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Abstract. We study theoretically the physical origin of
the proposed discrete scale invariance of earthquake pro-
cesses, at the origin of the universal log-periodic correc-
tions to scaling, recently discovered in regional seismic
activity (Sornette and Sammis (1995)). The discrete
scaling symmetries which may be present at smaller
scales are shown to be robust on a global scale with
respect to disorder. Furthermore, a single complex ex-
ponent is sufficient in practice to capture the essential
properties of the leading correction to scaling, whose
real part may be renormalized by disorder, and thus be
specific to the system. We then propose a new mech-
anism for discrete scale invariance, based on the inter-
play between dynamics and disorder. The existence of
non-linear corrections to the renormalization group flow
implies that an earthquake is not an isolated ”critical
point”, but is accompanied by an embedded set of ”criti-
cal points”, its foreshocks and any subsequent shocks for
which it may be a foreshock.

1 Introduction

A number of authors have proposed earthquake source
theories based on the concept of criticel points and using
the Renormalization Group (Chelidze (1982); Allegre et
al. (1982); Smalley et al. (1985); Sornette and Sor-
nette (1990); Tumarkin and Shnirman (1992); Newman
et al. (1993)). The usefulness of the renormalization
group is based on the scale invariance of the physi-
cal processes associated with earthquakes (Toulouse and
Pfeuty (1975); Wilson (1979)). This scale invariance
may be either continucus or discrete (a discrete scale
invariance means that only discrete rescalings are al-
lowed). The former case corresponds to standard ther-
modynamic critical points (Toulouse and Pfeuty (1975);
Amit (1984)) and ensures a wealth of well-behaved prop-
erties, such as the relevance of a single correlation length
and the fact that critical exponents are real numbers
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(Wallace and Zia (1975)). In the discrete case, new
properties are expected, such as multiple correlation
lengths and complex eritical exponents (Jona-Lasinio
(1975); Nauenberg (1975); Niemeijer and van Leeuwen
(1976); [Bessis et al. (1983)). All models viewing earth-
quakes as critical points fall into this latter class, since
they essentially assume an underlying discrete hierarchi-
cal geometrical structure (Keiis-Borok (1990)).

In (Sornette and Sammis (1995)), it has been shown
that this assumption of a discrete scale invariance has
a simple but potentially very important practical conse-
guence, namely the existence of "universal” log-periadic
corrections to scaling which had been previously over-
looked. The corresponding specific mathematical strue-
ture of the solution of the renormalization group can
account for many observed precursory seismic phenom-
ena, such as extended quiescence and intermediate term
regional foreshocks, and it suggests a new approach to
earthquake prediction. Since the existence of such cor-
rections to scaling rely fundamentally on the assumed
discrete scale invariance, an assumption shared by many
authors, it is important to explore its physical origin.
The simplest origin of discrete scale invariance is the
multi-scale geometrical organization of the crust (Keiis-
Borok (1990); Scholz (1990)). However, in contrast to
the geometrical structure underlying the simple models
developed for instance by (Chelidze (1982); Allégre et al.
(1982); Smalley et al. (1985); Tumarkin and Shnirman
(1992); Newman et al. (1993)), the hierarchical organi-
zation of the earth crust contains significant irregularity
and disorder. It is not a priori clear that this disorder
will not destroy, on larger scales, the discrete scale sym-
metries which may be present at smaller scales. Here, we
address this question theoretically and explore the gen-
erality and robustness with respect to disorder of the
universal log-periodic corrections to scaling which de-
rive from the discrete scale invariance. Furthermore, we
show quite generally that a single complex exponent is
sufficient in practice to capture the essential properties



of the leading log-periodic correction to scaling, whose
real part may be renormalized by disorder, and thus be
specific to the system. The universal existence of such
corrections to scaling is thus not in contradiction with
the specificity of their structure, thus providing poten-
tially useful genuine fingerprints of a given system.

