
HAL Id: hal-00331053
https://hal.science/hal-00331053

Submitted on 18 Jun 2008

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Some estimates on the space scales of vortex pairs
emitted from river mouths

V. P. Goncharov, V. I. Pavlov

To cite this version:
V. P. Goncharov, V. I. Pavlov. Some estimates on the space scales of vortex pairs emitted from river
mouths. Nonlinear Processes in Geophysics, 2001, 8 (1/2), pp.1-7. �hal-00331053�

https://hal.science/hal-00331053
https://hal.archives-ouvertes.fr


Nonlinear Processes in Geophysics (2001) 8: 1–7
Nonlinear Processes
in Geophysics
c© European Geophysical Society 2001

Some estimates on the space scales of vortex pairs emitted from
river mouths

V. P. Goncharov1 and V. I. Pavlov2

1Institute of Atmospheric Physics, Russian Academy of Sciences, 109017 Moscow, Russia
2DMF, UFR de Math́ematiques Pures et Appliquées, Universit́e de Lille 1, 59655 Villeneuve d’Ascq Cedex, France

Received: 17 July 1999 – Accepted: 12 November 1999

Abstract. Two-dimensional vortex pairs are frequently ob-
served in geophysical conditions, for example, in a shelf zone
of the ocean near river mouths. The main aims of the work
are to estimate the space scales of such vortex structures, to
analyze possible scenarios of vortex pair motion and to give
the qualitative classification of their trajectories. We discuss
some features of the motion of strong localized vorticity con-
centrations in a given flow in the presence of boundaries. The
analyses are made in the framework of a 2D point vortex mo-
del with an open polygonal boundary. Estimations are made
for the characteristic parameters of dipole vortex structures
emitted from river mouths into the open ocean.

1 Introduction

Satellite observations show that the vortex quasi-dipole struc-
tures are one of most wide-spread forms of mesoscale two-
dimensional motions in the ocean. These structures arise as a
result of the ocean response to a localized (maybe, impulsive)
action of some kind. According to the analysis of satellite
images (Ginsburg and Fedorov, 1984; Fedorov and Ginsburg,
1989), quasi-dipole vortex structures, called mushroom-like
currents, are characterized by two closely packed patches of
oppositely signed vorticity. Vortex pairs are frequently ob-
served in the shelf zone (see Fig. 1). Evidently, such struc-
tures can assure a very effective mechanism for horizontal
mixing in an ocean. Because of their self-propelling mo-
tion, they can transport captured scalar properties, such as
salt, heat and other constituents, through large distances from
sources. This fact indicates convincingly that mushroom-
like currents can play an important role in exchange between
shelf and deep-sea water.

A large body of observation (Ginsburg and Fedorov, 1984,
and Refs therein) shows that the formation of vortex pairs
is preceded by the appearance of jet currents which can be
caused by various natural factors: in coastal zones, by river
inflow, ice melting, water exchanging through a strait, etc. It
is particularly interesting that in most cases, as inferred from

Fig. 1. Vortex pairs observed near the coastal line.

satellite images, in the coastal zone the jet currents ending
in vortex pairs are directed approximately normally to the
shoreline and their geographic location has an explicitly non-
random character; this phenomenon is observed frequently
near a river mouth.

The main aim of the paper is to answer some important
questions: does a relationship exist between horizontal scales
of the observed vortex structures and dynamical characteris-
tics of river mouth? What are the key geometrical parameters
and how does the motion of vortices depend on these?

Here we focus on qualitative estimates of vortex dynamics
near river mouths providing analytical results of the great-
est generality. The numerical results depend frequently on a
number of factors of secondary importance, which can distort
the over-all picture by introducing details frequently nonexis-
tent in reality. Instead of massaging the computer calculated
details of velocity or vorticity distribution, it is more impor-
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tant to answer the more practical questions: do formed vor-
tices remain near a source, near a coastal line? Under what
external conditions do vortex pairs abandon the domain of
the source? Do points of stagnation, where the vortices are
not moving, exist? And, if so, what are the key geometrical
parameters and how does the motion of vortices depend on
them?

2 Basic approximations and model

It is natural to consider the simplest approximation in which
the vortex structures are considered as quasi-two-dimensio-
nal (their horizontal scalesb are much greater than the depth
of the shelf zone,d), the ocean is considered as inviscid (cor-
responding Reynolds numberRe � 1).

