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Abstract. Synthetic Aperturc Radar (SAR) images of
the ocean yield a lot of information on the sea-state
surface providing that the mapping process between the
surface and the image is clearly defined. However it
is well known that SAR images cxhibit non-gaussian
statistics and that the motion of the scatterers on the
surface, while the image is being formed, may yield to
nonlinearilies.

The detection and quantification of these nonlinearilies
are made possible by using Higher Order Spectra (HOS)
methods and more specifically, hispectrum estimation.
The development of the latter method allowed us to find
phasc relations between different parts of the image and
to recognise their level of coupling, 1.e. if and how waves
of different wavelengths interacted nonlinearly. This in-
formation is quite important as the usunal models assume
strong nonlinearities when the waves are propagating in
the azimuthal dircction (i.e. along the satellite track)
and almost no nonlinearities when propagating in the
range direction. In this paper, the mapping of the ocean
surface to the SAR image is reinterpreted and a specific
model {i.e. a Second Order Volterra Model) is intro-
duced. The nonlinearities are thus explained as either
produced by a nonlinear system or due to waves prop-
agating into sclected directions (azimuth or range) and
interacting during image formation.

It is shown that quadratic nonlinearities occur for waves
propagating near the range direction while for those
travelling in the azimuthal direction the nonlinearities,
when present, are mostly due to wave interactions but
are almost completely removed by the filtering effect
coming from the surface motion itself (azimnuth cut-off).
An inherent quadratic interaction filtering (azimuth high
pass filter) is also present. Bui some other effects, ap-
parently nonlinear, are not detected with the methods
described here, meaning that either the usual relation
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developed for the Occan-to-SARR transform is somewhat
mcomplete, although the mechanisms leading to its for-
mulation secm to be correct, or that these nonlinearities
cannot be detected in the classical bispectrum theory.

1 Introduction

Imaging of the ocean by satellite-borne SAR (Synthetic
Aperture Radar) has been the subject of a large amount,
of literature for almost the last 20 years now, since the
lannch of SEASAT in 1978 and more recently of the
ERS (Buropean Remote Sensing) satcllites series. Spe-
cial interest has been devoted to the imaging of the
occan surface and one of the main ficlds of investiga-
tion has been the description of the ocean surface map-
ping to a SAR image (Keller and Wright, 1975; Hassel-
mann et al., 1985; Alpers and Bruning, 1986; Bruning
et al., 1988, 1990; Hasselmann and Hasselmann, 1991;
Krogstad, 1992; Krogstad et al., 1994; Hara and Plant,
1994).

The goal pursued by many researchers was o find a SAR
spectrum inversion scheme in order to get all the rele-
vanl information from a sca spectrum. Many models
were developed, especially for taking into account the
nonlinear relationship involved in the mapping and due
to the motion of the ocean waves during the aperture
time (e.g. Alpers et al., 1981; Hasselmann and Ilassel-
mann, 1991) .

On the other hand, research in signal processing has
been focused, for a long time, on spectrum estimation
and information extraction using either non-parametric
or parametric methods. However in the last decade,
spectrum limitations and especially its phase blindness
have involved the development of Higher Order Spec-
tra (HOS) methods (Nikias and Mendel, 1993; Nikias
and Petropulu, 1993). Phase estimation is paramount
in nonlinear system identification and detection of non-
lincarities in one or two dimensional (1D or 2D) signals .



It thus secmed then natural to apply these new tools to
the case of SAR images where nonlinearities may hap-
pen, according to the theory, and try to find their loca-
tion and understand why they were present in order to
give a better insight into the SAR inversion problem.
in this paper our main purpose is to detect and quantify
the nounlinearities in SAR images. For that reason, the
bispectrum estimation methods had to be developed and
adapted to the 2D case. Indeed, this kind of analysis is
seldom encountered for images as there is a rather large
amount of calculations which consume lots of memory
CconsuImning.

Firstly, we had to analyse the SAR translorm and to
simplify the problem, we retained the preeminent mod-
els (e.g. Hasselmann and Hasselmann, 1991), that are
currently widely accepted. These models are divided
into two parts : a linear part, describing the direct
mapping of the ocean without motion (RAR, or Real
Aperture Radar transform) followed by a part due to
the motion (denoted the RAR Lo SAR transform) and
presenting all the nonlinearities. Qur goal 1s thus to de-
tect the nonlinearities occurring for the whole mapping
without considering a two step transform.
TFurthermore, many authors have explained the possible
nonlinearities by considering the waves travelling in the
azimuth (along track) or range (across track) directions
and setting some level of nonlinearities in the former
case. In order to verify if our analysis was relevant we
simulated a nonlinecar image by mixing the two parts
described above, in parallel ways (linear and quadratic)
using a Sccond Ovder Volterra Model. We then applied
our method to the case of real SAR images acquired
from the ERS-1 satellite and we selected images show-
ing three cases of travelling waves : range, azimuth and
in-between.

The first scction presents the background for SAR imag-
ing theory and HOS definitions. It is then followed by
a section on 2D signal bispectrum (or its normalised
version, bicoherence) estimation where a solution for vi-
sualising and analysing the information contained in a
four dimensional support is provided. Finally results
and interpretation are given for the simulated images
and the real ¥RS-1 ocean surface images. The meth-
ods developed give us an insight into understanding the
mechanisms invelved in the arising of nonlinearities in
the particular case of the analysis of ocecan SAR images.

