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Abstract. After 2003’s summer heat wave, Electricité de
France created a global plan called “heat wave-dryness”. In
this context, the present study tries to estimate high river tem-
peratures for the next decades, taking into account climatic
and anthropogenic evolutions. To do it, a specific method-
ology based on Extreme Value Theory (EVT) is applied. In
particular, a trend analysis of water temperature data is done
and included in EVT used. The studied river temperatures
consist of mean daily temperatures for 27 years measured
near the French power plants (between 1977 and 2003), with
four series for the Rĥone river, four for the Loire river and
a few for other rivers. There are also three series of mean
daily temperatures computed by a numerical model. For each
series, we have applied statistical extreme value modelling.
Because of thermal inertia, the Generalized Extreme Value
(GEV) distribution is corrected by the medium cluster length,
which represents thermal inertia of water during extremely
hot events. Theµ andσ parameters of the GEV distributions
are taken as polynomial or continuous piecewise linear func-
tions of time. The best functions forµ andσ parameters are
chosen using Akaike criterion based on likelihood and some
physical checking. For all series, the trend is positive forµ

and not significant forσ , over the last 27 years. However, we
cannot assign this evolution only to the climatic change for
the Rĥone river because the river temperature is the resul-
tant of several causes: hydraulic or atmospheric, natural or
related to the human activity. For the other rivers, the trend
for µ could be assigned to the climatic change more clearly.
Furthermore, the sample is too short to provide reliable return
levels estimations for return periods exceeding thirty years.
Still, quantitative return levels could be compared with phys-
ical models for example.

Correspondence to:F. Huguet
(frederic-p.huguet@edf.fr)

1 Introduction

This study is performed for applications concerning French
nuclear thermal power plants cooling systems in a context
of industrial safety checking. After the 2003 heat wave, it
appeared necessary to re-evaluate the extreme hot tempera-
tures, which the rivers water could reach in the next decades,
by taking the climatic and anthropogenic changes into ac-
count.

Indeed, the river temperature fluctuations are forced by
natural and anthropogenic factors, e.g. industrial thermal dis-
charges or hydraulic installations that modify natural flow.

Among the natural causes, we can identify hydraulic forc-
ing of tributaries or ground waters, which have their own wa-
ter temperature and discharge. In a similar way, the atmo-
spheric forcing of air temperature, moisture, precipitations,
cloud cover and wind, take part in the river thermal balance.

However, it is now recognized from IPCC work that global
mean annual temperature increased during the last century.
Trends in summer mean air temperature in France have been
identified too (Mestre, 2000 and IMFREX project). Similarly
to the mean, hot extreme air temperatures appear to present
positive trends with increasing heat waves events (Laurent et
al., 2007). This atmospheric forcing influencing the hot river
temperatures has a high impact as it generally occurs during
dry periods of low river flows.

For this reason, it seems interesting to determine whether
the river energy balance during heat wave episodes is a sta-
tionary process or not. This study examines this question,
as efforts to assign the detected trends to natural or anthro-
pogenic causes is a delicate issue. This point will be dis-
cussed more thoroughly later in the paper. Only few stud-
ies were carried out on this subject with applications to river
ecosystems (e.g. Sinokrot et al., 1995 or Gooseff et al., 2005)
as well as for industrial facilities dimensioning. This trend
analysis which is a goal of the paper, is then applied to eval-
uate the hot extreme temperatures in the future.
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Table 1. Percentage and longest period of missing data.

Station Percentage of Longest gap
missing data (in number of days)

Belleville 12.02 347
Dampierre 1.07 104
Saint-Laurent 1.07 104
Chinon 2.28 213
Bugey 0.06 2
Saint-Alban 0.27 6
Cruas 0.01 1
Tricastin 0.01 1
Cattenom 1 72
Fessenheim 0 0
Golfech 1.58 79

In our study, as design values are usually defined as return
levels, we propose a statistical model based on the extreme
value theory. This approach has the advantage of providing
a rigorous mathematical framework for extreme values with
temporal variability (in the case of a non stationarity assump-
tion) and the random fluctuations of these values. This theory
introduced by Gumbel (1958) within a stationary framework,
then largely enriched later on (Coles, 2001) was applied in
hydrology (case of high water level; Katz et al., 2002) or in
oceanography (high sea level close to ports, Coles, 2001).
In a non stationary context, extreme value theory reveals it-
self as a powerful tool to detect changes and provides fre-
quency analysis (Zhang et al., 2004). Recently, the extreme
value theory was used to evaluate hot air temperatures in
France with temporal variations (Parey et al., 2007). More-
over, this theory provides quantitative results in the form of
return levels, which could be used for example for indus-
trial work dimensioning. Extremes can be modelled through
two approaches. The first one is based on the Generalized
Extreme Value distribution (GEV), i.e. the limit distribution
of the maxima of a sequence of independent and identically
distributed random variables. The second one is the Peaks
Over Threshold method (POT) which looks at values above
a high threshold, the exceedances being fitted to a General-
ized Pareto Distribution (GPD).

