N

N

Localized Alfvénic solutions of nondissipative and
compressible MHD

G. Chanteur

» To cite this version:

G. Chanteur. Localized Alfvénic solutions of nondissipative and compressible MHD. Nonlinear Pro-
cesses in Geophysics, 1999, 6 (3/4), pp.145-148. hal-00331049

HAL Id: hal-00331049
https://hal.science/hal-00331049
Submitted on 18 Jun 2008

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.


https://hal.science/hal-00331049
https://hal.archives-ouvertes.fr

Nonlinear Processes in Geophysics (1999) 6: 145-148

Nonlinear Processes
in Geophysics

© European Geophysical Society 1999

Localized Alfvénic solutions of nondissipative and compressible

MHD

G. Chanteur

Centre d’étude des Environnements Terrestre et Planétaires, Vélizy, France

Received: 16 June 1999 — Revised: 5 November 1999 — Accepted: 8 November 1999

Abstract. Alfvénic solutions of nondissipative MHD are en-
tirely determined by their magnetic configuration. With the
supplementary assumption of incompressibility any solenoi-
dal field can be used to construct an Alfvénic solution. It is
demonstrated that for nondissipative and compressible MHD
the energy equation constrains the magnetic field of Alfvénic
solutions to have a constant strength along field lines. Some
topological solitons known in nondissipative and incompres-
sible MHD do not have this property. New localized axisym-
metric Alfvénic solutions of nondissipative and compressible
MHD are explicitly constructed.

1 Introduction

Exact solutions of equations modeling the evolution of non-
linear physical models have an intrinsic value for theory but
also for applications, sometimes more as accuracy tests of
numerical simulation methods than as reference solutions for
comparison with observations. Among these solutions, loca-
lized solutions having topological invariants are perhaps the
most difficult to construct. In nondissipative and incompres-
sible MHD Alfvénic solutions, for which the velocity of the
fluid is everywhere equal or opposite to the local Alfvén ve-
locity, can be built on any solenoidal field. Using a Hopf
mapping and a stereographic projection between the sphere
53 of the Euclidean space R* and the three-dimensional Eu-
clidean space R® Kamchatnov (1982) constructed a very in-
teresting localized magnetic configuration made of closed
field lines, each of which being linked to all the other ones.
Thus Kamchatnov’s field has non null magnetic helicity (see
for example Biskamp (1993) for the definition of the concept
and its properties):

H:/A.édsr M
Vv

Hence Kamchatnov built a topological soliton of incompres-
sible MHD. Unfortunately this solution is not valid when
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compressibility is taken into account because any solenoidal
field is not necessarily the field of an Alfvénic solution in
compressible MHD. Section 2 gives a detailed derivation of
general Alfvénic solutions which relaxes the usually made
assumption of constant density. In this section we derive ex-
plicitly the conditions to be satisfied by the magnetic field
of such solutions. Section 3 presents Kamchatnov’s mag-
netic field, some of its properties and an heuristic argument
to derive it. It is also demonstrated in this section that Kam-
chatnov’s field does not satisfy the necessary constraint on
B 10 support an Alfvénic solution in compressible MHD. At
last section 4 presents a pedestrian construction of exact lo-
calized Alfvénic solutions unfortunately lacking the mathe-
matical elegancy of Kamchatnov’s work. Unfortunately also
this elementary construction does not allow any conclusion
about the magnetic helicity of the structure, although it is
very likely non null. This last point remains to be checked.

2 Exact Alfvénic solutions of nondissipative MHD

Making use of the International System of units and res-
pectively substituting B and J for B/,/fio and \/fioJ the
equations of nondissipative MHD can be written in conser-
vative form as follows:

V-B = 0 )

aB+V- (Bov-70B8) = 0 @
Oip+V - (pf) = 0 “

d(pt) +V  (pioi-BoB+P 1) = 0 (9
aU+V - (U+P)E=(F-B)B) = 0 ©

where U = e + pu®/2 + B*/2 and P* = P + B?/2 are
respectively the total energy density and the total pressure, e
being the internal energy density of the fluid. The solenoi-
dality condition (2) is written first, then Faraday's cquation
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(3) followed by the conservation equations for mass (4), mo-
mentum (5), and energy (6). The displacement current has
been neglected and use has been made of Ampere’s equation
V x B = J. The transport of a fluid element is supposed
to be adiabatic. In incompressible fluids the energy equation
only determines the temperature field of the fluid given the
velocity field; in this sense the energy equation decouples
from the other equations and the pressure, or the total pres-
sure in MHD, is determined by a Poisson equation obtained
by taking the divergence of the momentum equation. Investi-
gating the behaviour of a plasma in the MHD approximation
does not allow the use of the incompressibility approxima-
tion even if it happens that some solutions, very commonly
observed in space plasmas, do not compress the medium,