2 Theoretical background
2.1 SAR mapping

The study of ocean surface mapping by a satellite-borne
SAR, and corollary the SAR spectrum inversion have
been the subject of abundant literature (Alpers and
Bruning, 1986; Bruning et al., 1988; Hasselmann and
Hassclmann, 1991; Krogstad, 1992). We assume that
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an ocean surface can be seen as generated by the sum
of independent oscillators of wavelength £ and pulsation
w (Hasselmann and Hasselmann, 1991), which provides
the following wave height ¢(r,t) expression,

¢(r,t) :Z Cpeden g FT=wt) 4 compler conjugate
& (1)

with w = (¢. | k |)* and k = (ky, ky) (in this paper
all variables, except on contrary indications, will be 2D
arrays). The Fourier coefficient is divided into its magni-
tude i (which is a real nonnegative value) and its phase
. We admit that the ¢, are uniformly distributed over
[0,2.7] and are independent for each wavelength. Con-
sequently the sea spectrum S;.4(k) is given by:

Ssealk).(Ak)? = {Ce.67 %% Ce.e™ 0%} = E{() @)

and E{Cr, €1 (67l ¥%2) = 0
where F{} denotes the mathematical expectation and
Ak is the step width of the wave vector. However, this
assumption does not imply that E{Cx, (x,} = 0. The
RAR image amplitude field is given by:

o(r,t)=al +z my.e? 5T L complez conjugatle)
k (3)

where o(r,t) denotes the radar backscattering cross sec-
tion and 7 its spatial mean, my is then a complex value.
As previously said, the radar backscattering cross sec-
tion is linearly related to the wave amphitude (.

me = Tk.ck.ej"g" (4)

The RAR linear transfer function 7} is the sum of three
successive Modulation Transfer Functions (MTFs). The
first one takes into account the fact that SAR images are
built up in consecutive strips and so waves can propa-
gate between two successive surface illuminations by the
radar and consequently may induce a spectrum rotation
(scanning distortion). However, as usual, this distortion
is neglected for satellite-borne radar. The "tilt modu-
lation” is due to the angle between the target and the
radar beam and depends on the radar characteristics
{incident angle, polarisation ...) (Hasselmann and Has-
selmann, 1991). The "hydrodynamic modulation”, the
lesser known of the MTF, takes into account the energy
transfer between short waves and long waves and can
play a significant role since the Bragg scattering model
is valid at the considered incident angle (e.g. Keller and
Wright, 1975; Hara and Plant, 1994). However, this the-
oretical model is not always well verified and even the
assumption of a linear hydrodynamic modulation {and
consequently of a linear RAR modulation) must be ex-
amined more carefully.

The nonlinear step is due to wave motion during the
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illumination. In the non dispersive theory, the radar
backscattering cross section is misplaced in the azimuth
direction, and so an SAR pixel is the sum of different
RAR pixels (as usual, the range direction, i.e. the per-
pendicular direction to the satellite track, is in the y-
axis and the azimuth direction, i.e. along the satellite
path, is in the x-axis). Because the misplacement is
proportional to the wave orbital velocity in the range
direction and the radar backscattering cross section is
alternatively bunched and dilated, this phenomenon is
called the "velocity bunching”. Such a phenomenon is
a constructive mechanism and implies strong nonlinear-
ities especially when waves propagate along the satellite
track. Under a gaussian statistical deseription of the
displaccment field, the SAR image spectrum expression
has been derived, and is linked both with the misplace-
ment and the RAR image spectrum. The SAR Fourier
coefficient X*%" (k) can be easily expressed using a sum-
mation over the RAR pixels I"%"(z) by:

)'szar(k):/ Irar(x).Ejkx.e(w)'evj,k.x‘dm (5)
A

where A is a given surface of summation and e(z) the
misplacement. Under gaussian statistics of the sea sur-
face, and when A — oo we obtain the following SAR
spectrum:

Sear(k) = .Tg_fe_j-k-r.e—ki-(ﬂu(”J—Pec(&”))_

(14 prr(z) + §-ko . (pre(x) — pre(—=))

2 (6)
+ kr'(pff (0) - Plc(-ﬂ))(.ofe(o) - pIe(_

.’E)) dzx

where p denotes Lhe correlation function. Because the
RAR image and the displacement field are linearly de-
rived from the Discrete Fourier Transform (DFT) coef-
ficients of the sea surface, the nonlinearity is due to the
cxponential term. Krogstad in Krogstad et al. {1994)
noticed that, by expanding the exponential of (6) and
by taking a modulated Gaussian distribution for the dis-
placement field correlation function, each order of the
expansion can be seen as a higher order harmonic spec-
trum (smaller and smaller as the order increases). An-
other degradation caused by the wave motion is the az-
imuth smearing which induces an azimuth resolution de-
crease and is related to the orbital acceleration and the
orbital velocity spread within a resolution cell. This de-
gradation is explicitly contained in the term =5z (pe(0))
in (6). For further information on the SAR imaging pro-
cess a good bibliography may be found in Hasselmann
and Hasselmann (1991).

2.2 Higher order spectra definitions and properties.

The third order moment, for a 2 signal X (7}, is defined

(Nikias and Raghuveer, 1987; Giannakis and Swami,

1988; Nikias and Mendel, 1993; Nikias and Petropulu,
1993) by:

M (n1,n2) = B{X()).X(i + n1) X (i +n2}} (7)

with ny = (n} nl) This definition implies the same six
syminetry rela,tlons as for one dimensional signals:

M.SX (nln 77'2) =

Mg (—ny,ny — ny)

M:f(ng,nl) = M;{-(ng — nl,—nl) =
= Méj((nl - Mg, —112)

= M3* (—ng,ny — ny) (8)
Two equivalent bispectrum definitions can be [ormu-

lated. First, the bispectrum is the four dimensional
Fourier Transform of the third order moment:

+co +oo
Blky, ka) = Z Z M3 (ng, naje™7 Fumithkans)
N1=—00 Ny=—0co (9)
( :z_m is a 2D summation). Secondly, it may be ex-

pressed by the mathematical expectation of the Fourier
coeflicieni triple product,

Blki, k2) = E{X (k1). X (k2). X* (k1 + k2)}  (10)
where X (k) = DFT{X({)). The Fourier Transform
changes the third order moment symmetry relations into
eleven bispectral symmetry relations very similar to one
dimnension signal bispectral symmetry relations (Nikias
and Mendel, 1993; Nikias and Petropulu, 1993, Chapter
1], the third order moment support and the bispectrum
support are depicted in fig.1 and fig.2.