We can represent the fluid motions by the following pa-
rameters: the horizontal,v1, and vertical,v2, velocities of
the fluid, as well as the horizontal length-scale,l, of the
coastal line. The layer thickness,d, will be regarded as the
vertical length-scale. We assume that the Froude number,
Fr = v2

1/gl, is rather small, and that the Reynolds num-
ber,Red = v1d

2/νl, in contrast, is large (g is the accelera-
tion due to gravity,ν is the kinematic viscosity of the fluid;
for this concrete estimation the dominant mechanism of bot-
tom Rayleigh friction is taken into account (Goncharov and
Pavlov, 1998, and Refs therein). For example, if the size of
a river mouth is on a scale ofl ∼ 103

÷ 104 m, the depth
is of d ∼ 101

÷ 3 · 102 m, the characteristic scale of the
vortex pair,b ∼ 102 m, then for a moderate flow velocity
v1 ∼ 1 ÷ 10−1 ms−1 and typical viscosityν ∼ 10−6m2s−1,

the characteristic Reynolds number isRed > 106
� 1. If

the inequalitiesFr � 1, Red � 1, d � l, v2 � v1
hold true, we can, for our purpose, regard the fluid layer as
“thick”, and motions are quasi-two-dimensional. Such esti-
mates of dimensionless numbers are typical for geophysical
quasi-2D hydrodynamics.

Thus, we focus on the general picture, and suppose that the
vortex pairs are formed near sources (river mouth), character-
ized by the source potencym and by the widthl. The circu-
lations of the vortices,±κ, are fixed. We consider their mo-
tion near boundaries (complex configuration of coast line).
We shall not discuss the problem of the formation of vor-
tex pairs here; this problem cannot be resolved in detail with
the model of inviscid hydrodynamics discussed below. But,
once the vortices are formed and their circulations are given,
the motion of such vortex structures can be analyzed at least
qualitatively. In the light of observable facts it is not unrea-
sonable to ask what scenarios of motion of generated dipole
vortices are possible in the presence of the shoreline and what
are their influence on the dynamics of this vortex system.

The qualitative explanation of the features of vortex mo-
tion may be following: in the presence of hard boundaries
(coastal line), the corresponding boundary conditions for
two-dimensional vortices are respected by introducing “im-
ages” of the vortices. (The term “image” has to be used
with prudence in such a situation, because the boundaries

are curved). If the pair of vortices are sufficiently close to
one another, the interaction vortices-“images” can turn out to
be weak. The vortices then form a strongly coupled struc-
ture and move along open trajectories into the ocean, aban-
doning the river mouth. If the vortex pair is relatively large
(loosely coupled), the interaction vortices-“images” becomes
predominant and the vortices cannot abandon a domain near
the source and move near the boundaries along closed trajec-
tories, representing a family of super-inserted loops, without
escaping from the river mouth.

There exists therefore a relationship between the size of
the vortex pair,b, and the space scale of the coastal line con-
figuration (river mouth),l. From a physical standpoint, the
problem is characterized by the following dimensional pa-
rameters:b and l, the characteristic vortex structure scale
and boundary configuration scale (the characteristic width of
the river) respectively, topological numberα, the characteris-
tics of the boundary curvature (see below), the source (river)
potencym, the circulation of vortices,±κ (the correspond-
ing non-dimensional problem parameter isp = |κ|/m).

Simple dimensional analysis shows that the corresponding
relationship can be represented by

b = l F1(p, α, d/l, Re).

If d/l � 1, Re � 1 (two-dimensional, inviscid model), and
the system is not degenerated into the pointsd/l = 0, Re =

∞, we can rewrite this expression asb = l F(p, α). The
structure ofF(x, y) cannot be obtained only from the above
given simple estimates based on the traditional dimensional
analysis only. Our goal is thus to find the structure of this
function. A detailed discussion of the proposed mathematical
model (see below) shows the essentials of the process.

We give below some estimations concerning the motion
of localized vorticesin domains withpolygonal boundaries
only. We hope that such an idealization is useful: the re-
sults of the analysis may serve as a theoretical guideline for
numerical modeling, on the one hand, and qualitative exper-
imental estimates, on the other.