Several series of water temperatures near 12 power plants
are available for our study. In Sect. 2, we present the data
used. Then in Sect. 3 we describe the applied methodology.
In particular, we explain how the non stationarity assump-
tion is introduced and how the GEV distribution is corrected
to take the thermal inertia of the river into account. The re-
sults on the detected trends and the associated return levels
are presented in Sect. 4. Finally, we conclude on the obtained
results. Still, those must be considered with caution espe-
cially when they are applied in a context of public interest or
safety.

2 Presentation of water temperature time series

Water temperature is observed upstream and downstream
from several measuring sites found on the river bank near
nuclear power plants in France. For the purpose of our study,
we will be interested only in water temperatures upstream of
the power plants.

2.1 The observed temperature series

Series of daily averages were computed from hourly temper-
ature measurements. In the presence of missing or erroneous
measurements, temporal interpolation (linear or Fourier se-
ries) or regression starting from the nearest station were per-
formed on each series to obtain complete chronology. Thus,
we have complete series of daily average temperatures mea-
sured in water, for the period 1977–2003, except for Chooz
whose data is far too incomplete and unreliable. For this last
site, the water temperature sensor has been installed in an
inappropriate manner to measure the upstream temperature
accurately. For this reason for this power plant the series of
measured temperatures is replaced by a series of computed
temperatures, (see Sect. 2.2). Table 1 details the percentage
of missing data that have been replaced by interpolation or
by regression and the longest period of missing data, for each
site.

2.2 The computed temperature series

The series of water temperatures for the Chooz site is com-
puted and averaged over 24 h from 3-hourly data produced by
a numerical model. The CALNAT model calculates the tem-
perature in a point of the river using a deterministic way, in-
tegrating the equation of the temperature evolution (see Gras,
1969):

∂T

∂t
+ U

∂T

∂x
=

∂

∂x

(

K
∂T

∂x

)

+
1

ρCH
(SR+ AR − WR − C − E)

(1)

Where,
U river speed
K thermal diffusivity along the river
ρ mass of water per unit volume
C specific heat capacity of water
H depth of river thermal inertia.

The five thermal fluxes SR, AR, WR, C and E are caused
by solar radiation, atmospheric radiation, water radiation,
wind convection, and evaporation, respectively. The flux of
solar radiation depends on the albedo, the cloud cover, the
location (latitude and longitude) and the date (day and hour
of the year). The flux caused by the atmospheric radiation is
computed using the air temperature and the cloud cover.

To calculate the water radiation, the knowledge of water
temperature is needed. In our context, the convection de-
scribes the wind cooling on water surface. To estimate it,
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Fig. 1. Water temperature (observed and computed) at Belleville
over the period 1977–2003.

wind speed, water and air temperature must be known. That
explains why Eq. (1) is solved implicitly.

Finally wind speed, air temperature, air humidity, atmo-
spheric pressure and latent heat of vaporization are used to
calculate the thermal evaporation flux. Atmospheric data are
taken from the nearest Meteo-France observation station.

To sum up, the temperature evolution is forced by weather
data (air temperature, air humidity cloud cover and wind) and
needs a specific initial condition and boundary layer condi-
tions. More details about the CALNAT model are given in
Dupeyrat et al. (2006).

Similarly, series of water temperature are formed over the
period 1949-2003, for the power stations of Belleville and
Dampierre.

The validation of the model is described in Dupeyrat et
al. (2006). It consists in comparing computed and measured
temperatures when the latter are available. This validation
is done over the periods 1978–1991 and 1998–2004 for the
Chooz site, and 1977–2003 for the Belleville and Dampierre
sites (see Fig. 1 for example).

2.3 Locations of the temperature series

Four series are located along the Rhône river (Bugey, Saint-
Alban, Cruas and Tricastin), four along the Loire river
(Belleville, Dampierre, Saint-Laurent and Chinon) and some
others on other French rivers (Chooz, Cattenom, Fessenheim
and Golfech). Figure 2 shows their locations.

3 Methodology

3.1 Extreme value method

3.1.1 Choice of statistical extreme value method

Some preliminary tests have been performed with the POT
method. We need a time series of around hundred water tem-
peratures above a given threshold in order to be able to fit

Fig. 2. Power stations site and related water temperature series.

a GPD model reliably. To obtain them, we have to take be-
tween 15% and 60% of summer data (depending on the river
time series). Threshold specified in this way are thus far too
low to select only extreme temperatures and GPD conditions
will not be fulfilled. Therefore these pre-processing analy-
ses showed that the GEV distribution is more suitable for the
study of water temperatures.

3.1.2 The generalized extreme value distribution

For independent observations arising from a common contin-
uous distribution, the probability for not exceeding a levelz

for a temperatureT in any block of days can asymptotically
be approximated by the cumulative distribution function of a
GEV distribution.

