N

N

Nonlinear waves and solitons propagating perpendicular
to the magnetic field in bi-ion plasma with finite plasma
pressure
E. M. Dubinin, K. Sauer, J. F. Mckenzie, G. Chanteur

» To cite this version:

E. M. Dubinin, K. Sauer, J. F. Mckenzie, G. Chanteur. Nonlinear waves and solitons propagating
perpendicular to the magnetic field in bi-ion plasma with finite plasma pressure. Nonlinear Processes
in Geophysics, 2002, 9 (2), pp.87-99. hal-00331061

HAL Id: hal-00331061
https://hal.science/hal-00331061
Submitted on 18 Jun 2008

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.


https://hal.science/hal-00331061
https://hal.archives-ouvertes.fr

Nonlinear Processes in Geophysics (2002) 9: 87-99 .
Nonlinear Processes

in Geophysics
©European Geophysical Society 2002

Nonlinear waves and solitons propagating perpendicular to the
magnetic field in bi-ion plasma with finite plasma pressure

E. M. Dubinin®: 3, K. Sauer}, J. F. McKenziel' 2, and G. Chanteur®

IMax-Planck Institut fir Aeronomie, Katlenburg-Lindau, Germany
2School of Pure and Applied Physics, University of Natal, Durban, South Africa
SCentre d’Etude des Environnements Terrestre et Planetaires, Velizy, France

Received: 25 June 2001 — Revised: 16 October 2001 — Accepted: 6 November 2001

Abstract. We investigate the nature of nonlinear waves prop-ion plasma. It was shown that the stationary solutions are
agating transverse to the magnetic field in a bi-ion plasmagoverned by a second order differential equation. Examples
including plasma pressure. By using the conservation lawf numerical solutions for transverse solitons in a cold bi-ion
derived from the multi-ion fluid equations the system may beplasma have been given by Sauer et al. (2000), McKenzie et
described by a single order differential equation whose prop-al. (2001a).

erties control the structure of the flow and the magnetic field. In this paper we examine the structure of stationary waves
Compressive solitons exist in specific ranges of the charactelincluding the effect of plasma pressure which manifests it-
istic Mach numbers. Various features of solitons differ in dif- self through the proton)(,,) and heavy ion&,) Mach num-
ferent existence “windows”. For example, there are solitonspers. The inclusion of electron pressure does not change the
that contain a strong proton rarefaction core embedded ijualitative structure of compressional waves since theghifv
the main compressional structure. Compressive solitons arglach number is simply replaced by the “fast Mach number”.
found in a wide range of flow parameters. Finite ion pressureThe inclusion of proton and heavy ion pressures affects the
introduces critical Mach numbers. In contrast to a plasmastructure significantly because ion pressures become impor-
consisting only of protons and electrons these singular pointgant reservoirs in momentum exchanges between ion fluids
are reached where a specific combination of ion and elecand the magnetic field. It is shown that by using the con-
tron speeds lies on particular locii, in multi-parameter spaceservation laws the problem can be reduced to a first order
which corresponds to the generalized “sonic point” of the differential equation. Another important issue is the appear-
compound system. ance of “critical points”. In a bi-ion plasma such points or
singularities are reached on specific locii of the speeds of the
protons, heavy ions and electrons, and can be shown to cor-
respond to the generalization of the idea of a sonic point of
the compound system (McKenzie et al., 1993).

The multi-ion nature of space plasmas gives rise to new in- The layout of the paper is as follows. The governing
teresting effects which have not been present in a “classical®duations for a bi-ion plasma given in Sect. 2 are the usual
proton-electron plasma. A tractable model for describing thefluid equations for each species which are coupled together
behaviour of a bi-ion plasma has been developed, for examthrough the Lorentz forces and charge neutrality. Since elec-
ple, by Sauer et al. (1994), using multi-fluid equations. Thelron inertia is neglected, the electric field may be eliminated
existence of a second ion population leads to an additionand the magnetic is frozen into the electron fluid. Thus, the
coupling between the ions and electrons through the Lorent£duations may be regarded as an extension to a bi-ion fluid of
force and charge neutrality. Even a small admixture of heavyth€ Hall-MHD de§cr|pt|on of a single ion — ele_ctron system.
ions into a proton-electron plasma may significantly modify Ir_1 Sect. 3 we derive the constants of the mpnqn for the spe-
the plasma wave and flow properties. In particular, the ap_C|al case of flow transverse to the magnetic field and show
pearance of new additional wave modes leads to new typet1at by using them the second order differential equation,
of stationary nonlinear structures. which describes the system, can be reduced to a first order
Recently, McKenzie et al. (2001a) studied stationary struc-differential equation. In Sect. 4 we discuss the main features

tures streaming transverse to the magnetic field in a cold bi©f Stationary solutions by using the properties of the “mo-
mentum hodograph” which provides the relations between

Correspondence tds. M. Dubinin the speeds of the species implied by conservation of total mo-
(dubinin@linmpi.mpg.de) mentum and the charge neutrality constraint. We also present

1 Introduction
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examples of phase trajectories of the system in the plane$his is the standard MHD description, except tBds frozen
(du;x/dx,u;y) (u;, are the speeds of the ion and electron into the electrons which allows for dispersive Hall current
fluids), along with the corresponding numerical stationary effects. The existence of a second ion population leads to an
solutions. To better illustrate the main effects arising from additional coupling between all the species. This coupling
the coupling between the electron and ion fluids, we con-is readily revealed by eliminating, from Eq. (4) and using
sider the case where the abundance of heavy ions is rathé&tgs. (6) and (7), to obtain

high (@ = npo/np, = 0.2, wherea is the density ratio be-

tween the protons and the heavy ions) and the total mass flug, = —
is dominated by the heavy ion&f/m, = 15, heren,, , are Holte€
masses of protons and heavy ions). In Sect. 5 we analyze thgpon using the charge neutrality constraipt= n, + gny,
structure equation in detail and consider the main features inthe momentum equations for the protons and the heavy ions
troduced by the effects of finite plasma pressure. It is showrmay then be written in the form

that soliton structures can be constructed in different ranges

VxB nyu npu
LY Ll . L

8

ne ne

of characteristic Mach numbers in which the properties ofm ,n,, Dpup _ w[(up —up) x B]

