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Abstract. The propagation of nonlinear surface waves in conditions at the riverbed of a complex cross section, river
channels of smoothly variable in space cross section is studbending, variability of the river depth and width, etc. All
ied theoretically and by means of numerical computationsthese factors lead to a further development of classical shal-
The mathematical model describing wave evolution is basedow water models, described by Boussinesq, Saint VVenant or
on the generalized Korteweg-de Vries equation with addi-Korteweg-de Vries equations (KdV), which become nonin-
tional terms due to spatial inhomogeneity and energy dissitegrable. The role of approximate methods and numerical
pation. Specifically we consider channels of variable depthmodelling increases significantly in such situations.

and width. The breaking of Riemann waves and the disinte- In this article we consider the problem of shallow water
gration of hydraulic jumps into trains of solitons have beenwave propagation in a channel of smoothly variable in space
examined. The results obtained can be useful in particulacross section. We assume a channel of rectangular cross sec-
for the understanding some peculiarities of bore (mascaretlion and take into account variations of its depth or width, its
formation, viscous evolution and disintegration into solitons bending and wave dissipation. In Sect. 2 we introduce the
in inhomogeneous channels or rivers. main model equation which is the generalized KdV equation
containing additional terms describing the above mentioned
effects. Some properties of the model equation are discussed.
In Sect. 3 we study the breaking of Riemann waves due to
the nonlinearity. The influence of different types of viscous

The problem of shallow water wave propagation in rivers, 0sses in channels of linearly varying depth and width are
channels or canals has been a matter of interest for at lea$ken into account. In Sect. 4 we consider the formation of
the two last centuries. John Scott Russell apparently was thgolitons from an initial hydraulic jump due to the effect of
first who observed solitary wave propagations in the Uniondispersion. In particular, we study the dependence of the dis-
Canal near Edinburgh in 1838 Ablowitz and Segur (1981);tance of first soliton emergence from a step-wise perturba-
Whitham (1974). As an observant researcher, he describetion on the amplitude of the perturbation and the depth of the
in his first Report not only the fact itself of the solitary wave channel. Section 5 is devoted to study the formation of a soli-
existence (“We” defined heap of water ... over a foot hightton from small initial disturbances in inhomogeneous chan-
and thirty feet long”) but also its gradual decay due to viscos-nels. In Sect. 6 we present soliton-amplitude decay laws for
ity and structural stability against the channel inhomogeneitydifferent types of dissipation. The numerical results, given in
and curvature. Since that first observation many interestingS€ct. 7, illustrate the evolution of the bore into a train of soli-
and important results have been obtained. There is no roortPns in a channel of variable depth or width and the influence
here to mention all the relevant publications dealing with theof different types of dissipations. We present our conclusions
problem, therefore we only refer to the most appropriate arin Sect. 8.
ticles. Despite significant progress in the understanding of
the dynamics of surface waves in rivers and channels man
problems of practical interest still remain unsolved.
Attempts to apply classical results of shallow water the—L i der | ¢  relativel I -
ory to real situations meet with serious difficulties related to €t us consider long water waves of refatively smafl ampli
tude in a channel of rectangular cross section. The KdV

the necessity to take into account wave dissipation, boundar# ; o ;
y P odel equation describing such perturbations can be de-

Correspondence tal.-G. Caputo (caputo@insa-rouen.fr)  rived from the Boussinesq equations of shallow water theory
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Whitham (1974). We will not repeat here the well-known Note, that as was shown in Merchant and Smyth (1991,
derivation of the equation and one can see for example th002) the initial-boundary problem described above can be
careful calculation done by Das Das (1985) for the case ofconsidered, in principle, within the framework of Eq. (1).
a uniform channel of arbitrary cross section. We will mod- But such a problem statement is more difficult, in our opin-
ify this equation to describe waves in a channel whose secion, than the consideration of a boundary Cauchy problem
tion varies smoothly in space (gradually varying depth or/andwithin the signalling coordinates. Only relatively simple so-
width) and consider simple damping terms. In addition, welutions for the initial-boundary problem were obtained so far
assume that the channel may smoothly bend in space. Tby means of approximate asymptotic method Merchant and
take this into account, we use a curvilinear coordinate frameSmyth (1991, 2002), while in the signalling coordinates the
so that the undisturbed free surface is taken axthe O entire powerful kit of exact methods (including inverse scat-
plane with the axig directed vertically and intersecting the tering transform, Hirota method, Darboux anéidlund trans-
channel bottom. The axisis directed along the channel and formations, etc.) can be used. Note also that the accuracy of
may smoothly bend in space (it is so-called the ray coordi-the KdV equation in the traditional form (1) and in the sig-
nate — the distance along the ray from some fixed point). Thenalling coordinates is the same. Therefore, it is quite reason-
axis y is directed across the channel perpendicular both toable to use the most simple and advanced approach based on
the axesx andz. The axesy, y andz form an orthogonal the KdV equation in signalling coordinates.
coordinate frame at each point in space. To obtain the suitable modification of the KdV equation,
Let h(x) be the unperturbed depth of the channel at thelet us first rewrite Eq. (1) in the following equivalent form:
equilibrium and (x) — the width of the channel. We assume 3
there is no mean flow in the channel so that the water is at’” + Lon @ on  a2d7n _
rest in the absence of perturbations. dx codr  co dx  codxd

] ] Then, we point out that the derivation of KdV equation as-
2.1 Generalized KdV equation for the boundary Cauchysymes that in the zero-order approximation wave processes
problem obey the simple wave equation

0. @)

We first consider the classical KdV equation for a rectilin- 97 Coa_n -0 3)
ear channel of rectangular cross section, uniform in spaceds ox
(see for instance Das, 1985; Kakutani and Matsuuchi, 19755 gl other effects (nonlinearity, dispersion, dissipation,

Miles, 1975, as well as Ablowitz and Segur, 1981): etc.) appear as small corrections to this equation in the next

approximations. This implies that the following relationship

3 3 33 e

a + (co + a1n) Sl + az—z =0, 1) between derivatives

ot ax ox 5 13

wheren(z, x) is the perturbation of the water surface;=  3x  codr @)

J/gh is the velocity of long linear waveg,is the acceleration
due to gravitygs = 3co/(2h); a» = coh?/6.

In the present form Eq. (1) is suitable for the solution of an
initial Cauchy problem, i.e. itis supposed that water elevation
n is known everywhere in space at a given instant of time
n(0,x) = ®(x), whered(x) is a given function. In such
a case one can calculate the further evolution in time of theg,, 1 9, a1 an a2 9%

which follows from Eg. (3), can be used for the higher-order
approximations. Hence, one can replace the spatial deriva-
tives by time derivatives in the nonlinear (a1) and disper-
sive (~ ap) terms. As a result, Eq. (1) takes the following
'form in the signalling coordinates (cf. Osborne, 1995)

initial perturbation by means of Eqg. (1). This approach is Ix + C—OE - 0—2’75 T 493 =0. (5)
usually used in the mathematical study of Eq. (1) and related 0 0
equations Ablowitz and Segur (1981). This equation allows a further generalization. First of all,

In practice however, researchers usually deal with meathe effect of the channel inhomogeneity can be taken into
surements of time series of water elevations at some fixedccount. This effect is important from the practical point of
pointsn(z, x;) and want to predict the further spatial devel- view because natural channels or rivers are never rectilinear
opment of the perturbation propagating along the channel ifin reality but rather curved. However, if the channel bend is
it is known as a function of time, at the boundary of the do- smooth enough, i.e./R « 1, wherea is a characteristic
main of interest (see, e.g. Osborne, 1995). The correspondwvave length andR is the curvature radius of a channel, then
ing mathematical problem can be called a boundary Cauch¥q. (5) is still applicable, but the axisis no more a Cartesian
problem for the KdV equation presented in signalling coordi- one. It must be replaced by the curvilinear “ray” coordinate
nates (see below). So, we assume that the water elevation isdirected along the channel axis orthogonal at each of its point
given function of time at the boundaky= 0: 5 (¢, 0) = ®(r) to the other two axes; andz (Fig. 1). A similar approach
while atx > 0 the elevation is zero (the water surface is un- was used for the description of sea waves in a coastal zone
perturbed), and aim to predict its further evolution in spacewith a nonuniform bottom which results in the formation of
by means of the appropriate modification of Eq. (1). curvilinear waveguides Pelinovsky et al. (1993).
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butitis beyond the scope of this article. Actually, such sort of
equations are very well-known already for a long time (see,
e.g. Grimshaw, 1970; Ostrovsky and Pelinovsky, 1970), and
we just remind the reader how different physical effects give
rise to separate terms in the generalized KdV Eq. (8) written
below.

