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Abstract. A numerical method for detection of un-
stable periodic orbits on attractors of nonlinear models
is proposed. The method requires similar techniques
to data assimilation. This fact facilitates its imple-
mentation for geophysical models. This method was
used to find numerically several low-period orbits for
the barotropic ocean model in a square. Some numeri-
cal particularities of application of this method are dis-
cussed.

Knowledge of periodic orbits of the model helps to
cxplain some of these featurcs like bimodality of proba-
bility density functions (PDF) of principal parameters.
These PDEs have been reconstructed as weighted aver-
ages of periodic orbits with weights proportional to the
period of the orbit and inversely proportional to the sum
of positive Lyapunov cxponents.

The fraction of time spent in the vicinity of each peri-
odic orbit has been compared with its instability charac-
teristics. The relationship between these values shows
the 93% correlation. The attractor dimension of the
model has also been approximated as a weighted aver-
age of local attractor dimensions in vicinities of periodic
orbits.

1 Introduction.

Numerous recent studies have heen focussed on the prop-
erties of chaotic solutions generated by nonlinear sys-
terns. One of the major ficlds, where this kind of solu-
tion is extremely important, is atmospheric and oceanic
dynamics. The importance is based on the necessity to
deliver weather forecasts and the limited time of deter-
ministic forecasting of chaotic systems. The success of
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long-range forecasting depends on the understanding of
the sources and nature of the variability of the system
beyond the timescale of deterministic prediction.

Low frequency variability of nonlinear dynamics of the
atmosphere has long been discussed. After the discovery
of deterministic chaos (Lorenz, 1963) the interpretation
of the atmospheric and oceanic circulations, their vari-
ability and predictability, has been developed using tools
of the dynamical systems theory.

One of the approaches to apply the dynamical system
theory to atmospheric and oceanic dynamics consists
of the extraction of local characteristics of the strange
attractor. It is well known that the behaviour of a solu-
tion can differ a lot on different parts of the atiractor.
The attractor inhomogeneity leads to the variability of
the predictability time scale in the phase space. This
variability can result, for example, from the existence
of multiple unstable stationary points on the attractor.
The predictability time of the system can be influenced
in vicinitics of these points and their stable and unstable
manifolds. This idea has been quantified in various ways
by using the information abont local characteristics of
the phase space.

The study of this kind of inhomogeneity for atme-
spheric and oceanic dynamics was started by the worlk
of Charney and De Vore (1979). They showed that a
system of atmospheric flows in a rotating channel with
a spatially inhomogeneous forcing can have several un-
stable equilibria.

The theory of multiple equilibria (Charney and De Vore,
1979) of the atmospheric circulation developed v or-
der to explain and classify quasi-stationary atmospheric
régimes is a good example of the application ol dy-
namical systems theory to the clinate. This approwch
allowed quantification of many properties of multiple
weather régimes, that have been addressed in muner-
ous analytical and obscrvational studies during the past
fifty years.

The earliest notions of their classifications relate to
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high and low circulation indices (Rossby, 1539), zonal
and meridional circulation indices (Blinova, 1943), bio-
tked and zonal flows (Berggren et al., 1949), (Rex, 1950).
These empirical classifications have been revisited and
their properties have been explained based on the hy-
pothesis that when a system passes a state close to one of
multiple equilibria, quasi-stationary atmospheric régime
results.

Each hyperbolically unstable equilibrium forms a re-
gion in the phase space where the system trajectories
slow down before being ejected along an unstable mani-
fold. The validity of this hypothesis has been confirmed
by comparison of the results of cluster analysis of the
solution of the barotropic model with its equilibria {Mo
and Ghil, 1988). The analysis shows closeness of the
cluster centroids with the equilibria.

Using a truncated barotropic model of the atmos phere,

Legras and Ghil {1985) demonstrated that recurrent quasi-

stationary states occur in vicinitics of unstable station-
ary points in the phase space of the model. The lifetime
of this régime depends on a particular trajectory in the
phase space (Mo and Ghil, 1987). However, the mean
lifetime of such a régime related to the stability char-
acteristics of the adjacent stationary point (Dymnikov
et al., 1990). This fact allows us to obtain a priori es-
timates of the régime’s lifctime. ‘The climatic average
of the barotropic madel solution has been analysed hy
Dymnikov and Kazantsev (1993). Tt is shown that this
average can be approximated by the set of equilibria
with a rather good accuracy.

Essential results have recently been obtained from
theoretical investigations of the phase space structures.
Theorems for the cxistence and uniqueness of a solu-
tion and existence of the finite-dimensional attractor for
geophysical models have been proved by Temam (1988),
Dymnikov and Filatov (1990), Bernier (1994). Analysis
of the number of cquilibria in the phase space of the
model has been performed by Filatov (1992). Mathe-
wmatical analysis of climatic processes can be found in
Dymnikov and Filatov (1996). These works provide a
good theoretical basis for the forthcoming studies.

However, the applications of this theory to the analy-
sis of climatic models possesses one principal “shortcom-
ing”. Despite the fact that there exist multiple equilib-
ria, their vicinities cover a very small part of the attrac-
tor only. Thus, the model solution spends much time
out of these vicinities where its behaviour can not be
explained by this theory.

So far, the analysis of equilibrium points of chaotic
models has been fruitful; one can try to study another
kind of “particular solution” of a nonlinear system. This
kind of solution invelves the periodic orbits (or limit cy-
cles) which can also exist on the attractor of the system.
As well as equilibria, discussed above, they can be sta-
ble and unstable. However, in practice, only unstable
equilibria and unstable periodic orbits require special
attention in the studies of a chaotic system, because any
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stable solution usually forms a regular attractor with no
chaos.

Similarly to quasi-stationary régimes, which are ex-
plained by the motion near unstable equilibrium, we can
speak of quasi-oscillatory régimes, or intermittent ap-
pearances of oscillatory modes, which may be explained
by the maotion in proximity to an unstahle Hmit cyele.

The periodic orbits for a geophysical model have at-
tracted some interest recently ({Itoh and Kimoto, 1996},
(Jiang et al., 1995}, {Jiang and Ghil, 1997}, (Dymnikov
ct al., 1998)). However, all these papers address either
stable periodic orbits, or periodic orbits near the Hopf
bifurcation point where weakly nonlinear theory can be
applied.