P (T ≤ z) = G (z, µ, σ, ξ) (2)

Where:

G (z, µ, σ, ξ) = exp

{

−

[

1 + ξ
(z − µ)

σ

]− 1
ξ

}

with

[

1 + ξ
(z − µ)

σ

]

> 0 for ξ 6= 0 (3a)

G (z, µ, σ, ξ) = exp

{

− exp

[

−
(z − µ)

σ

]}

for ξ = 0 (3b)

With: µ location parameter,µ ∈ ]−∞, +∞]
σ scale parameter,σ ∈ ]0, +∞]
ξ shape parameter,ξ ∈ ]−∞, +∞]

The parametersµ andσ are proportional to the mean and
to the variance of extremes respectively. The proportionality
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Fig. 3. GEV distribution functions.

coefficient depends on the shape parameterξ . Of course in a
non stationary case, these parameters depend on the consid-
ered block.

This function is known as the generalized extreme value
distribution, because it includes three types of distribution
function, according to the value ofξ . The GEV distribution
reduces to the Gumbel family forξ=0. It belongs to the
Fréchet family forξ>0, and the Weibull family forξ<0.

Parameterξ characterizes the shape of the probability den-
sity function g. Indeed, according to its valueξ=0, ξ>0 and
ξ<0, this function is not bounded, bounded from the left by
zlim=µ−σ

ξ
and bounded from the right byzlim respectively

(see Fig. 3).

3.2 Application to the water temperature data

3.2.1 Data description and hypothesis verification

We work with daily averages of water temperatures over the
whole year (circle in Fig. 4) upstream from the power plants
and over various periods. The temperature values are se-
lected from 90-day hot seasons (square in Fig. 4), fixed be-
tween the 20 June and the 17 September. Thus, we suppress
the seasonal cycle. From this hot season series noted (Hn), a
sequence (Tn) of hot extremes is extracted by taking the tem-
perature maximum per time block b of 30 consecutive days
(triangle in Fig. 4).

Fig. 4. Water temperature for Dampierre.

The extreme value theory (Coles, 2001) shows that the
probability for not exceeding the valueT =z is asymptot-
ically well approximated by a Generalized Extreme Value
(GEV) distribution. In order to apply the Generalized Ex-
treme Value distribution for the sequence (Tn), two funda-
mental assumptions must be fulfilled:

– The sequence (Hn) must have the same probability dis-
tribution along the fixed time block, but not necessarily
for different blocks or years. The selection of the hot
season has been made in such a way.

– The sequence (Hn) must consist of independent or
weakly dependent values in order to apply GEV approx-
imation. If they are not, some correction have to be done
on the limit law using the clusterization indexθ . In or-
der to verify this point, the cluster lengths have been
studied.

3.2.2 Episodes length

In order to study the independence of high values, the clus-
ters are defined by a set of couples (date, temperature) whose
temperature is higher than a given thresholdT =u. Thus, two
clusters are at least separated by one value (daily mean tem-
perature) below the threshold. The cluster rateθ can then be
estimated by the ratio of the number of clusters to the number
of values above the thresholdu.

Temperature is more clustered for weakerθ . θ can be re-
garded as an estimator of the thermal inertia of river water
temperatures for the thresholdu, estimated as the inverse of
the average length of clusters.

The results in Table 2 are found by taking as thresholds
the values of the 92nd percentile for all the hot seasons. This
threshold has been found to represent a good compromise
between a high enough level and a selection of a significant
number of episodes for reliable statistics.

Maximum temperatures for each site show that 2003 is an
unprecedented heat wave in intensity over the 1977–2003 pe-
riod (see Table 2). It is also the case for the cluster lengths
except at St. Laurent (19 days from 22/7/1994 to 9/8/1994),
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Table 2. Characteristic size of clusters during heat wave period (the number of days written in bold corresponds to the maximum of the
clusters size over the 1977–2003 period).

Station Maximum temperature Thresholdu Maximum size of clusters in 2003 Average length of clusters Clusters rate
(in ◦C and dates) (in◦C) (in number of days and dates) (in number of days) θ

Belleville 29.2–7/8/2003 22.9 14: 2/8/2003–15/8/2003 3.38 0.292
Dampierre 30.0–8/8/2003 23.2 14: 2/8/2003–15/8/2003 3.48 0.287
Saint-Laurent 27.4–9/8/2003 22.3 13: 3/8/2003–15/8/2003 3.75 0.267
Chinon 31.1–9/8/2003 23.1 16: 2/8/2003–17/8/2003 3.9 0.256
Bugey 26.0–11/8/2003 22.5 19: 12/7/2003–30/7/2003