Is the existence of an underlying hierarchical geomet-
rical structure the only mechanism to generate discrete
scale invariance? We suggest that the answer is nega-
tive and propose a new mechanism for discrete scale in-
variance, based on the interplay between dynamics and
disorder. In other words, this means that a suitable
diffusion-like process occurring within a system charac-
terized by uncorrelated disorder creates characteristic
times (and spatial scales) spontaneously, which follow

approximately a geometrical series, hence the discrete’

scale invariance. This idea parallels the demonstration
of a spontaneous formation of fractal fault structures by
repeated earthquakes in an elastic plate with uncorre-
lated disorder (Cowie et al. (1993); Miltenberger et al.
(1993); Sornette et al. (1994)). These fractal faults turn
out to be optimal structures of the disorder in a certain
sense, which shows that even an uncorrelated hetero-
geneity contains the seed for large scale self-similar or-
ganization in the presence of a suitable dynamics.

Finally, we briefly outline how the renormalization
group formalism, nsed beyond the linear approximation,
provides a global description on a same footing, not only
of a single large earthquake modelled as a critical point,
but also of the set of its precursors and following earth-
quakes for which it may be a foreshock.

2 Renormalization group formalism of discrete
scale invariance in random systems

2.1 Ordered case

The renormalization group (RG) formalism amounts ba-
sically to a decomposition of the general problem of
finding the behavior of a large number of interacting
elements into a succession of simple problems with a
smaller number of elements, possessing effective proper-
ties which vary with the scale of observation (Toulouse
and Pfeuty (1975); Wilson (1979)). We shall start from
the formalism used in (Sornette and Sammis (1995)) and
write a RG recursion relation expressing how a change
of scale with a finite scaling factor induces a change of
effective time distance to the time ¢y of the large event
(defined henceforth as the critical time of global (re-
gional) failure) and a scaling of the physical observable,
taken here as being the seismic energy €. Posing

z=1;—1

and

Flz)=«
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such that F is singular at the leading critical point = =
0, the most general discrete RG equation, for the case
of a single relevant control parameter z, reads

' = ¢(x), (1)

P(z) = g(z) + ﬁF(qﬁ(az)), (@)

The function ¢ is called the RG flow map, and g is
a constant describing the scaling of the seismic release
rate upon the discrete time rescaling (1).

The function g(z) represents the non-singular part of
the function F(x). We assume as usual that the func-
tion F(x) is continuous and that ¢(x) is differentiable.
Let us recall that the critical peint(s) is (are) described
mathematically as the time(s) at which F(&) becomes
singular, i.e. when there exists a finite k-th derivative

d%}ﬂ which becomes infinite at the singular peint(s).
Close to such a singularity, F(x) can be expanded as a
powerlaw whose (critical) exponent provides the scaling
law for the physical observable.

The formal sclution of eq.(2) is obtained by consider-
ing the following definitions:

fo(z) = g(x),

and
fari(2) = g(2) + ifn ()], n=012..

It is easy to show (by induction) that

Ja(x) = Zn: %9 [ff’(i) (a:)] , n>0.
=0

Here, we have used superscripts in the form ‘(n)’ to des-
ignate composition, i.e.

oP(z) = ¢ [0 (2)];
#9(2) = ¢ [#9 (2)]
etc. Tt naturally follows that

lim f.(z) = F(z),

P@=3 o690 @), ®)

Note that the power of the RG analysis is to recon-
struct the nature of the critical singularities from the
embedding of scales, z.e. from the knowledge of the
non-singular part g(z) of the observable and the flow
map ¢(2) describing the effect of the change of scale on
the control parameter {(here the time to rupture). The
connection between this formalism and the critical point
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problem stems from the fact that the critical points cor-
respond to the unstable fixed points of the RG flow ¢(z).
Indeed, as in standard phase transitions, a singular be-
havior emerges from the infinite sum of analytic terms,
describing the solution for the observable F(x), if the
absolute value of the eigenvalue A defined by

d¢
A= o le=gte)

becomes larger than 1, in other words, if the mapping
¢ becomes unstable by iteration at the corresponding
(critical) fixed point (the fixed point condition ensuring
that it is the same number appearing in the argument
of g(.) in the series). In this case, the ith term in the
series for the kth derivative of F(z) at the fixed point

will be proportional to
AEN
(%)

giving rise to a divergence for sufficiently large &, hence
the singular behavior.