In addition to the inhomogeneity effect, we also take into
account a small dissipation assuming again that the corre-
sponding term in the generalized KdV equation is of the same
order of smallness as other small terms. We present dissi-
pation by some generalized functiét{(n) in the right-hand
side of the model equation, leaving the discussion of a pos-
sible structure of the corresponding viscous term to the next
subsection.

So, the combination of all effects mentioned above leads
eventually to the following model equation

Fig. 1. Sketch of a channel bend and a curvilinear coordinate frame.3_77 + i ) [1— ()] i;_rt; ) a3y

ax ar3
A
. o o 2An(x) dd;(cX) =-Fa@, ®
The next, more important point, is the variability in space

of the channel parameters. The depthchannel widthl, where
wave speedy, etc. are not constants in general, but depend a(x) 3 az(x) h2(x)
on the spatial ray coordinate This leads not only to an  ®(X) = o) 2h(x)’ ) :
x-dependence of the coefficients of the Eq. (5) but also to 0 0

A(x) = co(x)I(x) . 9)

the appearance of an additional term. To derive this term,
we note first that the constructing generalized KdV equationThe functionA (x) is the analog of the ray divergence factor
contains additively the terms describing different effects suchin the theory of sea waves in an inhomogeneous coastal zone
as nonlinearity, dispersion, dissipation, inhomogeneity, etcPelinovsky (1996). An equation similar to Eq. (8) including
because all these effects are assumed small and the same @thomogeneity and viscous terms has been strictly derived in
der of smallness. This assumption allows us to derive theGrimshaw (1981) for long nonlinear internal waves in strati-
corresponding terms in the equation separately from othersfied shear flows. Surface waves can be considered as a lim-
The key point to derive the inhomogeneous term is the lawiting case of internal waves in a two-layer fluid with a sharp
of energy flux conservation across the channel cross sectionalensity interface and a zero density upper layer.
area. Time averaged density of wave energy integrated over Wave dynamics in channels or rivers essentially depends
the channel depth can be readily obtained in the linear apalso on the shape of initial perturbations (we are using the
proximation = pgn?/2 Mei (1983); Stepanyants (1985), term “initial” but in fact we consider perturbations given at a
wherep is fluid density. Hence, the total energy flux across fixed pointxgas was already pointed out). Other important
the channel cross section is factors are the amplitude and duration of the perturbation as
2 well as external parameters determining the coefficients of a
Q = cox) El(x) = 1/2 pgeo(x) L(x) n“(x) = const.  (6)  generalized KdV Eq. (8). Unfortunately, Eq. (8) is too com-
plex to analyze its solutions in general, therefore we consider
some most typical and important wave processes which can
occur in the natural condition; these processes we will study
here in detalil.

By differentiating Eq. (6) ovex one obtains

o n dd) _

I 7
ox  2col 0x (7)

This equation describes wave amplitude variation in a chan2.2  Models of dissipation
nel of variable cross section, wave amplitude can vary in
space both due to variation of the channel width,), and There are several different models of dissipation, unfortu-
due to variation of channel depth becausex) = /gh(x). nately none of them has been thoroughly examined experi-
We assume that the channel inhomogeneity is smoothmentally for surface waves. There are a few articles where
enough so that the second term in Eq. (7) is of the same ordissipation of long nonlinear waves was studied experimen-
der of smallness as nonlinear and dispersive terms in Eq. (Sally in laboratory conditions (see about that in Ablowitz and
and, hence, it can be included into that Eq. (5) additively. OfSegur, 1981) but the applicability of the results obtained to
course, a strict mathematical derivation of such a generalizetatural conditions is doubtful. The most frequently used
KdV equation can be done on the basis of a regular asympmodels for practical estimations of wave decay are listed in
totic method (see, e.g. Ostrovsky, 1974; Pelinovsky, 1996)his subsection.
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In the simplest case, the dissipative term in the right-handA similar viscous term has been derived in Grimshaw (1981)
side of Eq. (8) is frequency independent, we will call this for internal waves in shear flow. Actually this term com-
model the Rayleigh dissipation Pelinovsky et al. (1993): bines dissipative and dispersive features. The expression for

3 the coefficientas can be found in Kakutani and Matsuuchi
degh2() (10) (1975) and Miles (1975) for a channel of rectangular cross
section and in Das (1985) for a channel of arbitrary cross sec-
andv (m?/s) is the turbulent viscosity of water which is usu- tion. Despite the fact that the derivation of this term seems
ally an empirical parameter. It varies in a wide range fromto be the most accurate, its applicability to real natural or
0.2 to 30 nf/s Holloway et al. (1997), while the usual molec- laboratory situations of water wave decay has not been con-
ular viscosity is only 10° m?/s. Essentially the same dissi- firmed yet either experimentally or numerically. In addition,
pation in shallow water has been recently considered in Wthis integral term makes the KdV equation difficult to analyze
and Tian (2000). in general, meanwhile the approximate solutions describing

A more complex case corresponds to Chezy model ofsmooth decay of solitary and periodic waves in a homoge-
wave dissipation Pelinovsky et al. (1993); Holloway et al. neous channel have been obtained in Kakutani and Matsu-
(1997, 1999): uchi (1975) and Miles (1976). We will not consider this type

of dissipation in the present article, it is mentioned here just
(11)  for the completeness.

F(n) = yo(x)n, where  yo(x) =

FO) = v, where () = 3.
k ~ 1.5- 1072 is an empirical dimensionless coefficient de- 2.3 Conservation laws

scribing friction on the bottom. Equations containing this . .

type of losses have been widely used to describe stationarfzquation (8) does not belong to the class of completely inte-
flows in river hydraulics and the dynamics of wave breaking 9rable models even in the absence of dissipation. However,
in a surf zone (see, e.g. Leontjev, 1989; Voltsinger et al.,in the dissipationless case, wheélt) = 0, it possesses at
1989, and references therein). least two integrals of motion.

Sometimes a dissipation of the Reynolds type is consid- The first one corresponds to the mass conservation in the
ered with some effective turbulent viscosity instead of ahomogeneous medium and can be treated as conservation of
molecular one. This leads to the appearing of Burgers visthe mass fluxin the inhomogeneous case (this integral of mo-
cous term in the generalized KdV Eq. (8) (Holloway et al., tion remains valid when Burgers viscosity is included):

1997): 1o
)2 AY (x)/ndt = const. (15)

n 1%
F(n) =— —, where = — 12 ] ) ) o
() v2(x) 312 y2(x) cg (12) The integral is taken over a wave period for periodical per-

2N . . - , turbations or from minus to plus infinity for solitary pertur-
andv(me</s) is again an empirical coefficient of effective tur- bations vanishing at the infinity

bule_nt.V|sc05|Fy as above. . The second conserved quantity corresponds to the energy
Itis interesting to note that the same term describes energy <o ration in the homogeneous medium whereas in the in-

losses by linear surface waves due to scattering on bOtto"ﬂomogeneous case it can be treated as conservation of the

roughness (Dyatlov and Pelinovsky, 1990). The dissipativeenergy flux:
coefficient can be calculated analytically in this case: '
A [ ag 12 A(x)/n2 dt = const. (16)
V2=— [ } , (13)
cg(x) Lh(x)

From these conservation laws, one can estimate how the
wherea,, is the average height of bottom roughness andamplitude of a given initial perturbation varies in space. In
A is the characteristic scale of irregularities (both these paparticular, a linear dispersionless perturbation has a duration
rameters can be-dependent in principle). Unfortunately, T which is independent of its amplitude In this case both
this model is not applicable to the description of nonlinearthese integrals give the same law of wave amplitude varia-
wave scattering (Benilov and Pelinovsky, 1988), and cur-tion with distance if the depth and width of the channel are

rently there is no simple modification for this case. known. Consider for example a perturbation
The most rigorous study of energy losses caused by wa- B
ter friction on the channel bottom and side walls leads to dx’'
a KdV equation with the integral viscous term in the form 7.1 =Af(@/T), ©=1— f o) (17)
(Das, 1985; Kakutani and Matsuuchi, 1975; Miles, 1975) 0
F(n) = as wheref is a dimensionless function describing wave profile.
Ao/ coRe Substituting this expression into one of the above integrals,

) (15) or (16), say into (16) for certainty, one obtains
1—sgnt—1) an, x) Jr

V|t =1 at’

(14)