16: 3/8/2003–18/8/2003
5.42 0.185

Saint-Alban 26.4–13/8/2003 24.1 37: 15/7/2003–20/8/2003 7.8 0.128
Cruas 25.7–10/8/2003 22.9 53: 10/7/2003–31/8/2003 5.74 0.174
Tricastin 25.9–11/8/2003 23.1 53: 10/7/2003–31/8/2003 6.96 0.144
Chooz 27.1–9/8/2003 22.7 17: 2/8/03–18/8/03 5.74 0.174
Cattenom 28.5–7–11/8/2003 25.4 15: 3/8/03–17/8/03 5.13 0.195
Fessenheim 26.1–11–13/8/2003 22.4 54: 9/7/2003–31/8/2003 8.48 0.118
Golfech 29.6–10–11/8/2003 26.0 33: 12/7/2003–13/8/2003 7.5 0.133

Chooz (30 days from 12/7/1994 to 10/8/1994) and Cattenom
(19 days from 22/7/1994 to 9/8/1994).

The results of Table 2 show an important clustering of the
water temperature. However, the sites on the Loire river are
less clustered than those positioned on the Rhône river. Cat-
tenom and Chooz sites present an intermediate clusterization
between that of the Loire and the Rhône. On average, Fes-
senheim and Golfech are the most clustered series. These
differences are linked to different flow characteristics of the
river.

Thus, observed river temperatures show a certain thermal
inertia as the duration of a very hot temperature episode can
reach almost a whole season. This is why it is necessary to
correct the GEV distribution with the factorθ , (see Leadbet-
ter et al., 1983):

G (z, µ, σ, ξ, θ) = exp

{

−θ

[

1 + ξ
(z − µ)

σ

]− 1
ξ

}

with

[

1 + ξ
(z − µ)

σ

]

> 0 for ξ 6= 0 (4a)

G (z, µ, σ, ξ, θ) = exp

{

−θ exp

[

−
(z − µ)

σ

]}

for ξ=0 (4b)

3.3 Temporal evolution and trends of the parameters

To estimate the hot extreme temperature in the future, it is
necessary to identify trends, which may be present in obser-
vational data of extreme water temperatures, and compute
changes in the involved return levels. Therefore, the param-
eters of the GEV distribution are supposed time-dependent
and the form of this evolution is modelled as polynomial or
continuous piecewise linear functions. Only parametersµ

andσ are considered to vary with time. We suppose that the

shape parameter can reasonably be kept constant with time.
As a matter of fact,ξ is the most delicate parameter to esti-
mate and as our series are quite short, trends could not easily
be identified. In this non stationary context of time varying
µ andσ parameters, the return levels need to be re-defined.

3.3.1 Definition of return level in a non stationary context

If we define the return level z as the level reached or exceeded
on average once over the time periodP ′ for block maxima,
the knowledge of the quadruplet(µ (t) , σ (t) , ξ, θ) is suffi-
cient for the estimation of the return level.

Indeed,z can be statistically defined as the level whose
number of exceedancesN has an expectancy E(N) equal to
one, during the various hot seasons ofP ′. This is true for any
block b belonging to

[

t ′0, t
′
0 + P ′

]

with initial time t ′0 corre-
sponding to the first future year after the end of the series.
Thus, in our case we estimate the level reached or exceeded
on average once between 2004 and 2004+

(

P ′−1
)

.
But the numberN of exceedances of levelz in time’s in-

terval
[

t ′0, t
′
0 + P ′

]

can be derived as:

N =

m
∑

b=1

Yb (5)

With m, the number of blocks corresponding to each hot sea-
son ofP ′,

And Yb, the variable related to a given block b, defined as:

Yb = χ[Tb>z] = 1 if Tb > z

Yb = χ[Tb>z] = 0 if Tb ≤ z

Therefore, the expectancy ofN is given by:

E [N ] = E

[

m
∑

b=1

Yb

]

=

m
∑

b=1

E [Yb] =

m
∑

b=1

Pr(Tb > z) (6)
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Finally, according to Eqs. (4a) and (4b), the expectancy ofN

equal to one can be written as:

If ξ 6= 0 : E (N) =

m
∑

b=1

δ

{

1 − exp

[

−θ

(

1 + ξ
z − µ (tb)

σ (tb)

)− 1
ξ

]}

=1 (7a)

If ξ = 0 : E (N) =

m
∑

b=1

{

1 − exp

[

−θ exp

(

−
z − µ (tb)

σ (tb)

)]}

= 1 (7b)

With the indicator function δ such as δ=1 if
[

1+ξ
(z−µ)

σ

]

>0

δ=0 otherwise.
Therefore, the return levelz can be computed resolving

Eqs. (7a) and (7b)

3.3.2 Estimates of the GEV parameters

To take the climatic evolution into account, the parametersµ

andσ are regarded as functions of timetb.
Several time models are then considered forµ andσ :

– polynomial models forµ=µ (tb) andσ=σ (tb), i.e. as:

µ (tb) = b0 + b1 tb + ... + bi t ib

andσ (tb) = c0 + c1 tb + ... + cj t
j
b with i≤4 andj≤4.