B(ky, k2) = B*(—~ky, —k3) = B(ka, k1) =
B(—ky — ka ks) = B(—ky — ko, b)) = (11}
Blky, —ky — ky) = Blky, —ky — k2)

As mentioned in the introduction, the third order mo-
ment is phase sensitive and especially sensitive to phasc
coupling. If we assume a signal which can be written as

X(#) = cos(ki.i+ @1) + cos(ko.i + 2)
+cos(ik; + E2).i + 1 + wa)
+ cos(ks.i -+ wa) + cos(kq.i + pa)
+ cos((ka + ka).i 4 ©5) + N (i)

(12)

where N{i) is a gaussian noise and ¢; are random phases
distributed over [0,27], then only the quadratically phase
coupled signal part (k1, kg, k1 + k2) appears in the third
order moment, and consequently is detected by the bis-
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Third order Moment support

Nonredundant third erder moment support

Symmetry axis

Fig. 1. Third order moment support

pectrum:

1

M (ny,na) = z[cos (ka.my — (k1 + ka).ng)

+ cos (ko.na — (k1 + ka).m1))

+cos (ky.ny — (k) + k2).ng) 13)

+ cos (k‘]_.’n"lg — (kl + ]Cg).?ll) + caos (kl.nl + kz.ﬂ-gg

+ cos (k1.1 + ka.na) + cos (ky.ng + ka.ny))
Howcver it must be noted that to estimate the third or-
der moment for detecting phasc coupling, several signal
trials are needed, a point on which we will elaborate in

the next section. A similar calculation can be made in
the Fourier domain. The DFT coefficient of (12) is

- [ ‘
Xy =3 (7018 (k — ky) + 7760k + )
+ e?2(k — ky) + e 928k + ko)
+ e PrEERIG (ke — ey — ko) + eI G (e 4 ky o+ ko)
+ el 5k — ka) + e P26 (k + k) 4+ 798 (k — k) (14)
+ e TG (k + ka) 4 725 (k — kg — k4)
eIk + kg + m))
where d(k) denotes the Dirac function. By applying
(10}, the bispectrum is non null if the phase of the triple

product is null. For instance ef¥1 ef¥z p=f¥1+e2) paye
a non null mean value because the phase is null, and
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!:I Nonredundant bispectrum support

Bispectrum support

Symmetry axis

Fig. 2. Bispeclrum support

then the bispectrum is non null for (ky, k2). Meanwhile
eI¥3 eI¥4 ¢=3%s have a null mean because @3 + w4 — s
is uniformly distributed over [0, 2] (and then B(ks, k4)
is null). Another important remark is that the three
sinusoids arc a symmetric triplet, because the sinusoids
of pulsation ki can be seen as generated by the differ-
ence of waves ka, k1 + k2. The quadratically phase cou-
pling notion is relevant for quadratic nonlinearity de-
tection. As a matter of fact, if we consider the Second
Order Volterra Model depicted in fig. 3, sinusoids at the

Higk)

Qcean surface

SAR
+
Spectrum

Spectrum

H2(k) Squarer

Fig. 3. Sccond Order Volterra Model

squarer output are quadratically phase coupled with the
input ones, and so the linear path cutput sinusoids and
the quadratic path output ones are quadratically phase
coupled (except for H,(k) and Ha(k) phase shifts, and
for this reason it would be betler to say ”phase coher-
ent™). This kind of nonlinear model has been widely
studied in Schetzen (1980), and applied for nonlinear
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wave interactions in plasma (Kim and Powers, 1988,
1979). But for each pair (ki,%z), energy at the fre-
quency ki 4 kg, in the model in fig. 3 is the sum of the
energy provided by the linear path and by the quadratic
interaction of sinusoids of wavenumber &; and k,. In
order to estimate the energy passing through each part
(and so to give a level of nonlinearity), a useful quantity
is the bicoherence defined as:

Bky, k)
V/S(ky)-S(k2).S(ky + k2)

Pk, k) = (15)

where S(k} is the spectrum. In fact, ifi

X(i) = Ay cos(kii+ @1} + Az cos(kai + p2)
+ Az.cos((ky + k2). i+ p1 + p2) (16)
+ B.cos((ky + k2).i + @3) + N(i)

where ;li=1 2,3 are random phases, and since the third
order moment is only sensitive to phase coupling, then
the bicoherence is equal to:

As

Plky, k) = N

(17)

So the bicoherence gives an idea of the interaction be-
tween two waves in the observed signal. In this case, if
the signal is "linear” (i.e. produced by a linear combina-
tion of oscillators independent in magnitude and phase),
then the bicoherence is null. Contrary to a common
idea, the bicoherence can be greater than 1.0 {Raghu-
veer, 1990). In the more general case, if the signal is
assumed to be obtained by a linear combination of a
stochastic variable at different lags (and not by a har-
menic decomposition) the bicoherence is not equal to 0
but is flat. For instance, nonsymmetric noise driving a
linear system has a bicoherence equal to v3/v2 (va and
-z are respectively the third and sccond order moments
of the noise) over all the bifrequency domain. In the case
of (16}, because the bicoherence flatness is an indication
of system linearity, the bicoherence standard deviation
is a good nonlinearity estimator, as will be shown in
the last section. However several signal trials, with in-
dependent phases, are needed to detect phase coupling.
But generally only one realisation is available and, as we
will see in section 3, the solution is to divide the signal
into subsignals assuming the phase independence of the
Fourier coeflicients, for each realisation.

The Second Order Volterra Model described above can
be secen as a special case of nonlinear filters. If we con-
sider a general nonlinear transfer function where the
output depends on a finite number of input samples,
such as:

Y(E) = F(X(i—p ) X () ooy X(i-k %)) (18)

where p~, pt are 2D arrays of nonnegative integers and
assuming there exists a Taylor expansion of I, then:

Y (i) = F(0,...,0,...0)+
E GF(X (i =),y X(8), o X (i p))
. axX(i+ )

X+ k)

+ 19)
o~ PFXGE—p), .., X (), ...,X(1t+p*£))
22 aX (i + ) OX (i + K)

CX(EER) X+ E) +

where all partial derivative values are taken at the ori-
gin. Thus, such a model is a general nonlinear filter
approximation up to the second order. In this approx-
imation, nonlinearities of order higher than two will be
included in the linear part due to the blindness of the
third order moment to higher order phase coupling (Ni-
kias and Mendel, 1993). One of the main problems in-
volved with Higher Order Statistics remains the estima-
tion of these statistics. In the next section, we present in
the next section some 2D signal bispectrum estimators
and two conventional ones in particular.