A(x)A%(x)T / £2(0) do = const. (18)
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It readily follows then 2.4 Simplification of the main Eq. (8)

o A=L/20 N L —L/A0 \—1/2
Alx) ~ A (x) ~ h )i ). (19) First of all, let us exclude the inhomogeneous term from
The well-known Green’s lawA (x) ~ h~Y/4(x), follows  Eq. (8) using the transformation:
from this formula in the particular case of a channel of a
i i A
constant Wldth. The dependence _of wave amplitude on theu(x’ ) =s(n(x. 1), where  s(x) = (x).
channel width at a constant depth is more strong than on the A(0)
~]-1/2
depth,A(x) .l (x). N . The resultant equation takes the form:
In the nonlinear case the situation turns to be a bit more
complex because wave duration and amplitude are usually 1 [y _o@ fou ﬂ(x)&
linked with each other. For a KdV soliton of the form ax  co(x) s(x) | ot 013

1 [ dx __ "
n(x, 1) = Asecht |:—T (r —/ V();/)):| (20) =—s(x)F [s(x)} . (24)

0 As a next step, one can remove the linear term in the above
there are relationships between the amplitude and duraequation using the transformation of independent variables:
tion (see, e.g. Ablowitz and Segur, 1981; Karpman, 1973; .
Whitham, 1974).T = /I2of/ A, and between the ampli- / dx’
tude and wave velocity, o co(x’)’

(23)

& =x. (25)

V= 1—aA/3) ~ co(1 A/3).
co/(1—=aA/3) ~ co(l+aA/3) The equation takes the form

In the nonlinear case only the second integral of mo- 3
tion (16) gives the correct formula for soliton amplitude ou _ p(é)ua_“ _ ﬁ(g)a_“ = —F). (26)
variation with distance. Strictly speaking this dependencedé at 973
must be derived by successive application of the asymptotigvhere
method (see, e.g. Ostrovsky, 1974) based on the smallness a(€) u
of the inhomogeneity, the characteristic width of a soliton is P(§) = 0@ Fu) =sE)F [@] :
assumed to be small in comparison with the scale of the in- 0 i ) o -
homogeneity. However, a long and tedious asymptotic pro/Note, that if the function¥'(u) is linear (which is the case,
cedure leads to the same result as follows from the varia®-9- Of Rayleigh or Reynolds dissipation), théfu) =
tional approach using Eg. (16) but not Eq. (15). The reason id” (). S ) _
that as it evolves in an inhomogeneous medium the soliton is Further simplification can be made if one considers a
gradually destroyed and generates behind itself a nonsolitoRoundary condition in a two-parametric form (note that
perturbation in the form of a shelf. This perturbation appar-#(0. ) = 1(0. 0):
ently contributes significantly to the mass flux (15) but notso 0, 1) = Ud(z/T) (27)
much to the energy flux (16). Therefore, by substituting the
soliton expression (20) into Eg. (16) and neglecting the shelf
one obtains instead of Eq. (18)

whereU is a characteristic amplitude of the “initial” pertur-
bation,T is its characteristic duration anblis a dimension-
less function describing the shape of the perturbation given

—+00
) at the boundary = 0.
AX)A(x0)T (x) / sechf(6) do Making the new transformation
A ¢

Y ’ / T _u
= A)AY2(x) l% = const. @n ‘=7 _0/. p&rds, 0=, v=o, (28)

Using the expressions (9) for the coefficients of the KdV one can reduce Eq. (26) to the dimensionless form:
equation, one readily obtains . . 1 33 1

1(x)h%2(x) A2 (x) = const 3 V98 o209 = _R_d]-'(v) .

or (22) whereo?(2) = p(¢)UT?/B(¢) is the Ursell's parameter,
A) ~172BRwR() . Ry; = p(o)U/T is the dissipation parameter (the analog of
For channels of variable depth and constant width thisReynolds number in hydrodynamics), and functistw) is
imp”es a nonlinear ana|og of Green’s |aw(x) ~ given by one of the three kinds of diSSipationS mentioned
h=1(x), T(x) ~ h32(x) (see Ostrovsky and Pelinovsky, above,Egs.(10)—(12), or by their combinations:
1970, 1975, where generalized Green’s laws were obtaineg:(v -
both for solitary and for periodic perturbations). When the b 9%

v — . (30)

{ T2c3(¢) 392}

(29)

3v kU

width of the channel varies and the depth is constant, Eq. (22) 5V 5
4co(§)h=(8)  s(E)he(%)

givesA(x) ~ [723(x), T(x) ~IY3(x).

v]
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Table 1. Dependence of the different damping coefficients dar a channel of linearly decreasing depth

Type of Coefficient Normalized
dissipation coefficient
. _ 1 31) _ T h h _
Rayleigh g0 = Ra deq@I2@) 2Uh0go(i) 80 =1+ Wyt
Ch = 2Tk =14+ W,0)%
v 2 v
Reynolds g = g0 gho) = @+ wyp)~Y3

1 - £ -
Rar23)  3UTg

to Rayleigh dissipations for a KdV soliton in a channel of
variable depth:

Reynolds dissipation v 3% 3w
Rayleigh dissipation  72¢3(¢) 962~ 4co(¢)h?(C)

4 10h 4 b
04} -~ 3gT2v 962 - 3gT2T2(¢)

. (32)

Dissipative coefficients

T where 7 (¢) is the soliton duration in dimensionless vari-

WG ables. Taking into consideration the “nonlinear Green’s law”
for KdV solitons (see Sect. 2.3) and the relationship between

Fig. 2. Dependences of the normalized dissipative coefficientsth€ soliton amplituded and its duration which in the dimen-

gh(©). gl(¢) andgh(¢) labeled respectively 1,2 and 3, on the nor- sionless variables is
malized distancéV}, ¢ for a channel of variable depth. 2
12 4hy

o2(0)A[)  3gT2U

one finally obtains

-10 -08 -06 -04 -02 -00 02 0.4 0.6 0.8

T2(¢) = L+ W) B3,

2.4.1 Relative effectiveness of different types of
dissipations
Reynolds dissipation U
Let us compare the relative effectiveness of the differentRayleigh dissipation #¢
types of dissipations in an inhomogeneous channel. Suppose
first that the depth of the channel decreases linearly: Hence, the relative strength of the Reynolds dissipation with
respect to the Rayleigh one smoothly increases with distance
h(x) = ho(1 —xpx), where 0<x < X, = 1/kp, (31) for a KdV soliton.
o ) ) ] Note that the Ursell dispersion parameter increases in the
while its width remains constant. In this case, one can calqgme proportion

culate the different dissipative terms in the right-hand side

1+ Wyo)B. (33)

of Eq. (29) withF(v) given by Eq. (30). The correspond- , 9gUT? 3

ing dissipation coefficientgo, g. and g, are presented in ¢ €)= 2 A+ Wi)”. (34)
Table 1 in the normalized form as functions of the variable 0

Wit whereW,, = i, T/ gh3/(2U). Let us suppose now that the width of the channel decreases

The dependences of the above defined normalized coefinearly:

ficienthg(g), g(¢) andgh(¢) on ¢ are shown in Fig. 2, I(¥) = lo(1— kix), where 0<x < X,  =1/k;, (35)
respectively as curves 1, 2 and 3.

As one can see, the coefficients of Rayleigh and Chezywhile the depth remains constant. Using again the formulae
dissipation increase with distance as the wave propagates t@bove and denotin®y; = Tcohk;/(2U), the same term as
wards the shallower part of the channel, while the coefficientW;,, one obtains the dependences given in Table 2.
of Reynolds viscosity decreases. Note also that the total con- The normalized coeﬁicientg{)(g), gl and g’z(g) are
tribution of each dissipative term depends not only on theshown in Fig. 3 as curves 1, 2 and 3 respectively.
values of the coefficients but also on the local wave parame- The coefficients of Rayleigh and Reynolds dissipation de-
ters (amplitude and duration in general) so that the relativecrease with distance as the wave propagates towards the nar-
strength of the different dissipative terms can vary differ- rower part of the channel, while the coefficient of Chezy dis-
ently. As an example, let us estimate the ratio of Reynoldssipation remains constant. The ratio of Reynolds to Rayleigh
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Table 2. Dependence of the different damping coefficientg dar a channel of linearly decreasing width

Type of Coefficient Normalized
dissipation coefficient
1 3 3 T v vT
Rayleigh L)y =1- 2w,
yleig 80= R Teoh? ~ 4 p(O)U coh? 2Uhgo(C) 80(©) sWi¢
Ch =———=-/=2Tk =1
ezy 8 = R WO 3\/; gc(&) 8c(0)
1 v v 2

Reynolds go = gh(©) glz(C) =1- *Wlf

RaT2 ~ UTp(O)E 3 UTg

201
2
5 16
S L3 '
S
g 12f 2
(8]
(]
= 08[
3
o
B 04f
8 |
10 08 06 04 02 00 02 04 06 08 10 10 08 06 04 02 00 02 04 06 08 10
W& Wi

Fig. 3. Dependences of the normalized dissipative coefficientsFig. 4. The ratio of the Reynolds dissipation to the Rayleigh one

gé({), gé and glz(g) labeled respectively 1,2 and 3, on the nor- normalized toU/ hg versus the dimensionless distariég ;¢ for

malized distancéV; ¢ for a channel of variable width. a KdV soliton propagating in a channel of linearly varying depth
(curve 1) and width (curve 2) and analogous dependencies for the
normalized Ursell parameters (34) (curve 3) and (38) (curve 4).

dissipations for a KdV soliton in a channel of variable width
is: The normalized Ursell parameters(¢)h3/(9gUT?),
2 are also shown in Fig. 4 for both the varlable depth or width
Reynolds dissipation 2 v 9%v vTwv .
cases described by Egs. (34) and (38) (curves 3 and 4 respec-

Rayleigh dissipation 3 gTU 262 2Uh tively).