these solutions are different. Some transitions comprise of D1 e

a compression followed by a rarefaction core. The ampli- 4 p (Vx B)xB— n—pre —~Vp,, (9a)
tudes of the stationary waves are expressed as a function of Holle e

the Mach numbers. Section 6 addresses the problem of the
i it i i i Dhu eqn,n
critical Mach numbers and critical amplitudes of solitons in muny hUp _ eqnphp [(uh —up) x B]

a bi-ion plasma. Dt Ne
+ " vx By xB-"yp, _vp,. (9b)
olle e

2 Governing equations i ] ] )
The main new feature which appears in these equations, as

In a magnetized plasma consisting of protopls heavy ions ~ compared to the standard MHD equations, is the Lorentz
(k) and electronse), the fluid equations for each constituent force term arising from the differential streaming between

are the ion fluids, which has the opposite actiah ign) on the
- protons and the heavy ions. Relative streaming arises due to
8_‘ + V. (nju;) =0, (1) the difference in inertia which, in turn, leads to the gener-

t

ation of the motional electric fields in the reference frames
D;u; of both streaming ion fluids and therefore results in a strong
mini — = = eniqi(E +u; x B) = Vp;, (2)  coupling between the ions.

wherem; is the massi( = p, protons,i = e, electrons,

i = h, heavy ions)g; the ion charge; the number density, 3 Conservation laws and the structure equation

pi the pressure of each specidls,and E are the magnetic P

and electric field, respectively, and the convective derivativeHere we consider adiabatic stationary:-(= 0) structures

1S with variations perpendicular to the magnetic field and flow

D; 0 transverse t@B (B = (0, 0, B), U; = (ujx, u;y, 0), so that
t t oy = Ui for variations inx only. The continuity equa-
X

If electron inertia is negligible, the electric field is given by t%ns become
E=—u,xB— m (4) niuiy = fi, const. (10)
nee
, ‘ Adding thex-components of the momentum Eq. (2) for ions
Faraday’s law becomes and electrons (withz, = 0) and then integrating yields the
9B total momentum conservation equation in shdirection,
I curl(u, x B), (5)

2
which shows that the magnetic field is frozen into the elec-izh mi fittix + 2u, * Z pi = const. (1)

. gy . . =p, i=p,h,
tron fluid. The remaining equation, Ampere’s law, is b e
Faraday’s law tell us th&f, = constandE; = const Using

curl B = p,j, (6) Eqg. (4) we have
in which we neglect the displacement current and the curren;gy =u,B =const E, =0. (12)
J is given by

For adiabatic flows we have

j= Z eqiniu; — enyll, . (7) _ o
i=pih pi X n}" X u; Vi, (13)
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Equations (10) to (13) represent the important conservede replaced by terms withu ,, /dx by differentiating the
quantities of number flux, momentum flux, transverse elec-momentum conservation Eq. (15) and the equajior= 0.
tric field and entropy. For convenience, we take= 2 and  The latter may be written in the form:

assume thatat = —oo n, = ny, = 1,0 = npy = @,

uiy = u, = 1, andB = B, = 1 with the result that the  “pxthx (1 +aq) — ttex (upy +aqupy) = 0. (21)

normalized equations become However, the second order equation can be reduced to a first

npty = fp =1, nmpuy = fi =a, (14)  order differential equation if we use an additional conserva-
tion law (conservation of energy flux), which can be obtained
mathematically in the following way. Multiplying the equa-

— 14 apup — 1)+ 12 (% — 1)_|_ tion for the x-component of motion for the protons (heavy
2M f Uex ions) byu . (u,) and adding them using
1 1 auw ¢ 1
— (> -1)+ (= -1) =0, 15 ldp
2M2 (ug,x ) 2M Z(M,fx ) U9 ek, = —euny - dr (22)

wherep = mp/m, andMy, M, M, are the Mach numbers and Ampere’s law
of the plasma flow at = —o0,

1 dB + 23)
— — = NplUpy +NpqUpy — Nelley,
M2 = ”3 M2 = “_(2; M2 — ”_3 (16) Hoe dx pepy hqtthy erey
f=y2 2T 2 Th T 20 )
Ap T e P h we obtain
2 . a
HereV,, = Bg/(pconp(_,mp)l/ is the Alfven speeldzbased on m,f, du%x ma fi d“%x d r B2
the proton mass density, angl = (ypppa/ngamp) 12, ¢ = >y > dx exEI:ZM + pe]
(Vi Pho/Pnomn) Y2, ce = (VePeo/neomp)Y/?, are the sound dp, dp "u
speeds, with the suffix “o” referring to valuesxat= —oo. ity —L A upy——r k= = efpltpy (1 - = )B
Adding they-components of the momentum equations for dx dx Upx
the ions and by using. = e(f, + ¢.f» — fe) = 0, we obtain + eqfhuhy( Uex )B . (24)
the normalized momentum conservation equation inythe Uhx
direction, In a similar way, multiplying the equation for the-
Upy + ajuutpy = 0. (17) component of the motion for the protons (heavy ions) by

upy (upy) and adding them, we obtain
The differential equation which determines the structure
of the transition for stationary flows in a bi-ion plasma is a m f) d“ mp fn d“izly Uex
highly nonlinear second order differential equation. It fol- ~ 2 dx -+ 2 dx —efpttpy (1_ u,,x)B
lows that subtracting the-components of the equations of Ueyx
motion for protons and heavy ions, and eliminating the trans- —ffCIfhulz)f( iy )B . (25)
verse electron velocity.,, yields

Adding Egs. (24) and (25) we have

3 3
upxo du,,x uyp, dl/lh 2 2 2 2
qupx<l— 2—3> + pLuh( >3 — 1)— mpu mpu d /muu mpuy,
M<4u dx M*%u dx ( px py) _(_hx _>)
y pUpx o hUhx fpd > T +fhdx > T3
= —(Upy — Upy) ———, (18) d dpp dpn
mp Py Y Uex +u, d_[z +Pe]+“px dx + Upy—— dx =0. (26)

by normalizing all variables to their valuesai= —oo (u;, is
normalized tay;,,), and using the length scalg/ 2, where
Q, = eB,/m, is the proton gyrofrequency:

