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Abstract. A bond-percolation model based on the Bethe
Lattice is presented. This model handles anisotropic and
multiscale situations where, typically, the bond probability
is non unique and depends on the sites it connects. The
model is governed by a set of non-linear equations which
are solved numerically. As a result, the structure of the
network is obtained : strenghts of the backbone, dead-end-
roads and finite clusters. Percolation thresholds and cluster
sizes are also obtained. Application to fissured media is
presented and random simulations of 3D distributions of
fractures show the good accuracy of the model.

1 Introduction

Percolation theory has been extensively used with success
in a wide range of sciences for 25 years (Stauffer, 1985). In
most of the problems adressed, only one parameter is used:
the bond probability or the site occupancy probability.
Percolation theory deals with the size of the clusters when
this parameter varies.

In geophysics, conductive properties of rock materials are
studied using such method (Gueguen and Dienes, 1989).
Permeability of a rock matrix is closely related to the
fraction of pores that merely participate to the flow path.
The study of the way the pores are interconnected when
their density and size vary is typically a percolation
problem. As rock materials exhibit anisotropy due to their
genesis  (sedimentation) or geological story (stresses,
tectonics), percolation models must take into account this
characteristic. Let us consider the fractured patterm in Fig.1.
Two sets of cracks could be distinguished: a set of small
dense cracks, and a set of large sparse cracks, each showing
a preferential orientation. A model must distinguish two
types of sites, § (for small) and L (for large), and four
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Fig.1. F'ractured pattern showing 2 anisotropic sets.(synthetic data)

probabilities Pss, P, Prs and P which are respectively
the probabilities for a small (large) crack to intersect a small
(large) crack. The number of parameters increases
quadratically when other sets of cracks are appended.

Blanc et al (1980), considered a square lattice with
different vertical and horizontal bond probabilities. Turban
(1979} studied the Bethe lattice with a set of bond
probabilities but without discrimining the sites.

More recently, Bourget (1990), proposed the Bethe
lattice to study percolation on three dimensional anisotropic
crack networks but some inconsistencies appear when the
crack density increases.

In this paper we shall present a modified Bethe lattice
model, handling as many site-types as imposed by the
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Fig.2. Enhanced Bethe lattice (a) with N=2, z,,=3,7;;= 1, 2;,=2,2;,=2. (b) with an additionnal family, z;;=0, 2;,=[, z:»=1,2;5=1 and z,;=2.

problem. The outline of the paper is as follows: in Sect.2
we present the lattice and the bond probabilities. In Sect.3
equations goveming the model are set and solved
numerically. For each site-type three probabilities are
calculated. The percolation probability, fF, is the
probability for a site from the i family to belong to the
infinite cluster. The flow throught probability, £, is the
probability for a site to be connected by at least two paths
to the infinite cluster. The isolation probability, fi,
represents sites which belong to finite clusters and we have
f'=1-f". In Sect.4 we show how to apply the model to
percolation in fractured media. A sample case is studied
with details and results are compared to Monte Carlo
simulations.

2 Enhanced Bethe lattice

This lattice is build with the same process than for classical
Bethe Lattice (Stauffer, 1985), except that sites are classified
by type, and the bond probability depends on the type of
the sites.

Let N be the number of site families in the network. A
site from the i" famility is called an i-site. Starting from an
i-site as the origin, it has z; bonds ending in a j-site (j from
| to N). In turn, each of these j-neighbours has zj bonds
ending in a k-site. z; is called the ij-coordination of the
lattice. This branching process is continued again and again
with two simple rules: there are no closed loops:
neighbours are always new sites, and z; is constant in the
entire lattice for given i and j. This situation is illustrated
in Fig.2a. Figure 2b defines the terminology used. Once the

model is built, it can easily accept a new family: new
branches are appended to each site (Fig.2b).