Thus, these models are defined by the couple (i, j ) of the
order of the polynomial equation forµ andσ respectively.
The optimal polynomial could be selected by the maximum
likelihood test whose asymptotic distribution is a chi square
with a number of degrees of freedom defined as the differ-
ence in the number of parameters (Davison, 2003).

Still, there is a technical problem, because this test pro-
vides results only for nested models. For instance, it does
not allow to choose between polynomials defined by degrees
(1,2) and (2,1). But this situation does not occur for our data.

Another and perhaps simpler way to select the opti-
mal polynomial (noted polyOPT) is to use the Akaike
type criteria. Let L(n, i, j) be the log likelihood, n
being the sample size. The penalized likelihood is
A (n, i, j) =L (n, i, j) −ϕ (n) (i+j). Then, we choosei and
j maximisingA(n, i, j). A popular choice of the function
ϕ(n) is ln(n), giving a consistent estimate fori andj (Davi-
son, 2003).

– Another choice of parameterisation ofµ consists of
continuous piecewise linear models (CLM) with zero,
one, two or three parts (respectively noted 0P, 1P, 2P et
3P).

They are defined such as:

µ (tb) =
i

∑

k=1
(αk+βktb)χ[a(k−1),ak] for a model with i

pieces with the indicator functionχ[a(k−1),ak]=1 for

tb ∈
[

a(k−1), ak

]

elseχ[a(k−1),ak]=0 whereak are the angular
points for i>k>0 anda0=t0 (initial time of the series) and
ai=t0+P with the series durationP .

To respect the continuity between two linear pieces, we
have:

αk + βkak = α(k+1) + β(k+1)ak for i > k > 0

The models in zero and one part correspond to the station-
ary (for µ andσ) and linear (forµ) models respectively of
the polynomial modelling.

Because of high computational time, the CLM were not
studied forσ . Thusσ is supposed to be stationary, which is a
plausible assumption according to the results of polynomial
modelling.

The Akaike criterion (see above) and localization condi-
tions of the angular points determine the optimal CLM model
(noted clmOPT). Indeed, the classical theory of the likeli-
hood tests can be applied only if separation constraints are
imposed between the angular points. The same constraint
needs to be applied to CLM edges as well.

These time dependent models will be used for prediction.
More precisely, they will be extrapolated to predict the val-
ues of the parameters in the future and thus also to estimate
the return levels. The validity of such an extrapolation is a
strong hypothesis. Of course it requires choosing for these
parameters an analytical form easy to estimate (as a polyno-
mial form of low degree). Moreover, the resulting extrapo-
lation should have physical sense. This approach seems to
be the best way to perform this prediction. The main rea-
son is that there does not exist any model (as a filter) giving
scenarios for the variables (CO2 concentration) linked to the
greenhouse effect and its consequences for the rivers temper-
ature. This problem is in a sense more complex than the one
concerning air temperatures.

4 Results

4.1 Results on trends

4.1.1 Model choice

Tables 3, 4 and 5 give the results obtained for both types of
modelling using likelihood maximization. They also provide
the model selected in fine. The models are defined by the
couple (i, j ) of the order of the polynomial equation forµ

andσ respectively. Continuous piecewise linear models with
i parts are notediP .

The two types of modelling show trends for all sites. With
polynomials, the effect of variance appears only on St. Lau-
rent and Cattenom with a negative trend. Thus, there does
not seem to be generalized trend in variance as in the case
for mean. Furthermore, as the samples are quite short, trends
in variance are difficult to be accurately estimated and it then
has been decided not to take them into account.
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Table 3. Optimal trend computed for GEV parameters (Loire sites).

Belleville Dampierre Saint-Laurent Chinon

polyOPT (3,0) (3,0) (1,1) (1,0)
clmOPT 2P 2P 1P 1P
Selected model 2P 2P Linear onµ Linear onµ

Table 4. Optimal trend computed for GEV parameters (Rhône
sites).

Bugey Saint-Alban Cruas Tricastin

polyOPT (3,0) (3,0) (3,0) (3,0)
clmOPT 1P 1P 2P 2P
Selected model Linear onµ Linear onµ Linear onµ Linear onµ

Return levels are then evaluated using extrapolation of
identified trends. Of course, for the location parameterµ

trends have to be monotonous on a large time interval at the
end of the observation period, and degrees above 2 cannot
be retained. For piecewise linear functions, we also have
to check that the last break point is not too close to the end
of the series, which could reveal a strong influence of the
last hot year 2003, leading to unrealistic extrapolations.
Moreover, a coherence of the trends between close sites
located on the same river and which do not have a distinctive
hydrological feature is maintained. This coherence could
be spread along the entire river, in the case of the Rhône.
The cases of the Loire and Rhône rivers will be described in
more details.