2
}’l
UsinQuey = (4eoBy)/B andp; = pio— 2 L the equation for

the energy flux may be immediately mtegrated and written in

1 du 1 Upy

1_ ) P (_ _ 1) Uhx the normalized form as:

O Ll M, ) dx 2 (1
2 2 2 2
_ CI(upy_Mhy) . (19) (upx _1)+a“(uhx_1)+“Py+“““hy+M_%<E_l>
» A

] o “ . } 2 1 2010

Differentiating Eq. (19) with respect toand using +W<u - 1) + W(T - ) =0. (27)
px h X

u —u u — up i i i i . .
—(upy —upy) = = px 4 Hex = (20) This equation is readily interpreted. The first four terms

dx Upxlhex # Uhaltex are the changes in the kinetic energy fluxes of the pro-
we obtain a second order differential equation in which thetons and heavy ions. The term with the magnetic field
terms containing the derivatives,, /dx anddu.,/dx can (2/Mf;(1/uex — 1), whereM, = u,/Va,) is the Poynting
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flux, while the remaining three terms are fluxes of electron 20
and ion enthalpies. Thus, the five variablegy, ux, uex,

upy, upy Of the system are governed by three conservation 5!
equations, namely (15), (17), (27), and Eq. (21), which pro-
vides an additional constraint on the velocities on the con-
stituents (and charge neutrality = n, + n;) and any of
the differential equations of motion. For example, the term
on the right-hand side of Eq. (19) may be determined in al-
gebraic form (rather than differential form from Eq. (20)) by
using conservation of energy flux:

<
]
& -
]

Q(upy - ”hy) __ 1+ Ol,U«)u

hy =
Uex Uex !
1
F4 |Qtew 5 (28)
Uex (6725 ot ]
where

2 1
_ _ .2 _ 2 _c =
F= - ran(—if+ 5 (1-00)

+M%(1— utx)+%(1—i) (29)

s o -________:_'"._.‘_.__

M,=0.8
MH—O.S

is the change of the total energy flux minus the term describ- .|
ing the kinetic energy flux of the transverse deflections of the
protons and heavy ions. The problem therefore reduces to,
the following first order differential equation far, . zaw

iy
,

2
d 1 ud, N
dups _ 4 yE [ ST Uox N (30)
dx o Uey D

0.0 o‘_5 1.0 15 2000 05 1.0 15 2.0

whereN = (1+ aq)ocuDél —agD,andD = uD,D;(1+ Ue Ue

aq)(aqupy + upy) — aq“DpDettpy, — Dy Doupyx. Here

D, = upx(l — 1/(M12,u‘;’,x)), Dy = u%x(l — 1/(Mfu2x)), Fig. 1. Momentum hodographs for different ion-sonic Mach num-

D, = 1/(M?uex)- This equation (together with similar bers ¢, Mp) ande = 0.2, 1 = 15, . = 0, Ms = 0.8. Solid

equations fotuy, /dx anddu., /dx) completely determines (o_Iotte_d) curves correspond to the proton (_heavy |qn) speed along the

the properties and structure of stationary wave patterns in bigjlrectlon of unperturbed flow. Compressive solutions evolve along
the curves to the left of the initial poink{ < 1), whereas rarefac-

ion plasma with finite ion and electron temperatures. Hen.a_tion solutions evolve along the hodograph curves to the right. The

after we refer to it as the Strl.]Cture equgtlon of the S_y?te”_“ 'Nyashed-dotted line is shown to indicate a differential streaming of
the same way as the equation governing the transition in &4 ion species with respect to the electron speed.
shock wave is called the shock structure equation.

4 Nonlinear waves and solitons Figure 1 shows the locii of , (solid line) andu;, (dot-

ted lines) as a function af,, for different sets of parame-
It has been shown recently by McKenzie et al. (2001a) thaters M ¢, M,, My, «, u. The top left panel shows the mo-
many features of stationary flows in a cold bi-ion plasma canmentum hodograph for the parameters used in the cold ion
be elucidated only by making use of the conservation of totalcase (4, = M, = oo, My = My, where M, is the
momentum, quasi-charge neutrality and zero current in theAlfv énic Mach number based on the proton mass density)
x direction. This combination of relations, called “the mo- for which a soliton solution was given in Sauer et al. (2000)
mentum hodograph”, provides algebraic relations betweerand McKenzie et al. (2001a). Note that the inclusion of
the ion and electron speeds in the direction of unperturbeclectron pressure only modifies the Aéfv Mach number to
flow at any point in the structure. Although the inclusion the fast Mach numbeb/ ; without introducing any qualita-
of plasma pressure complicates this relation (now a quartigive change in the structure equation and therefore, for sim-
equation), it is useful to consider the changes in the shape dflicity, we may consider the electrons as cold. All solu-
the momentum hodograph arising from finite temperature. tions of the structure equation evolve from the initial point



