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Abstract. This work studies the impact of wind on extreme
wave events, by means of numerical analysis. A High Or-
der Spectral Method (HOSM) is used to generate freak, or
rogue waves, on the basis of modulational instability. Wave
fields considered here are chosen to be unstable to two kinds
of perturbations. The evolution of components during the
propagation of the wave fields is presented. Their evolution
under the action of wind, modeled through Jeffreys’ shelter-
ing mechanism, is investigated and compared to the results
without wind. It is found that wind sustains rogue waves.
The perturbation most influenced by wind is not necessarily
the most unstable.

1 Introduction

Extreme waves events, called rogue, or freak waves, are well
known from the seafarers. Historically believed to belong to
the domain of myth, more than to the domain of physics, they
are now widely observed and witnessed. A large number of
disasters have been reported by Mallory (1974) and Lawton
(2001). This phenomenon has been observed in various con-
ditions, and various places. It points out that a large number
of physical mechanisms is involved in the generation of freak
waves. A large review of the different mechanisms involved
can be found in Kharif and Pelinovsky (2003). Up to now,
there is no definitive consensus about their definition. The
definition based on height is often used. A wave is consid-
ered to be rogue when its height exceeds twice the significant
wave height of the wave field.

These waves often occur in storm areas, in presence of
strong wind. In those areas,Hs is generally large, leading
freak waves defined byH≥2×Hs to be very devastating.
This observation lead to wonder what can be the impact of
wind on such waves. Recent work by Touboul et al. (2006)
and Giovanangeli et al. (2006) pointed out experimentally
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and numerically that freak waves generated by means of dis-
persive focusing were sustained by wind. A focusing wave
train was emitted, and propagated under the action of wind.
It was found that the freak wave was shifted, and had a higher
lifetime. Part of those results were observed numerically by
modeling the wind action through Jeffreys’ sheltering mech-
anism (Jeffreys, 1925).

Thus, one can wonder if these characteristics are generic
for freak waves in general, or are specific to the case of
dispersive focusing. Previous experimental work by Bliven
et al. (1986), comforted by theoretical results by Trulsen and
Dysthe (1991) observed that wind action was to delay, or
even to suppress Benjamin-Feir instability. But more recent
work by Banner and Tian (1998) concluded that this result
could be different, with another approach for wind model-
ing. Very recent work by Touboul and Kharif (2006) showed
that the Jeffreys’ sheltering model was leading to an increase
of the lifetime of the freak wave due to modulational instabil-
ity, observing the results found in the case of dispersive fo-
cusing. However, the authors concluded that the underlying
physics of both cases were different. As a matter of fact, it is
interesting to investigate further the present phenomenon.

Following this purpose, the approach used here is designed
to analyze the evolution of several perturbations under the
action of wind. The numerical scheme introduced by Dom-
mermuth and Yue (1987) and West et al. (1987) is presented
first. Nonlinear equations of waves propagation are solved
by means of a High Order Spectral Method (HOSM). It is
based on the pseudo-spectral treatment of the equations, re-
sulting in a quite good precision, given the high efficiency of
the method. This approach allows to simulate long time evo-
lution (several hundreds of peak period) of the wave field to
model Benjamin-Feir instability with a good accuracy. The
model is presented in Sect. 2. Wind modeling is also pre-
sented in this section, explaining how Jeffreys’ sheltering
mechanism can be introduced in the equations of wave prop-
agation. In Sect. 3, the initial conditions used in the numer-
ical experiences are detailed, and results are presented and
discussed in Sect. 4.
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2 Modeling of the problem

2.1 Governing equations of the fluid

The fluid is assumed to be inviscid and the motion irrota-
tional, so that the velocityu may be expressed as the gradi-
ent of a potentialφ(x, z, t): u=∇φ. If the fluid is assumed
to be incompressible, the governing equation in the fluid is
the Laplace’s equation1φ=0.

The waves are supposed to propagate in infinite depth, and
the fluid should remain asymptotically unperturbed by waves
motion. Thus, the bottom condition writes

∇φ → 0 when z → −∞. (1)

The kinematic definition of the sea surface, which expresses
the fact that a particle of the surface should remain on it, is
expressed by

∂η

∂t
+

∂φ

∂x

∂η

∂x
−

∂φ

∂z
= 0 on z = η(x, t). (2)

Since surface tension effects are ignored, the dynamic
boundary condition which corresponds to pressure continuity
through the interface, can be written

∂φ

∂t
+

(∇φ)

2

2

+ gη +
pa

ρw

= 0 on z = η(x, t). (3)

whereg is the gravitational acceleration,pa the pressure at
the sea surface andρw the density of water. The atmospheric
pressure at the sea surface can vary in space and time.