_ 4 h 10% 4 h (36) The model Eq. (8) or its dimensionless version (29) is the

T 3gT2v002  3gT2T2(¢) base for our study of nonlinear waves in an inhomogeneous

o . . ) channel. In the subsequent sections we will analyze it subject
Taking into consideration the “nonlinear Green’s law” for {4 some specific “initial” conditions.

KdV solitons in a channel of variable width (see the end of
the Sect. 2.3), one obtains

3 Breaking of Riemann waves

Rayleigh dissipation 7 (37)  We consider first very long and smooth perturbations for

which dispersive effects are insignificant. This means that
Again the relative strength of the Reynolds dissipationthe corresponding dispersive term (8) in Eq. (24) can be

with respect to the Rayleigh one smoothly increases with disdropped. Let us omit the dissipation for a while. The influ-
tance for a KdV soliton. Both dependences (33) and (37),ence of different types of dissipation on the breaking phe-
for a channel of variable depth and variable width, respecnomenon will be briefly discussed at the end of this section.
tively, are shown in Fig. 4 (curves 1 and 2). Both these ratiosSo, Eq. (24) with8 = 0 andF (n) = 0 reduces to:
increase as the wave propagates towards the shallower anéiu 1 du
narrower part of the channel. T v o =% (39)

The Ursell parameter is given by V(u,x) ar
where

2 -1
o2(¢) = 9gUT (1—§ng) ) (38) V(u,x):&. (40)

sioation U ) ~7/3
Reynolds dissipation <1 _ §W1C> .

1—a(x)u/s(x)
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Suppose that at = 0 the boundary condition is given by X/ Xo A
a smooth functiord (). An exact solution of Eq. (39) can be ~
presented in the implicit form (Whitham, 1974): \
\
u(x, 1) = d(1), T
where (41) TP
X
/ a(xNu', )] dx’
T=t— 1- .
s(x") co(x’)
0
According to the theory of nonlinear waves (see, €.9..s 10 05 00 05 10 15 K:XD

Whitham, 1974), the evolution of a smooth “initial” per-

turbation described by thi§ squFior} (41) leads in gengralpig_ 5. Dependencies of the normalized breaking distances of a Rie-
to the development of a discontinuity in the wave profile, mann wave X,/ X, on the normalized gradients of channel depth
u; = u, = oo. The distance at which the discontinuity ap- «;,Xg (line 1) and channel widtlk; X (line 7). Curve 3 depicts
pears Xy, is calculated as the minimum root of the transcen-the normalized distance to the channel origif,- / X, where its

dental equation (cf. Whitham (1974)) depth or width turns to zero according to the linear models (31),
(35). Lines 2 and 2show the influence of the Rayleigh dissipation

Xy on wave breaking (see Sect. 3.3.1).

d (x(x)

ot 5(x) ) CO(X) ) . .
0 Assuming that the perturbation at the boundary O is

which results in sinusoidal:® () = A sinwt (My = Aw) and putting

X, A=1m, ho=10m,

/ IO Ny g=98ms2, w=05s", (47)

0 s(x)colx) one readily obtains that in a channel of uniform depth the

where (43)  breaking distance i¥p ~ 131 m, while in a hypothetic chan-
dd(1) nel of fast decreasing depth, so that= 5- 10-3m™1, this
di distance isX;, ~ 109m. In generalX;, depends smoothly
on «j, it decreases monotonically whep grows (Fig. 5).
For a detailed analysis of this formula one should specifyThe breaking distance always remains less than the distance
the character of the channel inhomogeneity and wave profileo the origin of the channeX,, = 1/«;,, where the depth

My = max‘

at the given boundary. is zero (see Eg. 31). The dependenceXgf on «j, is also
_ ) shown in the same Fig. 5 in normalized variables (see curve
3.1 Achannel of linearly decreasing depth 3). Only in the limitk, — oo does the breaking distance

pproachX,.. So a decrease of the depth cannot prevent
Ne breaking phenomenon, on the contrary, it even stimulates
it because the role of nonlinearity, responsible for the wave
breaking, increases when the channel depth decreases.
The situation is different if the channel depth increases.
As follows from Eq. (45),X,, infinitely increases whery,
/(1 — i) A dx = M7t (44) is negative and approaches the critical valpe= —%’Xgl.
2hoA/gho h T For the sinusoidal perturbation with parameters (47),=
0 —0.01 m~L. Wave breaking is impossible if the depth of the
The integral in Eq. (44) can be readily calculated and thechannel increases too fast so that the depth gradieat«., .
breaking distancé(;, can be found explicitly

Let us assume that the depth of the channel decreases linear
with x in accordance with Eq. (31), and the channel width
constant. Then, the parametgr) ~ /co(x) ~ &1 — kpx,
so that from Eq. (43) one obtains

3.2 Achannel of linearly decreasing width

X 1 3 4/3
X—b == |:1 - (1 + ZKhX0> } Similar formulae can be derived for a channel of linearly de-
0 h0 creasing width, Eq. (35), where depth is assumed constant.
~1— ZKhXO , (45) By substitutiqn oﬁ(x). in Eqg. (43) and simple manipulations
8 one can readily obtain

whereXj is the wave-breaking distance in the homogeneousxb 1 K1 X0\ 2 K1 Xo
case whemry, = 0: Xo  axe |l ( - ) =1- (48)

_ 2hov/gho (46) In the limiting casex; = 0 Eq. (48) yields again the ex-

3 My pression for the homogeneous channel, given by Eg. (46).
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The dependence df, onk; is linear and weaker than af For the breaking distancg,,, now we have (cf. Eq. 43):

(compare lines 1 and in Fig. 5). In particluar X, is smaller

in this case than for a variable width. For the parameters con a(x) 3 d& .

sidered in the previous section we géf = 31 m. / Pl —= / m dx =M (51)
Wave breaking always formally occurs for negatiydut

the breaking distance increases to infinity for large negative

k;. For positivex;, the breaking distance is always less than

the distance to the channel origixi,,, and both these values

coincide whenq; Xg = 2 (lines I and 3 in Fig. 5 cross at this

point). For the sinusoidal initial perturbation with parame-

s(x)co(x)
0

In the case of variable depth channelby substitution of
h(x) from Eq. (31) and simple algebra, the integral (50) can
be analytically calculated to give

V
ters (47), the corresponding valuesgfis «.; = 0.015n7 L. u(x,t) = eXp{—m [(1 — iepx) % — 1] } &(7),
For larger values ok;, the breaking distance further de- KhitoV 810
creases and remains smaller than the distance to the chann&here (52)

. . =t—
when the gradient of channel narrowings close to 4 Xg a t kn/gho
sinusoidal wave will break almost immediately.

) . |:v(l—/<hx)_3/2:| 2

So, both a narrowing of the channel and a decrease of its  4u(x, t) exp >
depth cause wave breaking, although in a different manner. It 2cnhi/gho vieny/gho
is interesting that the increase of channel width cannot com- 3/
pletely prevent wave breaking (see lineid Fig. 5 for the X [erf[ /2 ; «/T( — kepx) Y }
negative values of;). It merely leads to smooth increasing of h sho
breaking distance. In reality, however, the governing Eq. (39) f: " } ]
is not valid in the vicinity of the breaking poii;, because its —eM o1 |
solutions become multi-valued (Whitham, 1974). In this case 2nh/gho
a correct description of wave process needs to take into con-
sideration either dissipation or dispersion effects. The d|sper
sion effects lead to creation of solitary waves and this process
will be studied in the next Sect. 4. And now we shall bnefly
discuss the influence of dissipative effects on the breaking

igi = 2
origin. It formally turns to zero whewr; = 4/ X. Therefore, [ —a- /q,x)l/z]

nd erfx) = —/ &2 dé& is the standard error function.