E. M. Dubinin et al.: Solitons in bi-ion plasma 91

(upx = upx = uey = 1). CompressiveR > 1) solutions  (quite apart from the constraints related to transverse deflec-
evolve to the left4.. < 1), whereas rarefactiolB(< 1) so-  tions). AtM, = M; = 10, the equilibrium point is reached
lutions evolve along the curves to the right. The momentumat larger values af ,. (~ 0.78), which implies that a rarefac-
hodograph shown in the top left panel is very nearly the sameion substructure embedded in the soliton is strengthened. At
as the one for the cold case. In compressive solutions the prad,, = M, = 8, the proton velocity at first decreases by a
tons and heavy ions are decelerated along with the electrongactor of two and then the protons are reaccelerated almost
Since all species move with different speeds (the heavy ionsip to the initial speed in the centre of the structure, while the
run ahead of, and the protons lag behind, the electrons), &eavy ions continue be decelerated downtd17). A fur-
strong coupling caused by the Lorentz force (constrained byther increase in the ion pressure results in the disappearance
the quasi-charge neutrality) ensures the existence of the solbf a smooth soliton because a critical point for the protons is
ton structure. Au,, ~ 0.5, all fluids are decelerated to the reached after the end of a compression phase and their reac-
same speed, after which point the protons, by taking momeneeleration up to- 0.62 (seeM, = M;, = 5).
tum from the heavy ions, are sharply accelerated, while the Itis interesting to note that at smaller Mach numbers, soli-
heavy ions now lag behind the electrons. At some “equilib-ton solutions again reappea¥f, = M, = 1.5). The sig-
rium” point (given by the zero of the numerator of Eq. 30), nificant difference in this case is that a soliton comprises
the system evolves back along the hodograph to the initiabnly a compression structure. The rarefaction part is de-
point by reflection about this equilibrium point. tached from it and forms another solution which can only
However, the momentum hodograph alone does not tell ude reached through a discontinuity. However, this solution is
where this reflection or equilibrium point is located. This is not a periodical because of critical pointssgt. ~ 1.15 and
determined by analyzing the structure of Eq. (30). Beforeu,, ~ 0.62. An example of periodical solution (the phase
discussing the possible structures embedded in this equatiotrajectories for the cas®4, = 1, M; = 20) is shown in the
we briefly consider how finite pressure affects the momen-right bottom panel of Fig. 2. Here the protons and heavy ions
tum hodograph. A decrease in the sound Mach numbers (inare executing an oscillating motion, not by a smooth transi-
crease of pressure) shifts the point where all fluids streantion from the initial point, but only through a jump (disconti-
with the same speed towards the initial point and thereforenuity).
the maximum possible compression strength decreases. At Figure 3 shows examples of numerical solutions of the
M, = M}, = 1.2, the protons, near the initial point, immedi- structure equation for both solitons and periodical cnoidal
ately begin to run ahead of the heavy ions and electrons, withwaves.
the result that the point where all fluids move with the same
velocity disappears altogether from the compressive part of .
the hodograph and reappears in the rarefaction branch. Not2 ' "€ Effect of plasma pressure on soliton structure
that in this case, a compressive soliton solution cannot b

: 8\e now examine the structure equation in more detail to ob-
constructed because, from the transverse equation of motio

ain a clearer understanding of the different possible types of
du py stationary solutions. The integral curves of this rather com-

Upx—p = = eitex — Upx)B (31) plicated differential Eq. (30) can be constructed from our

. . L N knowledge of the behaviour of the right-hand side (RHS).

it follows that since the deﬂe_cnon in the-direction must The zeroes of this expression determine the location of the

be an odd function ok, a point whereue, = up. must“ equilibrium points (wherdu ,, /dx = 0) , which correspond

be re?cheq before the centre of the_ structurg. In the SUbfo the amplitude of the wave. The RHS has zeroes at the

sonic” regime v, < 1Mh < 1), an intersection between points WhereE (u ;) = O or at the points where

line upy(upy) = ue, With the hodograph curves occurs for

uex > 1. In this rarefaction branch the heavy ions (protons) N = (1 +aq)uDp — gD, = 0. (32)

are decelerated (accelerated). However, as we will see be- Figyre 4a shows (u ) (dashed curves)ant(u ) (dot-

low, the structure of the solutions is strongly affected by theteq curves) as a function af,, for several sets of the pa-

position of critical sonic points (whetu;, /dx — oo) with rameters used in Figs. 1 and 2. The zeroe of ,,) and

the result that rarefaction solitons cannot be constructed. N(u,,) in a compressive parif, < 1) correspond to the
Figure 2 shows the phase curves in the plades.(/dx,  amplitudes of possible structures. One of the zerdes:(0)

upx), (dunc/dx,up,) for the same set of parameters getermines the maximum compression in the structure. An-

Ma, My, My, «, pu for the momentum hodographs shown giher one £ = 0) gives the amplitude of the solution in the

in Fig. 1. At very large ion sound Mach numbers we have centre (an equilibrium point). Figure 4b shows the behaviour
a soliton solution similar to the cold case. The equilibrium ¢ the denominator of the structure equation

point from which the system evolves back to the initial state 2

is reached at,, ~ 0.6. Compression of the protons is fol- 2 = #(1+aq)DpDyGunx + aqupx) — ag”DpDett py

lowed by a sudden rarefaction and acceleration, while the ~ —uDpDeuy, . (33)
heavy ions continue to be decelerated. It can also be observed ) N ) duj,

that a smooth rarefaction soliton cannot exist because a point"is tells us the location of critical points wherg = — co.

X
du;x/dx — oo is reached before the expansion is completedOnly a combined analysis of the behaviour of bdity )
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Fig. 2. Phase curves inthe planesi, /dx, upx), (dupy/dx,upy)for the same set of parameteéis,, M, My, a, u as for the momentum
hodographs shown in Fig. 1. The left top panel corresponds to the case of cold ions. Arrows indicate the variatipr®i,, for the
compressive solution. Rarefaction solutions do not exist becays¢dx — oo before the expansion is completed. At the Mach numbers

~ 15 < My, M <~ 7.5, smooth compressive solitons also cannot be constructed because critical points are reached before the proton
expansion in rarefaction cores is complete.M§ = M, = 1.5, the rarefaction core is detached from the compressive part and the soliton
structure is changed. The right bottom panel shows an example of phase curves typical for periodical nonlinear waves. The protons and the
heavy ions are moving in an oscillating manner.

andD(u,,) provides sufficient information to determine the vene before equilibrium points are reached. It is worth not-

nature of the structure. ing that at largeM; (= 10), the energy flux integrak (i )

evolves to the left from the initial point “O"{,, = 1), and

for E > 0. At large ion Mach numbers in the vicinity of ?ncreases for compressive type of solutions, reache_s a max-
imum, and returns to zero along another path. This point

upx = 1, E is positive foru,, < 1 and foru,, > 1, and a ¢ - ) |
priori, one could expect the existence of rarefaction solitons d€términes the amplitude of the soliton at its centre. At the

However critical points, wheréu ,, /dx = co, may inter- same time, the denominator functi@nu ,,) evolves in the

It is important to note that soliton-like solutions exist only
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Fig. 4. (@) The energy flux integrak (u ) (dashed curves) and the
function N (u ) (dotted curves) as functions ef,,. The zeroes

of these functions determine the location of the equilibrium points
wheredu . /dx = 0. (b) The denominatoD (u ) of the structure
equation which determines the location of the critical point where
du;y/dx = oo, as a function ofi .