The Loire river

Figure 5 shows the trends computed forµ, in Belleville and
Dampierre: the best polynomial obtained is (3,0) and the
CLM model is 3P They correspond to the best statistical
fit to describe the data, but regarding the shortness of the
series, they cannot reasonably be used for extrapolation. As
mentioned above, these models are very sensitive to the 2003
heat wave placed at the end of the sample. That remains
true for all the sites. Thus, only extrapolation starting from
linear and 2P CLM models can be considered as reasonable.
The 2P model has the advantage of separating the first years
of relatively cold summers from the last part of the trend,
which can then more reasonably be extrapolated. Natural
climatic variability is here sampled in an uncomfortable way
for robust trend identification, since relatively cold years are
frequent at the beginning of the sample and a particularly hot
year occurs at the end of the observed period. In addition,
as the water temperature adjustment with the atmospheric
conditions is fast on this river, various trends onµ can be
retained for sufficiently distant sites.

Table 5. Optimal trend computed for GEV parameters (others
sites).

Golfech Chooz Cattenom Fessenheim

polyOPT (3,0) (1,0) (1,1) (3-4,0)
clmOPT 2P 2P 1P 1P
Selected model 2P Linear onµ Linear onµ Linear onµ

The Rĥone river

Figure 6 presents the trends forµ, on various sections
of Rhône river: Bugey, which is located rather upstream, and
Cruas located rather downstream. On the two sites again,
a polynomial extrapolation starting from models in (3,0)
or in 3P CLM onµ, are not reasonable. These high order
trends give a good fit with the observations but cannot be
considered as representative of the global trend. A good
example of a correct fit but with little physical sense is the
characteristic model shape of the 3P. Even the 2P model
shows a great influence of 2003 on the trend in Bugey, but
not in Cruas. On the other hand, the linear trend seems to
have a more reasonable physical meaning on the two sites.
For the Rĥone, the river thermal behavior is different from
the Loire. In particular, the river thermal balance does not
depend only on atmospheric forcing but also on the glacial
contributions (lake Ĺeman and glacial tributaries) and on
anthropogenic factors. In this complex and slow thermal
balance, it appears necessary for the river to preserve the
same modelling ofµ for all the sites.

Discussion on trend models

According to the sample, the situation is very specific.
CLM models are used in order to control and perhaps to
improve polynomial models. But, the data present a very
hot temperature at the end of the sample. Then, the last
break point has a strong probability to be near to this end
and therefore the last piece can have a very high slope. For
a fit and descriptive aim, CLM is well adapted. But for a
prediction by extrapolation, CLM could be lead to huge
values which cannot easily interpretable.

To sum up, a positive trend for the evolution ofµ is found
for all the power plants. However, it is advisable to inter-
pret this trend with great care, as the water temperature is the
resultant of several causes, natural or not.

That is particularly true on the Rhône river, which is a so-
called “transfer river”. The heat contributions of industrial
origin is not evacuated (or little) in the atmosphere and mod-
ify the water temperature all along the river downstream of
the disposal (see F. Hendrickx et al., 2004). Thus, the de-
tected trend includes both natural and industrial evolutions
during the last 27 years.
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Fig. 5. Trends onµ for Belleville (a) and Dampierre(b).

Fig. 6. Trends onµ for Bugey(a) and Cruas(b).

For the Loire, the trend is less complex because the ad-
justment of water temperature to the atmospheric conditions
is faster. Thus, the river temperature is not influenced by the
upstream thermal discharges.

It is also the case for Golfech, Chooz, Cattenom and Fes-
senheim, which do not have major industrial facilities carry-
ing out upstream important thermal discharges.

On the other hand, the upstream hydraulic installations can
influence the water temperature by modifying the flows.

For all these reasons, it is difficult to attribute trends only
to climatic evolutions, even if they should have an influence.

4.1.2 Results on the GEV parameters

Figure 7 and Table 6 give the results of the GEV parameters
for the chosen models. The value of the cluster rateθ is
added too.

For each parameter the standard error is similar for all sta-
tions. On average, standard errors forξ , the last slope of
µ andσ are equal to 0.07, 0.27.10−4 and 0.13 respectively.
Thus, the 95% confidence intervals for these parameters are
about equal to 0.14, 0.53.10−4 and 0.25 around the estimated
values.

With values ofξ ranging between−0.570 and−0.126,
the distribution governing the extreme water temperatures
belongs to a Weibull type for all the stations with a 70% con-
fidence interval. Thus, the probability density of the extreme
temperature levels is bounded, which seems physically rea-
sonable in the case of hot extreme water temperature.

In the overwhelming majority of stations, no significant
trends are detected in theσ parameter of the GEV, and be-
cause of the shortness of the samples, the identified ones
must be carefully considered. For applications to return lev-
els computing, it has been decided to not take them into ac-
count.
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Table 6. Last slope value ofµ parameter (in C degrees/time).