Equation (51) for the breaking distance reduces to:

phenomenon. 200 200 200(0
);o( ) {erf[ 7;0( ) 1 Xb)_s/ﬂ et J;o( ) }
K K
3.3 Influence of dissipation on wave breaking " "
_ )/0(0) Xo ex [_ 2)/0(0) ] (53)
3.3.1 Rayleigh dissipation Ned 3ich

where the dissipative coefficiepg(x) is defined in Eq. (10).
Let us start with the simplest kind of dissipation, the Effects induced by viscosity are manifest as follows. The
Rayleigh dissipation, described by Eq. (10). The correspondpreaking distance increases with increasing viscosity. The

ing equation is critical condition when wave breaking begins impossible at
negative depth gradients is modified and at small viscosities
au 1 ou 3 v (49) (Y0(0) X « 1) takes the formk;, Xo < —4/3+4y0(0)Xo/9.
=———7FU.

For positive depth gradients, wave breaking becomes im-
possible if the breaking distancg,, reaches the distance to

This equation also has an exact solution which can be prethe channel originX,,, or in other words, wher;, X;, = 1.

V(u X) at 4 co(x)h2(x)

sented in the implicit form (cf. Whitham, 1974): Taking into account that gtf) < 1 and using Eq. (53), this
condition can be presented in the following transcendental
. form:
3 dg
u(x,t) =exp f ®(7) , where (50) 2,0(0
K
[ ')
(X
r:t—/ 1o 20) [y o [200 ], (200© o
) { s(x") |: r 3, Xp 3 ) (54)
3 X de dx’ For small viscosities, the wave breaking distance can be
ex - _ —_— i -
p 41)/ o E)h2E) (1) o) cglculated from_ I?q. (53) by means of a perturbation tech
0 nigue resulting in:
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The breaking distanceX;, at which the discontinuity ap-

pears, is such that (cf. Eq. 43):
Xp 1
— & — |14+ -«nXo Xp x -2
Xo «nXo d& a(x)dx 1
1+kom)| [ =M, . (61)
5 X0\ 7@xe T 2Es® | 5@
X0 (1 T ) 1oO@Xo | (65) © L ° -
4 4 2 This transcendental equation is too complex to be analyzed

in general. However, in the case of a channel of linearly ta-
pered width, a solution of this equation can be found explic-
itly. Using again Eq. (35) after simple manipulations one

The influence of viscosity on wave breaking in a channel
of linearly varying depth is illustrated in Fig. 5 (compare
lines 1 and 2 calculated a$(0) Xy = 0.3). As one can see,

. ) . . btains
the correction caused by viscosity leads to the increase o 1
the breaking distance although the general dependence b _ . 5
X}, Onk;, remains the same as in the inviscid case. Xo  1—kmin[|®[]Xo/h
k1 Xo
. . . (1- - =1-«Xo, 62
In the case of a channel of variable width by substitu- < 1-k m|n[|cI>|]Xo/h2) K120 (62)

tion of /(x) from Eqg. (35) and simple algebra, the condition \ynere the natural condition i (1)|] = 0 is applied.

determining the breaking distance (51) can be presented s seyeral interesting observations follow from this solution.

K1 Xp As was pointed out in Pelinovsky (1996), in the homoge-

/ ex <_§ vé ) d§ __ 2coxh _ 1 Xo (56)  Neous case Chezy dissipation cannot prevent wave breaking
dicoh? ) JI—E 3 My ' which occurs at the point whene(x, ) = 0. Moreover,

breaking distance in the viscous caégis exactly the same

Unfortunately, this integral cannot be expressed through eleas in the inviscid oneXJ.

mentary functions. However, if one assumes that,| <« 1 o

(this can be checked afterwards), the integral in Eq. (56) cars-3-3 Reynolds dissipation

be calculated approximately by decomposing the integrancjl_h . ion in thi . lized B
into a Taylor series to yield e governing equation in this case is a generalized Burgers

equation Whitham (1974):

k1 Xp

2y & ou 1 Ou v 9%
222 — — = —. 63
/ |:1+ <1 K| ) 2 d& ax + V(u,x) ot Cg(x) 912 (63)
0
5 (k1Xp)? Exact solutions of this inhomogeneous equation are not
=« Xp + (1 - ﬂ) KAL) o k1 Xo. (57) known in general. Nevertheless, some estimations and quali-
ki 4 tative description of wave evolution can be made by approxi-
The solution of this equation is mating the equation by a pure Burgers equation with constant
X 2 JTTaXe =2/ — 1 coefficients
K - Kj) —
X_bka 113_2 /Jf ! . (58) 8u+1 1 3u 3u_v82u (64)
0 140 Yo/ki dx  ¢o 2hgo) ot N Cg ar2”’

In Fig. 5 the solution (58) is depicted by the dashed linfle2 ) )
vo/i; = 0.1. As one can see, viscosity leads to an increase of 12t IS completely integrable by means of the Hopf-Cole

the breaking distance which can then become formally largef'@nsformation and its solutions are very well studied (see,
than X,, so that breaking becomes impossible. This corre-:9- Whitham, 1974). We give its most important properties
sponds in Fig. 5 to the intersection of curvésd 3. in connection with river wave dynamics.

The range of validity of Eq. (58) is restricted by the condition _ The equation does not give rise to wave breaking at all.
k1 Xp| < 1 (see above) which results fiy Xo| <« 1. In the process of evolution, an initial perturbation steep-
ens until it reaches some extreme value which depends
on the dissipation parameter The smaller the param-
eterv, the thinner the wave front.

3.3.2 Chezy dissipation

The main governing equation in this case is
Su 1 u k — A sinusoidal initial perturbation evolves into a saw-
—+ — = . 59 i i

ox T Vx ot 12005 () |ue|u (59) tooth wave with a thin frontal part and a long almost

This equation can also be solved analytically and the exact o
solution presented in the following implicit form: — The dissipation takes place only on the frontal part of a
saw-tooth wave where the wave profile differs from the

dt linear function (the second derivative in the right-hand
P TTETR. (60) side of Eq. (64) responsible for the dissipation, is zero
h=(€)s (&) for linear functions).

linear rear part.

-1

u(x, 1) = d(r) 1+k|CI>(t)|/
0
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— The equation possesses stationary solutions in the fornThe boundary condition for the functiom is just the unit
of shock waves which can be considered as models oHeaviside function in this casex(0, ) = H(r). As the
tidal bores (mascaret) moving along the river from its boundary perturbation, i.e. the Heaviside function, does not
mouth. contain any temporal parameter, the Cauchy problem for
Eqg. (67) does not contain any free parameters. So we can
To conclude this section on the role of dissipation on describe the disintegration of a step-wise function into soli-
wave breaking, its influence depends on the model usedons in the dimensional variables by solving the problem for
Rayleigh dissipation increases the breaking distance of Riegq. (67) once in the dimensionless variables. Then one can
mann waves and eliminates breaking if the channel depth ofeturn to the dimensional variables for each different set of
width decrease too fast. Chezy dissipation does not impacharameters and in particluar, for each different initial ampli-
on wave breaking at all, while Reynolds dissipation alwaystyder.
prevents wave breaking and gives rise to either triangle (saw- an interesting practical problem is the determination of
tooth) waves or step-wise shock waves. In the next sectiofe gistance when the first soliton emerges from the “initial”
we consider the influence of dispersion on steep waves iien wise perturbation. This distance cannot be determined
the case when Eq. (8) cannot be reduced to the simple wavgy iy hecause the soliton emerges gradually and, formally
equation (39). As a model we consider a step-wise initialgyeaking, it completely appears only at infinity. But one can
profll_e WhICh can be generated by_a tide. Dispersion leads 'Quggest different practical criterions when the first pulse can
the disintegration of such a step-wise perturbation into stablg,s -onsidered as a KdV soliton with a good accuracy, e.g.
particle-like nonlinear waves — solitons. This process is Veryyhen jts amplitude amounts 90% of the theoretical value or
well-known (see, e.g. Whitham, 1974), and we study it in\yhen the local minimum of the wave field behind it amounts
the particular case of a channel of decreasing depth or widthy, 19, of its maximum. This last criterion has been used by
We also study the influence of different types of dissipationyne of the authors in Pelinovsky and Stepanyants (1981) to
on the disintegration of a step-wise perturbation and on theyy,gy experimentally the process of disintegration of a step-
emergence of solitons. wise perturbation into solitons using an electromagnetic LC-
transmission line. In any case, if the dimensionless distance
& of the first soliton emergence has been determined some-
how, then in the original variables x, ¢ the dimensional dis-
Rivers which flow to the open oceans are usually affected bylanceX; can be expressed using the relation betweand
tidal effects. Tidal motions generate intensive water flowsé in Eq. (66):
which can propagate upstream on tens of kilometers in the

form of step-wise perturbations (hydraulic jumps) analogous | ,368
a3U3

4 Bore disintegration into KdV solitons

to shock waves in acoustics. This phenomenon is known a¥s = & (68)
a bore or a mascaret in French. In the process of propagation
the bore undergoes dissipation, dispersive disintegration, en-
hancement due to decrease of the river width and depth, in-
fluence of nonlinear effects, etc. We study these effects herlJGn
both theoretically and by means of numerical modelling.