A further increase in ion pressure brings about a local min-
imum in the curve ofE (u,,) which could evolve to equi-
librium points withu,, > 1. However, these equilibrium
points are not realized because the zeroe® 0f ;) inter-
vene. For example, &, = M, = 5, two zeroes oD oc-

Fig. 3. Examples of numerical solutions for solitons and periodical cur in the compressional branch before the equilibrium point

waves.

(upx =~ 1.3), therefore taking out the construction of a
smooth soliton. An interesting feature appears whgn=
M, = 1.5. The value of the local minimum df () de-
creases with decreasind; and reaches zero, and M, =

compressional part from a point “O” without going through M; = 1.5, it becomes negative. In this case “a new” equilib-

zero. For rarefaction solution®)(u,,) moves to the right

rium point arises, already in the compressive stage of the pro-

and goes through zero befaf&u ) reaches its zero. There- ton flow, and is reached just before a reflection point. Thus,

fore, smooth rarefaction solutions cannot be constructed.

a soliton can again be constructed although its structure no
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longer contains a rarefaction core. At smaller Mach num- 0=0.2, u=15, B.=0
bers, E(u,,) is negative in the neighbourhood of, = 1 ‘ S -
M, = 0.8]

so that solitons cannot be constructed. For “subsonic” Mach
numbers, where the momentum hodographs may permit rar-
efaction ¢., > 1) solitons, a reflection pointX = 0) is
always reached before an equilibrium poit£ 0).

The solution of the system of Egs. (15), (29) and (21),
which represent momentum conservation, energy flux con-
servation (minus the terms describing the kinetic energy flux
of transverse deflection) and the constraint on the current
Jjx, yields the amplitudesu(,y, usx, B = 1/u.,) of station-
ary solutions for given values of Mach numbers (transverse
speeds of ion species become zeroes at the center of station- 15
ary structures). These relationg, /u,, uny/u,, B/ B, may I
be thought of as the analogue of the Rankine-Hugoniot re-
lations for shocks. However, two important points must be
noted. The energy flux associated with the transverse com-
ponents of the ion velocities is not included in the equation
E = 0. This, however, is not a severe limitation because

Up(d)/u0
o

N

Unh(d)/u0

& R 7 gy, (34)

Upy =
px
my Upy

and for a “shock” transition with a thicknegs — 0, the

downstream value af,, — 0 (Motschmann et al., 1991).

The second important difference from standard Rankine-

Hugoniot relations is that we only consider adiabatic flows.

Even in the case of cold species upstream of a “shock” tran-

sition, one must take into account finite pressures of species

downstream of the transition. Nevertheless, for weak shocks

in a bi-ion plasma with small thermal pressures, as compared

to the magnetic pressure, the analogy seems reasonable.
The solid thick black curves in Figs. 5 and 6 represent g ‘ ‘ ‘ ‘ ]

solutions of the system of Egs. (15), (21), (29) for differ- s

ent sets of Mach numbers. Figure 5 shows/u,, upx/uto, p.h

B/ B, as afunction of\f; (= M, = M;) for M4 = 0.8. The

thin solid black curves depict solutions of the same system ofig. 5. Compression ratios . /u, upx/uo, B/B, of stationary

equations where, instead of equatibr= 0, we take Eq. (32) _solution_s, for Alfven Mach numben/ 4 = 0.8, as a function of

as determining the maximum value of the proton compres-n-Sonic Mach numbersi{,, = M). Solid black curves represent

sion (V(u,x) = 0). The red curves show the amplitudes at tbr;e amplitudes of the soluthns at the centre of the structqres. Thln
. . . ack curves depict the maximum values of the compression ratios.

which reflection pomt.s (wherdu;/dx — oo) are reached Red lines correspond to the values at which reflection points are

(the system of equations solved are Egs. (15), (21) and thg,,ched. The range @1, 4, in which solitons exist, are shown by

equationD = 0, whereD is the denominator (33) of the pjue lines atpy fup = 1 '

structure equation). The solutionS§)and (C,,) correspond

to compressive flows, whereas soluti@®) corresponds to a

rarefaction flows. The range in which soliton solutions ex- } ) o _

ist are readily recognized from the blue lines, /u, = 1. of M;, re_flectlon points are reached before equilibrium points

Note that the transitiod@ <—— C,, can be fulfilled without ~ are attained.

crossing critical points (red lines) only fa¢; >~ 7.5. Rar- Figure 6 shows the amplitudes of the proton flow speeds

efaction solutions (for the protons) cannot be constructed aas a function of the Alfén Mach number for given values of

any M; because critical points are reached before the finaion pressures. AM; = 10, compressive solitons exist only

expansion is completed. An interesting feature is observed aor M4 <~ 0.85. In the range~ 0.85 > M4 >~ 0.75,

~ 1.3 < M; <~ 1.5 where a bifurcation of the curves ap- solitons contain an embedded rarefaction core. At smaller

pears, giving rise to a new, additional solution. This occursvalues of M, (to the left from the minimum in the curve

because a new equilibrium point arises whei@ ,,) = 0 (), only the compressive part remains (the cur€eandC,,

anddE /du,, = 0 simultaneously, and the rarefaction core almost merge although the curg, remains outside). At

is disconnected from the soliton structure. At smaller values0.4 < M4 < 0.5, only rarefactions (not smooth) solutions

1/Ue/1/Ueo
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a=0.2, u=15, B0
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Fig. 6. Compression ratios ,x /u, of stationary solutions for the
set of ion-sonic Mach numbers#, = M) as a function of Alfien
Mach numbeM 4.

exist. AtM, <~ 0.4, there are no solitons sindgu ,,) be-
comes negative for all,.. At M; = 5, the gap for solitons
becomes smaller{ 0.5 < M, <~ 0.6) and only compres-

sive solutions are possible (to the left of the point where the,
curvesC andC,, merge). There is also a very narrow bifur-
cation region a4 ~ 0.75 where a new equilibrium point
appears and a compressive soliton may exist. This bifurca*

tion becomes clearer &1; = 3 andM 4 ~ 0.65. Another re-
gion of solitons forM; = 3 occurs wher@f, ~ 0.55. Both

95

regions are separated by a gap in whictu ) is negative

in the vicinity of the initial point and critical points prevent
even the existence of periodical solutions.Mit = 1.5 com-
pressive solitons of small amplitude exist only in a region of
bifurcation (4 ~ 0.7). Although atM; = 1.5, solutions
exist even at very smal 4, neither smooth solitons or peri-
odical waves can be constructed.

