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Abstract.

The problem of the large-scale quasi-geostrophic an-
ticyclonic vortices is studied in the [ramework of the
barotropic rotating shallow-water equations on the 3 -
plane. A systematic approach based on the multiple-
scale asymptotic expansions is used leading to a hier-
archy of governing equations for the large-scale vortices
depending on their characteristic size, velocity and a
free surface clevation. Among them are the Charney-
Obukhov equation, the intermediate geostrophic model
equation, the frontal dynamics equation and some new
nonlinear quasi-geostrophic cquation. We are looking
for steady-drifting axisymmetric anticyclonic solutions
and find them in a consistent way only in this last equa-
tion. These solutions are soliton - like in the sense that
the effects of weak non-linearity and dispersion balance
each other. The same regimes ‘on the paraboloidal 3 -
plane are studied, all giving a negative result in what
concerns the axi-symmetric steady solutions, except for
astrong elevation case where any circular profile is found
to be steadily propagating within the accuracy of the ap-

proximation.

Correspondence to: V. Zeitlin

1 Introduction

Large-scale anticyclonic vortices widely observed in the
atmospheres of the rapidly rotating giant planets (see,
for example, a review of Nezlin and Sutyrin (1994))is
a spectacular phenomenon which at the same time pro-
vides an excellent test of our understanding of the at-
mospheric dynamics. Starting from the pioneering work
of Maxworthy and Redekop (1976) this problem con-
tinues to be a focus of an intense theoretical activity
based on the ideas of the modern non-linear dynam-
ics. The experimental modelling has a rather long his-
tory, too (Antipov et al. , 1982; Read and Hide , 1984;
Marcus et al. , 1990} and has been able to reproduce,
as it is believed (Nezlin and Sutyrin , 1994), the es-
sential properties of the phenomenon in the simplest
setup of the barotropic rotating shallow water. This
latter fact encouraged further theoretical efforts within
a framework of the shallow-water theory, neglecting the
convection phenomena altogether. The specific quasi-
elastic collision properties of the solitonic vortices of
Maxworthy and Redekop (1976) did not seem to be
supported by observations and a new model has been
proposed by Petviashvili (1980) being still solitonic
in spirit. At the same time a series of papers on the

regimes close to geostrophy in shallow-water dynam-



ics (the observed vortices as well as the experimental
ones are believed to fall into this class of motions) ap-
peared (McWilliams and Gent , 1980; Romanova and
Tseitlin , 1984; Williams and Yamagata , 1984; Williams
, 1985)! bringing a better theoretical understanding of
the problem. Probably, the most important achicvemnent
of these papers was a discovery of a so-called intermedi-
ate geostrophic regime, to be discussed later. Finally, a
possibility of having discontinuous in higher derivatives
pressure/elevation profiles of arbitrary amplitude (devi-
ating thereby substantially from the previous weak non-
linearity thinking and being closer to the modon phi-
losophy) has been considered in order to explain some
features of experimentally observed vortices (Nycander
and Sutyrin , 1992).

Although much work has been done, a satisfactory

theoretical explanation of the phenomenon is still lack-

ing, in our view, in the framework of the stmplest barotropic

shallow-water model as there is no convincing theoreti-
cal demonstration that localized, steady-propagating ex-
act anticyclonic solutions do exist. In the present paper
we do not claim to give an ultimate solution of the prob-
lem, rather, we try to approach it systematically by us-
ing the multiple-scale asymptotic expansions based on
the smallness of the physical parameters present. We
report below some quasi- geostrophic regimes relevant
to the observed structures and analyze them from the

point of view of existence of the localized axi-symmetric
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the perturbative expanstons taking into account the fact
that there is a number of small parameters in the prob-
lem and, hence, a number of perturbative regimes. The
governing equations for vortex evolution appear as in-
tegrability conditions as it usually happens in multiple-
scale asymptotic expansions.