First of all, consider bore disintegration into solitons in a
channel of constant parameters within the framework of KdV
equation. This equation follows from Eq. (24) if one omits
energy dissipationK (n) = 0). The functions(x) = 1 in this
case (see Eq. 23) and the resultant equation is:

The problem of disintegration of a step-wise perturbation
a homogeneous medium was studied by different authors
urevich and Pitaevskii (1974); Khruslov (1975); Merchant
and Smyth (1991); Pelinovsky and Stepanyants (1981). It
was confirmed that this process is self-similar. The pertur-
bation evolves into an infinite sequence of solitons whose
amplitudes eventually amount to double the amplitude of
the initial perturbation and the time delay between them
growths logarithmically with distance Khruslov (1975). Es-
an a3y sentially the same problem has been studied for surface grav-
o ﬂm =0, (65) ity waves in Merchant and Smyth (1991) by means of the

o . . initial-boundary value problem for the original KdV Eq. (1),
where coefficientso. «, 8 are given by Eq. (9) with constant ather than for its signalling version Eq. (67). Note that

d 1
a +—@A—-an)
0x  ¢o

value ofh. the same problem of bore disintegration for surface capillary
~ Letus suppose that the bore can be represented by a Heayrayes uses a slightly different technique within the frame-
iside function of amplitudé/. Making the transformation work of the initial-boundary value problem Merchant and

Smyth (2002).
n a3U3 al x . . . . .
vV=—; Ef=x|—: T=_|— (; — _> , (66) The dimensionless distance when the first soliton emerges
U Bey Beo o according to the criterion suggested in Pelinovsky and Stepa-
nyants (1981) has been estimated using numerical calcula-
tions and data from the transmission line mentioned above to

v v 9% beg; ~ 45. So, the dimensional distankg can be presented
9E Var 93 0. (67) " in our case as a function of channel depthind amplitude of

one can reduce this equation to the dimensionless form:
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Table 3. The dispersion coefficier®® for different variations of the A
depth or width of the channel

Variable Depth Width
-3
i _ 3& _ 1¢
Linear By (§) = (1+ zg) Bui€)=1- 3¢
. -9/7 -1
Exponential By, (¢) = (1-|- 411%) Bue(£) = (1.|_ %g)

0.0 0.4 0.8 12 16 20 =

initial perturbationU’: Fig. 6. The dependence of the dispersion paramstef Eq. (71)

3 and Table 3 for channels of linearly decreasing depi, (expo-
X, = 450 —3/2 & — 10h5/2y 32 (69) nentially (_jecreasing d_eptkh_() linearly decreasing widthuf/) and
V o exponentially decreasing widthvg).

By substitutionU = 1m, » = 10m, one obtains(; ~
3160 m while for the same depth abd= 2 m this distance B L
is about three times shorte¥, ~ 1120m. It changes much | = o(1 — xix) andl = loe™*). The two types of variation
more when the channel depth varies, for example= 1 m present dlfferent featL'Jres.and a linear decay. can be consid-
and h = 5m, giveX, ~ 559m. Note also that we have ered as a first ap_prOX|mat|0n to the exponential decay. Note
verified directly from numerical simulations the dependence@/SC that according to Mazumber and Bose (1995), "tidal
of X, on g given by Eq. (69) and the agreement is very good.”Ver§ ggnerally_ taper at an exponenual rate”, and data for

In inhomogeneous media the determinatiorkofis more  udli River, India agree with thlSS statement very well, pro-
complex because the problem is not self-similar but dependé’Idlng lo= 215_"’”’ K =2.7-107"m : _ _
on the characteristic scale of inhomogeneity. Unfortunately, e presentin Table 3 the expressions for the dispersion
there are no analytical solutions in this case in general. HowC0€fficients obtained for the different types of variation. All
ever, if the inhomogeneity is very smooth so that its charac{N€S€ expressions can be cast in the f@r(&) whereE =
teristic length is much greater thaf, then Eq. (69) still can  §/& where the normalized is
be used as a rough estimation of the first soliton emergence. 3/2

In the general case of an inhomogeneous channel the folg — 9 U
lowing approach to the problem of bore disintegration can be 2 th/z 7
developed. Let us start again from Eq. (24) omitting energy
dissipation ¢ () = 0) but bearing in mind that the original Wherex is the corresponding gradient of depth or width vari-
variablen (x, 7) is now linked to the auxiliary variable(x, r) ations.
by Eg. (23). Assume again that the boundary perturbation The behaviour o8 from Table 3 is displayed in Fig. 6 as
is the Heaviside function of the amplitudé and make the a function of the normalized variab. In all the cases pre-

(72)

transformation: sentedB decreases as one moves upstream going to larger

x . & so that nonlinearity will increasingly dominate dispersion.

v o py2 a(0) / a(r)dx This will cause solitons to form earlier than in the homoge-
U B0)co(0) J colx")s(x) neous case so that the distance of first soliton emerging will
. 0 be smaller than the one given by Eq. (69) which can be con-

/ Ua/(0) dx’ sidered as an upper bound.

T= m r= / m : (70) One can see tha@ (&) decreases faster when the depth of

0 the channel is decreased rather than the width so that in the

In the new variables the KdV equation takes the form former situation nonlinear effects are reinforced leading for
this case to an even smaller distance of first soliton emerging.

ov _ Ua_v _ 3(5)33_” -0 (71)  We observe the same effect as for the breaking distance of
9§ ot 973 ’ Riemann waves discussed in Sect. 3. Note also that a linear
where decay of the width gives rise to a pathological vanishing of

2 for £ = 2&, this feature is absent in the case of an exponential
B(&) = s(&) [%} taper of the river width.

The influence of dissipation on this decomposition process
with the boundary condition(0, t) = H (7). has not been studied so far, however it is very well-known
We consider two main situations, a linear or exponentialthat Reynolds dissipation can result in the formation of a
decrease of the depth (resp. the widthw) of the chan-  bore with a stationary front, either oscillatory or monotonic
nel in the formh = ho(1 — kpx) or h = hge *** (resp.  (Whitham, 1974). We study the process of bore disintegra-
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tion into solitons numerically in Sect. 7 both without dissipa- so that the total wave mass is conserved during the wave
tion and with different types of dissipation. evolution,M ~ U(¢)T(¢) = const. Considering the so-
lution (77) as an “initial” perturbation at each spatial point,
_ . . one can define a “current” value of the Ursell parameter
5 Soliton creation from small perturbations 0%, () ~ U)T?() (cf. with the formula after Eq. 29).
o ) This parameter does not remain constant in general but varies
Let us assume now.that the initial perturbation has_ a smalf, space. If it growths, the perturbation becomes larger so
amplitudeU or durationT so that the parameter® defined

av
in Eq. (29) is much smaller than 12 — the soliton genericthat the nonlinear term- v—— in Eq. (29) cannot be ne-
value (Ablowitz and Segur, 1981; Pelinovsky and Stepa-glected anymore and must be taken into account. From a
nyants, 1981; Whitham, 1974). Whet? « 12 the disper-  practical point of view, the front part of the perturbation
sion term dominates the nonlinear one in Eq. (29) and, hencegvolves into a KdV soliton in this case. The distance for
the nonlinear term can be omitted (we also neglect the dissiwhich the “current” Ursell parameter reaches its “soliton”
pation effects). As a result, Eq. (29) reduces to the variable/alue,af = 12, can be taken as the distangeof soliton

coefficient linearized KdV equation: creation from a small initial perturbation. This distance can
3 be estimated from the following equation (Pelinovsky and
v 1 v _ o (73)  Stepanyants, 1981):
¢ o2(¢) 303 ©
2 _Pp 2
By means of the transformation Our(&s) = 50) Uu@)re)
¢ 2,2/3 & Y
d / ) (UQT ) / d /
x=/2—§, o o a8 _ 2 WoIQPP | o [ BGIAL |y g,
) o) B&)  m ) P

the equation can be further reduced to the constant coeffiwhereUp and 7o are respectively the initial amplitude and
cients one: duration of the given perturbation.