The Alfvén velocity 74 = B /+/P plays a key role in
MHD as evidenced by peculiar solutions for which ¢ = +44.
Chandrasekhar (1961) called these solutions equipartition so-
lutions accordingly to their property pv? /2 = B?/2; we will
also quote them as Alfvénic solutions. Alfvénic solutions
satisfy the following set of equations (let us emphasize that,
for the moment being, we do not make any assumption con-
cerning the mass density p):

—

V.B = 0 D

Bé = 0 ®

pxV-(VpB) = 0 )

0, (VoB) + VP = 0 (10)
ateiﬁ.((eﬂup*)%) = 0 (11)

When V- (\//—)5) = 0, or equivalently B- 6p = 0, equation
(9) leads to 8;p = 0, then equation (10) combined with (8)
gives VP* = 0. If moreover B - Ve = 0 then equation
(11) reduces to d;e = 0. The internal energy per unit volume
¢ being a function of P and p this results in 8P = 0 and
P* = Pg, aconstant. The condition B - Ve = 0 is equivalent
to B - VB2 = 0, due to:

6 66 6 66

B2
dp 8Pv (PO 2 >

Thus, given fields B(7), p(7) and 7 = +B5/ /P satisfying
the following conditions:

V-B = 0 (12)
B-Vp = 0 (13)
B-VB? = 0 (14)
2
Pt = F (15)

are exact and stationnary solutions of the nondissipative MHD

equations (2-6). For planar solutions defined by fields B P
which are functions of { = k - 7, where k is a constant vector,
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equations (12-14) become:

E-B = k-By (16)

%E B = 0 an
d(B?) ~ =

k- = 1

I B 0 (18)

where By is a constant vector. Hence, either k - é =0al-
lowing B? and p to be arbitrary functionsof (,or k- B # 0
leading to constant values for B2 and p; the latter case cor-
responding to the well known nonlinear planar Alfvén waves
(see for example Landau and Lifshitz (1960)).

3 Kamchatnov’s field and generalizations
3.1 Kamchatnov’s original field

The vector potential constructed by Kamchatnov (1982) is
conveniently defined through its poloidal and toroidal com-
ponents A and A, and is written as follows, although it was
not ori gmally written like this;

Ag = Agp+ Ak, (19)
A BoR® = N 2 2y =

Ak p m[w-u)rﬂ}z —-r?) @] (0)
- BoR* . .

AK,t - m uXxXr (21)

where B, and R are constants which respectively determine
the intensity and size of this localized and solenoidal field,
and @ is a constant unit vector. The poloidal and toroidal
components of the magnetic field are consequently given by
equations:

éK,p + Bi (22)
ﬁ X A‘t
_ ByR* B}
= —(R2 n r2)3 [2 (7
6 X A’K,p

5
= _2BR L (24)
(R? +r2)°

Bx =
Bk, =

@) T+ (RE=-r?) @] (23)

The vector potential and the magnetic ficld appear to be linked
together by the equation:

- R? 472
Ax == B 25
ir Pk (25)

The total helicity of this field, defined by equation (1), is:

Hg = 16301{4
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3.2 A simple derivation of Kamchatnov’s field

The magnetic field created by the dipole M = Mi, where
i is a constant unit vector, is poloidal and is written, with the
origin at the dipole location:

B= %[3(F.a)f—r2a]

The singularity of the field at » = 0 is related to the negative
sign of the magnetic flux everywhere in the plane 7+ & = 0
except at 7 = 0. Allowing the flux to be positive inside the
disk of radius R should remove the singularity, thus let us try
the following form of the poloidal component:

B, = f(r)(7- @) 7+ g(r)(R? — )i (26)
This field is solenoidal provided that:
df dg
e _(p?_ .Y
4rf +r o 2rg —(R* —r )dr 27

One of these regularized dipolar solutions corresponds to the
poloidal component (23) of Kamchatnov’s field, it is deter-
mined by the following functions f and g:

2BoR*
(RZ + r2)3

The solenoidality condition (27) is not affected by adding
to (26) any toroidal component written in the following form:

f(r) =2g(r) =

B =w(r7 d)ixF
and looking for colinear fields A and B gives:

2By R®
(R? + r2)3

w(r, 7 i) =

which leads to the toroidal component (24) of Kamchatnov’s
field and to the relation (25).