3 2D signal bispectrum estimation

Bispectral estimators are divided into two classes in
the same way as spectral estimators are, a conventional
Fourier-typc class and a parametric one (Nikias and
Raghuveer, 1987; Nikias and Mendel, 1993; Nikias and
Petropulu, 1993, Chapter 4). The conventional class
i1s made up of two classical estimators (direct and in-
direct methods) based upon both definitions of section
2. The direct method consists in averaging the DFT
coefficients over all available signal trials, and possibly
a frequency smoothing which decreases the estimation
variance. This estimation mecthod has been initially de-
veloped for 2D signal in Chandran and Elgar {1990)
{without frequency averaging). If it is assumed that the
bispectrum is estimated over an (Ny)* grid and the odd
averaging window size is fixed to M., (M, = 2.J, + 1),
then the signal data length must be adjusted to L =
M, Ny, either by decreasing the signal length or by zero
padding. So for the nth centred signal realisation of fi-
nite length N2:

+J +J

B (ki ko) = > Y F(k1.My+j1 ) F (ke My+j2).
N=—Jdaja=—Jy (20)

F" (ki + ko). My + 51 + j2)



With:
(21)

Some direct submethods, not detalled in this paper, are
also described in Nikias and Raghuveer (1987); Nikias
and Mendel (1993); Nikias and Petropulu (1993), pp
132-147.

The indirect method (Higher Order Correlogram} s sim-
ply the finite Fourier Transform of the windowed third
order moment:

+da

k)= S W

ni=—dJdn ne=—Jn

(n1,n2). M3 {n),ns)

.e—j(k].ﬂ]-l-kg,ng) (22)

With
My, m0) = D Xal§)Xn(i+ n1) Xa(i + n2)
FES(M) (23)
And

S(M) = [sup(0, —nl, —n2),inf(N,N — nl, N —n)X
[sup(0, —ny, —n3), inf(N, N — n;,N - n;)] (24)

The four dimensional window 1s the product by itself of
a two dimensional window (Parzen, Optimal ...} used
for 1D signal bispectrum estimation, W?¥(n1,n2) =
WP (n;).Wi¥(ny), (Nikias and Raghuveer, 1987; Ni-
kias and Mendel, 1993; Nikias and Petropulu, 1993, pp
124-132). Furthermore, in all estimations presented be-
low only a simple 4D rectangular window was used.
Finally, for both methods, the bispectrum estirmation is
computcd by averaging all the bispectrum estimations
of the different trials,

(kl ky) = "k, ka) (25)

HME

where M denotes the number of realisations. The para-
metric class uscs a linear system identification from third
order moment lags and then computes the bispectrum
by triple product. However, the bispectrum estimation
by triple preduct does not always seem possible (Er-
dem and Tekalp, 1992). Some parametric estimators
work for bispectrum estimation and phase couphng de-
tection. For instance an AR model identification us-
ing Yule-Walker equations generalised to Higher Order
Statistics is described in Raghuveer and Nikias (1985).
Also, the ARMA model estimation is presented in Gian-
nakis and Swami (1988); Glannakis and Mendel (1990),
and an extension to 2D signal is presented in Le Caillec
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et al. (1995). Butl parametric estimators remain very
bad quantifiers and their use in nonlinearity detection
is troublesome. For these reasons, results presented in
the following section are based only upon conventional
estimators. The spectrum estimation needed for the bi-
coherence estimation is also based on classical spectrum
estimators. Consequently the biccherence is estimated
using either indirect method and correlogram or direct
method and periodogram. An important problem, spe-
cific to the 2D signal bispectrum, is the visualisation of
information contained in a 4D structure. For this rea-
son we have introduced bicoherence tables as described
in the following section.

4 Bicoherence tables (BTs)

In corder to summarise in 2D structures the information
contained in the bicoherence, we have defined the three
following Bicoherence Tables (B'Ts).

-Range Azimuth (RA) table:

2
Tralkl, k )—ZZ(P(k;,k;,kg, k2) - c) (26)
k2 K2
-Range Range (RR) table:
2
Trn(kL, k2) = ZZ(P(H kD, k2, k2) C) (27)
kLl k2

- Azimuth Azimuth (AA) table:

Taalk ZZ(

L 1

P(EL kL k2 K2) — 0)2 (28)

yr e vty

where ' would be the linear filter bicoherence value,
which would have been equal to 0 in our signal decompo-
sition assumption if we had dealt with an infinite num-
ber of trials. Because this number is finite the bicoher-
ence is not equal to 0 when there is no phase coupling,
but has a mean of about 0.20 for sixteen realisations
(the number which has been used in our simulations).
In order to take into account this relevant problem, C
has been fixed to 0.20 and all bicoherence values under
this mean have not been used for BT computation. This
issue of the number of realisations is discussed again in
the conclusion. What is the ”"physical” interpretation
of these BTs 7 The RA table gives the amount of in-
teraction of wave k; with the other spectrum waves.
The RR and AA tables give the interaction between the
waves located on the axis k, = ki (resp k, = k}) with
the waves located along the axis k, = k2 (resp ky = k7).
These tables give the amount of intera.ction along the co-
ordinates axis and can be seen as 1D signal biccherence.
It must be noted that these BTs do not have the same
symmelry relations as the bispectrum (a plane in the
bispectrum coordinates is not necessarily transformed
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Fig. 4. Phase coupling detection (both methods)

into a parallel plane by symmetry), but some basic re-
lations are always valid. These BTs are a first step to
locating nonlinearities, but a finer analysis can only be
made with the bicoherence, In order to understand how
these BTs work, some examples are related in the next
section.

5 Results and Discussion

Initially, the bispectrum was estimated over a [64]? grid
{size due to memory limitations) for both methods. In
order to calculate a more accurate estimation for sea
surface bispectrum, we computed it over the same num-
ber of frequency samples, but using a normalised fre-
quency range equal to [-0.25, 0.25] instead of [-0.5, 0.5]
(the normalised frequency is usually defined as the real
frequency divided by the sampling frequency). For the
indirect method, the bispectrum computation on such
a support would have needed, a third order moment
estimation over [128]* lags which is impossible due to
memory limitations. So for sea surfaces (simulated or
not), only the direct method is available for the time
being. For the tests performed on simulated images, six-
teen [128)X[128] independent trials were generated. For
ERS-1 images, sixteen [128]X[128] subsets were taken
from the [256] X [512] imagette (with consequently some
overlapping), and were assumed to be independent sig-
nal trials (point which we will discuss in the conclu-
sion). In order to avoid incoherent values, only the
points where \/5(k1).5(k2).S(k1 + ko) was greater than
10% of the maxirmum value of this squared root triple
product were taken into account to compute the bico-
herence.