The principal difference between stationary solutions
and periodic orbits is that the number of equilibria is
usually finite for a geophysical model. Morcover, it is
always finite for a finite dimensional approximation of a
model, which includes a polynomial nonlinearity only. If
the nonlincarity is quadratic, the number of stationary
points is bounded by 2%, where N is number of degrees
of freedom of the discretisation. So one can hope to
find all equilibria of the model. However, the number of
periodic orbits is usually infinite even for a discretised
madel. To say more, one of definitions of the chaotic
system (Devancy, 1987) defines the set V, where the
behaviour of the system is chaotic, as the set on which
periodic orbits are dense. Following this definition, if we
speak of a chaotic system, its periodic orbits are densc
in some V', henee they are of infinite number. This is
the case, for example, of the Lorenz system {Lorenz,
1963), which is composed of three ordinary differential
equations only.

Despite the impossibility to find all the periodic or
bits, we can find and analyse.same of them, with lowest
periods. The situation is similar in some sense to the
equilibria analysis in the case when we do not know
whether we found all of them or not. In this case, we
have to analyse only the equilibria we have found.

However, only a limited number of low-period orbits
may be sufficient for some purposes. This point of view
is argued by Hunt and Ott {1996a) and by Hunt and
Ott {1996b). This conclusion does not hold generally
and some applications may require long-period orbits as
well (Zoldi and Greenside, 1997h).

The instability of periodic orbits of chaotic systeis
makes the problem of their numerical scarch more coim-
plicated. They can not be found by a simple stabilisa-
tion method generally usedto find stable orbits. There-
fore, some special algorithin must be applied for this
purpose.  In this paper, we use the algorithm devel-
oped and tested by Kazantsev {1998) to find scveral
low-period orbits of the barotropic ocean model,

There is another difference Letween periodic orbits
and stationary points on the attractor of a nonlinear
model. This difference consists of the lack of theoretical
results available for periadic orbits. Even the existence
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of periadic orbits is doubtful for a PDE system like the
barotropic model. So we study periodic orbits of the
finite dimensional ODE system, obtalned after discreti-
sation, and we can state nothing about orbits of the
original systemn.

So, periodic orbits of the discretised system are dis-
cussed only in this paper. In the first section of the pa-
per, the model equations are presented and the method
of unstable periodic orbits search is discussed. The sec-
ond section is devoted to the analysis of their properties
related to the predictability and attractor of the model.

2 DBarotropic ocean model in a square
2.1 Model and its parameters.

‘We consider barotropic ocean dynamics, i.c. all the ther-
modynamic effects arc neglected and the vertical struc-
ture of the occan is supposed to be uniform. The equa-
tion of dynamics of the wind-driven ccean is written for
the barotropic vorticity w

A

STt = phw—owt f, w=Ay (D)

We assume the 3-plane approximation for the Corio-
lis parameter ¢, which represents the effect of the Earth
rotation in this equation, i.c. we suppose that this pa-
rameter is lincar in the y coordinate: £ = £y + 3y,

where fq ig the value of the Coriolis parameter at the .

mid-latitude of the basin. We use very simple basin
geometry represented by a squarc box of side length
L = 4000 km. We suppose that this basin is located in
the middle of the North Atlantic, so we take the value of
the Coriolis parameter in the middle of the basin to be
equal to £g = 9.3 x 1075571, and its meridional gradient
8=2x 10" Ym st

The source of cnergy in this equation is presented by
the atmospheric wind stress applied to the suwrface. In
this paper, we take a steady zonal wind with a now
classical two gyre antisymmetric pattern. This is scen
as a schematic pattern for the mean curl of the wind
stress over the North Atlantic ocean in middle latitudes.
Its magnitude is-equal to

2 27y
f= —[)L—Tz sin —Ei, {2)
where 73 = 1.1 dyne ern~% is the wind tension on the
surface, p = 1000 kg m~> is the density of water. The
depth of the active wind driven current H has been cho-
sen as 500 m. The dissipation in the equation (1) is
composed by the harmonic lateral friction pAw and the
bottom drag parametrised by ow. Values of friction co-
officients used in this paper are g = 1250 m?s~! and
g="0x10"" 571
The equation (1) is subjected to impermeability and
free-slip boundary conditions .

i |aa= 0, w |an= 0. (3)
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We do not intend to reproduce actual oceanographic
data, which would be hopeless in frames of a barotropic
model. The model is used in this paper just as a simple
well-studied geophysical model to test the method of pe-
rindic orbit search and to test the possibility to explain
some properties of a multi-dimensional chaotic system
by means of its unstable periodic orbits.

In order to look for a weak solution of the problem
{1), (3), we perform its variational formulation:

‘

d
<G>+ < Tt By >

= pn< Vo, Vo> —c<we>+< fp>, (4)
Cwpr=—< Vi, Ve >

for any function ¢{x,y) € H3 (). Here, H} () denotes
the lincar space of functions, the square of which 18 in-
tegrable as well as the square of their first derivatives.
In addition, functions in this space must vanish on the
boundary of the domain. Brackets < ... > denote the
Ly scalar product:

<o o= [ [ woday (5)
J Ja
2.2  Discretisation.

The variational formulation (4), (5) of the problem (1)
allows to look for a solution by the finite element method
(FEM). The feasibility and utility of FEMs for mod-
clling ocean dynamics was first addressed by Fix (1975).
He stated that using FEMs brought numerous advan-
tages of modelling like precision, natural conservation
of model invariants, flexibility of discretisation of com-
plex domains, etc. These advantages remain even: when
irregular discretisation of the domain is performed.

So far, the solution produced by the barotropic model
of the North Atlantic typically includes a western bound-
arv layer with intense velocity gradients; the advantage
of refining the triangulation along the western bound-
ary of the domain is rather clear. This helps to keep the
quality of explicit eddy resolution by the model while
working with a lower number of grid nodes. The com-
parison of finite element (FE) and finite difference (FD)
models performed in Le Provost et al. {1994) revealed
that the difference arising between simulations by FE
and FD techniques can be regarded as insignificant when
the mumber of FE nodes is about 6 times lower than the
number of FD ones.

In spite of the fact that the number of operations per
time step and grid node is much higher for the FE model,
the possibility of reducing the number of grid points con-
siderably diminishes the computational cost of a model
run. The possibility of a better precision working with
fewer grid points is very valuable in this work due to
the high number of operations per point. Another ad-
vantage of using the FE model is the simplicity of the
adjoint model formulation. This aspect will be discussed
below.
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Fig. 1. Triangulation of a unit square. The integration points set
is the union of vertices and centers of edges of triangles.

The package MODULEF (Bernadou, 1988) has been
used to perform a triangulation of a domain. This pack-
age produces quasi-regular triangulation of the domain,
based upon the prescribed grid nodes on its boundary.
We require the refining of the triangulation near the
western boundary and especially in the middle of the
domain, where velocity gradients are extremely sharps.