Thus, the qualitative behavior of the critical peints
and the corresponding critical exponents can be simply
deduced from the structure of the RG flow ¢(z). If2 =0
denotes a fixed point (¢(0) = 0) and é(z) = Az + ... is
the corresponding linearized transformation, then the
solution of eq.(2) close to # = 0 is given by

F(z)~ 2™,
with \m
=1,
7
ylelding the real critical exponent
_ Logu
m= Logh’

However, one has the identity 1 = ¢*?" with n being an
integer, showing that a series of solutions appear with
complex exponents

my, = m+ infl,
where

2
Q= .
Logh

Since
Re [me"n] = r™eos(nQLogz),

physically, the complex critical exponents describe oscil-
lations decorating the asymptotic powerlaw F(z) ~ ™.
It is important to stress again that these Log-periodic
correction to scaling stem from the discreteness of the
RG equations (1) and (2), i.e. one goes from a time ?
to another time ¢ which is obtained by a finite {and not
an infinitely small) rescaling of {. This is intended to

capture the existence of a discrete scaling invariance in
the system.

In full generality, the previous discussion shows that
the general solution to the RG equations consists in a
set of complex critical exponents, corresponding to the
different term in the Fourier expansion of the most gen-
eral solution. We now present a formalim which shows
that only the first complex exponent n = 1 needs to be
taken into account in practice, thus justifying the fitting
procedure used in (Sornette and Sammis (1995)). Let
us introduce the Mellin transform

F(s) = /000 F(z)x*tdz.

Transforming expression (3) in the linear approximation
yields

- . ’J)\"
F(s) = g(s)m;

where §(s) is the Mellin transform of g(z). Then F(z)
follows from the inverse Mellin transform

etion .
F(z)= / F(s)z™ ds,
c—$00

which shows, by the Cauchy theorem, that F(z) is the
sum of terms £~ *rete with amplitude given by the residues

Logk '

where $,,/. satisfies
pATrote = ]

whose solutions have already been given above (spor =
—my,).

In order to make further progress, one has to specify
g(z). We assume the general form

N
g‘(ﬂ?) = LOQ‘(Z G.p.'ﬂp),
p=0

which corresponds typically to the form of the free en-
ergy of a cluster of interacting systems. Writing

gapxp = 1:[((33 — )2+ yf)

since all roots should be complex, the Mellin transform
of g(x) involves the sum of the Mellin transform of terms

Log ((;1: — ;) + y_?)fv Log(1 + 2zcost + %),
with ¢ real, ie.

2w cosst

/ da:::’“lLog(l + 2rcost + 352) =
0

s sinws’



for |[t| < 7 and —1 < Re(s) < 0 . The amplitude of a
given pole
Spale = —m + infd

is thus proportional to

1 eos(m — inQ)t
m — in} sin{m — in{)7

| —~ E—nﬂ(x—t)_

The amplitude of the second correction (n = 2) com-
pared to the first one {n = 1) is thus of order

x?
e)z:ngx(l_%)_

For A =~ 3 (Sornette and Sammis (1995)) and for a typ-
ical value ¢ ~ 1, this is of order 107%. The decay is
much slower (as n™!) only when ¢ is very close to 7, but
this case should be exceptional. This thus justifies using
only the first correction to scaling corresponding to

my = m+ 180,

and neglect higher terms n > 1, as done in (Sornetie and
Sammis (1995)). Of course the linear approximation
becomes invalid for large values of the index 7 in the
series (3), so the previous discussion must be taken with
same caution. However numerical studies indicate that
its main result is qualitatively correct ([Derrida et al.

{1983)).
2.2 Random systems

We now analyze the robustness of this above RG anal-
ysis with respect to disorder in the discrete scale in-
variance. We consider the simplest model with disorder
which consists in replacing

(69 = Zoxa)

p K

in eq.(3) by

1
,-;9 ((H Aj )ﬂ?) :
Hj:l Hi i=1

The p;’s and A;’s are random numbers deseribing the
fluctuations of the scaling and of the flow map at each
iteration. Taking such a random flow map at each iter-
ation corresponds to changing the scaling factor of the
RG decimation procedure, and therefore to describing
a hierarchical system with disorder on the scale factor
from cne level to the next of the hierarchical structure.
Note that this is different from the case of a hierarchical
system, such as the Bethe lattice, characterized by a sin-
gle scaling factor but on which each bond is carrying a
different random interaction. The sum in eq.(3) is then
replaced by

= |1+X) + X1 Xo+ X1 X9 X3+ ... ,
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where
1

Xy = ——.
HiA]

Noting
Sn =|1+X,+ Xan+1 + Xan+1Xn+2 +...1

one has )
F(s)
g(s)
Since the random variables X, are independently and
identically distributed,

=51 =14 X15.

