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Abstract. In the present paper we propose a method for Historically, sea-spectra evolutions have been studied
studying extreme-wave appearance based on the Highethrough weakly-nonlinear approaches where a limited hum-
Order Spectral (HOS) technique proposed by West et alber of wave-component interactions are accounted for. The
(1987) and Dommermuth and Yue (1987). The enhancedirst results derived using such a mode-coupling approach
HOS model we use is presented and validated on test caselsave been published in the early 1960s by Phillips (1960),
Investigations of freak-wave events appearing within long-Longuet-Higgins (1962) and Hasselmann (1962), but they
time evolutions of 2-D and 3-D wavefields in open seas arewere limited to the obtention of energy exchange rates re-
then realized, and the results are discussed. Such events agelting from the wave interactions. The full time evolution
obtained in our periodic-domain HOS model by using differ- of the wave system has then been described by Zakharov
ent kinds of configurations: either i) we impose an initial 3-D (1968), who derived the mode rate equations. In their integral
directional spectrum with the phases adjusted so as to form éorm (Zakharov, 1968) obtained using the Hamiltonian for-
focusedforcedevent after a while, or ii) we let 2-D and 3-D malism, the latter equations have been solved using reduced
wavefields defined by a directional wave spectrum evolve upexpressions limited to four-wave or five-wave interactions.
to thenatural appearance of freak waves. Finally, we inves- Nonetheless, it is only during the last two decades that these
tigate the influence of directionality on extreme wave eventsreduced Zakharov equations have been fully derived and
with an original study of the 3-D shape of the detected freaksolved (see e.g. Stiassnie and Shemer, 1984; Krasitskii, 1994;
waves. Annenkov and Shrira, 2001). Another direction that has been
followed using also a limited order in wave steepness, has
been to add the assumption of a narrow-banded wave spec-
trum. The weakly-nonlinear equations thus obtained have
been widely used and enhanced since the first application
. . ... _of the Non-Linear Sclirdinger equation to the gravity-wave
In open seas, ships and marine structures are penodmallx drodynamics (in Zakharov, 1968). Among others (see
exposed to extreme waves, which constitute a major prob-i’1 " y d Peli kv, 2003 ’f .'d 9 he d
lem for both structure integrity and human safety. These ex-K. arit and Felinovsky, , for a wider review), the de-
treme physical events are both three-dimensional and highly['V‘ad equ ations include al_s 0 the Davey-Stewardson sygtem
for a finite-depth formulation, the Dysthe (1979) equation

nonlinear phenomena, making their numerical study chal- " ." . :
. ) which includes the fourth order in wave steepness, and mod-
lenging. Their occurrence may be related to a wave energ

. i X ) ¥fied versions of the latter to account for a broader bandwidth
focusing which derives from a number of factors: wave-

4 . . .~ of wave spectrum (see e.g. Trulsen and Dysthe, 1996).
current interaction, bathymetry, wind effects, self-focusing o ]
instabilities, directional effects, etc. For a review on the dif- Within the framework of the latter weakly-nonlinear
ferent mechanisms of formation of such events, see KhariffPProaches, the extreme wave events referred to as “freak”
and Pelinovsky (2003). In the present work, we mainly in- OF ‘Togue” waves have been studied as resulting from
terest ourselves in long-time evolutions of wavefields in deepVave geometrical or spatio-temporal focusing, or from

1 Introduction

water or finite constant depth without wind or current. modulational Benjamin-Feir instabilities. However, since
freak waves have large amplitudes, high steepness, and

Correspondence td5. Ducrozet short duration, Kharif and Pelinovsky (2003) note that