6 Critical Mach numbers

The set of results presented above for specific combinations
of Mach numbers, demonstrates the complicated behaviour
of the energy flux integrak (,,) and denominator of the
structure equatio (u ,,) whose zeros restrict the possible
trajectories of the integral curves by “choking the flow". The
sample of results can be placed in a more general context in
the following way. A necessary condition for the existence of
solitons is the condition that the energy flux integidl: ,, )

must be positive in the neighbourhood of the initial point. To
examine the behaviour & (u ,,) note that

dE(upx) _

= 2(
2,3
dx Mpupx

- 1)(upx — Uex)

dupy

1
+20u( —5—5 — 1) (upy — tex) (35)
Gz Y

which shows thaf (u ) andd E (u ) /dx go to zero at the
initial point #;, = 1. Note also that at the “charge” neu-
tral point, where all fluids move at the same speegl (=
uex = upy) the energy functiorE (u,,) has a local maxi-
mum. Therefore, in the neighbourhood of the initial point,
E(upy) behaves as

dupy

E(upy) ~ azs? (36)
in which
21-9[/1 1

o (1/M2 — 1)(1+ aq) + 1/ M? (38)
C apu(/ME - (1 +aq) +ag/M3

Hence,E is positive if

1-5>0, and(Mig—l)q—<Mi5—1)MS>O, (39)
or
1-5<0, and(Mig - 1)q - (Mi}% - 1)Ms <0. (40)

These conditions determine the range of the Mach numbers
in which soliton solutions are possible. In the case of cold
protons and heavy ions\{, — oo, M, — o0) the condi-
tions reduce to

ag? + 1
n(1+ ag)?

2

M2 > —— andM?

(41)
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CRITICAL MACH NUMBERS
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Fig. 8. The range in the ion-sonic Mach numbes,, M; where
solitons or stationary nonlinear waves may exist. Solid (dashed)
lines are locii of critical Mach numbers for smooth solitons (peri-
odical waves). Dotted lines depigt(u ) = 0.

ited range of parameters and i1 (if 1(1+ ag?? > (1 +
ap)(ag? + ). Inthe cold case, the lower limit of Mach
number in (41)M ¢ (Mj% = 1/(1 + ap)) is essentially the
Alfv én speed based on the total ion mass density, and the up-
per limit is the Alfvén speed reduced by the factorHkq).

For finite ion temperature, the condition-LS > 0 can also

be interpreted as

Mg, > 1, (43)
where we may define the fast Mach number for a bi-ion
plasma as

1 1 1 o 1
v = (s +-3+-3) (44)
7 1+apn\M;  M; M5

Figure 7 shows the two-dimensional contour plots of the
function (37)az as a function ofM, and M, for super-
Alfvénic M4 = 1.5), Alfvénic (M4 = 1), and sub-Alfénic
Fig. 7. Two-dimensional contour plots of the coefficientas a (M4 = 0.8) flows. Soliton solutions can be found only
function of M, and M, for super-Alfiénic (M4 = 1.5), Alfvénic ~ where this function (and consequently the energy flux func-
(M4 = 1) and sub-Alfenic (M4 = 0.8) flows. The plots en-  tion) is positive. In the super-Alenic case, solitons may
compass the range of the functiop from —3 up to+12 with an exist in 3 regions on the planeM(, — M;) (the cut of

interval 0.25 between the contour lines. Solid green curves providghe three-dimensional/, — M, — M), parameter space):
the locii of critical Mach numbers. Above this curve smooth soliton a)0.9 < M, < 12, M, >~ 12, b)M, > 15,09 <

solutions can be constructed. The solid red curves provide anothth <~ 1. ¢)05<05< M, <1, M, < 1.05. For sub-
— 4 . = . = p = ) =~ . .

Alfv énic flow, the first region expands to high, values and
the second and the third regions are merged. Consequently,
the parameter space in the, — M, plane in which solitons
orif ag? < p, to are permitted is greatly expanded.

1 1 However, in many cases, smooth soliton solutions cannot
M3 > , andM% < ————. (42)  be constructed because critical points intervene. Therefore,

1t+oan A +aq) itis useful to examine critical Mach numbers and critical am-

A second possible range of Mach numbers where solitonglitudes of solitons. These values are determined by the con-
may exist (condition 39) is fulfilled only for a very lim- dition that a local maximum ab (« ,,) becomes zero so that

set of the upper critical Mach numbers. Solitons exist also in the
regions bounded by solid and dotted red lines.
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D(u ,,) possesses a double root. The solution of the systenfiound in the region bordered by the solid (a second set of the
of equationsD (u,x) = 0,dD(upx)/dx = 0, the equation of  critical curves) and dotted blue curves. My = 0.8, soliton

the momentum conservation (15) and Eq. (24) £ 0) for compressive solutions also exist at low heavy-sound Mach
given values of one of the Mach numbessgndu are also  numbersM;, >~ 1. The permitted region (between the solid
fixed) yields the range of the two remaining critical Mach and dotted green curves) gradually widenafgt~ 1 and ex-
numbers in which smooth solitons or periodical waves arepands to large heavy-sound Mach numh#fis Across the
possible. The green curves on the contour plots shown irdashed green curve &, >~ 10 there is a smooth transition
Fig. 6, depict such critical Mach numbers. At Mach numbersbetween compressive solitons with and without a rarefaction
M, = 0.8 andM,, M;, above this critical curve, smooth core.

soliton solutions exist.