3 Further development can be done if the channel inhomo-
v v =0. (75) geneity is specified. Suppose again that the channel depth
Ix o3 decreases linearly with distance. Substituting the expressions

for p(¢) andB(¢) and after some algebra one can obtain a
transcendental equation for the distatGeat which a soliton
emerges:

The asymptotic solution of this equation is very well-
known and can be expressed through the Airy function
(Karpman, 1973):

1/3
S o L a-ex)¥? P _aym gt 0)
v(x, 0) = JT (313 : (3x)1/3 (76) (1 — k3 X,)%4 ol3gl2 UpTy

Note, that this solution is universal and does not depend on BY substitution into this equation of the following param-
the detailed form of the initial perturbation. In the variables et€rs:

Z, 0 the solution is ho=10m, k, =104m™L, Up=1m, Tp=1s,
-1/3

1 e’ corresponding te? ~ 1 « 12, one obtain, = 4637 m.
v(,0) = — 3/ —5 The channel depth at this distanceiis= 5.4 m
VT () If the inhomogeneity is a linear decrease of the channel
; —1/3 width, then the distance of soliton emerging can be estimated
_ de’ from the equation:
Al { -6 3/ 20 . (77) .
o 1
/ ¢ (61X ) Y/3 B rUEN K[/ 1,7/3 o1
. . . . . AL-—kX)Y4 3 coloTo (81)
According to this solution, the amplitude and duration of
the perturbation vary as For the same parameters as above, assumirg 10 m,

x; = 1074m™1, it follows from Eq. (81)X, = 9880 m. At
r ¢ this distance the channel widthlis= 12 m while initially it
U@) ~ /d{’/cz(f/) , waslp = 1000 m.
Note in addition that for some dependences of the parame-
-0 tersp(¢) andpB(¢), the Ursell parameter can remain constant
¢ or even decrease with This means that a small-amplitude
T(¢) ~ /d;’/az(g’) , (78) initial perturbation will not evolve into a soliton, and can
0

_-1/3

- 13

be completely described within the framework of the linear
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theory. This is the case in particular, if the channel depththe cases of Rayleigh and Reynolds dissipatiomust be
increases (instead of decreasing) faster thap ~ ¢1/2 replaced by some effective turbulent viscosity as mentioned
and the width remains constant. In the dimensional vari-in Sect. 2.2.

able the critical dependence of a channel depth on distance is In all cases except Rayleigh dissipation, the soliton ampli-
h(x) ~ x¥15, tude for large distances does not depend on the initial value
Ap and decays algebraically. The decay law for Chezy and
Reynolds dissipation is proportional to'2, while for the in-
tegral dissipation it is proportional to-4. In this last case the

I L .. soliton amplitude for large distances strongly depends on the
Let us assume that the initial perturbation is a KdV soliton channel depthA ~ k8, while for Chezy dissipation ~ A2

and calculate its decay in an homogeneous channel due t0 o 72
the different types of dissipation listed in Sect. 2.2. We there—and for Reynolds dissipation ~ i'I".

. . - I The effect of dissipation on nonlinear wave trains was de-
fore consider Eq. (8) with constant coefficients omitting the . . ) : . ;
; : ; . scribed in Myint and Grimshaw (1995) using modulation the-
last term in the left-hand side sinceis constant. We also ; :
o ory. Unfortunately, the set of equations obtained for the mod-
assume the dissipation to be small enough so that the approx-

. . ulation parameters of the nonlinear wave are too complex to
imate approach of Sect. 2.3 based on conservation laws caf

be applied again. As a trial solution of Eq. (8) we consider e analyzed even in a uniform medium. This is why we re-

a KdV soliton described by Eq. (20). This solution is exact stricted oursglvgs to the_ case .Of a smgle soliton. .
if the dissipation is absen#(s) = 0). In the spirit of the The combination of dissipation and inhomogeneity results

: . o ... in anincrease or a decrease of the soliton amplitude with
adiabatic approach, it is assumed that for small dissipation,. . .
istance. For some special conditions, these two effects

the structure of the soliton is preserved unchanged but tha . . .
. . I : can compensate each other and soliton amplitude can remain
its parameters vary in space. The variation of the soliton am- . . . )

: . . constant. To illustrate this we consider here the simplest case
plitude can be obtained from the equation of energy balance

Consider first Rayleigh dissipation described by Eq. (10)0:c iayflg?ndtﬁ;'gig?n '%ggrzgzoénzgfigﬁogi:sggmé ng
for the functionF (). Multiplying Eq. (8) byn and integrat- plying ag oy q '

6 Adiabatic decay of KdV solitons

ing it overs from minus to plus infinity, one obtains Eq. (8)
1d 1<n?>dA
d<n?> - 2 - — = 25, 85
+=—2Vo<n2>, ©) 2ax "7t A @ yo(x) <n® > (85)
The solution of this equation can be presented in a closed
where
form
+00 .
<n2>=/n2<xr)dr. 2 2 N gt
’ <n°>AXx) = <ny> Aogexp —Z/yo(x)dx , (86)
—00

X0

By substitution of the soliton solution, Eg. (20), into this whereno and Ao stand for that the corresponding variables

equation and taking into account the relationship between th%tx .
soliton amplitude and duration, one obtains o . .

By substituting in Eq. (86) the soliton solution Eq. (20)
dA 4 and using Egs. (9), (10) for the parametersg, yo andA,
dx _§VOA : (83)  one obtains

The solution of this equation leads to the very well-known ho lo \23 ~ vdx'
result (see, e.g. Ott and Sudan, 1970; Pelinovsky, 1971)A(x) = th— <I_> exp —/ RGN .(87)
soliton amplitude decays exponentially in space with an ex- () \1(x) 4 colx)h=(x)

ponent of decay 4/3 times greater than in the linear case . i
This formula generalizes Green's law, Eq. (22), and

) Rayleigh dissipation law Eq. (84) for a KdV soliton. As-
sumingv = const, one readily obtains from Eq. (87) for a

In a similar wav the decav of the soliton amplitude can bechanneI of variable depth but constant width that the soliton
y y P amplitude remains unchangetl= Ao, if

found for Chezy, Reynolds and other types of dissipations

4
A(x) = Ao eXp[—:—gVo(x - xo)} . (84

(cf., for instance, Kakutani and Matsuuchi (1975); Ott and 2/5
Sudan (1970); Pelinovsky (1971)). We summarize the resultg, )y — 5 | 1 — S v (x — x0) (88)
in Table 4 using expressions for the decay coefficigpts, 2 /ghg/Z

andy» (see Egs. 10 to 12). We also include into the Table the

decay law for the integral dissipation obtained in Kakutani If the depth decreases faster than described by this for-

and Matsuuchi (1975); Miles (1976). mula, soliton amplitude will increase, otherwise it will de-
In the case of integral dissipation (the last row of the ta-crease. Similar conditions can be derived for other types of

ble), v stands for the kinematic viscosity of water, while in dissipation.
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Table 4. Dissipation laws for soliton amplitude for different types of dissipation

Type of dissipation Soliton amplitude decay

Rayleigh AGr) = Agexp| — 2o )| = Agexp| ————( )
ylelg X) = Ao &XP| —zrolx = x0) | = Ao p_\/§h5/2 X —X0

Chezy Alx) = Ao Ao

1+ %gyCAo(x —x9) 1+ %}{%Ao(x — x0)

Ao Ap

Reynolds Ax) = 52 = R
1+ 5;2v240x —x0) 1+ 5 7gn7zA0(x — x0)