We work with the well-known system of the barotropic
rotating shallow-water equations on the 3 - plane (the
results may be extended to N - layer models or to con-
tinuously stratified models along the lines of Romanova
and Tseitlin (1985)). We are exploiting the fact that
there are three small parameters in the problem: the
Rossby number, ¢ ; the geometric parameter, g (the
meridional gradient of the Coriolis force) and the non-
linearity parameter, A (an amplitude of the perturba-
tion). Qur slarting point is the geostrophy relations
which should always hold in the zeroth order of the per-
turbation theory. Hence, what we are discussing will be
called quasi - geostrophy according to the terminology
of Romanova and Tseitlin (1984). The quasi - geostro-
phy in this sense is just given by the relations (1) below.
The quasi-geostrophy conditions fix the characteristic
scale, vy and velocity, vy of the vortical structures un-
der investigation, therefore, fixing the relative values of
parameters is equal to fixing the scales and velocities
with respect to the Rossby radius Rg and Rossby ve-
locity v, respectively. A similar study was undertaken

long ago by Williams and Yamagata (1984). Below we

steady solutions both in the Spherical and in the paraboloidal reproduce some of their results but in addition, due to

geometry. We do find some possibilities to have the
required behaviour but we also encounter serious prob-
lems while interpreting the laboratory experiments. Qur
philosophy is basically the same as in the paper of Ro-
manova and Tseitlin  (1984) (although below we have
chosen to work from the very beginning on the 3 - plane

for simplicity) and consists in meticulous application of

1the second author hereby declares that Zeitlin, Tseitlin(e) and

Tseytlin are the different Latin spellings of a same Cyrillic name

the different choice of the basic parameters we are able
to identify a new regime, apparently missed in previous
studies. Our approach also differs from that of Williams
and Yamagata (1984) in that our main attention is fo-
cused on the existence of exact solutions in both spheri-
cal and paraboloidal geometry which allows us to make

more detailed statements about solitary vortices.

As a result of an application of the systematic per-

turbative expansions we obtain the following governing
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equations for the vortex evolution in terms of the free

surface elevation:

1. The standard Charney - Obukhov equation for
relatively small-scale (ry ~ Rg), low-amplitude vortices
which, as 1t is well-known, have no monopolar steady

solutions.

2. The Petviashvili equation (Petviashvili , 1980) with
twist {Romanova and Tseitlin , 1984; Williams and Ya-
magata , 1984) for large-scale (rq >> Rg) slowly ro-
tating (vg ~ vg) small-amplitude vortices. If the twist-
ing term is merely neglected, as it is sometimes done,
the equation possesses only anticyclonic solutions. If
this term is consistently removed by introducing a back-
ground shear flow with a characteristic velocity of the
order of vg the resulting equation admits only cyclonic

steady axisymmetric solutions.

3. A new equation for large-scale (ro >> Hpg), rapidly
rotating (vg >> vg), small-amplitude vortices which ad-

mits strictly anticyclonic axisymmetric steady solutions.

4. The so-called frontal dynamics equation obtained
first by Williams and Yamagata (1984) and re-derived
later by Cushman-Roisin (1986) for large-scale, rapidly
rotating, large- amplitude vortices which leads to a non-
compensated nonlinear steepening and eventual break-

down of axisymmetric structures.

If we pass, according to the formalism developed in
(Romanova and Tseitlin , 1984; Nycander , 1993) from
spherical to paraboloidal geometry which corresponds
to the most adapted experimental way to study the
barotropic shallow-water system (Antipov et al. , 1982)
we find that while p.1 above still holds, the governing
equations in pp.2, 3, 4 lose the characteristic scalar non
linearity term. As a consequence, they do not have lo-
calized steady axi-symmetric solutions anymore, except
for the frontal dynamics equation which admits any ax-
isymmetric profile as a solution in this case without any

distinction between cyclonic and anti-cyclonic ones.