By examining the structure equation for Mach numbers
varying in the plane¥, — M), we have found that soli-
ton solutions also exist at smalf;. A second set of criti-
cal Mach numbers can be determined by the condition tha
a local minimum of the energy flux integrél(x ,,) goes to
zero. In this case the system of equations comprises equ

7 Summary and conclusions

We have investigated the structure of stationary nonlinear
periodical waves and solitons propagating perpendicular to
ébe magnetic field in a warm bi-ion plasma, using multi-fluid

tions E(upy) = 0 anddE(up,)/dx = 0, together with equations. It is well known that in transverse solitons propa-

those determining the momentum hodograph. Below thes(?ating in a plasma consisting only of protons and electrons,

. . . . inite ion inertia plays no role. Dispersion effects occur onl
critical Mach numbers, compressive solutions, without a rar- t smaller scalez v?//here finite eIeF;:tron inertia pro ressive%
efaction core can be constructed in the range of paramete% prog y

where E(u,,) > 0. The solid red curves in Fig. 7 provide ecouples the magnetic field from the fluid (see e.g. Adlam

the upper critical Mach numbers. Dotted red curves showand Allen, 1958; Sagdeev, 1966; Tidman and Krall, 1971,

the locii of the Mach numbers wherB(u,,) = 0. The Il\/IcKtehn2|e et aI.,%gOldb). Ina_bl-lon pI?sm?ar:e;/_vdlspersmn
range of Mach numbersf, — Mj, between the solid and ength appears. The dispersion equation for stationary waves

dotted curves gives the values of the proton and heavy ior{OHOWS from linearizing the structure Eq. (30) about the ini-

velocities at which smooth compressive solitons can be contidl state wherar, = uy, = u, =1, and seeking expo-

- : nential solutions exgrx). This analysis is made more clear
structed. Itis interesting to note thatMt, < 0.9 (M = 1) . . . .
andM, < 1.3 (M, = 0.8), in the regions wher& (i) > 0 by noting that the behaviour of the right-hand-side (RHS) of

(to the right of the dotted red curves), smooth compressiveEq' (30) near the initial point, is mainly controlled by the en-

solitons also exist. There are no critical valuesisf at ' 9Y flux fUNCtionE (u px, unx, ue) (29) which has a double
theseM, numbers. In “sub-heavy-sonicM, < 1) and ;t:ro ‘;’:/t[”""ﬂ/[: 1]‘./IOth-er tetrms o_n tlheEHS can be e>t<pr|<_assed
“sub-Alfvénic” (M s < 1) regimes, smooth soliton solutions S (Mp, My, My, uix) 8 ujx = 1. A more accurate lin-
are not possible although at the super-Alfic speeds (e.g. earization procedure confirms this appranIguix) must be
My = 15 in Fig. 7), compressive solitons at small ampli- Ie_xpan_degl IIEn p%v(\)/ers Of%" N 1“: 8 up 108%, so that the
tude ¢, ~ u;, ~ 0.96) survive at 1> M; >~ 0.9 and inearized Eqg. (30) may be written as
M, >~ 1.3. duye — 1)

lléigure 8 shows the ranges of ion sound Mach numberspd—x = Vaz(upx — 1) fui=1, (45)
in the M, — M,, planes where solitons or stationary nonlin- ,
ear waves may exist. Solid curves correspond to the locii oiand the exponent is therefore
the critical Mach numbers for.s.mooth soIitons. It was noted . _ a2 fu—1. (46)
that for solitons another additional constraint must be ful-
filled, namely thatE (x,,) > 0 in the vicinity of the initial ~ Thus, evanescent solutions?(> 0) (growing or decaying)
point. If E(u,.) is negative and critical points do not appear, are possible only ifi; > 0, i.e. in accordance with the anal-
another class of solutions (nonlinear stationary waves) carysis made in Sect. 6. Propagating solutions(éxp — ikx)
be found. The amplitudes of these waves also have criticatan be obtained from (46) by the transformatiens> —ik
values at certain critical Mach numbers. Dashed curves imndu, = v,, = w/k. The latter implies the transforma-
Fig. 8 are locii of the critical values for periodical stationary tions My — vpp/vap, My — vpn/cp, My — vpp/ch,
waves. Dotted curves show whekgu,) = 0. Solitons or ~ wherev,, andc, , are the Ali\en speed based on the protons
periodical nonlinear waves can be constructed at high MacKwhich must be modified if we take into account a finite elec-
numbers (right top corners bounded by the critical curves)tron pressure) and ion sound speeds, respectively. It is useful
At M, = 0.8, solitons have a rarefaction core (RC). Regionsto renormalize the phase speed to the Affspeed ,, and
bounded by the dashed curvé${ = 1 and 2) correspond to thex-coordinate to the proton inertial length,/ 2.
Mach numbersg/, and M, at which periodical solutions ex- Figure 9 shows the variation af/ k with k for ¢, = 0.3,
ist. For super-Alfénic flows (M4 = 2), compressive soliton ¢, = 0.1, = 0.2, = 15. The upper mode arises be-
solutions are possible only af, >~ 1and 1> M; >~ 0.9 cause of a bi-ion resonance. At short wavelengths this mode
(the region between the solid and dotted red curves, see alsapproaches the velocity which, in the case of a cold bi-ion
Fig. 7 for the cas@f4 = 1.5). At M4 = 1, solitons may be plasma, is determined by the second condition in (42), i.e.
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main essentially the same even if the heavy ions are a minor
component, but the amplitudes of the stationary structures
are correspondingly weaker.

Many important features of stationary flows can be eluci-
. dated by making use only of the conservation of total mo-
mentum, quasi-charge neutrality and zero electric current in
. the direction of wave propagation. This useful diagnostic of
soliton structure has been successfully applied by McKenzie
— et al. (2001a) for the case of a cold bi-ion plasma, which re-
vealed the qualitative structure of the flow and the magnetic
. field in a solitary-type pulse. In compressive solutions, the
protons and the ions are decelerated along with the electrons.

| Due to differential streaming, a strong coupling between ion
’:, species arises and controls their relative motion. An interest-

. ing feature of the momentum hodograph is the existence of
a second point (besides the initial point) at which all fluids
have the same speed. The location of this point with respect
to the initial point determines whether or not a soliton solu-
tion can be constructed. For example, the momentum hodo-
graph tells us that a rarefaction soliton cannot be constructed
(in supersonic flows) due to the absence (in the rarefaction
branch) of the point where all species again reach the same
speed.