(i) In the general case, it is impossible to give the ana-
lytical expression of the conformal mappingw for any ar-
bitrary traced contour0. Consequently, various approxima-
tions are commonly used (Lavrentev and Shabat, 1965; Gon-
charov and Pavlov, 1998). Some of these essentially con-
sist of the replacement of the real boundary0 by an open
n-gon which is characterized in thez-plane by verticesAk

and cornersπαk (0 < παk ≤ 2, k = 1, 2, ..., n) at the ver-
tices. Then, according to the Schwartz-Christoffel theorem,
the desired conformal mapping onto the half-space=w ≥ 0
is given by

dz

dw
= c

n∏
k=1

(w − ak)
αk−1 , (1)

whereak are the images of the vertices, i.e.,ak = w(Ak),

andα1 + α2 + · · · + αn = n. In practice, the problem of
the construction of a conformal mapping is reduced to com-
puting for images of the vertices,ak, the constant,c, and the
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Fig. 2. Sketch illustrating the streamline pattern of flow simulated
by the point sourcem located in a wedge-shaped river mouth.

constant of integration. Representation (1) has such a degree
of arbitrariness that any three points ofak can be chosen for
the sake of convenience. Then other points and constants are
determined unambiguously.

(ii) The models of localized (point) sources (sinks) and
point vortices and their superpositions are interesting when
the motion of vortices is discussed. The models are among
the most basic flow configurations and their study is of fun-
damental hydrodynamical interest.

There are convincing examples (see papers of Aref, 1979,
1983; Aref et al., 1988; Goldshtik et al., 1991; Meleshko
and van Heijst, 1994; Saffman, 1997) of how such elemen-
tary flows may serve locally as idealized models of conver-
gent, divergent, and swirling motions prevailing in natural
and technological flows and also as structural elements in tur-
bulent motions.

(iii) Note that basic information on the features of point
vortex motion near complex boundaries, based on the use of
conformal-transformation theory and applying Routh’s the-
orem, may be found, for example, in the books of Saffman
(1997) and Milne-Thomson (1968) (see also Refs therein and
the works of Lin, 1941, 1943).

For analysis we propose the simplest (minimal) model of
two-dimensional flow which occupies a half-plane with rigid
boundary simulating the shoreline in the form of an open
isosceles triangleA1A2A3. The sketch illustrating the mo-
del of a river mouth is presented in Fig. 2.

For modeling a river mouth, in vertexA2 of the wedge-
shaped excision we will locate the point source which will
fulfill the function of a river inflow. Such a model permits not
only to investigate the possibility of emitting vortex dipoles
from the river mouth into the open ocean but also of studying
the character of their motion near the source. By ignoring all
non-ideal processes and leaving aside the problems associ-
ated with the generation of these dipoles, we will perform the
analysis in several possible scenarios initiating similar vortex
structures. It is clear that every such scenario must provide
the specific asymptotic state in which, after a lapse of time,
and at distances well away from shore, the vortex field of the
flow will be characterized by dipole structures only.

First we assume that the dipoles have been formed with
the help of some mechanism in a river channel and are then

ejected into the river mouth. As will be shown below, if we
accept the hypothesis that the generation of vortex dipoles
takes place directly in the river mouth, one more scenario is
possible. For example, such generation could occur under
the influence of viscosity as result of development of the cir-
culation cells adjacent to the shores of the river mouth. By
virtue of the Prandtl-Batchelor theorem (for large Reynolds
numbers) (Batchelor, 1956) these cells are bound to be filled
by a vorticity. This process will obviously continue until the
vorticity of the generated cells reaches a level where the vor-
tices could escape from the river mouth at the expense of a
self-propelling motion.

We will assume that the point source simulating the river
influx is located in a vertex of the river mouth with angle
2πα. If U is the average flow velocity andl = 2a sinα is
the characteristic width of the river then the source potency
m can be estimated asm = Ul/2πα.

In order to study this problem it is convenient to make the
corresponding conformal mapping

z(w) = c

∫ w

0
dw(w2

− 1)
1
2−αw2α−1, (2)

wherec = 2a B−1(α, (3/2) − α), and the functionB(x, y)

is the beta-function (Abramowitz and Stegun, 1964). Trans-
formation (2) maps the flow domainz = x + iy onto the half
planew = ξ + iζ so that the shoreline in the form of an open
isosceles triangleA1A2A3 (A1A2 = A2A3 = a) is mapped
onto the straight line=w = 0 (Fig.2).