2 Quasi-geostrophic regimes on the 5 - plane

Introducing the characteristic horizontal scales and ve-
locities of vortex structures, rp, vy, the vertical scale
Ho: H = Ho(l + M), where H is a surface eleva-
tion, using tp = ro/vp as a time scale, remembering
that by definition the Rossby number is ¢ = »g/280rg,
non-dimensionalizing and taking into account the quasi-
geostrophy conditions (Romanova and Tseitlin , 1984)

€ << 1, AgHo = 2 (ﬁ)2 =0(1) (1)

2Qrovg € \ 1y

we atrive to a following system of equations:

eDu—v(l+p0y) = —h,
eDv+u(l+py) = —hy (2)
ADAB + (uz + v)(1 -+ AR) = 0.

Here z,y are the longitudinal and latidudinal coordi-
nates on the A - plane, corresponding subscripts de-
note the partial derivatives, u, v are the horizontal ve-
locity components, [} denotes the horizontal Lagrangian
derivative: D = 8, +ud; + v8, and all numerical factors
of order unity are omitted (absorbed into dependent and
independent variables). In what follows we shall apply
the perturbation theory to (2) but in order to do it
systematically we have to specify the ratios of the pa-
rameters €, 3, A, We note first that (1) together with
the definition of Rossby velocity as the phase velocity of

long Rossby waves are equivalent to

rp=0 ((%)UQRR) , v0=(9(% UR) (3)

and, hence, the parameters’ ratios determine the char-
acteristic scales and velocities of vortices. For example,
in the ”standard” case when all the small parameters
are of the same order, the characteristic scales and ve-
locities are the Rossby ones. Introducing e = A = 8

(i.e. neglecting possible numerical factors of order unity



which may be easily reconstructed) and developing all

dynamical variables in perturbation series:

u®) + eult) +eZu® 4

T =
v = @ 4D 42D 4 (4)
o= RO ehl) 4 2p 4

we get the geostrophic balance equations
o0 = pl0); (0 = _hgﬂ) (5)

in the zeroth order in ¢ and the classical Charney -

Obukhov equation in the first order:

h" — AR — J(AO AR _ ™ = g (6)
Here J(...,...) denotes the Jacobian. As it is well-known,

this equation does not admit monopolar steady solu-
tions. Note that, as it follows from (1), the caracteristic
scale of vortices in this case is of order Rg. So this
is consistent with observations and experiment where
the characteristic scale of the steady vortices is much
greater than Rp. To get such a regime we need to have
A >> e. There are two possibilities here: A = O(1) or
e << A << 1 and we shall consider both of them.

2.1 The intermediate geostrophic regime

Let us take € ~ A%, There is still a freedom in the
choice of #. Taking 3 ~ A we recover the intermedi-
ate geostrophic regime (Romanova and Tseitlin , 1984;
Williams and Yamagata , 1984), i.e. the one for large-
scale, but relatively slowly rotating (vo ~ v,) structures.
We shall not repeat the perturbative calculatons in this
case - they are the same as in the above - mentioned
papers. Note only that instead of ¢, it is A now which
appears in the pertufbative expansions (4). In the ze-
roth order in A we have the geostrophic balance (5) and

in the first order we get an equation for a dispersionless

propagation of the long Rossby waves

nY — ) =0 (7)
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meaning that any perturbation will just drifi westward
in this approximation. Finally, in the second order we

get a dynamical equation for A1)

AN = B = bl 1 AR 4 pOIR 4
J(hO | ARC)Y — 9yp(0) (8)

where we have introduced a slow time scale 7 = At.
Note the appearance of the scalar nonlinearity and the
twisting term cxplicitly dependent on y in the r.h.s. In
order to suppress unbounded in ¢ solutions (or, in other
words, to suppress the long Rossby waves radiation from
the perturbation A(®)) we have to pul the r.h.s. of this
equation to be equal to zero (integrability condition)
and, thus, arrive to the following governing equation -
the Petviashvili equation with twist (Petviashvili , 1980;
Romanova and Tseitlin , 1984; Williams and Yamagata

