigh, Reynolds and
Chezy dissipation. All of them give more or less concordant
results for the commonly used viscosity parameters. In parti-
cluar, we calculated how a small Rayleigh or Chezy dissipa-
tion increases breaking distance of Riemann waves. When
dispersion is present we showed that these three types of
damping reduce the amplitude of the solution and slow down
bore decomposition into solitons.
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