Restricting our consideration to cases when the evolution
is symmetric about the imaginary axis in thez- or w-plane,
we will follow the dynamics of the right-hand vortex by as-
suming from the condition of asymptotical behavior of the
dipole at infinity, that its intensityκ < 0. Omitting the details
of calculations, we give the final result: the dipole dynamics
in the domain are governed by the equation

ẇ =
w

πc2

|w2
− 1|

2α−1

|w|4α

[
m + i|κ|

4

− i|κ|
w2

w2 − w2
+ i

|κ|

2

2α − 1

w2 − 1

]
, (3)

Herew is the complex coordinate of the right-hand vortex
(over-bar denotes complex conjugation)

One can also show that the equation (3) can be recast in
Hamiltonian form (the discussion on the use of the Hamil-
tonian approach in the hydrodynamics can be found in Gon-
charov and Pavlov (1997))

ẇ = −i
2

|κ|
|w′

|
2∂H

∂w
, ẇ = i

2

|κ|
|w′

|
2∂H

∂w
, (4)

(wherew′
= dw/dz) with the Hamiltonian of interaction

H =
|κ|

4π

[
i
m

2
ln

w

w
+ |κ| ln

∣∣∣w + w

w

∣∣∣
− |κ| ln

∣∣∣ (dw/dz)2

ww

∣∣∣]. (5)



4 Goncharov and Pavlov: On the space scales of vortex pairs emitted from river mouths

The terms of this Hamiltonian describe the interactions:
(i) source-vortices,
(ii) vortex-vortex (between the left-hand vortex and the

right-hand one), and
(iii) vortices-boundary (vortices-images).
Such a structure of the Hamiltonian shows that there ex-

ists, in principle, the possibility of self-organization of the
vortex structure when a stable (or unstable) configuration is
formed. In this case the vortices are placed at the points of
stagnation (stationary points).

The stationary points (̇w = 0, ẇ = 0) of (3) are solutions
of the equation:

(1 + ip)(u − u)(u − 1)

− i4pu(u − 1) + i2p(2α − 1)(u − u) = 0. (6)

Hereu = w2 andp = |κ| /m is one of the non-dimensional
problem parameters. The solutions of (6) can be expressed
in the parametric form

us = 1 − 2(1 − 2α) cosθ expiθ, (7)

p =
(1 − 2α) sinθ cosθ

3(1 − 2α) cos2 θ − 2(1 − α)
, (8)

whereθ is the parameter varying through the range−π/2 <

θ < 0, so that the pointus is in the upper half-plane. These
relationships give the dependenceus = F [θ(p)] and allows
one to find the positions of the stationary pointsus (or zs)
except for the parameterp = κ/m.

3 Character of the motion of vortices near boundaries

It follows from (8) that there exist two or three stationary
points depending on whether the angle of the river mouth is
larger or smaller thanπ/2 (π/2 corresponds to the parameter
αc = 1/4.

If α > αc, the parameterp has an upper limit and reaches
its maximum as a function ofθ

p∗
=

1

2
(1 − 2α) /

√
2(1 − α) (4α − 1) (9)

at an interior point on the range−π/2 < θ < 0. It should be
noted that (9) defines the boundary for existence of a solution
in the domain ofα, p (see Fig. 3).

For each value ofp in 0 < p < p∗ equation (8) has
two solutions and consequently has two ordinary stationary
points of the topological type which are defined by the be-
havior of the trajectories in the neighborhood of these points.
As well as these two ordinary stationary points, there exists
one more pointW = 0 corresponding to the vanishing of

|(dW/dz)2/W | ∼ |W |
1−4α

at this point.
The topological type of the stationary points determines

the possibility for emitting vortex pairs from the river mouth.
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Fig. 3. Domain of solution existence inα, p-plane.

The dimensionless HamiltonianH (H = (4π)−1m|κ|H)
can be expressed in terms of the variableu. Here

H =
i

4
ln
(u

ū

)
+ p ln |u − ū|

+ p (1 − 2α) ln |u − 1| + p

(
2α −

3

2

)
ln |u| , (10)

Taylor’s expansion (10) into a power series in the neighbor-
hood of the simple stationary points,us, where(∂H/∂u)s =

0, shows that the topological type of the stationary points
depends on the sign of the value

S =

(
∂2H
∂u∂ū

)2

s

−

∣∣∣∣∣ ∂2H
∂u∂u

∣∣∣∣∣
2

s

=

(
∂2H
∂u∂ū

)2

s

4(1 − 2α) sin2 θ

|us |
2

[
2α(cos2 θ + 1)

− (1 + sin2 θ)
]
. (11)

If S > 0, the stationary point is a center type, ifS < 0, it is a
saddle point.