In order to define bond probabilities p; we state that the
probablity for no connection between an i-site and a j-site,
G, may be equal in both the real and the model networks.
At this step, we suppose that q; is well known in the real
network {qy is an input data). In Appendix A, we shall
derive q; for Poissonian distribution of fractures. In the
model network an i-site is not connected to a j-site if the z;
links are broken, and this occurs with probability {1-pij)®.
We obtain the following relation between p; and gs:
(l'pij)Zij= q;- (2.1.1)

We denote by [i,j[ a path starting from an i-site and in
which the second site is of j type (Fig.3)

subbranches
¥

1]

subbranches
Fig.3. Definition of j-neighbour and [i,j{ path.
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3 Exact solution for the enhanced Bethe lattice
3.1 Finite paths

For an [ij[ path, we calculate Rj;, the probability for this
path to be of a finite size. This occurs in the following
cases:

- i and j are not connected, this event has the probability: 1-
Pii,

- i and j are connected (pj;) and all the paths starting from
the j-site are of finite size. There are z;-1 [j,i[ paths and z
{j.k[ paths (ksti), each with respectively the probability R;;
and Rj. to be finite. Then, the probability that this fixed
[i,j[ branch does not lead to infinity is:

Rj= (1 pIJ + puRz' 1l_‘[Rka
ket

Writing Eq.(3.1.1) for all i and j, we obtain a non-linear
system of N° equations. The solution of this system is
generally non unique. As Rj are probabilities we retain
only solutions for which 0<R; < 1. The system is solved
numericatly by a Newton Raphson method with initial
values set to 0. More details are presented in Appendix B.

All branches are finite and no percolation occurs when the
only solution is R;=1 for all ().

(3.1.D

3.2 Finite clusters, dead ends and backbone

In order to study transport and chemical processes in
fractured media, Norton and Knapp (1977} introduced three
types of porosity: flow porosity, diffusive porosity and
residual porosity. Flow porosity represents all pores
throught which fluid flow occurs. In these pores the major
transport mode is by advection. Diffusive porosity includes
all pores for which chemical transport is governed by
diffusion effect. Residual porosity consists of pores wich are
not connected to the infinite cluster.

These three types of porosity are related to the structure
of the crack network, Residual porosity is given by the
finite clusters whose sites have only finite paths, As the
paths are independent events, the probability for a site to
belong to a finite cluster is obtained by the product

(3.2.1)

N
= HRiju

j=1

The sites corresponding to the diffusive porosity are
connected to the infinite cluster by only one path and are
also called dead-ends. Assuming the infinite path to be an
{i,j[ one, there are z; possibilities to choose it, and the z;-1
others as well as the [i,k[ ones must be of a finite size.

Calculus gives us
N z:.—1
4 (1= i Zik
f= Dzt -RpORP T [TRE
j=1 k#j

(3.2.2)

13

Finally, the sites which do not belong to these categories
pertain to flow porosity with the probability

fi=1-f-f] (3.2.3)

3.3 Mean cluster size.

The mean cluster size is calculated according to the method
described by Stauffer [1985). Starting from an i-site, we first
calculate the mean size of an [i,j[ branch, Ty, which is the
average number of sites belonging to this branch. If the first
bond is broken (probability 1-p;), the branch have a null
size. In the opposite case (probability p;) the size is one
plus the mean sizes of each subbranches. There are zj [j.k[
sub-branches for k= i, and there are z;-1 [j,i[ subbranches for
k=i. We obtain

N

Ty = Pi{l + 3z - aki)Tij(i,j =1,N) (3.3.1)
k=1

Which we rewrite

Z Pzl — Pyl — Ty = —py (i) =L.N) (3.3.2)

As, we have obtained a set of N° linear equations
involving N* unknowns T;. This system could be formally
solved for small N but writing the solution will take more
than one page of equations. A Gauss method is very well
adapted to solve numerically this system.

An infinite solution significates that system is at the
percolation threshold. At this point the system is non
inversible and the determinant of the matrix is zero. This
gives the critical relation between the probabilities.

A negative solution significates that we are above the
percolation threshold.