The domain € is covered by a set of non-intersecting
triangles. The set of integration points is defined as the
union of vertices and centers of edges of triangles. Finite
elements of type P are used here, i.e. the polynomials
of the second degree p, (z,y) = a;x® + byxy+ ey + dyx +
e;y + fi. The ith finite element is taken to be equal to 1
at the i-th integration point and zero at all other points.

The grid used in this paper is presented in fig.1. This
triangulation is composed of 92 triangles. The integra-
tion points set, being a union of vertices and mi-edges of
triangles, counts 211 nodes. The resolution of the grid
varies between 1/40 of the side length (about 100 km)
near the western boundary and 1/7 of the side length
(about 350 km) near the eastern one.

According to the Dirichlet boundary conditions (3,
we consider internal points of the domair only: (i, y;) €
M fore = 1,... N, so the functions 1, w arc pre-
sented as linear combinations

Z?J) (t)pilx, )
wlz,y,t Zdz ()pi(x, Y)

To simplify notations, we define matrices of mass and
rigidity as

W, y, t)

Mij = <pi,p;i > Cij = < Vp;,Vp; >, {6}
Po=1,. N
i =1,... N

Using these expressions, we can write the discretised
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system (4):
Ouw.
ME+j(1/),w+ﬁy):—;LCw—aMw+Mf (7}

Maw=-Ci

j(waw"‘ﬁy)}' = Zzwm(wi +ﬁyi) < j(Pm:Pw‘):Pj >

This system has been integrated in time as follows

wn-}-l _wngl
S+ T+ By) =

wn+1 + wn—l w?t+l +wn,71

= —ul 5 — oM 3

+Mf o (8)

The first step is performed by the Euler scheme for the
nonlinear advection term:

21
Miq_—w + TN Wt + 8y) =
2 1 2 1
=—LLCW—;M*~_UM%“£+4M]C (9)

3 Detection of unstable periodic orbits.

The problem of numerical search for unstable periodic
orbits is not new. Sparrow (1982} has proposed to use
the Newton method to locate unstable periodic orbits
on the attractor of the Lorenz model.

However, oue has to choose initial conditicns in a
rather close vicinity of a periodic orbit, otherwise the
method diverges. To simplify the choice of the initial
pomt, a dumped-Newton method has been proposed to
use by Zoldi and Greenside (1997a). This method dif-
fers from the classical Newton method by the fraction
@ < 1 of a Newton correction §z, which is added only
to update the unknowns, r — = 4+ adz. This method is
found to be more efficient to find periodic orbits due to
the less restrictive choice of the initial guess.

However, realisation of this method requires Q(N%)
operations per iteration due to the necessity of calcu-
lating the matrix of the Newton process and solving the
system of equations with this matrix. This fact limits its
use to low-dimensional systems only. In fact, methods
of this kind work well for the Lorenz system and even
for higher dimensional svstems; however, the number of
variables must not exceed 100,

Several methods based on the stabilisation of unstahle
periodic orbits have alse been proposed. Barreto of al,
(1997) have discussed the possibility of finding a “win-
dow” in the parameter range of the model, where one of
its periodic orbits becomes stable. However, this kind
of “window” depends on the number of positive Lya-
punov exponcnts on the attractor and, if this number
is sufficiently large, the scarch of such a “window” may
become difficult or impossible. Moreover, it may also he
difficult to know whether periodic orbits are subject. to
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smooth variations only or if bifurcations may occur un-
der parameter variations. If secondary Hopf bifurcation
can occur, non-existing orbits can be found.

In Schmelcher and Diakonos {1997), a method of sta-
bilisation of orbits is based on a universal set of lin-
ear transformations, namely special reflections and rota-
tions in space. However, the application of this method
ti a high dimensional system may hardly be efficient due
to the very large number of possible transformations.

To find periodic orbits of the barotropic ocean model
we note the great progress achieved in variational data
assimilation techniques. Data assimilation procedures
based on a functional minimisation have been devel-
oped for many models. Moreover, this minimisation uses
gradieni-type methods, which require as many opera-
tions per iteration as the model does, i.c. O{N, x NS/Q)
or even Q(N¢x N In N,). If we formulate the problem of
perindic orbit search as a functional minimisation prob-
lem, we can apply a technique similar to variational data
assimilation.

3.1 Variational problem

Suppose the initial conditions for the model (1) are writ-
ten as w(z,y,0) = £(z,y). Let the barotropic flow be
written as a function of initial condition and time

w(c,y,t) = S(E, 1), (10)

that is, S is the semigroup gencrated by the system (1).
Let us consider the functional

_ e 2 2
sem) = Ielen D) el p O _ISED -]

where the norm ||9|| is associated with a scalar product
in the finite dimensional space

wip>>= Y (Hb)ipi = (M, ) (12)

and where ‘H is some symmetric positive definite ma-
trix. The choice of this matrix will be discussed later.
We can just note now that if # is equal to the mass
matrix, the scalar product (12) becomes a finite dimen-
sional approximation of the L, scalar product (5). If
H = I, we shall work with a simple Euclidian product
in BV space (from here and below I will denote the
identity matrix).

One can easily see that for any periodic solution of
period T the value of this functional J(£,T) is cqual
to 0 for all poiuts £ of the periodic solution. And if
J(£,T7) = 0 for some ¢ and T, the orbit originating at
£ is a periodic one with period T'. Thus, the purpose
is to find points where J(£,T) vanishes. It should be
noted that the value of the period T is unknown, hence
ane must work in the N + 1 variables space composed
of N components of the vector § and the period T'. So
far this functional is always non-negative; we can look
for 1ty wminimna instead of looking for its zeroes,

(11)
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To minimise J we calculate first its gradient at a given
point £ and given T in the NV + 1 variables space. The
variation of J(£,T) under variations of the initial point
£ can be written

2
= <esie ) - e | PE o se v o>, (19
where 95, 1) is the matrix of the tanpgent linear model

0€
integrated for time 7. This model can be obtained eas-
ily as the linearisation of the (1) around its trajectory
S ) for t € {0,7):

X IO 8,0+ T (5, S(E D+ = pudomow (1)

This model has been discretised in the same way as
the model (1), Finite elements were used to perform
spatial discretisation and equation (8) was applied for
timce stepping,.

wn+1 _ L&)n_l

+ J(ATLS(E, %), ™) +

2T )
+T (W™, S(E7) + By) =
n+1 n—1L n+1 n—1
_ _,Lc“’————;f“’— - oMf—;“’—— (15)

So far, the integration of the model requires two former
steps to calculate the next one; the state vector has to
be 2N dimensional and be composed of vorticity vectors
on the nth and n—1 time steps. Using this notation, this
system can be rewritten in a compact matricial form.