, 1984)
ALY — AR — RORD) - J(AE AR 4 29hl0) = (0)

(we changed the ¢ - derivative for the z - derivative in the
Laplacian term using the fact that A() is a solution of
(7). If we just drop out the twist the resulting equation
will have an anticyclonic exact solution. However, if
we try to eliminate this term in a consistent manner
the situation changes drastically. Indeed, equation (7)
admits any steady drifting profile as a sclution to which
we may add an arbitrary function of y. If we choose
this function as to compensate the twist by the scalar
nonlinearity contribution we immediately see thal this
leads to a change of sign of the Laplacian term with
respect to the original equation (9) due to the Jacobian
term. The fact that there exist localized, steady-drifting
axisymmetric solutions is based on the observation that
for those latier the equation takes a form (we discnss
the equation resulting from the elimination of twist and

drop the superscript 0" for brevity)

2

h h
(ch— 5 7t R+ ;)m =0 (10)
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Here r - is the radial coordinate, a prime denotes the
corresponding derivative, ¢ is a first otder correction to
the propagation speed along the ¢ - axis, h = h(x +
t + ¢7). This equation, after integrating it once in x
becomes an equation of a material point moving in the

potential
V(h)=~—+4 — (11)

{we put an integration constant to be equal to zero as
we are looking only for solutions having zero asymp-
totics at infinity) with a specific time - dependent fric-
tion ("time” = r). The localized solution is close to the
separatrix of the frictionless equation and approaches it
asymptotically as + — co (see, e.g.  Finkelstein et al.
(1951)). The potential (11) is not symmetric with re-
spect to transformation b — —h which is the reason for
the cyclone - anticyclone asymmetry. Indeed, as V(h) is
positive for large negative h and vice-versa the separa-
trix solution starts from some negative h at r = 0 and
ends up either with A = 0 for negative ¢, or with some
positive k for positive ¢. This latter case does not satisfy
boundary conditions and should be discarded. Hence,
the exact axisymmetric localized solutions of the Petvi-

ashvili equation with twist exist only on the background

of the fine-tuned shear flow and are cyclones.
2.2 'The non-linear quasi-geostrophic regime

Now what happens if within the same assumption ¢ ~
A? we choose another possibility for large-scale vortices,
namely, 8 ~ ¢? In this case we have to develop in A
and in the zeroth order we have a geostrophic balance
(5) for zeroth order fields. In the first order we have a

geostrophic balance for the first order fields
v = p{D); (1D = —h;l} (12)

and a "dynamical equation” hgo) = 0 from the third

equation in (2). This simply means that our time-scale

is badly chosen. Introducing + = At and continuing

perturbative calculations we get

o7 = A Oy g (04[O0 4 v(o)ug(;ﬂ)
u® = __hgz) — ul®y — 40" _ v(ﬂ)vgo) (13)

Using the zeroth and the first order quasi-geostrophic

relations (5), (12) and divergence
ul® + of = —h® — (A, AR©) (14)

calculated from (13) we get a dynamical equation for
B0

hgn) _ J(h_(ﬂ), Ah(u)) — hﬂ(f) =10, (15)

a "dispersionless J - plane vorticity equation”, which
1s already non-linear, in comparison with (7), but the
non-linearity vanishes for axisymmetric profiles and we
again have a mere drift of these latter. In the next,
third order after a similar but a bit more cumbersome

calcnlation we get an evolution equation for A1)

ALY — J(RO ARDY — 7 (B ARy — B = _p( 4

(0)2 oy 2
AKD 4 hORE 4 5, an) - 560, TS

where we have introduced a next slow time-scale ¢ =

A?%t. An integrability condition is

(02
— A 4 ARO) 4 AR 4 J(hT, ARM™Y 4

J(RO), (.VQL)E) = 0(17)