If α > αc, as already noted, for each fixedp in 0 < p <

p∗ there exist two stationary points one of which is a center
type the other is a saddle point. In the case ofp = p∗,
these points merge and disappear as might be expected when
S = 0.

There is an additional critical pointu = 0. The nature of
this point is determined by the sign ofα − αc. This result
follows from the fact that in the neighborhood of the source
W = 0, when in polar coordinatesW = ρ exp(iϕ), the inte-
gral curves are described by the equation

ρ1−4α
= C| sin 2ϕ| exp(ϕ/p) (12)

whereC is a integration constant. From (12), one can see
whether or not vortices will be emitted from the vertexA2,
controlled only by the parameterα and not by the parameter
p. Thus, the vortex emission does not depend on whether a
source is available at all. For the analyzed case (α > αc), by
virtue of the fact that the phase trajectories have a parabolic
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Fig. 4. Topologies of trajectories forα > 1/4.

character in the sector 0< ϕ < π/2 , the singular pointw =

0 is the saddle. Thus, for a wide river mouth (α > αc), the
first scenario is impossible since the trajectory’s topology in
the neighborhood of the pointA2 is of saddle type and hence
the dipole is unable to leave this point for any parameterp

(see in Fig. 4).
However, existence of the domain of closed trajectories

whenp < p∗ indicates that in this case the second scenario
turns out to be possible. Note that the domain shrinks to a
point as the parameterp increases. Thus, if vortices increase
their vorticity during formation, after reaching the threshold
p∗, they will be found on the open trajectories along which
they are able to leave the river mouth.

In the case of a narrow river mouth (α ≤ αc,) the topol-
ogy of the trajectories is radically modified. In this case the
critical center-type point, corresponding to closed trajecto-
ries, merges with the pointw = 0 in which the source is
positioned, changing the topology in the neighborhood of
w = 0. Being of saddle and center type before merging
(α ≥ αc), these singular points have indices−1 and 1 respec-
tively. Taking into account that there are precisely the same
three centers in the remaining quadrants of thew-plane, after
merging (α ≤ αc) the index of the pointw = 0 becomes
equal to 4− 1 = 3. As a result every quadrant of thew-
plane contains a sector with elliptical trajectories which lie
between two sectors with parabolic trajectories as shown in
Fig. 5.

Thus, two kinds of trajectories are possible along which
vortices emitted from the source can escape from the river
mouth.

If vortices composing the dipole are tightly coupled, emit-
ted vortices move along open trajectories, which asymp-
totically go into straight lines parallel to a bi-separatrix of

0 0.5 1 1.5 2
ξ

0

0.2

0.4

0.6

0.8

ζ

2πα = 54.°,p = 0.32

+

Fig. 5. Topologies of trajectories forα < 1/4.

the river mouth angle, so that the dipoles abandon the river
mouth. If dipole structures are loosely coupled, emitted vor-
tices move along closed trajectories representing a family of
super-inserted loops. Then the dipoles come back into the
source without escaping from the river mouth.

4 Estimates of the space scale of emitted vortex pairs

Existence of separatrix open trajectories, passing through the
saddle pointus ≡ u∗, allows us to obtain both an upper esti-
mate for the size ofb and a lower estimate of velocityv for
dipoles escaping at large distances from the river mouth.