By introducing the potential velocity at the free surface
φs(x, t)=φ(x, η(x, t), t), Eqs. (2) and (3) writes

∂φs

∂t
= −η −

(∇φs)

2

2

+
1

2
W2[1 + (∇η)2] − p. (4)

∂η

∂t
= −∇φs · ∇η + W [1 + (∇η)2]. (5)

wherep is the nondimensional form ofpa , and where

W =
∂φ

∂z
(x, η(x, t), t). (6)

Equations (4) and (5) are given in dimensionless form. Ref-
erence length, reference velocity and reference pressure are,
1/k0,

√
g/k0 andρwg/k0 respectively.

The numerical method used to solve the evolution equa-
tions is based on a pseudo-spectral treatment with an explicit
fourth-order Runge-Kutta integrator with constant time step,
similar to the method developed by Dommermuth and Yue
(1987). More details, and test reports of the method can be
found in Skandrani et al. (1996).

2.2 The Jeffreys’ sheltering mechanism

Previous works on rogue waves have not considered the di-
rect effect of wind on their dynamics. It was assumed that
they occur independently of wind action, that is far away
from storm areas where wind wave fields are formed. Herein
the Jeffreys’ theory (see Jeffreys, 1925) is invoked for the
modelling of the pressure,pa . Jeffreys suggested that the en-
ergy transfer was due to the form drag associated with the
flow separation occurring on the leeward side of the crests.
The air flow separation would cause a pressure asymmetry
with respect to the wave crest resulting in a wave growth.
This mechanism can be invoked only if the waves are suf-
ficiently steep to produce air flow separation. Banner and
Melville (1976) have shown that separation occurs over near
breaking waves. For weak or moderate steepness of the
waves this phenomenon cannot apply and the Jeffreys’ shel-
tering mechanism becomes irrelevant.

Following Jeffreys (1925), the pressure at the interface
z=η(x, t) is related to the local wave slope according to the
following expression

pa = ρas(U − c)2 ∂η

∂x
. (7)

where the constant,s is termed the sheltering coefficient,U

is the wind speed,c is the wave phase velocity andρa is
atmospheric density. The sheltering coefficient,s=0.5, has
been calculated from experimental data. In a nondimensional
form, Eq. (7) rewrites

p =
ρa

ρw

s(
U

c
− 1)2 ∂η

∂x
. (8)

In order to apply the relation (8) for only very steep waves
we introduce a threshold value for the slope(∂η/∂x)c. When
the local slope of the waves becomes larger than this critical
value, the pressure is given by Eq. (7) otherwise the pressure
at the interface is taken equal to a constant which is chosen
equal to zero without loss of generality. This means that wind
forcing is applied locally in time and space.

In the following simulations, parameter(∂η/∂x)c has been
taken equal to 0.32. This parameter is chosen arbitrarily,
noticing that this slope corresponds to an angle close to 30◦,
which the angle of the limiting Stokes wave in infinite depth.
The parameterU

c
has been taken equal to 1.6, which would

correspond to a wind speedU=25 m/s for waves of period
T =10 s.

3 Initialization of the method

Stokes waves are well known to be unstable to the Benjamin-
Feir instability, or modulational instability. It is the con-
sequence of the resonant interaction of four components
presents in the wave field. This instability corresponds
to a quartet interaction between the fundamental compo-
nentk0 counted twice and two satellitesk1=k0(1 + p) and
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k2=k0(1−p) wherep is the wavenumber of the modulation.
Instability occurs when the following resonance conditions
are fulfilled.

k1 + k2 = 2k0 and ω1 + ω2 = 2ω0. (9)

whereωi with i=0, 1, 2 are frequencies of the carrier and
satelites. A presentation of the different classes of instability
of Stokes waves is given in the review paper by Dias and
Kharif (1999).

The procedure used to calculate the linear stability of
Stokes waves is similar to the method described by Kharif
and Ramamonjiarisoa (1988). Letη=η̄+η′ and φ=φ̄+φ′

be the perturbed elevation and perturbed velocity poten-
tial. (η̄, φ̄) and (η′, φ′) correspond respectively to the un-
perturbed Stokes wave and to the infinitesimal perturbative
motion (η′≪η̄, φ′≪φ̄). Following Longuet-Higgins (1985),
the Stokes wave of amplitudea0 and wavenumberk0 is com-
puted iteratively, providing a very high order solution of
(η̄, φ̄). This decomposition is introduced in the boundary
conditions (4) and (5) linearized about the unperturbed mo-
tion, and the following form is used:

η′ = exp(λt + ipx)

∞∑

−∞
aj exp(ijx). (10)

φ′ = exp(λt + ipx)

∞∑

−∞
bj exp(ijx + γjz)). (11)

whereλ, aj andbj are complex numbers and whereγj= |
p+j |. An eigenvalue problem forλ with eigenvector
u=(aj , bj )

t :(A−λB)u=0 is obtained, whereA and B are
complex matrices depending on the unperturbed wave steep-
ness of the basic wave. The physical disturbances are ob-
tained from the real part of the complex expressionsη′ and
φ′ at t=0.