To obtain the mean size T, of an i originated cluster we
add the mean size of each branch to the size of the origin.
Thus

N
T=1+ 2 ziTy;
=

(3.3.3)

4 Application to anisotropic fissured media
4.1 The model of anisotropic fissured media

Many transport properties {permeability, diffusivity) of
crystalline rocks originates from fractures which exhibits
preferential orientations. Fluid flow occurs in cracks
networks in which we can distinguish a functionnal
hierarchy. As described above, part of the cracks allows
transport by advection, others relate to diffusionnal transport
while some are isolated . Transport properties are controlled
by the geometry of the fractures and the connectivity
between them (Gueguen and Dienes, 1989). The question
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Fig.4. Study of 2 perpendicular families: contribution of both families to each type of porosity as a fraction density (rigth axis) and mean cluster size (lefi

axis). Computation conditions; D=1, C\=C,=0.5, D;=0to 10.

we adress in this section is how to obtain connectivity from
structural parameters (density, size and orientation).

As a first approach fractures can be considered as planar
disks randomly distributed in space (Long, 1991). When
considering their geometrical caracteristics, fractures are
splitted in N different sets. Each set is caracterized by the
triplet (D, Ci, n;) where D; is the volumetric density of set
1, G and n; the distribution of crack radius and crack normal
vector in the i set. Ayt Ougougdal (1994) describes a
procedure to derive the structural parameters of
microfracturation from image analysis of rock thin sections.

Assuming Poissonian processes for space-distribution of
crack centers, the probability q;; for a crack from ith family
to not intersect a crack from jth family is

gy = exp(-Ny) (4.1.1)

N;j is the average number of j cracks that an i crack
intersects.

One way to obtain Nj is to introduce the notion of
excluded volume (De Gennes, 1976), Vy,. which is the
volume of the space around an i-crack in which the center of
a j-crack must belong in order to intersect it (see Appendix
A). V; depends on the sizes, frame and orientations of
cracks 1 and j. Then, Nj is the product of the average
excluded volume by the density of the j family.
N;=D, V;. 4.1.2)

Applying Eq.(2.1.1) we obtain the bond probability on
the Bethe lattice
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| DV,
py=1~ eXp{— J”J

If Dj goes to infinity, pij goes to 1. If Dj goes to 0 pij
goes to 0.

(4.1.3)

4.2 Case study

We consider a simple case of 2 perpendicular crack families
defined by the set of 4 parameters (D,,C,,1:,C;).
Calculation of excluded volume gives (see Appendix A)

V=Vy=0
V]2 =V21=V=27tC1C2 (C]""Cz) (4.2.1)
Applying Eq.(4.2.1) we obtain the bond probabilities:
Pu=pn=0
v.D,
P2 =1-exp| - TEh
Z

V.0,
Py =1—exp|— - =P
Zy

The consequence of p;=px=0 is that z,,=z5=0 and
Ri1=Ra=1. For simplicity we have replaced indexes 1, and
21 by 1 and 2

The non linear system Eq.(3.1.1) rewrites

(4.2.2)

R,=1-p+ pR%™
1 P T Pty (4.2.3)
Ro=l-p; + Plezlil

The linear system governing the mean cluster size
rewrites:

P(n-1) [Tu}:[‘pl} (4.2.4)
-1 Pl(zz —]) T —P2

whose solutions are
T.=_ PTPP(Z -1

2=

1—ppa(z — 1z, - 1) (4.2.5)

T Py + pipa{z = 1)

21

1= ppy(z — 1)z, - 1)

Under percolation threshold Ti» and T2 must be positive
and finite. So we obtain the critical condition for
percolation :

PPy > (P2, = (4.2.6)

1
(zy - 1)z, - 1)
which we may compare to the percolation threshold in
the classical Bethe lattice:

(4.2.7)

The model is ran with the following settings: an initial
family is set (D, =1, C, =2) and then a second one appears
with increasing density (C; =0.5, D, varies from 0 to 10).

15

At cach step Eq.(4.2.4) is solved and Ti, f.£ and f° are
calculated (Fig.4). We have pointed up five points:

1) Initial state. Family 2 is empty and no percolation
occurs. The mean cluster size is 1.