( Wl ) _( 2rETVI(S(E, ) Ey'E- ) y
- 0

wh I
w™ }
X ( -l ) (16}

E_ =M-—7oM —7uC(17)

where

E, =M+7oM+71C,

L(SE A= —T(ATIS(E "), ) —
- J(A ', S(6, ") + By)
As before, the first step is performed by the Euler scheme

for the nonlinear advection terr, so the matrix of the
lirst step is 2N x N rectangular

(5)-()-

where

[9s]

x (71(,9(5,#)) +M-Ee- (—fiM) (1)
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Hence, the matrix can be obtaimed as the

result of the tangent linear model integration from ¢t = 0
to ¢ = T, or as the product of time-step matrices (18),
(16).

To develop the adjoint of this tangent linear model,
we calculate first the adjoint to the Jacobian terms of
the {14):

< T, w),w* >=< T, w*),w >,
ST+ 0,w >=-< Jw, o+ 6,A " w>=

=< A T (@+ 6w, w > (20)
Therefore, the adjoint of the linearised Jacobian is
I (S{& " = T(ATS(E,1),w") ~
—ATT(S(E ) + 4,07 (21)

So far, the operators E,, E_ are self-adjoint as well as
their inverses, the adjoint model can be written

G Yo FTEEENE" T (Wi Yy
w E_E7' 0 Wi
It should be noted here that not only w_; is calculated
at each step, but also w? is modified. The modified value
15 used at the next step to caleulate w?_,.

The last step of the adjoint model integration is the
adjoint to the first step of the tangent model (18):

—~1
. HT ., oT
= — B —
wy (,M + 7 + 3 M) X

2

Using the notation of the adjoint model, the expression
(13) can be rewritten as

x (TI(S(&,tl)) +m-Ee o ";M)w;j +wl (23)

de J(E,T) =< S{E,T) ~ &, lig}%ﬂ} 66 — 86 = +0(d€)
= (H(S(QT) - £), IV%;E’TJ] 5 -~ (55) + o{dg) =
a8, TH1" _ )

= (( {—gg—)} — I) H{S(E,T) - f)jéf) + o(d&j24)

where [L‘SE)%}D is the matrix of the adjoint model

integrated from ¢ = 1" to ¢ = 0 following (22) and (23}.
Initial conditions for the integration of the adjoint model
can be written as wi_ - = H{S{,T) — £).

The gradient of the funetional is the linear part of
its variation when variations of the argument are pro-
portional to unitary vectors 6 = ge;. So the first N
compaonents of the gradient can be obtained [rom (24)
(198, TH]" .
vaen = (280 - Dusen-o )
and the last component is the partial derivative with
respect to T
a1, T) 95(€,T)

— = CS(E,TY - £,

aT aT (26)
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We recall that it follows, from (10) and (1), that

ASET)  Owlx,y,t)
or at

=T

:(—j(df,w-i-f)-f-,uﬂw*ﬁw'l‘f) (27)
=T

Hence, the last component of the gradient is simply the
scalar product of the right-hand side of equation (1)
calculated at the final point of the integration, and the
difference between the fnal point and initial point.

Thus the gradient at any given point £ and for a given
T can be calculated by the direct model (8) run for time
T', scalar product (26) calculation and the adioint model
(22) run. It should be noted here that one has to keep
the entire orbit S{&, #),¢ € [0, T} lor further integration
of the adjoint model.

The gradient of J{£,,, T,.) allows us to perform the it-
erative descent. from the peint £, T, to the point £, ),
Tot1. The minimisation procedure used here was devel-
oped by Gilbert and Lemarechal (1989). The procedure
uses the limited memory quasi-Newton method.

3.2 Numerical realisation.

The initial point of iterations &, Tn can be chosen as
an arbitrary point on the attractor of the model. For
example, one can integrate the madel for an arbitrary
time and take the result of the integration as the start-
ing point for iterations. The minimisator prohibits the
process divergence, so there exist three possibilitics onlv
of the process development.:

— the process converges to a minimum with some non-
zero J,

— the process converges to a solution alveady found,
the process converges to a new solution.

Only the third possibility is considered to be useful, the
fivst two are ignored. Typical realisation ol the first pos-
sibility is caused by existence of an invariant torus on
the attractor. In this case, the procedure converges to
the "most periodic orbit” on the torus realising the nou-
zero minimum. So far, we do not intend to study invari-
ant tori in this paper, all non-zeroe minima are skipped.
It should be noted that stationary points could also be
found by this method because they are a particnlar case
of a periodic orbit with an arbitrary period,

To distinguish the new solution Lo the procedure from
previously found orbits one has to calculate phase-spatial
distance between them. Thig is necessary because any
point on the orbit can be found as its initial poini. More-
over, any multiple of T can be found as the period of the
orbit. Obviously, any mmltiply repeated orbit should he
abridged to one cycle. The precision required to stop
iterations is J < 1072°. To achieve this precision abhout.
1000-1500 iterations are nsually required.
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One particularity of this task is the neccessity to per-
form the integration for the exact given value of T'. Also,
the value of T may vary during the descent procedure.
To perform numerical run one can choose some fixed
number of time steps N; and calculate the time step
length 7 as 7 = T/N;. However, this requires N, to
be sufficiently large that even for largest possible T' the
valie of 7 never exeeeds the stability limit of schemes
(&) and (22). This can decrease the cfficicncy of the
method due to the need to integrate low-period orbits
with a very small 7. To avoid this lost of efficiency,
we can choose some reasonable value of the time step,
which ensures the stability of schemes and allow N; to
vary.

To ensure the stability of the model one has to per-
form about 10 steps per day. The number of steps is cal-
culated as an integer part of the product N, = [T x 10]
and 7 = T/N,. This procedure confines v between 0.1
day and 0.1 4+ 0.1/N;. The periodic orbits are supposed
to be composed of a number of time steps, so the addi-
tion of 0.1/, is small and does not violate the stability.

But N, is an integer and its variations may result in
discontinuities of the functional .J. The jumps of J may
occur at any change of Ny — N, £ 1. These jumps
arc relatively small, thanks to the convergence of the
scheme, however they can disturb the iterational descent
procedure when J becomes small in the vicinity of its
zero. One example of this situation is illustrated in fig.2.

However, it i3 easy to avoid the difficulties related to
these discontinuities. One just needs to verify at each
iteration that the integration time is close to the point of
change of N,. If, in the descent dircction, &V should be
changed, the procedure must make this step even if the
value of functional increases. Thus the descent process
jumps aver the discontinuities, and can be continued.