(guillaume.ducrozet@ec-nantes.fr) the assumptions of weak nonlinearity and narrow-banded
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110 G. Ducrozet et al.: 3-D HOS simulations of extreme waves

spectrum are not fully valid. Moreover, the randomness ofof the directionality on the freak waves formation is inves-
the 3-D wavefields involved attenuates the Benjamin-Feirtigated. A double zero-crossing analysis of the numerical
instability phenomenon (see Kharif and Pelinovsky, 2003).wavefield allows us to define two characteristic lengthes, in
The use of time-domain fully-nonlinear potential models the mean and in the transverse directions of propagation. A
should therefore be the best suitable approach to study sugbarametric study is then run on the directional spreading, and
extreme events. Nonetheless, the numerical simulatiomesults are discussed in terms of freak waves height, trans-
of these fully-nonlinear open-sea evolutions is today still verse extension, frequency of formation, and groupiness.
very challenging. The Boundary Element Method (BEM),

classically employed within the latter class of methods, ) L

remains indeed too slow to reproduce square kilometerg Formulation and validation

of ocean Iong-tl_me evolution. Actually, the temporal a_nd 2.1 Hypothesis and general equations

spatial scales involved, and the smallness of the high-
frequency waves included in the sea spectrum lead to huggye consider an open periodic fluid domadnrepresenting a
requirements in terms of space and time grids (typicallyyectangular part of the ocean of infinite depth and dimensions
mllllons_of spatial nodt_as and thousands of time s_teps). A”(Lx, Ly). We choose a cartesian coordinate system with the
alternative approach is to use spectral resolutions basegrigin O located at one corner of the domaih The O,

on the same equations derived by Zakharov (1968), but inyyis is vertical and oriented upwards, and the leved cor-
their fully-nonlinear version before expressing them into responds to the mean water level. The notaiastands for
wave-component interactions. the (x, y) vector.

] ] The fluid simulated is water, which is assumed to be in-

Such an approach has been proposed in 1987 respectivelyympressible and inviscid. The flow is also considered ir-

by West et al. (1987) and Dommermuth and Yue (1987); it gtational. With these assumptions one can apply poten-
is known as Higher-Order Spectral (HOS) method and peryig| flow theory, the velocityV derives from a potential

mits the fully-nonlinear simulation of gravity-wave evolution V(x,z,)=V(x, z,1), V representing the gradient amd
within periodic unbounded 3-D domains. This method is alsoe velocity potential. Then, continuity equation (di0)

called Dirichlet-Neumann Operator (Craig and Sulem, 1993),ac0mes the Laplace’s equation

which, in its accelerated version (Vijfvinkel, 1996), is equiv-

alent to the HOS (cf. Le Towg 2003; Schffer, 2005). With A¢p =0 in D (1)
respect to classical time-domain models such as the BEM
this spectral approach presents the two assets of its fast co

vergence and its high computational efficiency (by means 0quantities, namely the single-valued free surface elevation

FFTs), allowing to accurately simulate long-time 3-D sea- :

state evolutions with fine meshes. A number of studies rel-n(x’ ) and the surface potentigf (x, )=¢ (x. n, tz)

ative to open-sea evolutions have been carried out by using¢* 1 1 ¢

HOS, see e.g. Brandini (2001) or Brandini and Grilli (2001) 5, = —87 — 5IV¢' "+ 5 (1+ |V’7|2> (a?) @
for the apparition ohatural freak waves in a 2-D spectrum, 1 N
and the propagation of 2-D regular waves with 3-D modu- Yo (1+ [V ) Fra
lational instabilities; or Tanaka (2001a) for a study of the ) o
nonlinear evolution of a 3-D spectrum. on z=n(x,t). This way, the only remaining non-surface

In the present paper, we use a HOS model which is an enduantity is the vertical veIocity% which will be. evalu- '
hanced version of the order-consistent HOS originally pro-2t€d thanks to the West et al. (1987) order-consistent High-
posed (see West et al., 1987) which has been extensivel?rder Spe_ctrf’:ll scheme. The t_vv_o surface quantities are then
validated. In this model, specific care has especially beern@rched in time using an efficient 4th-order Runge-Kutta

paid to aliasing matters (see Bonnefoy, 2005) and numericafc"€me featuring an adaptative step-size control and in which
efficiency. This allows to accurately simulate on a single- the linear part of the equations is integrated analytically.