< 81 »=< 53 >,

where < §,, > is the ensemble average of 5, over many
different randormn realizations. Since X; is independent
of 53, we get

1
<8 >= 1—<X1>’
1.e. )
F(s = §(§) —————.
O =00

The critical exponents s are given by the equation

—&

< >=1.

Note that we are locking for solutions s with a nega-
tive real part since the physical observable ¢ does not
diverge at the critical point, only its derivative i.e. seis-
mic rate diverge mathematically (in reality, this diver-
gence is rounded off at some finite level due to the finite
size of the earthquake). Thus, the average is dominated
by the large, even if rare, values of A.

The first consequence one can draw from this analy-
sis is that disorder suppresses the harmonics 5, = —m,,
found in the ordered case, since each different power s
gives a different weight in the ensemble average, ensur-
ing for instance that

< AMEIEE L AT s Z I

The fast decay of high harmonics found in the ordered
case is not modified by the disorder. There is another
interesting consequence of the disorder that we now an-
alyze. Let us assume for the sake of simplicity that the
disorder is only on the X’s. Consider the two leading
terms in the solution F{x). They corresponds to a first
leading powerlaw with real exponent m and a second
log-periodic term with exponent m’ + i§2. The two ex-
ponents are such that

<A S=g AR
since they both satisfy the pole equation

<A >=p
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(assuming here for the sake of pedagogy that y is not
random). Let us call p(A) the distribution of A. Then,

Re (< PUCRALIN ): / dAp(A)A™ cos(Q1Logh).
0]
Its modulus is less than

] ” dAp(A)A™
0
and from the above identity
<A™ =g ATHE
this implies

{m<m' if 4<A™> o g

dm!
m > m' in the reverse case

Therefore, depending on the specific form of the dis-
tribution p{A) of the RG flow map eigenvalues A, the
disorder leads to a renormalization of the real part of
the critical exponent.

As a first illustration, let us assume that p(}) is log-
normal. An explicit calculation shows that m’ > m
in this case. The reason for this is clear : a log-normal
distribution has a long tail towards large values and thus
the average is dominated by the large A’s, all the more so
when m’ gets greater. This is a case where the average is
an increasing function of m’, hence the result m < m’.
The concrete consequence for earthquakes, and other
relevant systems, is that the mathematical expression

used in fitting seismic activity (Sornette and Sammis
(1995)) should be replaced by

f(t) = A+B(tf _t)m'f‘C(tf _t)m'cos (Qﬂ.w.}.q})] ,

Logh

()
where the only difference is that the third term in the
r.hs. of eq.(4) has a new exponent m’ with m' > m,
which can be viewed as m renormalized by the disorder.
‘This result means that the relative strength of the log-
periodic correction compared to the first algebraic term
becomes smaller as ¢ approaches the time {; of the large
earthquake.

However, one must not completely rule out situations
where m' < m. Consider for instance an exponential
distribution

p(X) = ae™%,

Then
<A™ >=aTTT(1+m),

where T' is the Gamma function. One can then easily
show that m' < m if both exponents are smaller than a,
a condition which is realized for sufficiently small values
of ¢ and large values of a. There are even situations
where the disorder can completely kill the log-periodic
corrections, i.e. only purely real solutions satisfy the

pole equation < A™ >= u. The simplest example is the
powerlaw

B
P(A) =155
with 3 > 0. This leads to
m o P —1)
U

as the only solution. The physical interpretation is that
the distribution of scale factors from one level to the
next of the hierarchical structure is so broad as to de-
stroy the global discrete scale invariance, while recov-
ering an effective global continuous scale invariance at
large scales.