Note that the first three terms of this equation are the
same as in the Petviashvili equation. The Jacobian
terms are different but they vanish identically for ax-
isymmetric profiles. For steady translating solutions we

get

! 2
(" + h? + % —ch); =0 (18)



where we, as before, have dropped superscripts and in-
troduced a radial coordinate. This is the same equation
as the one resulting from Petviashvili equation without
twist and the same reasoning as above leads to a con-
clusion that there exist anticyclonic solutions decaying
at tnfinity for ¢ > 0, i.e. moving slightly faster (vg-; =
(I + Ac)vgr) than the long Rossby waves. Hence, the
cyclone - anticyclone asymmetry manifests itself very
clearly: one can balance (weak) non-linearity and dis-
perston only for anticyclones.

Note, however, that although we have got an exact so-
lution of (17) it 1s clearly not an exact solution of the full
shallow water equations. What we can only guarantee
is that such a profile, once created, will have a char-
acteristic life-time much greater than ¢ !T and much
less than €=27"), where T' is the vortex turnover time,
T ~ ty. To draw any conclusion about the solution’s
behaviour on slower time-scales one has to consider the
next orders of perturbation theory. However, already at
the order ¢ we run out of the domain of applicability
of the beta-plane equations (2) since corrections due to
sphericity of the planet are of the same order. As these
latter introduce an explicit y - dependence into the gov-
erning equations, which seems to be incompatible with
the axial symmetry of solutions, we never go beyond the

O(¢) velocity fields in the present study.
2.3 The strong nonlinearity regime

Let us consider, finally, the case A = ((1). In the zeroth
order we have the geostrophic balance and the following
equation for the elevation variable: hgn) = 0. Introduc-
Ing a new time scale 7 = ¢f we get the same equation
as (13), but now for the first-order in ¢ fields, and also

a dynamical equation for A(®

B = (1 BODRLD — (14 hO) T (), AR~
(0)y2
J(R(3, %)u_) =0. (19)
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This equation (a so called frontal dynamics equation)
appeared first in (Williams and Yamagata , 1984) and
was re-derived later by Cushman-Roisin (1986). For

axisyrmmetric profiles it becomes a simple wave equation
RO — (1 4 AR = o (20)

and gives a non-compensated nonlinear steepening and
breakdown of the wave.

To conclude, we see that the only regime being able
to give the large-scale long-living axisymmetric anticy-
clons within the gquasi-geostrophic shallow-water theory

on the 7 - plane is the non-linear quasi- geostrophic one.

3 Quasi-geostrophicregimes on the paraboloidal

A - plane

If one considers a rotating shallow-water layer on the
surface of a paraboloid (Nezlin and Sutyrin , 1994), (An-
tipov et al. , 1982), (Nycander , 1993) the corresponding
B - plane equations differ from the standard ones (2)
due to the y - dependence of the normal acceleration (a
so-called ”+ - effect”) and to the fact that, unlike the
sphere, there are two independent curvature radii. The

equations read (Nycander , 1993):

eDu—v(1+ Bbay) + (1 + B(br —ba)y)hy = 0
eDv + u(1 4+ By} + hy — Bbsh

ADR + [(1+ Bbi1y)uz + (1 + Bbay)v, —
Bhvl(L+AR) = 0.

0 (21)

Here the two 3 - factors b # b2 correspond to the two
above-mentioned independent curvature components (Ny-
cander , 1993). All the calculations of the previous sec-
tion may be repeated taking into account the additional
contributions. The results are as follows: the standard
case remains unchanged - we get the Charney - Obukhov
equation with bs playing the role of 4. As to the other

regimes discussed in the previous section, a curious can-
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cellation takes place due to the v - effect and they lose
the scalar nonlinearity term, as it was first noticed by
Nycander (1993). This has drastic consequences for
the intermediate geostrophic regime as there is no mean
to compensate an explicit y - dependence in the equa-
tion anymore. So any initially localized solution will be
destroyed by the twist. What is more important, equa-
tion (17) loses the scalar nonlinearity, too. Hence, for
axisymmetric structures it will give a non-compensated
dispersive destruction of a vortex. On the contrary, in
the frontal dynamics case the disappearance of the scalar
nonlinearity means that there is no nonlinearity at all
for any axi-symmetric profile {see (20)). Hence, any such
profile drifts steadily within the accuracy of the approx-
imation,i.e. at least at time-scales of order ¢~ 17. There
is no distinction between positive and negative signs of
vorticity at this stage and, hence, no cyclone - anticy-

clone asymmetry.