processor PC thousands of wave spectral peak periods in 22 2 Boundary conditions and spectral basis functions
D, and the evolution during tens of periods of square kilo-
meters of ocean in 3-D. Two kinds of simulations of extreme |, the previous section the free surface boundary conditions

wave events appearing in open-sea evolutions are shown arghye peen established. It remains to express the conditions
discussed in the present work. First, we let a directional wavegy, the sides, and the bottom of the domain if there is one.

spectrum evolve, with phases initially artificially adjusted S0 The considered domai is periodic in both ther and y

as to obtain dorcedfocusing event after a while. Second, 2- gjrections. This is expressed by the following two conditions
D and 3-D spectra with random initial phases are considered

and the occurrence ofatural freak waves within their evo-  (#: M(x =0,y.2,1) = (¢: M (x = Ly, y, 2. 1) 4)
lutions is investigated and discussed. Finally, the influence(¢; n)(x,y =0,z,¢) = (¢; n)(x,y = Ly, z, 1) (5)

' Following Zakharov (1968), the fully-nonlinear free sur-
ace boundary conditions can be written in terms of surface

V' - Vn 3
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G. Ducrozet et al.: 3-D HOS simulations of extreme waves 111

In the domainD defined, the following basis functions 3

Mﬁ individually satisfy the set of Egs. (1, 4, 5) -
2E-15 [

=1 (k)8 (kny) €XPkimn2) (6)
where f and g can either be the sine or the cosine func-
tions, andk,,=mm /Ly, ky=nn/Ly andky,=/k2+k? the
wavenumbers associated with mdde »). The velocity po-
tential¢ can then be expressed on this basis as

1.8E-15

1E-15

+00 +00

P20 =Y > AR f (knx)g(kny) €Xpkinn2) (7)

m=0n=0

Error on volume (%)

5E-16
This way, the velocity potential is fully determined by the
knowledge of the time-dependent coefﬁcieﬂtfﬁ ().

0 200 4(I)0 S(IIO ‘ 800 ‘10I00
2.3 The Higher-Order Spectral method T,

In the free surface conditions (2, 3) which are marched in

time to get the evolution of and ¢*, the only remaining 0.015
unknown is the vertical velocit)%%. The HOS method re-

lies first on the expansion of the velocity potential located at —

the exact free surface position, into series of complementary-
unknown quantities and Taylor series about the mean water® ¢4
level. From these quantities a fast-converging iterative pro-
cess is employed to get the vertical derivat%%eat the exact
free surface position. In this process, it should be kept in
mind that the HOS technique retains the fully-nonlinear fea-
ture of the solution. Indeed, the evaluation%éfis an inner
process which is not correlated to the fully-nonlinear solu-
tion of the problem; the fully-nonlinear free surface bound-
ary conditions are actually solved at the exact free surface AN | Y
position. For further details about the procedure see Ap- & <00
pendix A.

The HOS formulatlon aHOW.S us to uge a very efﬁgent Fig. 1. Error on the volume (top) and energy (bottom) of the
FFT-based solgtlon scheme with numerical cost growing as, . efield after 1000 peak periods of propagatith=8, Ny =2048
Nlog, N, N being the number of modes. Moreover, an ac- pgges).
celeration of the solution process has been implemented, see
Appendix B. It is also to notice that the free-surface bound-
ary conditions (Egs. 2 and 3) and the HOS iterative process
contain nonlinear products that have to be carefully treatedyeen re-run with very similar results on the evolution of 3-D-
These products are computed in the physical space and aigave spectra in huge domains of computation. Such large-
dealiased cautiously, see Appendix C. scale numerical simulations with the HOS method permit the