3.3 Generalizations

Sagdeev et al. (1986) have generalized Kamchatnov’s field
and proposed a class of solutions of incompressible MHD
which can be written:

B =w Bk +w2Bk (28)

where w; and w; are real constants and EK_,p and By, are re-
spectively the poloidal and toroidal components of Kamchat-
nov’s field given by equations (23,24). Unfortunately none of
these solutions is consistent with the energy constraint (14)
which means that their validity is limited to incompressible
MHD. Sagdeev et al. (1986) also gave a larger class of solu-
tions obtained by consideringw; in (28) as an arbitrary func-
tion of variable:

14 7%+ /r2 — (7 4)2

for which we have not yet checked wether or not they are
consistent with (14.)
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4 Localized Alfvénic solutions

In this section we will construct an axisymmetric and lo-
calized Alfvénic solution of nondissipative and compressible
MHD defined in a mixed way by the toroidal component of
its vector potential A = A4(r, z)€y and its toroidal compo-
nent §¢ = By(r, z)€4, where €y is the unit vector associated
to the angular coordinate ¢:

B= 0,446+ -0.(rAs) & + By & (29)
This field is solenoidal and constraint (14) reduces to:

<_82A¢ €& + l61‘(70"4(15) é‘z) ﬁBz =0
r

because VB2 is poloidal. This condition can be restated as
follows:

632 = (T‘, z) (161" (T‘A¢) & + 8ZA¢ é‘z) (30)

r

with A; an arbitrary scalar function of (r, z). Equation (30)
can be rewritten:

A1(r, 2)
r

VB? = V(rAy) (31)
Such a condition is satisfied as soon as B? is an arbitrary
function A of rA4. The poloidal component of the field (29)
being:

— 1
Bp = —6ZA¢ ér + ;6, (TA¢) €,

is such that ,

Bg =r2 (ﬁ(rAd,))

eventually leading to the following necessary relation be-
tween By and Ay:

2 _ 2 2
B¢ _ B - BP

= A(rAg) —r2 (6(rA¢))2 (32)

The right-hand side of equation (32) has to be greater than
or equal to zero. In conclusion, an axisymmetric localized
Alfvénic solution can be constructed from a given function
Ag(r, z) through formulas (29 ,32) provided one can find a
scalar function A such that:

A(rdg) —r=2 (t”7(r,4¢))2 >0 (33)

In a final step let us show that we can find at least one family
of solutions. Let us start with:

rd 0?
T'A¢ = Bom exp <—W)
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with p? = r?42% and ( By, a) two real constants. This choice
leads to:

B2 7,.q—4 2
P _ 2 2\2 2.2 P
A, Bo————~aq+2 ((qa —r) +rlz )exp <__2a2>

For ¢ > 4 the above quantity is bounded by a positive real
number K and an acceptable solution is determined by:

A(TA¢) = IX’TAqg

For these solutions B? is a rapidly decreasing function of p
and the magnetic field lines are winding around torii of axis
z. This construction does not provide the two components
of the vector potential, hence in contrast with Kamchatnov’s
approach it does not allow to calculate the magnetic helicity.

5 Conclusions

Considering the full set of nondissipative MHD equations,
including the energy equation, we have derived constraints
that have to be satisfied by a magnetic field in order to built an
Alfvénic solution of compressible MHD. It has been shown
that various solutions of incompressible MHD proposed in
the past do not satisfy the constraint coming from the energy
equation when compressibility is taken into account. New lo-
calized fields consistent with all the derived constraints have
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been explicitly constructed. This work will be extended to
define such solutions by their vector potential to allow the
investigation of their helicity. The question of observability
of such solutions in space plasmas is an open question but
those solutions are easily simulated with compressible MHD
codes and can be used for testing codes.
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