Another numerical aspect we can cmphasise is the
construction of the adjoint model. As it is known, the
Finite Difference (FD} technique leads to the difference
between FD of the adjomnt model and the adjoint of
the FD model (Sirkes and Tziperman, 1997). The first
is accurate only within O(dx,§t) while the second may
contain strong computational modes. FE technique of
the space discretisation allows us to avoid this difference
and to construct an accurate adjoint model. The use of
finite differences in time stepping causes the appearance
of a computational mode: two-time-step leap-frog mode
in the preseni case. This modc is rather strong in the
beginning of the adjoint model integration, however it
vanishes after some integration time and one can hardly
find any trace of the computational mode at its final
point.

This is illustrated in fig.3, by evolutions of the enstro-
phy of the solution of the tangent linear model (solid
line) and of the adjoint model (dashed line). Fragments
from the beginning and the end of the adjoint model in-
tegration are enlarged to show the computational mode
clearly. Ume can see strong leap-frog morde at the begin-
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ning of the adjoint model integration (right fragment), -
although no oscillation can be found at the end of the
integration (left fragment).

3.3 Comparison of different methods.

Successful development of the descent procedure depends
on the matrix used in the scalar product (12) If ‘H in
(12) is equal to the mass matrix, the scalar product be-
comes an approximation of the Ly scalar product. If we
chose H = I, we work with a simple Euclidian prod-
uct in the RV space. In fact, the choice of this matrix
resuits in different preconditioning. The use of the Ly
scalar product stipulates the equal weighting of all basin
regious, while the RY product causes the regions with
the refined grid to weigh more heavily. Tt is not obvious
which scalar product to choose. They are equivalent in
general, but this different weighting may accelerate the
convergence of the descent procedure. Thus, if the prin-
cipal variability of the orbit we ook for is conceutrated
in the "refined region” near the jet stream, it is bet-
ter to use simple RV scalar product which emphasises
this region. On the other hand, if the variability of the
solution is distributed over the total basin, one should
choose the Ly scalar product.

Along with approximation of the Ly scalar product,
we can use the approximation in the H ™! space, i.e. the
energy of the solution is considered as its norm instead
of the enstrophy.

W, P> = / AV dudy.
4 Ja
In this casc the matrix H must be chosen as

H = MC'M.

To compare the minimisation procednre with now com-
mon Newton-type methods o reference scarch has been
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Table 1. Number of iterations and CPU time necessary for different descent, procedures.

Method H=M H = MC™I M H=1 Newton | 1yamped
(enstrophy) {energy) (M) method | Newton
Number of iterations > 2000 N0 77 diverges 69
CPU time > 115 51.4 41.6 - 465
Operations per iteration O(N3/%) O(N3/2y O(N32) | O(N®) QN
f;‘i‘:;‘i""'?_i::-_k_wf [ Tamens Uhis is 416 minutes.
Tes+00 1 : However, we can not definitely state that the differ-
le-1 —\- oy . S ence between scalar products is significant. It is just in
le-i2 —— R Sy this experiment that the simple Euclidian norm corre-
Te-03 _ul — L = A sponds better to the minimisation. Some other configu-
Ted | e B ‘V“\\'_ ration of the periodic orbit in search may make another
1e-05 o J : | v scalar product more advantageous.
::::: —:=.. "“—4'2 4—77; - The fourth experiment was performed by the classical
fens L ] Newton method. As has been mentioned, this method
oo V4 diverges rapidly from the initial state. The fifth run
D uses the dumped-Newton method proposed by Zoldi and
et Greenside (1997a). This method uses a fraction o < 1
etz L - of a Newton correction z — r +adz. The value of alpha
o 100 260 300 aon  Tme was taken to be @ = 0.02if J > 10, v = 0.21i[ 1 « J «

Fig. 3. Evolution of enstrophy of the solution of the tangent
linear modet (solid line) and of the adjoint model (dashed line}.
Enlarged fragments from the beginning and the end of the adjoint
model integration.

performed beginning with the same initial conditions.
The initial statc was chosen as an arbitrary state situ-
ated not far from the periodic orbit with 7 = 120.034.
Initial 7" was taken as Ty = 112.8 with the value of func-
tional Jy = 98.

Five methods have been compared in this search, The
first three methods are realisations of the procedure
described above. The use of the Ly scalar product (
H = M ) in the functional definition results in a very
slow convergence of the algorithm. In this experiment,
the descent procedure does not converge after 2000 iter-
ations. This becomes clear if we note that the variability
of the orbit is concentrated in a very small region near
the jet stream. This is in agreement also with the result
obtained for the variational data assimilation by Luong
(1995) who shows that the enstrophy is not a geod norm
for the data assimilation procedure.

Following (Luong, 1995), one can hope for more rapid
convergence with the approximation of the H ! scalar
product, (H = MC tAMM) and this takes piace. The
process converges after 910 estimations of the functional
in 51.4 minutes of CPU time.

However, there is another way to get more rapid con-
vergence. As has been mentioned, the grid refinement
near the Western houndary allows us to emphasise the
region near the jet stream. In the third run Euclidian
product in RN space { H = I) was used. Minimisational
procedure in this example fequires 737 estimation of the
value of J and its gradient and the CPU time spent for

10 and o = 1if J < 1. OFf course, the damped- Newton
method converges with the lowest number of iterations.
Only 69 iterations are necessary to reduce the functional
value up to the 107, But these 69 iterations require
465 minutes of CPU time, that is more than 10 times
the minimisation procedure.

The comparison of the convergence of these five iter-
ational processes is presented in the table 1.

4  Pertodic orbits, predictability and attractor.

The idea te approximate the chaotic attractor propoer-
ties by means of unstable periodic orbits is not new.
The important role played by periodic orbits was noted
already by H. Poincaré (1892} and E. Hopf {1942). This
interest reappears in modern studies. The possibility
of studying the strange attractors of dynamical systems
by means of periodic orbits is discussed in {Auerbach
et al., 1987). Unstable periodic orbits have been found
for higher dimensional systems {(Kuramoto-Sivashinsky
equation with N=100) {Zoldi and Greenside, 1997a).
The first steps have been performed to distinpuish peri-
odic orbits in geophysical systems by Jiang ot al. (1995},
Wang and Fang (1996), Itoh and Kimoto (1996), Jiang
and Ghil (1997).

In this paper, we try to use low-period orbits to ap-
proximate such simple attractor characteristics as its
dimension, average values of some solution paramcters
and their probability density functions (PDF).