N verification of Hasselmann’s theory for the nonlinear energy
2.4 Validation transfer among surface gravity waves (Hasselmann, 1962).
Various validations of the HOS formulation have been per_This nonline_ar energy transfer is_ evaluated from the rate of
formed, see in particular the original article by West et al. change of d|ﬁert?nt spectra and is successfully compared to
(1987). To further validate the model we use, all the sta-the Hasselmann’s theory.
bility and accuracy tests found in the literature have been InFig. 1is represented the evolution of the volume and the
redone, confirming both the efficiency and the accuracy ofenergy (kinematic plus potential energies of the fluid) dur-
the present implementation where specific care has been paifig @ 2-D simulation lasting 1000 wave spectral peak periods
to the dealiasing in particular (Le To&iz2003; Bonnefoy, (see Sect. 3.2.1).
2005, Appendix C,). The model has also been verified on As expected since each of the basis functions used is ex-
long-time evolutions 3-D cases. For instance, the simula-actly satisfying mass conservation, one can easily observe
tions performed in Tanaka (2001a) or Tanaka (2001b) havehat the volume is conserved within the computer proces-

Error on ene

0.005

| | I N i |
400 600 800 1000
T,
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112 G. Ducrozet et al.: 3-D HOS simulations of extreme waves

Table 1. Error on the energy and CPU time per time step, as func- T Hog ordor Mes
tions of the number of modes. 2BE T oS oMt
Errore; Errore; CPUtime
Ny xNy in % in % ins N
I
32x16 100 0.05 0.02 é
64x 32 100 0.05 0.04 *
128x 64 94 0.10 0.32
256x 128 45 0.17 1.45
512x 256 14 0.07 13 14 F
1024x512 4 0.005 65 ‘ e L el e
2048)( 1024 2 0002 410 225 230 235 240 245 250 255 260

t/Tp

Fig. 2. Influence of HOS order M.

sor accuracy. Energy is also conserved with good accuracy,
within less than B 10~ relative error after 1000 peak peri-

ods of propagation modes in the domain, once a sufficient number of modes has

A study of 3D i | fields | been used to capture the main structures present in the do-
S:;ﬁy (I) convergen_(r:ﬁ on - Illrregu i_r waxe lehs r']s main. Regarding the CPU time, the efficiency is pointed out
more difficult to set up. Theoretically speaking though, the,, 5 ige comparable t¥logoN (N being the total number

form of the basis functions in the spectral expansion lead f modesN, x N,), as expected with the use of FFTs in the
to the same accuracy levels and convergence rates in bthmerical sxcheryné

directions ¢ andy) than in 2-D, which is easily verified in

" D] Thus. t th fIn Fig. 2, still on the same simulation case, is represented
practice on simple cases. Thus, 10 assess IN€ CONVErgence @, ,n,ence of the HOS order, which corresponds to

our HOS model, we refer to the several studies done in thEihe number of iterations chosen in the iterative process. In

literature (see in particular West et al., 1987; Dommermuth,, . _ : ; ;
. ' ' . this figure is plotted the evolution of a parameter of interest,
and Yue, 1987) on regular wavefields. The behavior of the g P P

. H; (see Appendix D) for four different HOS orders
present model on regular waves has also been assessed in %;nax/ 5 ( PP )

. : I =3, 4, 5and 8).
tail for various steepness conditions (see Le Bu003).
. i L . X o f f he freak Rnfax/ Hy>2.2
When simulating a directional wavefield, this verification is one focuses on the freak wave eveintax/ f,>2.2,

. ) - see Appendix D) occurring after about 240 peak periods of
less easily done. Indeed, the random choice of initial phasef)ropagation one can notice that even after such long-time of
leads to different simulations if we change the number of f

. . . simulation, the results are really close. However, the calcu-
modes used in the calculations. Nonetheless, looking ftion with M =3 differs from the three others. Indeeld =3
global parameters of the wavefield, such as its energy, on : T