We should like to stress that these results hold in an
average sense, i.¢. after averaging the measured quan-
tities over many disordered configurations. However,
when studying specific disordered systems, one expects
fluctuations for the m and m’, from system to system.
In fact, we now show that these fluctuations are not self
averaging when going to large scales (Binder and Young
(1986)). To do this, we return to the equation

S =1+X,5

and calculate moments relevant to quantify fluctuations.
The mean square < S7 > is given by

1+ < X; >
(I- < X1 >)(1- < X2 >)’
which is different from < S >? as soon as < X? >¥<
X1 >2, Therefore the variance

AS =< 5% > — < 5 2

is non-vanishing, even in the large scale limit, which
concludes the proof of the non-self-averaging property.
The variance AS can be written as

<Xi>-<X; >
(1- < X1 >)H1-< X2 >)

< 8% >=

AS =
Since
1
l—-< X > !
this shows that the variance also exhibits a singularity
for <« X; >=1, which allows us to write

1
—1—<X1>

where 7 is a random variable of zerc mean and variance

< 51 >=

51 [1 + 7],

<XEi> - <X >?
<Xi>-1

At the singularity, < X; >= 1, which leads to < n? >=
1. This calculation shows that the non-self-averaging
property of the observable does not preclude the ob-
servation of the singularity which is well-defined at <«
X3 >=1; however the relative amplitude of the fluctu-
ations reach 100% at the critical point, thus providing
a possible new signature.

<n?>=




3 Interplay between dynamics and randomness
as a new mechanism of discrete scale invari-
ance

The previous discussion was based on discrete scale in-
variance, which might appear as a rather strong assump-
tion. We now want to show that such a property is in
fact a general consequence of disorder in the dynam-
ics. To make this clear, we consider the simplest model
where the divergence of ¢ = % is essentially put a pri-
ori, and concentrate on the generation of discrete scales.
It is possible although lengthy to devise models with
more complete features. Let us therefore assume that
the seismic release ¢ evolves as a dynamical process with
discrete changes. We envision this evolution as a kind of
discrete asymmetric random walk with transition rates
wy for an increase and w_ for a decrease. The model
does not describe the spatial degrees of freedom of the
crust but captures its global evolution. The existence
of quenched heterogeneity in the crust is captured by
assuming that for each value of ¢ corresponds a single
couple (wy,w_) of the transition rates. This assump-
tion is fundamental for the generation of an effective
discrete scale invariance and the associated log-periodic
correction to scaling, as we shall see. More precisely, we
assume that for each value ¢,

{(wy = u,w_ =(0) with probability p
(wy = u,w_ =2) with probability 1 — p

We shall denote the first case a ‘diode’ situation, since
the rate can only increase, while the second case corre-
sponds to a 'two-way’ flow. Finally we assume that the
evolution occurs itself at a rate

1

TR
up to the time of the large event. If p = 1, this model
simply produces the result

1

€T~ ——.
ty —t
We now show that the disorder renormalizes the expo-
nent, and introduces log-periodic corrections.
To do so, assume

U
- << l-p<<l.
v

The rate increases steadily for the ’diode’ (wy = v, w_ =
0) values and gets trapped for some times for the ’two-
way’ flow cases (w4 = u, w_ = v}, which, since % << 1,
behave almost as backward diodes. We first claim that
this system spontaneously generates a set of discrete
‘time’ scales. Let us ask what is the typical “time’ 7
needed for the rate to pass k adjacent 'two-way values’.
It is clear that in the limit 3 << 1,

k
v
e~ =) -
u
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Using the fact that the average separation between m-
tuples is approximately (1 — p)~™, if ¥ << (1 - p),
the typical ’time’ needed for the energy to go beyond
the first k-tuple of consecutive *two-way values’ is com-
pletely dominated by 7. One thus expects the rate as
a function of time’ to exhibit local minima at 7 = 7:
these are the time scales. Moreover the rate increase
during the ‘time’ 7 is completely dominated by the dis-
tance L from the origin to the first k-tuple of consecutive
‘two-way’ values, that goes like {1 — p)~*. This derives
from the condition

L(]‘ _p)k -~ 1:

writting that the probability (1 —p)* for the occurrence
of a k-tuple times the total number L of trials” is the
number of k-tuples; then the typical largest & in a L-
sequence is such that only one such event occurs among
the complete series, hence the condition. In the limit
where & << (1 —p) << 1, we can thus write the ap-
proximate renormalization group equation

€(r) & (1 - p)é(Ar) + g(7)

where we have set A = £ and g(7) is some regular func-
tion taking into account various local effects that correct
the main scaling. Because this RG equation can be writ-
ten only at scales which are powers of A, we are back to
the discrete scaling invariant case discussed in the first
sections. We see in particular that

€~ TS

with

_ Log(1-p)

~ Log(u/v)