McLean et al. (1981) and McLean (1982) showed that the
dominant instability of a uniformly-traveling train of Stokes’
waves in deep water is the two-dimensional modulational in-
stability, or class I instability, as soon as its steepness is less
thanǫ=0.30.

In the following simulations, two initial conditions are
used. Those conditions are designed to lead to modulational
instability. The first one, named initial condition (1), is a
Stokes wave of steepnessǫ=0.11, disturbed by its most un-
stable perturbation which corresponds top≈2/9≈0.22. The
fundamental wave number of the Stokes wave isk0=9 and
the dominant sidebands arek1=7 andk2=11 for the subhar-
monic and the superharmonic part of the perturbation respec-
tively.

The initial condition (2), is also a Stokes wave of
same steepness, disturbed by its most unstable perturbation
p≈2/9≈0.22. But the linear stability analysis demonstrates
that the stokes ofǫ=0.11 is also unstable to the perturbation
q≈1/9≈0.11, which is added to the previous initial condi-
tion. Thus, the fundamental wave number of the Stokes wave
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Fig. 1. Spectra of the two initial conditions used in the simulations.
(a): initial condition (1), with perturbationp alone;(b): initial con-
dition (2), with both perturbationsp andq. Spectra are presented
up tok=50 for sake of clarity.

is still k0=9 and the sidebandsk3=8 andk4=10 for subhar-
monic and superharmonic part of the modulationq are also
present, and have the same amplitude than sidebandsk1=7
andk2=11 corresponding to the modulationp.

Higher harmonics are present in the interaction but they
are not presented here, for sake of clarity. Figure1 present
the spectra of these initial conditions, up to fourth harmonic.
From this figure, it also appears that wavenumbersk=1
and k=2 are present. They respectively correspond to the
wavenumbers of the perturbationsp andq.
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Fig. 2. Time evolution of the components of the fundamental
modek0=9 (solid line), of subharmonic modesk1=7 (dashed line)
andk3=8 (dotted line), and of superharmonic modesk4=10 (dash-
dotted line) andk2=11 (dash-dot-doted line) propagated without
wind. (a): From initial condition (1). (b): From initial condition
(2).

In all simulations, the order of nonlinearity is taken such
that M=8. The number of mesh points satisfies the condi-
tion N>(M + 1)kmax wherekmax is the highest wavenumber
taken into account in the simulation. Here, it has been taken
equal tokmax=70, andN=k0×100=900, so that 7 harmon-
ics of the fundamental wavenumber are described. The latter
criterion concerningN is introduced to avoid aliasing errors.
More details can be found in Tanaka (2001). To compute the
long time evolution of the wave packet the time step1t is
chosen equal toT/100 whereT is the fundamental period
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Fig. 3. Free surface elevation obtained at timet/T =280, from ini-
tial condition (2), without wind (solid line), and under wind action
(dotted line).

of the basic wave. This temporal discretization satisfies the
Courant-Friedricks-Lewy (CFL) condition of stability of fi-
nite difference scheme. Thus, a special concern regarding
the accuracy of the method has been observed, since HOSM
methods are known for the decay of accuracy for the steepest
waves of concern here.

4 Results

4.1 Propagation without wind

Results obtained for both initial conditions propagated with-
out wind are presented here. Figure 2 describes the normal-
ized time evolution of the fundamental wavenumberk0 of the
wave field, and sidebands of the two perturbationsk1, k2, k3
andk4.

On Fig. 2a, one can see the Fermi-Pasta-Ulam recurrence
obtained from initial condition (1). The perturbationp,
which is alone in this initial condition, passes through a max-
imum of modulation, during which componentsk1 andk2 are
predominant. Then it demodulates, and the fundamentalk0
gets its initial amplitude back. Afterward begins a new cy-
cle. It is interesting to notice that the components involved in
the process arek0, k1 andk2. The amplitude of components
k3 andk4 remains almost constant through the modulation-
demodulation cycle.

On Fig. 2b, it appears that no cycle is observed. This is
understood since two perturbations are present in initial con-
dition (2). As a matter of fact, two cycles are superimposed,
and there is a nonlinear interaction of the components of each
perturbation. It results in the destruction of the recurrence of
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Fig. 4. Time evolution of the amplification factorA, obtained
from: initial condition (1) without wind (solid line), initial con-
dition (2) without wind (dashed line), initial condition (1) under
wind action (dotted line), and initial condition (2) under wind ac-
tion (dash-dotted line).

each cycle, and a more chaotic behavior. During some mod-
ulation, componentsk1 andk2 are predominant, while during
some others, componentsk3 andk4 are.