Site Belleville Dampierre Saint-Laurent Chinon

Selected model 2P 2P Linear onµ Linear onµ

µ 10−4 2.5 2.1 3.4 4.75

Site Bugey Saint-Alban Cruas Tricastin

Selected model Linear onµ Linear onµ Linear onµ Linear onµ

µ 10−4 2.8 3.0 4.2 3.98

Site Golfech Chooz Cattenom Fessenheim

Selected model 2P Linear onµ Linear onµ Linear onµ

µ 10−4 2.8 2.6 2.7 3.2

For the parameterµ, a positive trend is detected for
all stations, whatever the temporal evolution model cho-
sen for this parameter. The slope coefficient of the last
part of the model forµ lies between 2.1×10−4◦C/time and
4.75×10−4◦C/time.

4.2 Results on return levels

4.2.1 Influence of non stationarity

Figures 8 and 9 give the 10-, 20- and 30-year return levels
while taking (right figure) or not (left figure) series clusteri-
zation into account.

The 10-, 20- and 30-year return levels seem to be phys-
ically reasonable. Indeed, the 10- or 20-year return levels
were already reached, sometimes exceeded in particular dur-
ing the 2003 heat wave, on all sites. For Chooz, even the
30-year return level was approached. On the other hand, the
50- and 100-year return levels do not appear very reasonable
in particular in comparison with the sample size (27 years,
sometimes less when using piecewise linear functions) on
which the extrapolation is based.

To evaluate the trend effects, return levels were computed
with a stationary assumption. In this case,µ, σ andξ pa-
rameters of GEV distribution are supposed to be constant.
The results are given in Fig. 9 in the same form as in the non
stationary case (see Fig. 8).

We also compute confidence intervals for the different re-
turn levels. The non stationarity hypothesis makes it impos-
sible to use close asymptotics. Thus, we simulate 1000 tra-
jectories of the estimated optimal model. Then, the return
levels are computed for every trajectory. From these data,
we obtain an empirical estimate of the return levels distri-
bution and we choose as confidence interval an interquantile
interval, for instance (q(0.05),q(0.95)) for the risk level 0.1.
We also check that the magnitude of these intervals does not
depend on small variations of the estimated model parame-
ters. Table 7 shows different confidence intervals computed
using trajectories, for Saint Laurent.

Fig. 7. Values of parametersθ , σ , ξ and model type ofµ, for each
site (θ value,ξ value, model type forµ, σ value in C degrees).

Results are almost the same for all stations, even if confi-
dence intervals are narrower for the Rhône than for the Loire.
Thus, we do not give the detailed results. The orders of mag-
nitude are as follows:

– The width of the confidence interval is 2 degrees at risk
level 0.05 for a 10-year return level.

– It is divided by 2 for a risk level 0.3.

– It is multiplied by 1.8 for a 30-year return level.

4.2.2 Influence ofθ on return level

The difference of return levels according to whether the se-
ries are considered stationary or not, increases with return
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Fig. 8. Return levels (10, 20 and 30 years) by sites with non stationary hypothesis (withoutθ on left and withθ on right).

Fig. 9. Return levels (10, 20 and 30 years) with stationary hypothesis for all the sites (withoutθ on left and withθ on right).

level duration. On average on all the stations, this difference
is between 1.8◦C for 10 years and 3.5◦C for 30 years. For
30-year return level, the temperature variation lies between
2.5◦C and 5◦C according to the stations.

Figure 10 shows the differences between the 30-year level
with or without θ in the stationary and non stationary con-
texts. Globally, these differences decrease withθ as ex-

pected. Indeed, the probability (1-G) of exceeding a fixed
return level is a decreasing function ofθ .

For all return levels, the differences vary between 0.2◦C
and 2◦C. Finally, if we want to take temporal evolution en-
tirely into account, theθ parameter should be a function of
time. But, in that case the problem becomes difficult to solve,
as our series are much too short to allow a reliable study of
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Table 7. Cconfidence intervals for return levels (in◦C degrees) at Saint-Laurent.

95% confidence interval 90% confidence interval 70 % confidence interval

(◦C) lower bound upper bound lower bound upper bound lower bound upper bound

10 years 27,87 29,86 28,03 29,7 28,34 29,39
20 years 28,75 31,5 28,97 31,28 29,39 30,85
30 years 29,57 33,13 29,85 32,85 30,41 32,29

evolution of clustering. This issue could guide a future de-
velopment of our methodology.

4.3 Results for the long time series

In order to analyse the effect of the sample size, two long
temperature time series computed with a thermal model of
rivers behaviour, are used (see paragraph 2.2). For important
computing time reasons, only the polynomial modelling of
the parametersµ andσ has been tested with these 55-year
series. The main results are given in Table 6.

The optimal polynomial models are (1,1). The variance ef-
fect becomes important for these series and tends to increase
the return levels compared to the model (1,0).

For the same modelling of parameterµ, the return levels
estimated from 1977–2003 and 1949–2003 series show sig-
nificant differences, which increase with the return period.
This sensitivity test shows quite well that there is a strong
sampling effect on the return level calculation.