It is only necessary to calculate the rescaled Hamiltonian
H in the limiting caset → ∞ when the oppositely signed
vortices propagate uniformly in the regime of vortex pairs
with constant velocityv and mutual distanceb. Because in
this regime

W →
1

c

(
b

2
+ ivt

)
,

it is easy to verify directly from (3) thatv = |κ| / (2πb).
Using this fact, from (10) we find the following estimation

H|u∗ ≡ h∗
= −

π

2
+ p ln 2

b

c
. (13)

Whence it follows that characteristic sizes of vortex pairs are
given by the relationship

b = b(α, p, l) =
l

2
sin−1 α

B−1(α, (3/2) − α) exp
[
p−1

(π

2
+ h∗

)]
, (14)
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Fig. 6. Upper bound of the dimensionless sizeb as a function of the
parameterp.

where the functionB(x, y) is the beta-function (Abramowitz
and Stegun, 1964),

h∗
= (i/4) ln(us/ūs) + p ln |us − ūs |

+ p(1 − 2α) ln |us − 1| + p(2α − (3/2)) ln |us |, (15)

and the positions ofus = us(p) are given by (8).
Corresponding plots of logb versus logp andv versusp

are presented in Figs. 6, 7. In Figs. 6, 7 the intervortical
distance is scaled with the mouth widthl = 2a sinα, and
velocity v is normalized onU/ (πα) , whereU is a average
velocity of the river flow.

5 Conclusion

Characteristics of the motion of strong localized vorticity
concentrations in a flow in presence of boundaries have been
analyzed.

The main purpose of this work has been the construction
of possible scenarios for the motion of vortex structures, their
classification and estimations of geophysical parameters for
naturally occurring dipole vortex structures emitted from ri-
ver mouths toward the open ocean. The analyses have been
made in the framework of a 2D point-vortex model with a
polygonal boundary configuration.

The results of a quasi-qualitative analysis of the dynamics
of vortex dipoles are presented. Based upon several possi-
ble mechanisms for generating similar vortex structures in a
river mouth, two possible scenarios for the motion have been
analyzed. In the all the scenarios the river inflow has been
simulated by a point source of constant potency.

The first case supposes that the dipoles have been formed
in the river channel and are then ejected into the river mouth.
Qualitative analysis of the topology of possible trajectories
of the vortices in neighborhood of the source shows that pro-
cesses of this type may be realized only in narrow mouths
with half-angle sufficiently small (in the framework of the
model, less thanπ/4). Two topologically different kinds of
trajectories are thus possible for the vortex dipoles outgoing
from the source. If the energy of interaction is more than
the defined threshold value, the vortices move along open

0 5 10 15 20 25
p

0

5

10

15

20

25

30

v

Fig. 7. Lower bound of the dimensionless velocityv as a functions
of the parameterp.

trajectories and leave the river mouth. Otherwise the vor-
tices move along closed trajectories without escaping from
the river mouth.

The second scenario supposes that, directly in the mouth,
there is some mechanism for generating the vortex dipoles.
For example, the mechanism can be provided by shore fric-
tion. However, no matter what mechanism is suggested, its
efficiency depends on whether or not the vortices will have
sufficient time to form before escaping from the river mouth.
A similar possibility is found for a wide river mouth (for
the model, with half-angle greater thanπ/4). In this case,
for each angle of the river mouth there exists a threshold of
vortex intensity below which the dipole vortices move along
closed trajectories. Under influence of a mechanism of inten-
sification the vortices become increasingly strong and move
along spirals until they reach a threshold intensity. After that
they go into open trajectories and leave the river mouth.

The estimation of the upper sizeb for dipoles escaping at
a relatively large distance from the river mouth has the form:
b ∼ l exp[p−1H(us)], whereH(us) is the Hamiltonian of
the system calculated at the stagnation point.

We close by pointing out that a variety of similar dynami-
cal systems exists.

Two-dimensional vortex pairs are observed in many phe-
nomena. For example, the generation of 2D - vortex pairs
obtained by pushing fluid down a semi-infinite channel was
observed by Brown and Michael (1954). The growth of a
double-layer secondary vortex and the formation of near-
wedge vortex pairs has been illustrated in the paper of Pullin
and Perry (1980). In the experiments of Maxworthy (1977)
on the generation of vortex rings by the “puffing” tech-
nique (analogy exists between the plane and the axisymmet-
ric cases) it was found that the behavior of the rings is caused
by the interaction of formated vortex rings as well as by that
of the walls. Sheffild (1977), bypassing the analysis of the
process of vortex generation by pushing fluid down a semi-
infinite channel by means of an impulsively started piston,
calculated the trajectories of an ideal vortex pair near channel
openings of different shapes. It was found that the two vor-
tices will not travel back into the channel if their initial po-
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sitions lie outside a region adjacent to the wall and bounded
by two limiting trajectories. From the results, one can in-
fer that vortices do not collide and break up near the axes
of symmetry, only in the case when the distance of the vor-
tex pair from the channel edges is large. The analysis of the
phenomenon of vortex pair formation near orifices has been
given in the paper by Blondeaux and De Bernardins (1983);
attempting to explain the observed experimental results, it
was assumed that viscous effects are significant only during
the separation process and have negligible influence on the
overall flow. In the limit of infinite Reynolds number, the
problem becomes one of inviscid flow, large vortex regions
being replaced by simple concentrated vortices (see, for ex-
ample, Saffman, 1979).