2) Family 2 initiates, Mean cluster size is growing but
insufficiently to create an infinite cluster. All cracks belong
to the non connected porosity.

3) Percolation threshold is reached. Mean cluster size
goes to infinity with the formation of an infinite cluster.
The infinite cluster is dominated by dead-end-roads
(diffusive porosity).

4) The infinite cluster is growing, aggregating finite
clusters and creating new flow paths, After a maximum, the
fraction of sites belonging to dead end roads decreases.

5) Asymptotic state. When D, is very high, connection
attains its maximum. It must be noted that a fraction of
cracks remains isolated: the cracks which are too far from
others will never be connected (Fig.5).

The value of D; = D:Ci' (italic is used for non
dimensional parameters) for which the percolation threshold
is attained depends on the two adimensional parameters
D=D\C;’ and C.=C,/C,. This value is defined by
combining Eq.(4.2.5) and Eq.(4.2.2) :

- exp{— 2nC, (71 + Ci) Dz]

. 1_0,(1{_%2_)1)

Lo |-y

Figure 6 explorates this relation for I; taking the values
10°,107, 1, and 5. The critical value of D; is plotted versus
s For C; under Ca.y, there is no solution to Eq.(4.2.6).

Effectively, each term of the product in Eq.(4.2.6) is
smaller than 1, a necessary (but not sufficient) condition for
percolation is

{4.2.8)

h>2.02 e —

This cracks will never be connected

Fig.5. Study of 2 perpendicular familics: diagram explaining
why some craks of the 1% family remain isolated.
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This expresses that the crack size of second family must
be sufficiently large to connect the cracks of the first family.
Caeir depends on the relative density (D) of the first family,
not on the density of the second. Figure 6b traces Cae
versus ). Cyery has the same asymptotic behaviour than a
particular measure of distance between cracks in family I:
the average bi-closeness (Appendix A2).

1
4y

1 —exp| — (4.2.9)

Czcn't -~ (4.2. 10)

4.3 Monte Carlo simulations

In order to test the accuracy of the model, Monte Carlo
simulations have been conducted on the previous case,
Large numbers of cracks are generated in a finite cubic
volume. This volume depends on the desired density. As
described above, each crack is a disk and is caracterized by
the coordinates of its center (randomly set), its radius and
normal. So it is easy to calculate the intersection between
two cracks. Cluster counting is made by scanning the
whole set of cracks and giving the same cluster label to
cracks which intersect. A cluster joining two opposite sides
of the cube is considered infinite. The strength of the
percolating cluster is the number of cracks belonging to an
infinite cluster divided by the total number of cracks.

We set Dy=1 and C;=0.5 for all numerical experiences.
We study the percentage of each family belonging to the

infinite cluster when C; is increasing and for various values
of Dz (D,=0.5,1 ,5).

Each run is made on the same set of 10000 cracks. Only
size and orientation varies according to D, and Ci.. We set
the coordination to 4 in e¢ach site for Bethe lattice
calculations.

Figure 7 shows the result of Monte carlo simulations
(markers only) compared to Bethe lattice results
(line+markers). Behaviors are very similar and thresholds
are closed, smallest for Bethe lattice due to the
approximation of no closed loops. In this case, Bethe lattice
is a good approximation of the three dimensionnal network.

5 Comparison with previous works

Robinson (1983) studied connectivity of two-dimensionnal
fracture systems by a Monte Carlo method. In his work,
lines of specified length and orientation distributions are
uniformly generated in a square domain. Percolation occurs
when there is a path joining two opposite sides of the
square, The important parameter is (line density) x (length
scale)’ called N. The length scale used is a half of the
average line length L.

For two perpendicular sets of same density d/2 and same
average length lav, he found a critical value Nc = 1.62.

Application of the model described in this paper to the

same case gives the excluded volume V = l%v. Then, the

average number of intersection is

d
N:jlizzN
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Fig.7. Comparison of enhanced Bethe lattice rcsults and Monte Carlo simulations for 30 fracture networks. Study of 2 perpendicular families: (a)
percentage of first family belonging Lo the infinite cluster (b) same for second family. Computational conditions: Dy = 1; C,=0.5; [); takes the values 0.5,
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and the bond probability in the Bethe lattice with z=4 is
-N
p=1-¢ 2.
\ i .
Setting p, = g we obtain Nc = (0.81.