5.1 Simulated 213 Second Order Volterra Models

In this first subsection, three examples are provided.
The first one is only made up of waves with phase cou-
pling. The next two examples are the output of a Second
Order Volterra model, without filtering in the second ex-
ample and partial filtering in the third onc.

First example: Phase coupled sinusoids
The first signal is made up of four waves, the third wave

being phasc coupled with the first two and the [ourth
being without phase coupling, i.e. by taking the nota-
tions of (16) Aj=Ay=As=1, B=2,k; = (n/2,0), ks =
{0,7/4). BTs are presented (fig. 4) for the whole bis-
pectrum cstimation (both methods providing the same
results), and we can find non null values, for the planc in-
chuding the point (7/2,0,0, 7/4),i.e. the points (0, r/4},
(7/2,0), {r/2,7/4) in the RA table (consequently the per-
fect symmetry between the three sinusoids is retrieved).
Non nuil values are also found at point (7/2,0) (resp
(m/4,0)) and their bispectral symmetric points in the
R table (resp the AA table). I'or this signal, in or-
der to estimate the bispectrum variance, the bispectrum
was estimated from ten different sets of sixteen indepen-
dent realisations. For the non null bispectrumn compo-
nents, we obtain 0.254 4+ 0.065 (the theoretical value is
2/8 =10.25). The result is satisfactory but other tests
with noisy data remain to be made. In order to well
explain how bicoherence, and BTs work we simulated
some nonlinear interactions on a morc complicated sig-
nal.

Second example: Complete "nonlinear” signal
In this example, we considered a signal with a [inite
bandwidth spectrum.

(s =0ifk ¢ M = +[B?, BE|X[BY, BY]  (29)

where (; 1s real and nonnegative (as in (1)}. We chose
in this case a Pierson-Moskowitz spectrum, multiplied
by Hasselmann’s spreading function introduced in Has-
selmann et al. (1985), in order to simulate a sea surlace
(Mastin et al., 1987). The angle between the wind pa-
rameter direction ({/1n) and the range axis is equal to
45° and the wind speed equals 15 ms~!. The range
resolution was set equal to 16 m and the azimuth reso-
lution to 20 m (as for ERS-1). The result of the simu-
lated spectrum is reported in fig. 6, and the simulated
image (deduced from the squared root spectrum with
random phases) is shown in fig. 5. A nonlinear signal
was generated from this original signal by squaring it
and by multiplying the squared signal by a coefficient
a (& = 6.107%) in order to keep the same order of mag-
nitude for the original and the squared spectra (it is
equivalent in fig. 3 to reducing Hf;(k} and Ha(k) to all-
pass filters). The [inal nonlinear image (fig. 7) results
from the sum of the original signal and the multiplied
squared signal. Its spectrum (fig. 8) is split into three
parts, a medium wavelength spectrum provided by the
original signal (in our case about 200 meters)

G € M = £[Bf, B{|X(BY, BY] (30)

a long wavelengths spectrum oblained by "destructive”
interactions between the waves,

(i€ L = [Bf ~ By, Bf — B{]X[BY - BY, B} - B(?]
31)



Fig. 5. Original signal

Fig. 6. Original signal spectrum

and a short wavelengths spectrum obtained by ”con-
structive” interactions

(e e S ==£[2%BY 2% BIX[2% BY,2x BY] (32)

as shown in fig. 8. For short wavelengths, the magnitude
expression 1s equal to

se _ & j(PntPr—n
=3 ;Cn.@_n_ey(w Pr—n) (33)
and the spectrum:

2

2 sc(scCy* a
S (AR)? = BIGEG)} = 5 30 B{(GnGemn)?)
- (34)
(Z in the following of this section denotes the 2D sum-

mation over the spectrum bandwidth), and for the long
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Fig. 7. Final signal
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Fig. 8. Final signal spectrum
wavelengths
d a j n n
sd = _Q_ch,gﬂn.eﬂw on) (35)
n
and

o?
S(k)-(Ak)? = B{GAGY) = 2 E{(cn.ck+n>(2§6)

Consequently, ¢(§¢ and (§° are complex values. Because
by quadratic filtering, the same energy is spread over the
long and short waves, and also because the short wave-
length spectrum bandwidth is smaller than the long fre-
quency spectrum bandwidth, the short frequency mag-
nitude is lower than the long frequency magnitude, as
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can be seen in fig. 8. The nonlinear image bispectrum
shows several phenomena which can be divided into two
classes: the primary phase coherency phenomena and
the secondary ones.

The Primary Phase Coherency Phenomena
(PPCP) are only those phenomena implying a phase
coupling between two waves and a third wave being gen-
erated by the interaction of the first two waves. Such a
phenomenon occurs for:

B(L M) B(M,M) B(S, M)

Where L denotes a wave included in the long wave spec-
trum (31), 5 is a wave included in the short wave spec-
trum (32) and M is an original wave spectrum (30).
For instance, in the first case, the bispectrum is equal
to:

Blb1 ko) (AR = S E{G, €% Gy € ¥22 (GE1,)7)
= %E{(Ckl'ckz)g} (37)

and then, assuming that € = 0, for an ideal infinite
number of trials:

E{Cry Cro }
> E{{Gn Chuan)?}

Py, k) = (38)

In this case we must notice that

Tra(k)) =D P(ki,ks) = 1 (39)
k2

and the coefficient a does not interfere in the biccher-
ence calculation.