Acknowledgements.This work was partially supported by the Rus-
sian Fundamental Research Foundation under grant No. 00-05-
64019.

References

Abramovitz, M. and Stegun, I. A. (eds.), Handbook of Mathemat-
ical Functions, U. S. Govt. Printing Office, Washington D. C.,
1964.

Aref, H., Motion of three vortices, Phys. Fluids, 22, 393, 1979.
Aref, H., Integrable, chaotic and turbulent vortex motion in two-

dimensional flows, Ann. Rev. Fluid Mech., 15, 345, 1983.
Aref, H., Kadtke, J. B., Zawadzki, I., Campbell, L. J., and Eckhardt,

B., Point vortex dynamics: recent results and open problems,
Fluid Dynamics Res., 3, 63, 1988.

Batchelor, G. K., On study laminar flow with closed stream lines at
the large Reynolds number, J. Fluid Mech., 1, 177, 1956.

Blondeaux, P. and De Bernardins, B., On the formation of vortex
pairs near orifices, J. Fluid Mech., 135, 111, 1983.

Brown, C. E. and Michael, W. H., Effect of leading edge separation
on the lift of a delta wing, J. Aero. Sci., 21, 690, 1954.

Fedorov, K. N. and Ginsburg, A. I., Mushroom-like currents (vortex
dipoles): One of the most wide-spread forms of non-stationary
coherent motions in the ocean, In Mesoscale/Synoptic Coherent
Structures in Geophysical Turbulence, edited by J. C. Nihoul and
B. M. Jamart, Elsevier, Amsterdam, 15, 1989.

Ginsburg, A. I. and Fedorov, K. N., Mushroom-formed currents in
ocean (on the base of analysis of satellite images), Investigation
of the Earth from the Space, 3, 18, 1984.

Goldshtik, M., Hussein, F., and Shtern, V., Symmetry breaking in
vortex-source and Jeffery-Hamel flows, J. Fluid Mech., 232, 521,
1991.

Goncharov, V. P. and Pavlov, V. I., Some remarks on physical foun-
dation of the Hamiltonian description of fluid motions, Europ. J.
Mechanics B/Fluid, 16, no. 4, 509, 1997.

Goncharov, V. P. and Pavlov, V. I., Two-dimensional vortex motions
of fluid in harbor-like basins at large Reynolds numbers, Phys.
Fluids, 10, no. 9, 2384, 1998.

Lavrentev, M. A. and Shabat, B. V., Methods of theory of complex
variable functions, Nauka, Moscow, 1965.

Lin, C. C., On the motion of vortices in two dimensions, I. Existence
of the Kirchhoff-Routh function, Proc. Nat. Acad. Sci. USA, 27,
579, 1941.

Lin, C. C., On the motion of vortices in two dimensions, Toronto
Univ. Press, 1943.

Maxworthy, T., Some experimental studies of vortex rings, J. Fluid
Mech., 81, 465, 1977.

Meleshko, V. V. and van Heijst, G. J. F., Interacting two-
dimensional vortex structures: point vortices, contour kinematics
and string properties, Chaos Solitons Fract., 4, 233, 1994.

Milne-Thomson, L. M., Theoretical hydrodynamics, Vth edition,
MacMillan, London, 1968.

Pullin, D. I. and Perry, A. E., Some flow visualization experiments
on the starting vortex, J. Fluid Mech., 97, 239, 1980.

Saffman, P. G., The approach of a vortex pair to a plane surface in
inviscid fluid, J. Fluid Mech., 92, 239, 1979.

Saffman, P. G., Vortex Dynamics, Cambridge University Press,
Cambridge, 1997.

Sheffild, J. S., Trajectories of an ideal vortex pair near an orifice,
Phys. Fluids, 20, 543, 1977.