: . redicts a freak wave event a£2507,, which is overesti-
can get an idea of the convergence of the results with respe

L ) ated with respect to the calculations with=4, 5 and 8.
to the number of modes. We distinguish here two kinds OfFurther in detail, the computation witf=4 underestimates
errors on the energy, andea. €1 represents the error due

. o - . . a bit the extreme event at=2437T, when compared to the
to the discretization of the initial spectrum. It is obtained

b mparing the numerical eneravrato to the ener M=5 and 8 curves. The latter two results are almost super-
y comparing the numerical energyrat) to tne ene 9 imposed, acknowledging the convergence of our calculation
of the target wavefield, the latter being evaluated from the

) . with M. Th h Iculations will rformed with
input spectrum (see Sect. 2.5). Anglis the error on the t us, the calcuations be performed with at

. . . . . I tM=5 in th t ti .
energy balance during the simulation (cf. Fig. 1). Itis eval- eas S in the next sections
uated as the error between the numerical energy-@tand 5 g
the same energy after 50 peak periods of propagation. In Ta-

ble 1 is also reported the corresponding CPU time per timgt has been demonstrated (Dommermuth, 2000) that the def-
step on a 3 GHz-Xeon single-processor PC. Simulations arghjtion of adequate initial fields to start the computations is
performed withd/ =3 and are fully dealiased. not straightforward, and can lead to numerical instabilities
The convergence of the computations with respect to thef done in an uncorrect way. Nonetheless, Dommermuth in-
number of modes is first assessed in terms of initial condi-dicates that simulations can be initialized in a linear way;
tion. Looking ate; clearly shows that the initial wave energy in this case a transition period (lasting from 5 to 10 peak
converges toward the specified enetgyas we increase the periods of propagation) exists. After this establishment de-
number of modes in both directions. Second, the evolutionlay, the initial wavefield becomes a “realistic” fully-nonlinear
of e reveals that the numerical conservation of the energyone. In the simulations performed in the present work, which
is also rapidly improved with the increase of the number of are long-time evolutions (see Sect. 3.2.1 and 3.2.2) of wave-

Initialization

Nat. Hazards Earth Syst. Sci., 7, 109-122, 2007 www.nhat-hazards-earth-syst-sci.net/7/109/2007/



G. Ducrozet et al.: 3-D HOS simulations of extreme waves 113

fields, this transition period is taken into account through thewith o being the Phillips constant andl, the angular fre-
use of a relaxation scheme allowing the use of such lineauency at the peak of the spectrum. The directionality is
initial conditions. The free surface boundary conditions thatdefined by

can be classically written in the following form

8¢S—{—gn:F’ 8_’7_w(1>:G A,co80, 0| <%

ot at G@®) = (12)
are modified following the Dommermuth (2000) adjustment 0, 0| > %
scheme of the nonlinear terms as follows

90° t\" With,

¢ +gn=F|l—exp|—|=

ot T, (2r1)? )
on t\" —JT(Z i1 if n=2p
— WD =G(1-exp|— (= p
ot T, Ap =

2p+1! .

We chose to set the two parametersias10T, andn=4, 2(2P—p')2’ ifn=2p+1

still following Dommermuth (2000).

We have chosen to take the same kind of initial wave- Space and time are then normalized Such(ﬂ}'ﬁndg are

fields as in Tanaka (2001a). These wavefields are define@oth equal to 1. Thusp(w, 6) is the JONSWAP spectrum
by a directional spectrum, typically JONSWAP or Pierson- when