The Secondary Phase Coherency Phenomena
(SPCP) occur between waves not bound by a quadratic
interaction. These phenomena can be found for:

B(S,5), B(L,S), B(L,L)

In each of these three cases, the waves have unot inter-
acted or have not been generated by interactions of the
other two waves, but by considering:

GecE) = —Zch Gt Citymn Ciepeorr €7 (40)

with

© = Pn — Pt + Phion — Phyon (41)
Assuming that n =n’ then ¢ =g, — wr,—n. But
(ki1 —n) € M and (ks —n) € M, so these waves have

destructively interacted at the frequency k; — ks and

consequently the phase of a term of the sum is equal to
Pki—n — Pky—n (see (35)). Then

B(ki — ka, k1).(AR)® = BE{(3%_,, GRG0} =

61‘3
T 2 Bl Guon Gean)?} gy

and, assuming an ideal case (an infinite number of real-

isations) then P?(k; — ko, k1) = % with

A=) D B (cn.ck,_n.ck,_n)z}E{(gn,.gkl_n,,Ckﬂ,)(z})
7 n' 43

B=3"3" Sl Crron)?} - E{(CrrCramnr) ).

E{¢nn Chymkatnrr)?} (44)

Unfortunately this bicoherence expression does not give
a simple result in the BTs. This kind of phase coupling
occurs in the first and second cases B(S,S), B(L,S),
and does not imply original spectrum wave. Thus, if the
original spectrum has been totally removed, nonlinearity
detection would be still possible by these phenomena.
The third SPCP is similar, and by considering :

2 .
Gy (G = aj ZZ:Cn-Cn'-Ck1+n-Ckz+n’-ew (45)

with
@ = —Pn T Pn' T Pkyidn — Photn’ (46)

assmning that n =/, then ¢ = Yr,4n — Pe,4n. But
Ey+ne M, ks+ne M, so these waves have destruc-
tively interacted at kq — k1 so

Blks — k1, k1).(Ak)® = E{G9_,, G} =

3
T 2 B Gt Gestn)?) (47)

Thus, if the original spectrum has been totally removed,
nonlinearity detection would be still possible by these
phenomena. The third SPCP is similar and by consid-
ering :

2
5 sdy* o i
Ck(li( k:) =7 E E Cri-Cnr Crydn Cegns €77 (48)
n n’!

with

P = —¥nt Pa' + Phidn — Phatn’ (49)



Fig. 9. Range-Azimuth Table
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Assming that n =n', then ¢ = vk, 4n — Pk, 4n. But
ki+n € M, ko +n € M, so these waves have destruc-
tively interacted at ko — kq so

B(ks — ki, k1).(Ak)® = B{G_,, GA(GY)*) =

T 2 ElGrGeren Ceatn)) (50

and Pz(k'g — kl,kl) = %

A:ZZE{ (Cn -Ck1+n -Ck#n)z}E{(Cn’Ckﬁ-n’ Ck;r{*n’)z} )
n n’ 51

b= Z Z Z E{(¢n-Chrn)?} - E{(Car Chyant)?}

E{(Cﬂ” 'Ckz—k1+n”)2 (52)

As the previous phenomenon, this one does not imply
the original wave spectrum, and would occur even if
waves from the original spectrum were missing. In order
to verify our theory we computed the three BTs for the
nonlinear signal. On the RA table (fig. 9) all spectrum
frequencies give a non null bicoherence, for the reason
that they have all interacted in the nonlinear process.
This table must not be confused with the spectrum as is
seen in the following subsection. In the AA and RR ta-
bles (fig. 10-11), primary and secondary phase coupling
phenomena are clearly separated, the secondary ones
being the strongest. In order to compare ”linear” and
"nonlinear” signals, we computed the BTs for a signal
having the same spectrum as the nonlinear signal (ran-
dom phases have been added to the squared signal for
each realisation). The RA table for the ”linear” signal
(fig. 12) is much smaller than the ”nonlinear” one (fig.
9) and the separation between both signals can easily be
made. The next section is devoted to the study of BT
behaviour in the case of partial filtering of the original
or of the squared signal.

Third example: Filtered "nonlinear” signal

The first example is to verify the SPCP existence. So
we totally removed the original spectrum and only the
phase coupling between short and long waves is possi-
ble. The RA table has the same order of magnitude as
the complete "nonlinear” signal RA table (fig. 9, fig.
12 and fig. 13 are represented with the same grey level
scale), thus proving that these phenomena exist and are
very strong. The RR and AA tables (not shown in this
paper) are composed only of SPCP present in fig. 10-11.
In order to verify that the RA table and the spectrum
can contain very different patterns, Ho(k) (see fig. 3)
was designed in order to have a very narrow pass-band
(consequently few waves interact). The spectrum (fig.

Fig. 13. Range-Azimuth Table of the "nonlinear” signal
without original spectrum

14) is composed of three parts, the large original spec-
trum and two narrow and weaker spectra generated by
interactions. The RA table (fig. 14) contains three equal
parts, having the same order of magnitude (because the
BTs measure the amount of nonlinearity which is equal
for waves created by interaction or having interacted)
and the same bandwidth (the waves which have not in-
teracted being removed). In the SAR imaging process,
nonlinearities are assumed to be oriented along the az-
imuth axis. To simulate such behaviour, the squared
signal was filtered with a 2D directional filter (an all-
pass filter along one axis and a low-pass filter, with a
very low cut-off frequency k.,, along the other axis).
The spectrum is shown in fig. 15. If the waves travel
along the nonlinear axis (90° from the horizontal axis),
then the linear axis table (RR in this case) contains a
strong peak around the continuous component whereas
the nonlinear axis table is almost null (fig. 16). This
pattern is easily explained because the bicoherence is
high for (kz,ky) € [—0.5,0.5)X[—keo, keo]. It is then
logical that the summation of the squared bicoherence
over ky (k, fixed) is higher than for a summation over
k.. When the waves travel far from the nonlinear axis
then BTs are almost null (only estimation errors provide
non null values). From this example we may conclude
that when there are a linear axis and a nonlinear one,
the stronger bicoherence values are located near the con-
tinuous component of the linear axis table.

The BTs constitute a useful tool to analyse the non-
linearity contained in a 2D signal. Their application is



Fig. 14. Filtered signal RA table (left) and spectrum
(right)

not easy, but they allow the information contained in
the 4D bicoherence to be summarised. The main bi-
coherence disadvantage is its strong dependence on the
number of realisations, and its estimation can provide a
rather high amount of nonlinearity even when there is no
phase coupling in the signal. In the second subsection,
BTs obtained on SAR images are analysed.