This value is too low and we can conclude that Bethe
lattice is irrelevent for 2D studies, especially in that case
where the hypothesis of no closed loops is too strong.

6 Conclusion

The enhanced Bethe lattice model is a reliable tool to study
anisotropic problems. It handles as many site types as
imposed by the problem in a common way. It is easily and
quickly solved by simple numerical analysis. The model
has been applied to fracture networks. In this case, the bond
probability could be determined from the structural
parameters. This permit to establish a percolation criterion
involving the structural parameters. For two perpendicular
set of cracks, the minimal crack size of one set varies as the
average bi-closeness of the other set. Comparison with
Monte Carlo simulation shows the good accuracy and
behaviour of the model for 3D fracture networks. In the 2D
case, the model appears less accurate. This is due to the
strength of the no closed loop hypothesis wich is no more
realistic in this case.

Appendix A
Al Derivation of excluded volume

Excluded volume between two objects is the measure of the
region of space where their barycenters must belong to
allow intersection. It depends on the sizes and orientations
of the two objects. Considering a crack as a finite disk
defined by its center, radius C and normal to the plan n, the
excluded volume of 2 cracks (Ci,m), (Czn2) is
vy =27 GG, (C+Cy) sin(n, ny) (AL}

By averaging over all cracks in the sets i and j we obtain
the exluded volume of two families:

T
v, =21 C.C,(C, +C)+C,0% +Cio? UOZ sin0 £(6)d6 (A1.2)

Ci,0:,C; and ©; are respectively the mean and standard
deviation of radius for families i and j. © is the angle
between n; and n; and f its probability density function.
Two cases are investigated for f:

1) one of the families is isotropic, 8 is equally distributed
on the hemisphere and has density f(8)=sin(8). The integral

term becomes:
iy
- n
_" 25in28do= "
0 4
and the excluded volume is:

2

. 2%
v, =[c,cj(cl. +C+Cot + (,jc?]? (AL3)
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2) The two families are anisotropic, in each case the
normal takes a single value. The excluded volume is:

2 21 .
vl_] ZZTE[C,CJ(Cl +CJ)+C|G] +CJO" i|s]n(n;, nz) (A1.4)
A2 Derivation of average bi-closeness

We say that 2 cracks are close when a perpendicular
straight line can join them (Fig.Al). Cracks close to A are
in a virtual tube of radius 2C (ligth grey). They can be
ordered according to their distance to A. We define the bi-
closeness, L, as the distance to the second crack close to A.
The bi-closeness is a measure of the proximity between the
cracks. Considering a Poissonian distribution of cracks with
density D, the probability that L is smaller than £ is

p(L<f)=1- exp[—SnDc2£](1 + 8TDC20) (A2.1)
and the mean value of L is:
o1
=1 A22
4nDC? 422

Dividing by C to obtain the nondimentional parameter

F__ 1 _ 1
L= 4npC? 4D (A23)
Appendix B

B1 Numerical solution of the system

The system is rewrited

F(R)=0

with

F=(Fy)ij=1,N and R = (Ri)k,I=1,.N
The Newton Raphson aigorithm writes

Fig.Al. Definition of bi-closeness

Canals and Ayt Ougougdal: Percolation on anisotropic media

HRO=0
2y r = |[F(Rn)| if r < e then stop

dF
3)Rn+1 =Rn - R F(Rn)
4) go to step 2

Step 3 involves the evaluation of the Jacobian matrix of the
system:

dF;.
° =_'Sims

R Jn + 8'm Pim X

J

mn

(8i0(2me — )REm =2 TIRZp
i#n

1

(B1.1)

Z.i—1 Z
mi ml
i IIR

ml
I#1,n

where § is the Kronecker symbol §;=1 if i=j, 0 elsewhere.

(1= 8)rmR 2 R

mn=*mn
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