However, Table 9 shows that the shape parameterξ is of
the same order of magnitude for the 27-year and the 55-year
series, which supports the idea of the time independence of
ξ .

The choice of the computation period, although crucial for
the extreme temperature evaluation, is delicate. Indeed, it
is difficult, or even impossible, to determine with exactitude
the beginning of the climatic change effects on water temper-
atures.

However as we said before for the Loire, the thermal equi-
librium with the atmospheric forcing is fast because of low
flow and small depth. Thus, the thermal influence of hot wa-
ter rejected by upstream power plant is weak. The analy-
sis of monthly mean temperature of the Loire river using a
series since 1976 and a series since 1881 shows a temper-
ature increase, with a significant acceleration since the late
1980s (Moatar, 2006) due to the rise in air temperatures and
to lower discharge rates.

Besides, the trends observed forµ for the average and ex-
treme air temperature, show an acceleration from the years
1970 (Parey et al., 2007).

For these reasons, to calculate short term return levels, it
could seem wiser to carry out calculations by extrapolating
the most recent trends and thus starting from the series based
on the last 30 years.
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Fig. 10. Difference of 30-year return level with or withoutθ in non
stationary and stationary cases, for all sites.

5 Conclusions

This paper proposes a methodology to identify if trends in
extremely high river temperatures exist for the next decades.
Several models has been studied to estimate the trends. As
application, one of these trend models is used to evaluate the
return levels of extreme hot water temperature.

We studied the trends of extremely hot water temperatures
at 12 French stations, based on measured or computed (for
one station) series over the period 1977–2003, using statisti-
cal extreme value theory, and particularly the GEV distribu-
tion. The GEV used for the return levels calculation takes the
thermal water inertia into account via theθ corrective factor.
The distribution modelling the extreme series is found to be
of Weibull type, with a negative shape parameter. Thus, there
is an upper bound for the extreme temperatures, which seems
physically reasonable.

All these stations show an increasing trend in the mean
level of extremes. On the other hand, we do not identify a
reliable trend in the dispersion of the extreme values. This
identified trend takes at the same time climatic change and
evolutions of human induced activities along the rivers into
account, particularly for the Rhône river. Analyses of longer
temperature time series (1949–2003) confirm a sample size
effect in the trend calculations. This is why it is advisable to
take these results with care especially if they must be applied
with the aim of public interests and safety.
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Table 8. Return levels computed from 1949–2003 series.

Belleville (1,0) Belleville (1,1) Dampierre (1,0) Dampierre (1,1)

Return levels Withoutθ With θ Without θ With θ Without θ With θ Without θ With θ

10 years 27.82 26.44 28.42 26.78 28.39 27.40 28.97 27.91
20 years 28.25 27.17 29.09 27.79 28.84 27.71 29.66 28.29
30 years 28.43 27.49 29.49 28.33 29.01 28.04 30.06 28.85

Table 9. ξ value for the two periods 1949–2003 and 1977–2003.

Belleville (1,0) Dampierre (1,0)

Series period 1949–2003 1977–2003 1949–2003 1977–2003

ξ −0.377 −0.377 −0.357 −0.244

This method provides 10-, 20- and 30-year return levels,
which seem physically reasonable. Indeed, the 10- or 20-year
return levels were reached and even exceeded in particular
during the 2003 heat wave on all sites. For Chooz even the
30-year return level was approached. Extrapolation to longer
return periods seems hazardous compared with the sample
size of temporal series of water temperatures.

In addition, return levels are subject to an important sam-
ple size effect. Indeed, all the observed series present gener-
ally the same behaviour: they start from one period of sev-
eral years with rather cold summers to finish with the 2003
heat wave. Moreover, sensitivity studies show that the ini-
tial cold period has more influence in trend calculations than
the final period including 2003. This behaviour, due to nat-
ural variability, is not entirely attributable to anthropogenic
climate change and leads to stronger trends. This is why,
it is necessary to confront the results with those of a phys-
ical and deterministic modelling of the rivers thermal be-
haviour. The physical model (e.g. CALNAT) (see Gras, 1969
and Dupeyrat et al., 2006) could be used with meteorological
parameters (air temperature, air humidity, wind, . . . ) scenar-
ios taking the climatic change into account.

Finally, these results should be moderated for two reasons:

– They suppose that the thirty last years trend will con-
tinue in the thirty next years. This working hypothesis
cannot be checked.

– In addition, they also suppose that current forcing by
the atmospheric conditions will have the same effect on
water temperature in thirty years. However a high air
temperature modifies the steam pressure of water sur-
face and then enhances its evaporation, a phenomenon
that cools water surface (Mohseni et al., 1999). The

relationship between air temperature and water temper-
ature is complex, and could be modified in case of very
high air temperatures.

Nevertheless, the linear extrapolation of water temperature
trend remains the most reasonable assumption in the short
term to estimate the return levels of hot extreme tempera-
tures.
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