4.2 Propagation with wind

Initial conditions are now propagated under wind action. Fig-
ure 3 displays free surface elevations obtained from initial
condition (2), propagated with and without wind for nondi-
mensional timet/T =280. This time corresponds barely to
the maximum of modulation. It is interesting to notice that
the heightH of the wave propagated under wind action is
larger than the height of the freak wave obtained without
wind. But phase of the two waves remain very close. Phase
velocity is almost not affected by the presence of wind.

From the heightH of the waves, one can define an am-
plification factorA= H

H0
, H0 being the wave height of the

initial condition. Figure 4 displays the time evolution of this
amplification factor for initial conditions (1) and (2), propa-
gated with, and without wind. It is clear that in both cases,
the presence of wind leads to an amplification of the freak
wave. Furthermore, the time during which the wave group
fulfills the freak wave criterion (H

H0
>2) is increased. This is

understood as an increase of the freak wave’s lifetime.
Simulations of the evolution of both initial conditions

propagated under wind action stop aroundt/T =295. Nu-
merical blow up appearing is understood as wave breaking,
due to the large input of energy under wind action.

Figure 5 presents the evolution of componentsk0, k1, k2,
k3 and k4 propagated under wind action, in the same way
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Fig. 5. Time evolution of the components of the fundamen-
tal modek0=9 (solid line), of subharmonic modesk1=7 (dashed
line) andk3=8 (dotted line), and of superharmonic modesk4=10
(dash-dotted line) andk2=11 (dash-dot-doted line) propagated un-
der wind action.(a): From initial condition (1).(b): From initial
condition (2).

it was done on Fig. 2 without wind. Curves last up to
t/T =295, after numerical blow up. Results obtained from
initial conditions (1) and (2) are very similar. One can no-
tice that in both cases, componentsk1 and k2 are not af-
fected by the introduction of wind. Differences appear on
the behavior of componentsk3 and k4. If components re-
lated to perturbationp seem to follow the evolution they had
without wind, components related to perturbationq show a
rapid divergence from their behavior without wind. By com-
paring Fig. 2b and Fig. 5b, it appears that amplitude of the
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componentsk3 andk4 grow earlier in presence of wind. In
presence of wind, these components are dominant around
t/T =290, while without wind, they are not dominant be-
fore t/T =400. Between Figs. 2a and 5a, the difference is
also very important. The normalized amplitude of compo-
nentsk3 andk4, related to perturbationq, never exceeds 0.01
when propagated without wind. But while propagated un-
der wind action, these components become dominant after
t/T =290. As a matter of fact, the modulationq, which is
not the most unstable, turns out to be more sensitive to wind
forcing. This observation could be explained while noticing
that a phase opposition exists between the two freak waves
present around the time of maximum modulation. Therefore,
the forcing criterion is not overcome simultaneously, but al-
ternatively by these waves. This could result in the forc-
ing of the perturbationq, which presents one wavelength in
the computational domain, instead of perturbationp, which
presents two.

5 Conclusions

The effect of wind on freak waves generated by means of
modulational instability has been investigated numerically.
Two initial conditions have been considered. In the first one,
only the most linearly unstable perturbation has been consid-
ered, while in the other one, the two perturbations linearly
unstable were imposed. Those initial conditions have been
propagated with, and without wind.

It appeared that without wind, the Fermi-Pasta-Ulam re-
currence disappear when both modulations are present. This
recurrence is broken by the presence of a second perturba-
tion, of different growth rate. As a matter of fact, two cycle
of different length are superimposed, and nonlinear interac-
tions quickly destruct recurrence.

Under wind forcing, the lifetime of the freak wave is in-
creased, in both cases. An amplification of the peak is also
found, confirming previous results by Touboul and Kharif
(2006). But in both cases, the influence of wind seems to
help developing the perturbation which is not the most un-
stable. In both simulations, wind forcing lead to numerical
blow up, which is understood as wave breaking.

As a result, it appears that wind blowing over rogue waves
lead them to breaking. Those waves, naturally dangerous,
become very more devastating while breaking. The impact
of huge breaking waves on ships or off-shore structures is re-
sponsible of a large amount of energy destroying those struc-
tures. This phenomenon appears to be supported by wind
action on rogue waves.

To improve and validate this approach, a stronger inves-
tigation of the pressure distribution in separating flows over
waves is required. A two phase flow code is being developed
for this study. A numerical simulation of the problem will
provide a lot of information on the pressure distribution at
the interface, and on the controling parameters.
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