Moskowitz (P-M) in deep water. In his paper, Tanaka found
a relation between the so-called complex amplitede. 1) _3279r, =33 o= {0-07 (w <1,
introduced by Zakharov (1968) and the directional spectrum ' ' 0.09(w=1)
®(w, 0). The complex amplitude can then be related to the

surface elevation and the surface velocity potential where E is the dimensionless energy density of the wave-

field. The significant wave height could be estimated by

PPN ISP TIPS @ Hy~4\/E (Tanaka (2001b)).
IV T YT 20007
with the hat denoting the Fourier transform and 3 Freak wave formation
w(k) =/gk andk = [K]| Using the numerical model described in the previous sec-

tions, we study the formation of freak waves under two dif-
ferent approaches. First, the focusing of a directional spec-
1 k . K trum is considered; it represents a common approach used in
N, 1) = g/ 20K) [b(k. 1) +b*(—k, )] "*dk (9) experimental investigations of the influence of these events
on ships or marine structures. Second, the model is used to

¢ (X, 1) = i/ [ (K) [bk, 1) — b*(—K, 1)] X4k (10) de_tecmatural_freak waves durin_g Iong-time nonlinear simu-
2r 2k lations, both in two and three dimensions.

n andg® can also be related towith the following equations

The relation between, (discrete values ob(k, t)) and

d(w,0)is 3.1 Directional focusing
2 . . .
8 In this section we study the formation of extreme events due
1Pe| = ﬂcp(w, 0)8ksSky (11) to directional focusing. Thigrtificial generation of freak

k ; . : A
waves is based on the linear focusing of directional compo-

Therefore, we calculate the nor (1=0)| with the pre-  ants at given time and location in the domain (to compare

vious Eq. (11) for the desired directional spectrdrtw, 6)  \yith, the next section presents natural formation of extreme
and the phase @i (r=0) is determined by a random number gants during the propagation of the wavefield).
in [0, 2]. Then, we have constructed the initial wavefield of

interest using Egs. (9) and (10). 3.1.1 Initial condition
We classically define the directional spectrdnw, 6) as

The initial wave pattern is described by a directional JON-

d(w,0) = G0 .
@,8) =¥ (@) x G6) SWAP spectrum. The spectral components have their phase
The spectrum is typically adjusted so that a large amount of energy is located in the

i (o—op)? middle of the fluid domain at a given time.
¥ (w) = ag?o S exp _§ (2) yexp[— 20202 } This adjustment is made through the choiC(_a of the_ initial
4\ w, phases ob; (r=0) (cf. Sect. 2.5). For a classical uniform

www.nat-hazards-earth-syst-sci.net/7/109/2007/ Nat. Hazards Earth Syst. Sci., 7, 109-122, 2007



114 G. Ducrozet et al.: 3-D HOS simulations of extreme waves

Fig. 3. 3-D initial surface elevation. E=0.005,  Fig. 4.3-D surface elevation at=20.3T),.
Ly=2DpxLy=211p, Ny=512xNy=256, HOS orderM=5
and linear backward propagation during’20

We use here classical wave spectrum parameters for North
Atlantic. In particular,E=0.005 can be deduced from the

irregular wave train, one has to choose a random number itfvell known scatter diagram df,, and H, in Haver et al.

[0, 277]. By reducing this interval, for instance to (2002) with pooled data from the Northern North Sea (about
70 000 data points in the period 1973-2001). As explained in

[O, 2 (1 — i)] Socquet-Juglard (2005), the curve representing mean steep-

100 nesss equal to 01 in this diagram includes almost all data
part of the energy is accumulatedxat0, which can be cho-  points and can be chosen as a good parameter for the de-
sen as the middle of the domain we simulate. scription of highest wavefields in North Sea.
Once this done, we perform a linear backward propa- This mean steepness is defined as
gation during7,=20T,. That is to say, each wave com- Van? H,

ponent(m, n) is propagated at its own angular frequency s = k,a =
Wmn=~/gkn, during the backward propagation duratifi

Eq. (7) then becomes with @ being the rms value of the amplitude. Using
H,=4E, one gets the following relation betweeh and

2
g I

+00 400
P2t —Tp) =Y > AW(0) f kX — O Th) s
m=0n=0 SZgZT; s2g2
8(kpny — wmnTp) €XP(Kimnz) E= 2(27.[)4 = 20);1,

The basis functiong’ andg being either sine or cosine func-  Thys ¢—0.1 gives a dimensionless energy=0.005.
tions.