4.1 Periodic orbits exammples.
To get an idea of the attractor of the model, we first. jper-
form its long-time integration. The mean stroamme-
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tion pattern obtained in this run is presented in fig.4A.
As one can easily see, the pattern is antisymmetric with
respect to the middle line of the basin (y = 2000 km).
This symmetry in the long-time average is not surpris-
ing. The barotropic model subjected to symmetrical
forcing in a square possesses an obvious symmetry; the
transformation 1{z,y) — —t{z, —y) does not change
the system. So its global atiractor must possess this
symmetry; for any point &{wx,y) on the attractor, the
point —£(z, —y) also belongs to the attractor. Hence, if
the system is ergodic, the attractor average must form
an anti-symmetrical pattern as we can see in fig.4A.

However, only a long-time averaged solution is anti-
symmetric. For the above model parameters 5000 ycars
of integration is necessary to get an antisymmetric pat-
tern. A typical short-time model run provides a non-
symmetric pattern with the jet-stream directed slightly
to the South or to the North. An example of 50 years
averaged streamfunction is presented in fig.4B. One can
easily sce the non symmetry of the jet, which is directed
to the South-East. The principal model variability as-
sociated with the jet meandering is concentrated below
the middle line of the domain.

Obviously, the set of states with the jet directed to
the North-East and the variability concentrated above
the middle line belongs to the attractor also. In fact,
the attractor is composed of two basins of attraction.
The model spends its time either in one basin with the
jet dirccted to the South-East, or in another one, with
the jet directed to the North-East.

The model is in the chaotic régime. This fact is illus-
trated by the energy spectrum of the solution in fig.5.
Spectral density decreases with frequency. To distin-
guish principal modes of the variability in this system,
we perform the Empirical Orthogonal Functions (EQF)
analysis (see Preisendorfer (1988) for a full technical de-
scription). We look for an orthogonal basis in the phase
space of the model. Each vector of this basis points out
the largest variance of the model solution in the sub-
space orthogonal to the previously found vectors. This
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basis can be found as the eigen basis of the covariance
madtrix.

)

Lt

Cbn=Aubws  Cis=r1 / (M)t (28)
]

Eigenvalues ), show the variance associated with cach
vector ¢,. We arrange the sequence of eigenvectors,
or EOFs, so that their corresponding eigenvalucs de-
crease. EOF vectors have been calculated from a 5000-
year model run. This integration provides the first EQF
symmetric with respect to the middle line of the domain.

The projection of the model solution on the first EOF
vector illustrates transitions between basins of attrac-
tion with different directions of the central jet. In fact, if
the jet is directed to the North-East then the projection
on the first EQF is positive, otherwise the projection is
negative. This is causcd by the symmetry of the first
EQF with respect to the middle line.

One can see in fig.6 that transitions between these
two basins occur irregularly. The lifetime of the model
solution in each basin may vary from several dozens to
several hundreds years. Thesc rare transitions break the
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Fig. 6. Time series of the projection of the model trajectory on
its first EOF. The time is in years.

symmetry of short time averages of the model solution.
Several thousand years integration is necessary to get
a number of transitions between these basins and an
antisymmetric model average.

'This fact provides bimodal PDF of the projection of
solution on the first EOF (fig.14A) with two clear max-
ima. One of these maxima corresponds to the negative
projection on the EQF, or to the South-Eastern direc-
tion of the jet and the other occurs at positive projection
or the North-East jet direction.

This fact has been explained in Dymnikov et al. (1998)
by the sequence of bifurcations during the transition of
the model to chaos due to increasing the forcing ampli-
tude. However, the evidence of this bimodality can be
seen from the periodic orbits configuration.

Three types of orbits have been distinguished on the
model attractor from the point of view of symmetry of
their averages. The first type includes orbits with the
streamfunction antisymmetric with respect to the mid-
dle line at any time. Obviously, their average is also
antisymimetric. Orbits of the second type allow the jet
to be directed both to the South and to the North, re-
sulting in the antisymmetric average. Orbits of the third
type arc not symmetric. {t can be noted here, that the
transformation §(x,y) — —£&(z, -y) does not change
orbits of first two types. Any point on the orbit of the
first type is antisymmetric, so £{x,y) = —&(x, —y). The
transformation of an orbit of the second type results in
the same orbit shifted one-half period: S(&(z,y), %} =
—&(z, —y). Orbits of the third type are not conserved
in this transformation. The transformation applied to
any non-syminetric orbits produces the distinct periodic
orbit with the same period.

Two orbits of the first type with periods T = 38.14
adl T = 76.6 days are found. One of them (T = 76.6
days) is chosen as an example. Its period averaged
streamfunction is presented in {ig. 7A. The "y-t7 dia-
gram of the evolution of the streambfunction values at
# = 500 ki {fig.7B) shows that the solution is always
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antisymunetric.

Omne orbit of the second type is found. Its period
is T = 41.33 day. One can see, the period averaged
streamfunction of this orbit is antisymmetric (fig.8A).
However, the "y-t” diagram of the streamfunction at
x = 500 km (fig.8B) shows that the streamfunction is
not always antisymmetric. The "x-t” diagram of the
same orbit illustrates the variability of the streamfunc-
tion on the middie line, y = 2000 km in fig. 10A.

28 pairs of orbits of the third type are found with
pericds from 85 to 500 days. One example {orbit with
T = 240.5 days) is shown in fig.9. Neither period av-
eraged streamfunction (fig.9A), nor its "y-t* diagram
are antisymmetric. Complex variability of the stream-
function on the middle line (y = 2000 km} is shown in
fiz. 10B.

Trajectories of the last two examples are plotted in
three-dimensional space of the first 3 EOFs (fig.11). One
can see that the projection on the first EOF always re-
mains positive for the non-symmetric orbit T = 240.5
(fig.11B) while it changes sign for the orbit T = 41.3
(fig.11A)

In addition to this, four stationary solutions were found
on the attractor of the model. One of them is perfectly
antisymmetric with respect to the middle line, the other
three possess no symmetry.

1.2 Reconstruction of the attractor properties.

Instability characteristics of periodic orhits are essen-
tial quantities, which help to approximate the attractor
properties. In this paper, we shall evaluate the instabil-
ity of orbits in order to verify two hypotheses. The first
hypothesis related to the appearance of intermitient os-
cillations of the model solution and their predictability.
The second consists of an approximation to attractor pa-
rameters such as dimension and PDFE of model solution
functiconals.