Thus, due to specific properties of the paraboloidal ge-
ometry there is no quasi-geostrophic regime where the
effects of weak non-linearity and dispersion would be
compensated for axi-symmetric profiles. For strong non-
linearities we find a degenerate situation where in order
to get a non-trivial equation (with a hope to distinguish
between positive and negative vorticities) we have to go
beyond the beta-plane approximation where (21) is not

valid anymore.

We have indeed calculated up to the order €?,¢3, 32
and obtained the y -dependent terms incompatible with
axial symmetry in the equation for h®. The detailed
analysis at this order will be presented elsewhere., As to
non-axisymmetric profiles, a question arises whether a
Jacobian cubic nonlinearity present both in the frontal
dynamics and non-linear geostrophic dynamics allows
for any exact solution of these equations. There are
some indications that large-scale non-axisymmetric so-

lutions might exist (Nycander and Sutyrin , 1992) but a

systematic perturbative analysis, especially in the pres-

ence of discontinuities where matched asymptotic ex-

pansions are needed, has not been applied yet.

4 Discussion

Thus, we have investigated the problem of the large-
gcale anticyclonic vortices in the framework of the ro-
tating shallow-water model both on the sphere and on
the paraboloid. We identify only one, namely non-linear
quasi-geostrophic, regime where axisyminetric sieady-
propagating vortices exist as exact solutions of inte-
grability conditions for multiple-scale perturbative ex-
pansions in spherical geometry. The cyclone - anticy-
clone asymmetry finds its natural explanation within
this regime.

On the contrary, in the paraboloidal geometry the 7 -
effect prevents a mutual compensation of the weak non-
linearity and dispersion at least for axisymmetric struc-
tures. Nevertheless, strongly non-linear axi-symrnetric
vortices of both signs are shown to drift without change
of form for long enough times.

If we want now to compare our results with experi-
ment (the most comprehensive review is given by Ne-
zlin and Snezhkin (1993)) we see that therc are certain
problems here. First of all, the life-times of the observed
vortices lie within the interval [¢~1T, ¢=27]. Second, the
elevations may be substantial. One may, thus, believe
that the strong nonlinearity regime on the paraboloid
is consistent wilh experiment. But in this case the
observed cyclone - anticyclone asymmetry remains un-
explained in the framework of asymptotic expansions.
The center-of-mass arguments together with estimates
of the higher- order terms in velocity field (Nycander ,
1993) indicate that these latter may be responsible for
the asymmetry. However, after having calculated all
the terms of this order, i.e. O(e?), O(eF), O(S?), in the

elevation equation we do not sce how to separate a con-



structive influence of such terms from a destructive one,
due to their explicit coordinate dependence. We hope
that a more detailed study of non-axisymmetric strue-
tures, which is in progress now, may clarify the situation
along with a further experimental study of the devia-
tions from the axial symmetry of vortices. As to the
direct application of these results to the planetary vor-
tices, two comments are in order. First, in Nature these
vortices exist on the background of a shear flow and are
elongated along the shear axis. So the first task is to
include these two (probably, related) effects into consid-
eration. Second, the asymptotyc analysis based on the
simplest 7 - plane shallow water model cannot guaran-
tee, as it was mentioned, the vortex lifitemes greater
than ¢~ 27". So the reason of the miraculous longevity of
the Great Red Spot which is many orders of magnitude

greater than this last estimate is still to be understood.
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