5.2 ERS-1 SAR images

The validity of the quadratic approximation has been al-
ready tested for several nonlinear models. For instance
a monochromatic signal of pulsation w passing through
an exponential system generates ”spurious” components
at 0, 2.w, 3.w, -+, and the magnitudes of these com-
ponents are asymptotically equal, even if component w
remains the strongest after the continuous component
(Garello and Le Caillec, 1996). The nonlinear mapping
SAR process has also been decomposed into a Second
Order Volterra Model and first results are related in (Le
Caillec et al., 1996). These results show, for realistic
significant wave heights of the sea surface, rather good
agreement between the spectrum and the BTs of a com-
plete nonlinear SAR process and the spectrum and the
BTs of the quadratic approximation of this process. We
present here the results for five typical images, the char-
acteristics of which can be found in table 1 (Day, hour
latitude, longitude, estimated dominant wavelength in
meters DW | estimated azimuth cut-off in meters ACO,

Nbr 1 2 3 4 5
Day| 6 Oct. 93 8 Oct. 93 5 Oct. 93 2 Oct. 93 30 Sep. 93|
Hour| 23:39:36 13:15:26 0:41:02 0:43:50 23:35:27
Lat. 24.72 3.09 18.34 48.51 50.62
Long| 341.18 316.85 326.81 320.32 336.80
DW 345 294 101 94 227
ACO 221 142 232 3175 413
Max| 177 62.7 77.8 75.3 6.4

Table 1. Image data
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Fig. 15. Directionally filtered signal spectrum

BT maximum value Max.)

Image 1 (fig. 18) This image contains a dominant wave
travelling in the azimuth direction. The RA table and
the spectrum are similar and the BT maximum value
is rather low (see table 1). The AA table shows a
pattern made up of two sets of symmetric peaks, lo-
cated respectively at (0, M) and (M, M). The pattern,
except for secondary phase coupling phenomena, is a
similar pattern to the one in fig 10-11. By considering
all \/S(k1).S(k2).S(k1 + ko) greater than 2%, the sec-
ondary phase coupling phenomena does not appear but
lines along 27/kL? ~ 400m (and its symmetric lines)
appear in the AA table and 27 /k,* ~ Om (and its sym-
metric lines) appear in the RR table (see fig 18). But
these lines are due only to the fact that the highest
frequency components are located about these wave-
lengths and that we deal with a finite number of re-
alisations. However, a more accurate study of the bi-
coherence shows high bicoherence values for spectrum
components about 350 m. The nonlinear interactions
would occur for wave components about 170 m. These
components have been removed by the azimuth cut-off.
For this reason, nonlinearity detection for ”construc-
tive” interactions remains difficult. However, because
of the lack of destructive interactions and SPCP, we
can conclude that this image does not contain classi-
cal quadratic interactions produced by a Second Order
Volterra Model. The lack of nonlinearity can be par-
tially explained by the fact that the short waves, which
would have been generated by interactions, have been
removed by the azimuth cut-off and the long waves by
a high pass filter inherent to quadratic interactions (Le
Caillec et al., 1996).

Image 2 (fig. 19) In this image, there are no great dif-
ferences between the RA table and the spectrum either.
Only some small parts are darker, and especially a peak
around 500m in the azimuth direction (by taking into
account all the triple product values greater than 2%
this peak becomes stronger than the one about 300m).
A study of the bicoherence shows unusually high nonlin-
earity rates, especially between the waves about 500m,
proving the existence of a nonlinear phenomenon for
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Fig. 16. Directionally filtered RR (left) and AA (right)
tables

these waves.

Image 3 (fig. 20) The relevant information is that the
RA table and the spectrum are different. In particu-
lar, the waves travelling in the azimuth direction have a
greater bicoherence whereas those travelling in the range
show few interactions, even for a bicoherence computa-
tion over the whole support. Consequently, only one of
the two dominant wave sets has interacted, which is the
one that propagates in the azimuth direction. The other
relevant information is:

-Firstly, the components which have interacted less are
those with 27r/kL1’2 = 0 (i.e. along the range axis), whe-
reas those having the same projection onto the azimuth
axis (k1 = k2) have the strongest interactions. This ob-
servation agrees with the classical velocity bunching the-
ory which states that a linear phenomenon is provided
when waves travel in the range direction.

-Secondly, the AA table is stronger than the RR one,
especially for long waves, proving that the azimuth axis
1s more relevant than the other in the nonlinear process.
Image 4 (fig. 21) The conclusions are similar to those
of the previous image, but the computed difference of
the amount of nonlinearity between the two wave sets
is smaller, perhaps because the wave magnitude in the
azimuth direction is lower.

Image 5 (fig. 22) Few nonlinear interactions are de-
tected, but these BTs show similar patterns as those
contained for the BTs of fig. 22. However waves with
such a long crest line are not observed in the open sea.
The mapping mechanism of this image is not easy to
understand and seems to be nonlinear. The lack of non-
linearity detection is perhaps due to blurring of higher
order nonlinearities. '

In order to summarise the information collected from
these images we can conclude that, even if the dominant
wavelength is near the range axis, quadratic nonlinear-
ities can occur (images 3,4). Whereas when the waves
propagate in the azimuth direction, the image does not
contain any apparent quadratic nonlinearity (image 1-
2), thus proving that the quadratic approximation is
not suitable in this case for the complete nonlinear SAR