To measure the instability of a periodic orbit we nse
the sum of positive Lyapunov exponents as a characteor-
istic of the divergence rate of nearhy trajectories close to
the periodic one. They are based on the eigenvalues of
the operater of the tangent linear model (14) linearised
around the periodic orbit,

Lyapunov exponents can be calculated as the limit

o . T (
L = flg];o % In A (G xGy) where G = H AGSE (2N

=

where A(€, 1) denotes the time step matrices of (16) and
(18) and A; (@) are eigenvalues of ;. The limit in the
definition of the Lyapunov exponents causes difficultios
in their calculation due to the necessity of performing
a very long time integration. However, the use of peri-
odic orbits can simplify this problem hecanse, for any of
themn, this limit can be calealated o Anite tine thanks
to periodicity, So far, as we know the same orbit will



Kazantsev: Unstable periodic orbits and attractor 203

0

¥ (100km}
¥ (100km)

"
: B 1l 2h J0 ERS a0 o
i 10 20 kled b [ ia

I 20
X {100k +0
{ m) Time (days)

A B

Fig. 7. Example of an orbit of the first type {(always antisymmetric arbit). Orbit with pericd T = 76.6 days. Period-average
streamfunction (A) and "y-1” diagram of the streamfunction at # = 500 km during one period (B).

40

<

I _—

£ ]

g 8

= puy
-
<

5 40 P - -
o i ) "

P I
Time (days)

A B

Fig. 8. Fxample of an orbit of the second type (orbit with antisymmetric average}. Qrbit with period T = 41.3 days. Period-average

streamfunction (A} and "y-t” diagram of the streamfunction at © = 500 km during one period (B}.

¥ (100km)
¥ (100%m)

o 20 @ [ 20 Tou o lve teu dai 8y
Time {days)

5]

A

Fig. 9. Example of an orbit of the third type (asymmetric orbit}. Orbit with period T = 240.5 days. Period-average streamfunction

(A) and "y-t" diagram of the streamfunction at z = 300 km during ane period (B).



204

Time (days)

P
X (100xm)

A

Kazantsev: Unstable pericdic orbits and artractor

B

Fig. 10. ”x-t” diagrams of orbits with 7' = 41.3 days (A} and T = 240.5 days (B) during one period. Streamfunction js Laken ar

¥ = 2000 km (middle fine)

+11M) B FOF 2

1OHy

A

2¢Hy
T4

OF 2

-Z{H)

3 ———
EOF | Ay e

B

Fig. 11. Orbits T' = 41.3 days (A) and T = 240.5 days (B) in the space of 3 EQFs.

be repeated all the time, we replace the limit lim;_, o,
by litn,,—,oq, where nis the number of repcetition of the
orbit. So

. 1 * Y7L n —
po= lim oo In ((GT) x (Gr) ) =

= 210 [\(G7)] (30)

Thus, the Lyapunov exponents are related to the Flo-
quet multipliers and can be calculated within one period
integration. These Lyapunov exponents can be used to
calculate the local attractor dimension by the Kaplan
-Yorke formula.

J
Z i

Ditpeqr = J + —=0— (31)
| tesq1 |
I J+1
where J : Zm > 0, but Z Iy < 0 (32)

=1 =1

As it was mentioned in the introduction, the study of
the stationary points of the system of the barotropic at-
mosphere and the corresponding quasi-stationary régimes
of atmospheric circulation bronght fruitful results in the
ddomain of analysis and a priors estimates of the lifetime
of such régines.

These cstimates are based on the suppaosition that a
quasi-stationary régime arises when the trajectory ap-
proaches an unstable equilibrium through its stable man-
ifold and withdraws from it through the unstable one.
It is natural to deduce that the mean duration of the
trajectory’s stay in the vicinity of an equilibrium is pre-
portional to the characteristies of the unstable manifold
of the equilibrinm. Hence. the mean duration of the cir-
culation régime becomoes proportional to the instabiline
characteristics.

In this model study we try to develop this idea and
apply it to the periodic solutions, and consequently to
define quasi-oscillatory régimes. The existence of such
régimes is a well studied phenomenon in physical svs-
tems like the atmosphere or an ocean. However, the
guestion is open whether they can be explained hy the
presence of an unstable periodic orbit nearby.

We shall use the hypothesis that a quasi-oscillators
régime arises when the trajectory approaches an unsta-
ble periodic orbit. Similar to equilibria studies, the timwe
spent in the vicinity of a periodic orbit is supposed to
be inversely proportional to the instability characteris-
tics of the periodic orbit. The instability characteristic
used here ts the sum of positive Lyapunov exponents
of the orbit. This value was chosen following the pro-
dictability studies of stationary points. However, whew
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the closed orbit is considered instead of an equilibrium,
it is reasonable also to suppose that the time spent in
the vicinity is directly proportional to the volume of the
vicinity, i.e. to its length, or its period.

In order to verify this hypothesis, the fraction of time
spent by the trajectory in the vicinity is estimated di-
rectly,. We define z-vicinity of the periodic orbit as a
torus centred on the orbit with circular section of radius
£. Any penetration of the trajectory into a periodic or-
bit’s vicinity during 5000 years integration is registered
and the time the trajectory spent in the vicinity is mea-
sured. The fraction of time is obtained as the relation
of the time spent in the vicinity to the total integration
time.

By definition, Lyapunov exponents represent the di-
vergence rate of infinitesimal perturbation. Therefore,
the relationship between them and the time spent in
the vicinity is not straightforward due to. finiteness of
real vicinity and due to possible non-symmetry of the
operator G' which leads to the “super-exponential error
growth” (Nicolis et al., 1995). However, the Lyapunov
exponents remain good estimates of the fraction of time
spent in finite vicinity for the barotropic ocean model.

The choice of radius of the vicinity is somewhat am-
biguous. If the vicinity is too large, linear theory on
which the Lyapunov exponents are based may fall to
approximate non-linear dynamics. On the other hand,
a very long time integration is required to get a statisti-
cally significant cstimate of the fraction of time spent in
a small vicinity. In this paper, the radius of the vicin-
ity was taken as (.04, that is approximately 1072 of the
attractor characteristic diameter.

In fig.12, one can see the relationship between the
fraction of time spent in the vicinity of the periodic orbit
and the valie w; equal to the period of the orbit divided
by sum of its positive Lyapunov exponents. One can see
that the correlation between these values remains high
(0.93 + 0.05) for the vicinity as large as 0.04.

Another attractor characteristic, that we can approxi-
mate with periodic orhits, is the dimension. The fractal
dimension has-been calculated directly for this model
in Dymnikov et al. (1998) by the Kaplan-Yorke formula
and found to be equal to D = 5.8 £ 0.2. In this paper,
we approximate this dimension by weighted averages of
local attractor dimensions of particular orbits.