. A
Integral dissipation A(x) = 0

4
|:1 +0.16771+h/1) 7A?gv2h—2(x - xo)i|

7 Numerical modelling so that the rear slope of the pulse did not affect the wave
processes occurring in the frontal zone.)
We studied numerically the propagation of long surface Throughout the section we choose the following values for
waves in a nonuniform channel using the dimensionlesshe parametersig = 10m andUp = 1 m.
Eqg. (29). An explicit central-difference scheme was used (the
details are given in Pelinovsky et al., 1993). This scheme isd
s'econd—order accurate both in S?E)ace and time and is Condh]tion to the KdV Eq. (29) at different locations are shown
tionally stable provided\x ~ Ar®, whereAx andAr are 4t 7 gpecifically on the top panel we present the so-
the spatial and temporal steps. The simple models Ofd'ss'pq'ution v(€, 7) in the reduced variables far = 0, £ = 18
tion (10)—(12) were taken into account. The modification of andé — ’30. Notice how the front part of thé bore gives
this conservative finite-difference scheme for KdV equationrise to solitons. The leading pulse is well formed despite
to account for the dissipative terms (10) or (11) is straightfor—E — 30 < 45 and its amplitude is larger than 2 due to the in-
ward. For the Burgers type dissipation described by Eg. (12)homogeneity effectk(¢) < 1). The bottom panel of Fig. 7
the Duffort-Frankel discretization was used (MacKraken andShOWS the solution for water surface perturbatign, ¢) in

Dorn, 1975). It keeps the scheme accuracy and explicitnes%e laboratory frame for the two last locations = 532
Assuming no dissipation we first describe soliton formationé‘§ — 18) andx = 644 ¢ = 30). Notice the main fea-

|qta Ehannil of Ilneartl_y ltlje((j:reasmg degth tﬁnd 30”_‘5’3:8 At? ures of the transformations (23) and (25), the amplification
sttuations of exponentially decreasing depth and widih. A o na \yave due to the inhomogeneity and the time shift due

ter that we show the influence of dissipation in the particular, | . iiean transformation.

example of a channel of linearly decreasing depth. ) ,
We assume that the initial perturbation is the step-wise \We now compare the two ti’g'?es_?f channel inhomogeneity
function: for tr_\e same gradient = _10 m~+. We chose an expo-
nential decrease of the width or depth. From Table 3 and
t—1to Fig. 6 we know that a decrease of the channel depth will give
To > d (89) rise to a smaller dispersion paramef) than when the
width is decreased. We then expect a smaller distance of
where Uy is the amplitudeyg is the conditional instant of emergence of the first soliton. Figure 8 shows the plot of wa-
time when the front of the perturbation arrives at the pointter surface perturbation(x, r) for x = 10°m for a channel
of observation andy is the characteristic front duration. (In  of exponentially decreasing depth and exponentially decreas-
fact we used a combination of such step-wise functions withing width. As expected, narrow and high solitons are well
amplitudes of opposite signs and shifted fronts so that thdormed in the first case while they are just emerging from the
initial perturbation was pulse-like with very long duration, initial step-wise perturbation in the second case. Once soli-

In a first experiment we consider a channel with a linear
epth gradient;, = 10-3m~1. Time dependence of the so-

U
n0,1) = 70 (1+ tanh
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Fig. 9. The leading pulse amplitude shown in Fig. 8 as a function
of x computed numerically (symbols) for a channel of linearly de-
creasing depthd(), exponentially decreasing deptite] and expo-
nentially decreasing widthu(e). The corresponding Green’s laws
(22) are given for each case in solid lines.

o5

oo ‘ , : ‘ . pulse amplitude has been plotted for a linear decrease of the
410 420 430 440 450 460 1 depth ¢!), an exponential decrease of the depib)@nd an

_ o _ _ exponential decrease of the widthd).
Fig. 7. Bore decomposition into solitons for a channel of linearly ider the infl f dissipation in th
decreasing depth. The top panel shows time dependence of the so- W& NOW consider the influence of dissipation in the par-

lution v(&, 7) in the reduced coordinates for the initial condition ticular case of a channel of linearly decreasing depth=

& = 0 (curve 0)£ = 18 (curve 1) and = 30 (curve 2). The bot- 10_4 m_l. Flg 10 shows time dependence of the water-
tom panel shows the corresponding perturbation of water surface isurface perturbation(x, ¢) for x = 1080 m (top panel) and
the laboratory frame (x, ) for the last two values of, x =532m  x = 2930 m (bottom panel). The inviscid solution is shown
(¢ = 18) andx = 644 m § = 30). in solid line while the one obtained for a Chezy damping of
k = 1073 is presented in broken line. Note how the ampli-
tudes of the solitons are strongly reduced by the damping.

4_0‘fn 1 As the soliton velocities are related to their amplitudes (see
the relationships after Eq. 20), there are temporal phase shifts

35¢ between the corresponding solitons in the viscid and inviscid

3ok 2 cases. These shifts increase gradually with distance as can
be seen in Fig. 10.

25 The first soliton, once it is formed, evolves almost inde-

20} pendently from the other solitons. Its amplitude increases

Lol in accordance with the nonlinear Green’s lav,~ 4 ~1(x)

' (see Sect. 2.3). This dependence has been confirmed in the
10f numerical modelling and is depicted in Fig. 11 (compare the
o5t solid line 1 and the dashed line asymptotically approaching

' the solid one). In the first stage of the bore evolution, the am-

plitude of the perturbation grows mainly due to the formation
of a soliton. According to the theory for a uniform channel,
Fig. 8. Dependence of water surface perturbatien, 1) on time at  the first soliton at the front is the biggest and is twice as large
x = 103 m for a channel of exponentially decreasing depth (curve @S the amplitude of the initial perturbation (in the absence of
1) and exponentially decreasing width (curve 2). dissipation) (Karpman, 1973). Note that even an infinitely
small Reynolds dissipation reduces the maximum amplitude
of the perturbation (undular bore) which cannot exceed 1.5

tons are created they evolve practically independently fromfimes the amplitude of the initial perturbation in the case of
each other and their amplitudes varies according to the nona uniform channel (Chu et al., 1983; Tsuiji, 1991).

linear Green's lawA ~ h~1(x)I=2/3(x) (see Eq. 22 in the A strong enough dissipation can prevent infinite amplitude
Sect. 2.3). This is clearly seen on of Fig. 9 where the leadingncrease and can lead to wave vanishing. For a weaker dissi-

00 : . ‘ ‘ . . -
410 420 430 440 450 460 470 480 490 t
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247 A
n (m) 25 ] A
20T
16[
12}
08f 0.5 4
04f 0.0 4
1000 2000 3000” x(m)
0.0 ' : . . . . L
1000 1035 1070 1105 1140 Fig. 11. Maximum amplitude of a step-wise perturbation in the pro-
241m (m) cess of its disintegration into solitons. The solid line 1 depicts the
theoretical prediction of soliton amplitude dependence on distance
20 when dissipation is neglected. The different numerical calculations
shown correspond to no dissipatiof),(Rayleigh dissipationx),
16} Chezy dissipations) and Reynolds dissipatior)
12 [ . g . . - .
initial perturbations into solitons. In particular, we deter-
osh mined the breaking distance of a Riemann wave in a channel
of variable depth or width. We showed that a decrease of the
oalb [T depth of the channel induces breaking earlier than the same
N decrease of the width. In the case when the dispersion effect
00 , 4 , . e becomes important the bore decomposes into solitons on a
1180 1215 1250 1285 1320 characteristic distance which we estimate and compute pre-

. o o ' . ~ . ciselywhen the channelinhomogeneity is known. A constant
Fig. 10. Bore disintegration into solitons without dissipation gecrease of the depth or width of the channel reduces this dis-
(curves 1) and with Chezy o_hssmatlon (curves _2)' The top panel coryy e a5 opposed to the homogeneous case. A decrease of the
responds tor = 1080 m, while the bottom one is far= 2930 m. depth causes the decomposition to happen sooner than when

the width is decreased. Finally, we have confirmed numeri-

pation, the amplitude of the soliton can continue to grow duecally that once solitons are formed they evolve independently

to the decrease of the channel depth or width. As describe@’ €ach other according to nonlinear Green's laws.
in Sect. 6, a soliton can propagate with a constant amplitude Since a reliable model for wave dissipation in channels

when the channel inhomogeneity and dissipation act in op_IS not known, we consider different reasonable models and

posite ways and their parameters are related properly. In oufompare their effect. We have examined in detail the three

case for the parameters we chose for calculations, the curvd80St Popular models of dissipation: Rayleigh, Reynolds and
labelled 0, 2 and 3 in Fig. 11 reach their maximums and therChezy dissipation. All of them give more or less concordant

gradually decrease. We put= 10-2m?/s, k = 10~ and results for the commonly used viscosity parameters. In parti-

implemented three independent runs for models (10)_(12)9Iuar, we calculated how a small Rayleigh or Chezy dissipa-

As one can see, the Chezy dissipation causes the strongeté‘_{’n increasgs breaking distance of Riemann waves. When
decrease of the soliton amplitude, while the Reynolds dissi-diSPersion is present we showed that these three types of
pation has a very weak effect. damping reduce the amplitude of the solution and slow down

bore decomposition into solitons.
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