Actually, this intuitive argument can be put on a firm
footing and has been confirmed in numerical simulations
and analytical treatment, carried on in other contexts
(Solomon (1975); Bernasconi and Schneiner (1983)), which
indeed confirms the existence of log-periodic oscillations
in the dependence of the energy as a function of time.
The range of parameters over which this holds is much
larger than suggested by this intuitive argument. More
precisely, as soon as

a=1-

u
s 1—p),
v<( p)
one finds B
) o ogT
~ TP
O P ogtur)”
where
_ Log(1-p)
Log(u/v)

and P is a periodic function of unit period. We thus
retrieve the general results obtained from the RG theory,
with the correspondance

)\:E
u
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and
pg= A1-p).

For earthquakes, one has ¢ &~ 1.4 and A &~ 3, corre-
sponding to p &2 .5 and u/v =2 1/3.

We think that this simple model provides a clearer
physical meaning to the scaling parameters A and u of
the renormalization group. We believe that this mecha-
nism for generating log-periodic oscillations, in terms of
an interplay between dynamics and quenched random-
ness, should apply to general situations in a suitable
range of parameters corresponding to a regime where
the dynamics is highly intermittent.

4 Non-linear correction to the renormalization
group flow : physical consequences

Up to now, we have mainly discussed the map ¢(z) in
the linear approximation arcund a singularity = = 0.
This corresponds to singling out a large event as the crit-
ical point. This seems rather arbitrary and one would
like a coherent theory to treat all significant earthquakes
on the same footing. Also, in the above picture,large
foreshocks are treated as oscillations or corrections, and
this is not satisfactory in view of their rather singnlar
character. Remarkably, the same renormalization group
formalism, once extended beyond the linear approxima-
tion, precisely cures these problems, showing the coher-
ence and aesthetics content of the theory in that it is ca-
pable of encompassing a large phenomenology with very
few ingredients. Let us get back to the RG equations
(1) and (2). So far we have just used local properties of
the map ¢ by assuming that z = (} is an unstable fixed
point. However, the global properties of ¢ also matter.
Quite generally, one can replace the map ¢é at next order
by
#(z) = Az — kz?,

which includes the leading non-linear term beyond the
first linear term expansion around the leading fixed point
at £ = 0. Without loosing generality, we can introduce
the reduced ”time” p

¥y= 3

in terms of which eq.(1) transforms into the well known
(Collet and Eckmann (1980)) logistic map

v = Ay(l—y).

Now, if A (whose absolute value is larger than 1) is larger
than 2, the second fixed point of y/(y) at y* = 1— £ be-
comes unstable. Then, this second unstable fixed point
is also a critical point which must make #(z) singular.
Moreaover, it 1s easy to see ([Derrida et al. (1983)) that
F(z) is also singular (i.e. critical) at all the pre-images
¢ (y*) (for n = 1 to +co) of y*, which accumulate
geometrically towards @ = 0, and therefore are equally
spaced on a logarithmic scale. The singularities at these

preimages correspond precisely to the extrema of the
log-periodic term of the linear approximation. Now we
see that the main event and its forechocks are treated
on a similar basis.

‘We propose that, beyond the log-periodic corrections,
the map ¢ itself should be considered as the signature
of seismic events. A priori, one can observe a variety
of interesting behaviours, including multiple unstable
fixed points, unstable periodic orbits and their cortege
of associated singularities. One could even expect that
the RG flow mapping becomes chaotic, which occurs for
A > 3.5699... for the logistic map. In such a case in-
finitely many periodic orbits become unstable, and the
observable F(x) becomes singular at all times (with of
course singularities of widly varying strengths), reflect-
ing mathematically the almost permanent occurrence of
earthquakes of all sizes.

5 Conclusion

In conclusion we believe that the log-periodic correc-
tions, in addition to being unavoidable signatures of
discrele scale invariance and very useful in the analysis
of data (Sornette and Sammis (1995)), hint at a more
complete and global description of seismic activify in
terms of the renormalization group transformation ¢.
Indeed, our theory in terms of ¢ describes both the very
spectfic nature of a given earthquake and also its deli-
cate relationship with other earthquakes which concur
together to construct the global evolution of the crust.
The function ¢ could thus provide a novel and more pre-
cise quantification tool for earthquakes, their foreshocks
and aftershocks.
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