Zoldi and Greenside (1997a) have suggested using we-
ights equal to the inverses sums of positive Lyapunov
exponents. The reasoning of this is clear; less unstable
orbits must be weighted more heavily. So the attractor
dimension is approximated as

N .
w; Dim
DimN) = 2, wiDimpo, w; =

1
npprorn N ¥ +
2w Zj Aw'

However, it is reasonable also to suppose that orbits with
longer periods must be weighted more heavily as they
are longer and should provide a greater contribution to

(33)
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Fig. 12. Fraction of time spent by a trajectory in the vicinity of
the PO vs its weight w used in (34).

the total sum. Thus, the weights in this paper are cho-
sen to be proportional to the period of the orbit and
inversely proportional to its sum of positive Lyapunov
cxponents:

N .
Dim®™) 2, wiDimpo, w; = _h (34)

approk Ef\}' aw; 3 2] /\:_J .

The approximated dimension, calculated using a differ-
ent number of periodic orbits, is presented in fig.13. Lo-
cal attractor dimensions associated with particular pe-
riodic orbits are marked by dots. One can see that they
may vary over a wide range from 4.2 to 18. However, the
weighted mean D'rﬁrn.f;yp)mI calculated for different num-
hers NV of periodic orbits, converges to the value of 5.8.
In fact, 25 pairs of orbits with period lower than 400
days are sufficient to approximate the global dimension
with 5% accuracy.

Along with the attractor dimension, we can try to ap-
proximate the distributions, or the probability density
functions (PDF) of some solution parameters on the at-
fractor.

The distributions can be calculated directly from the
long orbit. However, a long integration of the model
must be performed to obtain sufficient accuracy due to
the slow convergence to the limit. To avoid the necessity
of the long model integration, we can use periodic orbits
to approximate these distributions. This kind of recon-
struction of the PDF has been performed for the Lorenz
model by Zoldi (1998) as weighted averages of partic-
ular distributions of this parameter on periodic orbits.
The weights used in Zoldi (1998) are the samce as (33).
However, we can get better result for the approximation
using weights proportional to the period of the orbit:

N
(N) oy wan o T (35)

Napproz = N i ¢ +
Ei wy Ej Av,.)’

where i; is the PDTF obtained for the ith orbit,
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In order to compare the reconstruction of distribu-
tions realised by (34) and (35) with the reconstruction
proposed by Zoldi and Greenside (1997a}, we perform
both reconstructions and compare their differences with
the value caiculated from a long trajectory. This com-
parison is presented in the table 2.

One can see that the error obtained when approxima-
tions (34), (35), are used is about 2 times lower in all
calculations so we use it for the PDF reconstructions.

We compare the PDF of enstrophy and PDF of the
projection on the first EOF vector, calculated directly
from a long time integration and approximated PDFs
obtained as a weighted average of PDFs for a limited
number of low-period periodic orbits. The direct calcu-
lation has been performed for 5000 years. This recon-
struction was perforimed using two orbit sets. The first
set is composed of 11 lowest period orbits only, 1.e. 3
antisymmetric orbits of the first two types and 4 pairs
of non symmetric orbits of the third type. The sec-
ond set includes all 58 found orbits (3 antisymmetric
and 28 pairs). The result of comparison is presented
in fig.14. We note, that 11 orhits are not sufficient to
obtain a good approximation. The difference between
the PDF calculated directly and the reconstructed one
reaches 35% due to the presence of numnerous spurious
maxima. and minima in the reconstructed PDEF. How-
ever, the approximation by 59 orbits provides much a
better approximation with an error of order of 5%.

5 Conclusion

The numerical method used to calculate periodic or-
bits allows us to find some low-period orbits for simple
models of the atmosphere and ocean like barotropic or
multi-level quasi-geostrophic ones. Implementation of
tlis method requires similar techniques to the data as-
similation procedure, which is very well developed for
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this kind of model.

The knowledge of low-period periodic orbits allows us
to approximate some attractor properties which are dif-
ficult to calculate directly. Asis shown, only a few orbits
are sufficient to reconstruct the PDF of the model tra-
jectory or the attractor dimension. The identification of
guasi-oscillatory régimes and estimates of their lifetime
may he used in predictability studies in a similar manner
to the quasi-stationary régimes theory. High correlation
between stability measurcs and the time spent in the
vicinity of periodic orbits may allow the use of these
orbits and their stability characteristics as an approxi-
mation of the invariant measure on the attractor in some
cases. In fact, this approximation can be justified only
when the periodic orbits set is dense on the attractor of
the model.

However, there exist a number of open questions. First
of all, concerning the properties of the original model
presented as a systemn of partial differential equations
(PDE). Even if we know that an unique solution exists
and also an attractor of o PDE system, the question of
existence of periodic orbits should be studied carefully.
The question of convergence of orbits of the discretised
systern to orbits of the original PDE svstem is open
also. Moreover, the density of periodic solutions on the
maximal atiractor is less evident, even for diserotised
system. The presence of an unstable invariant torus an
the attractor may Jead to the fact thal orbits are dense
on some attractor subsets. Hence it is not evident. that
either the whole attractor set can be approximated by
orbils, or a subset of the attractor only.

The orbits encoding, application of symbolic dynam-
ics and possible cycle expansion (sce for example Arutso
et al. (1990)) allow us to estimate easily many attrac-
tor properties and the predictability characteristics for
simple systems like the Lorenz one (Eckhard and Ott.
1994), (Franceschini et al., 1993). In particular. encod-
ing of periodic arbits allows us to know whether all the
solutions with periods T less than some 7 have heey
found or not. For any missing orbil, we can get a pood
initial guess for the descent procedure and thus find it
Application of the cycle expansion theory allows ws to
approximate missing orbits with higher periods and even
the total periodic orbits set. However, the symbolic dy-
namnics of orbits of a high dimensional system abtained
after discretisation of a PDE system is difficult (or in-
possible) to understand.
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Table 2. Comparison of diflerent weighting in the approximation of model averages.
Attractor Mean Dispersion Mean Dispersion
dimension enstrophy enstrophy LEOF EQOF
Long time 5.8 1.80 % 10-12 | 7.27 x 1014 -6.19 349.5
Approx. by {34), (35) 5.9 1.80 x 10712 [ 7.35 % 10~ M -6.19 350.8
Approx. hy {33) 6.0 LBO x 1012 | 741 x 107 -6.18 352.2
Error in {(34), (35) 0.1 2% 10716 8% 107146 5% 10-3 1.3
Error in {33) 0.2 4% 10718 1.6x 1074 | 1x10-2 2.7
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