However, the momentum hodograph alone does not deter-
mine the “equilibrium point” from which the system evolves
back to the initial point. The problem of critical Mach num-
bers can also only be solved by analyzing the differential
equation, which is highly nonlinear and a second order, but
can be reduced to a first order differential equation by using
the energy flux conservation. A detailed analysis of phase
trajectories in the phase spaée; /dx, u; is then described.

Fig. 9. Dispersion diagram of waves in bi-ion plasma with =
0.3, ¢, = 0.1, = 0.2, u = 15 propagating transverse to the mag-
netic field. The hatched regions show where solitons may exist.

by the Alfvén speed modified by the density and charge ra-
tiosag. The hatched region below this velocity corresponds
to wherek is imaginary and therefore indicates the region in
which solitons may exist. The lower border of this region is
the phase speed of another long wavelength méde-(0)

which is determined by the expression (44) (“fast” speed for

bi-ion plasm.a). The “fast” 'speed decreases' V.v'th INCreasiNgsyiton solutions are possible in some specific regions of the
k, approach_mg th_e heayy ion sound spegcg_lvmg rise to . three-dimensional phase spadg — M, — M, determined
a character_lstlc dispersion length scale _Wh'f:h IS a Compll'by the characteristic Mach numbers. In the limit of cold ions
cat_ed function of the protoq gnd heavy ion inertial Iengthsand electrons, solitons can be constructed if the flow speed
weighted by their charact.erlst}c speeds (and thgrefore MaYyceeds the Alfgn speed based on the total ion mass and is
be caIIed. the compound |n§rtlal !er?gth).. There is also aMess than the Alfén speed based on the protons and reduced
_othe_r r“eglon, b.e,l,owh.’ n Whlgh k Is imaginary. However, by a factor 1+ «q, wherew is the density ratio ang is the
in this sgpsomc_ regime, so_lltons cannt be constructed be'charge of secondary ions. The solitons may have very differ-
cause critical points always intervene. ent properties. There is an interesting class of solitons that
The existence condition which follows from the linear contain an embedded rarefaction proton substructure. Within
analysis is only a necessary one. Away from the neighbourthjs rarefaction core, the protons may be reaccelerated almost
hood of the initial point, the dynamics of the system becomesp to the initial speed. A class of stationary solutions repre-
more complicated and cannot be described by the linearizedenting periodical nonlinear waves can also be constructed.
Eq. (45). The behaviour of other terms in the RHS of Eq. (30) However, the transition to the state with periodical waves can
become important and the effects of critical Mach numbersomy be reached through a discontinuity.
appear. Although this is a complicated multi-parameter prob-  The jmportant feature of a bi-ion plasma with finite ion
lem we have shown how it can be investigated for any givenpressures is that in a broad range of ion-sonic Mach numbers
set of initial parameters. The results demonstrate the comMp, My, critical points, wherelu ,,/dx — oo, intervene
plex dependence between the soliton properties and the chagefore equilibrium points are reached. These critical Mach
acteristic Mach numbers. numbers significantly limit the range of flow speeds where
The case where the abundance of heavy ions is rather higmooth soliton or periodical solutions can be constructed.
(¢ = npo/npo = 0.2, wherea is the density ratio between The relationship between the critical speeds of a bi-ion flow
the protons and the heavy ions), is typical for cometary en-and the characteristic phase speeds of the system can be il-
vironments (Goldstein et al., 1992) and in the inner regionluminated with the simpler case of ion-acoustic solitons in
of the Martian magnetosheath (Dubinin et al., 19964, b). Itisa proton-electron plasma using a gas-dynamical viewpoint
worth noting that the main features of stationary solutions re-(see McKenzie, 2001). In this case a necessary condition for
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the existence of a soliton is that the incoming proton speed of the boundary layer in the martian magnetosphere, J. Geophys.
exceeds the ion-acoustic speed of long wavelength waves Res., 101, 27061, 1996a.

. ‘< I'm. Dubinin E., Sauer, K., Lundin, R., Bauradel, K., and Bogdanov,
(Yk(Te + Tp)/myp). However, the maximum strength is lim A.: Structuring of the transition region (plasma mantle) of the

ited by the short wavelength speedi(T,/m ), because the martian magnetosphere, Geophys. Res. Lett., 23, 785, 1996b.
flow is compressive and is driven towards the sonic point ofGoldstein, B. E., Goldstein, R., and Neugebauer, M., et al.: Ob-
the system where it is choked. In a bi-ion flow, such as the servations of plasma dynamics in the coma of P/Halley by the
solar wind, in which the protons and alphas stream differ-  Giotto ion mass spectrometer, J. Geophys. Res., 97, 4121, 1992.
entially, the concept of a short wavelength sonic point mustMcienzie, J. F.: The ion-acoustic soliton: A gas-dynamic view-
be generalized (see McKenzie et al., 1993). In this case ihcﬁfé:t;;hﬁs'lcf ?\‘;I;'gs:aé S“Bt;"l]gzgi 2»?01a'nd K Sauer: Wave
follows that the “sonic point” in fact corresponds to locii in PR Co e e I o o

s . and stability properties of multi-ion plasmas with applications to
(up, uy) space which is determined by the sound speeds of

8 - - winds and flows, Ann. Geophysicae, 11, 341, 1993.
the heavy ions and protons, as well as their mass and densifyckenzie, J. F., Sauer, K., and Dubinin, E.: Stationary waves in a

admixtures (composition). Similarly, in the problem here, a  pj-jon plasma transverse to the magnetic field, J. Plasma Physics,
necessary condition for soliton existence is the requirement 65, 197, 2001a.

of “super-fast” flow att — O (see Fig. 9). Within the tran- McKenzie, J. F., Dubinin, E., and Sauer, K.: Nonlinear waves prop-
sition, the heavy ions and protons stream differentially and agating transverse to the magnetic field, J. Plasma Physics, 65,
the “critical points” occur on “sonic locii” which correspond 213, 2001b.

to the short wavelength dispersion equation for the systemMotschmann U., Sauer, K., Roatsch, T., and McKenzie, J. F.: Sub-
including differential streaming. critical milti-ion shocks, J. Geophys. Res., 96, 13841, 1991.
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