Fig. 17. Image 1 AA table (left) and RR table (right)

process. Also, it has been established that the strongest
interactions occur for waves having the same azimuth
wavenumber projection, whilst the components near the
range axis interact the least. The frequencies with the
highest amount of phase coupling have a wavelength be-
tween 200-300 meters. The SAR mapping (leading to
the SAR spectrum of (6)) decomposition on a Second
Order Volterra Model given in Le Caillec et al. (1996),
shows that the quadratic interactions are both low-pass
and high-pass filtered. The low pass filtering is the well-
known azimuth cut-off which acts on nonlinear and lin-
ear components, but the quadratic waves are also high-
pass filtered, because by expending the exponential in
(5) the quadratic interactions are multiplied by k. This
implies that these interactions (but also higher order
nonlinear interactions) are removed near the range axis
as observed for image 3-4. Consequently, quadratic in-
teractions can only be found in an azimuth frequency
band around 300m (as noticed for image 3-4). More-
over ”destructive” quadratic interactions can be located
in this band only if the original spectrum is close to the
range axis. The waves (ky, ky) and (—kg, ky), assuming
that k. is fairly small, have significant frequency com-
ponents and their ”destructive” interactions are located
at (—2.k;,0), and these interactions are consequently in
the frequency band where quadratic nonlinearities are
not filtered. ”Constructive” interactions have too high
wavelengths to be detected. However due to the weak-
ness of the nonlinear components in this case, the as-
sumption of a linear system when the waves travel in
the range direction is a good approximation. In other
cases, where the original sea surface spectrum is not
close to the range axis, both constructive and destruc-
tive interactions are removed (respectively by the high
pass filtering inherent to the quadratic interactions and
by the azimuth smearing). For this reason, images where
the dominant waves are in the azimuth direction contain
few quadratic interactions. However two remarks must
be formulated:

-The first one is that, if the significant wave height (and
consequently the displacement) becomes too high, the
original spectrum can be removed (by the azimuth
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Fig. 20. Image 3, spectrum (upper left), RA table (upper right), RR table (lower left), AA table (lower right)
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Fig. 21. Image 4, spectrum (upper left), RA table (upper right), RR table (lower left), AA table (lower right)
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smearing) and the destructive interaction frequency com-
ponents can exceed those of the original filtered sea sur-
face spectrum. The resulting SAR spectrum is located
near the range axis (Bruning found such results in Brun-
ing et al. (1990)).

-Sccondly, our method seems to fail in an apparently
nonlinear casc (image 5), without any convincing ex-
planation. Consequently the mechanism leading to the
Fourier coefficient expression of (5) and to the spectrum
of (6) agrces with results found both on real and simu-
lated SAR images, but a mechanism such as that of fig
22, remains to be analysed.

6 Conclusion

In this paper, we have presented a way to detect non-
linearities or at least their quadratic approximation for
2D signals and more specifically for SAR images of the
ocean surface. For that purpose we have shown that
HOS methods were very powerful tools and we have de-
veloped one of the possible bispectrum (or bicoherence)
estimations in order to analyse the images. We have
particularly put the emphasis on the quantification of
the amount of nonlinearity present ai given frequencies
on the images and introduced the bicoherence standard
deviation and bicoherence tables in order to visualise
and synthesisc the information contained in a 4D form.
This latter tool is very well adapted for the detection
and localisation of nonlinearities as was shown in our
simulation using a 2D Second Order Volterra Model.
Besides, the tables of bicoherence are particularly inter-
esting if used in the context of SAR images, i.e. for 2D
signals that are naturally divided along two preferrcd
axes (range and azimuth). We were then able to de-
tect the amount of nonlinearity provided by the cou-
pling of frequencies in cither the range or the azimuth
directions or between these two directions. For instance,
the Range-Azimuth table provides a fast localisation of
the nonlinearity interactions and a possible estimation
of their strength when compared to the image spectrum.
We demonstrated on the simulations that it was not only
possible to detect frequencies created by nonlinear inter-
actions between two waves present on the input spec-
trum (and referred to Primary Phase Cohcrence Phe-
nomena, PPCP), but furthermore, that we were able
to detect the existence of a second level of phase cou-
pling (referred as Secondary Phase Coherence Phenom-
ena, SPCP) between waves having no nonlinear interac-
tioms in the original (input) spectrum. Indeed we noted
the appearance of frequencies gencrated at the first level
{PTCP), 1.e. by waves existing in the input spectrum,
and presenting a strong amount of phase coupling giving
rise to another level (SPCP) of nonlinearities between
thern.

The SPCP are very relevant due to the fact that they
allow a possible discrimination between the two cases
where i) the bicohcrence eslimation yields a non zero
result due to the finite number of realisations used and
ii) a nonlinear phenomencn is present but weak.

This 1s the first time that such a phenomenon is pre-
dicted and observed on simulations. Iu Le Caillec et al.
(1996) we have shown that on real SAR images these
nonlinearities are constrained by different filtering ef-
fects (azimuth cut-off, ...}, implying that the mecha-

nisms developed for setting equation (6) is correct. Nev-
ertheless equation 56) does not contain information on
the localisation and on the strength of the nonlineari-
ties which can be only obtained by using Higher Order
Spectra. We have especially shown that nonlinearities
occur mainly when the waves travel in the range direc-
tion, but they generate rather weak components, and
that the interactions are filtered for other wave propa-
gation directions. Higher Order Spectra (and the BTs
which are the more complete version for 2D signals) are
powerful tools for dealing with nonlinear signals and sys-
tems, but they have two main limitations.

- Firstly, the limited and generally small number of real-
isations can induce false noniinearity detection or avoid
it if the "nonlinear” component bicoherence amount is
too weak and consequently blurred into a misestimated
amount of bicoherence. By using the statistics of a mod-
ified bicoherence (and more especially the tail of the dis-
tribution}, we can detect phase coupling with few or non
independent realisations {Garello and Le Caillec, 1996).
The independence of the subsets of the ERS-1 images
has been verified by a similar method (Garello and Le
Caillec, 1996).

-Secondly, classical phase coupling detection can fail for
non passive systems. For instance, if the signal of (12)
is shifted in frequency by dk, then classical phase cou-
pling detection using the bispecirum does not work for
the triplet ki + 6k, ko + 8k, by + ko +8k. A sclution,
using the Third Order Wigner-Ville Transform, to de-
tect shifted phase coupling, i1s provided in Le Caillec and
Garello (1996}. As previously mentioned, even if all re-
sults are not easy to explain, SAR simulations which arc
presently underway will help understand the working of
the SAR image process and of its second order approxi-
mation. Morcover, it will be possible in our futurc work
to include the trispectrum in order to take into account
cubic nonlinearities, Even if using the bispectrum can-
not always provide definitive answers, due to its capacity
to separate the coherent backscattering (wave modula-
tion}) from the incoherent one (speckle noise), it remains
a prospective tool for removing noise.
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