We thus obtain an initial wavefield that we let further 3.1.2 Results
evolve. Figure 3 shows a view of the initial wavefield, with
the arrow indicating the direction of propagation. Figure 4 presents the 3-D surface elevatiorv220.37),

The focusing components create a concentric pattern obwhere the nonlinear elevation is maximum. The major part
servable in the center part of the domain. The numerical conof the domain consists of unfocused components, while at

ditions are: the center the focused ones are superimposed and form the
extreme event.
— Wave field  characterized by E=0.005 A closer view of the center of the domain is given in Fg.
i.e. «=0.016 H,=0.28 in non-dimensional quan- The center of the latter figure is the linear focusing point
tities (with respect tg andw),), which is defined as the location of the focusing for linear

waves propagation (i.e. the location of focused waves before
the linear backward propagation). The contour levels have

— Number of modes usedy,=512x N, =256, HOS or- been adjusted so that the shape of the wave appears more

— Domain length:L, =211, xL,=21A,,

derM=5, clearly. In this case, the focused wave consists of a steep
front wave with a V-shaped crest, followed by a deep trough.
— Dimensional quantities give, if we fif,=9.5s (typi- The strongest focusing occurs after the linear focusing point,
cal in North Sea)4,=70m, dimensional domain area: both in time (=20.37,) and in space (see Fig. 5), as is of-
2870 mx 2870 m. ten observed in focusing experiments (the maximum wave

Nat. Hazards Earth Syst. Sci., 7, 109-122, 2007 www.nhat-hazards-earth-syst-sci.net/7/109/2007/



G. Ducrozet et al.: 3-D HOS simulations of extreme waves 115

15
1k
-
g;ms-
of
05
0 26 40 5 50
X/,
Fig. 5. Zoom of Fig. 4,=20.3T,. Fig. 6. 2-D initial surface elevation.

elevation at the focusing point also occurs before the lin-  , ¢
ear focusing time=20T, due to amplitude dispersion. The i
extreme wave generated this way reachggax/ H;>3.5.

The probability to have such event is really low and does not
seem realistic (compared to known measurements in ocean)
Therefore, the choice of the focused components of the spec

trum has to be adapted to generate realistic waves. We thel E"'
choose a more convenient approach to study the extreme & 2

events, looking for natural generation. oS
1.8

L

3.2 Naturalemergence

In this section, we define an initial sea-state (as seen in '8 i
Sect. 2.5) with typical natural parameters including random !
phases. Then, we let the sea-state evolve during a long-time
of propagation and analyse the results looking for the ex- b
treme events that may appear in the domain. We show in

this section only some of the behaviors observed in the con-

ducted simulations. A larger number of simulations shouldrig. 7. Evolution of Hmax,/ Hy during simulation.
be realized for a stochastically correct approach.
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3.2.1 Sample 2-D long-time evolution
_ _ _ _ _ _ In Fig. 6 is represented the initial surface elevation in the
T_he fl_rst 5|_mulat|ons are C_onductec_i_m 2-D (i.e. without any computational domain; waves will propagate from left to
directionality). The numerical conditions are: right atz>0. An analysis of this free surface elevation con-
“Wae feid chacieried by £-0003z (1T e SGnicantuave hegt s as xpected caua (o
.e.¢=0.011 H;=0.23 in adimensional quantities, evolve during 1000 peak periods. Dimensionally speaking, it

— Domain length:L,=824,,, corresponds to a simulation lasting for about 2 h and 40 min
real time, within the huge 11.5 km-long domain.
— Number of modes usedV, =2048, HOS ordeM =8, During the simulation, we look at the evolution of the

— Dimensional quantities give, if we fi,=9.5s (typical parameterHmax/ H; which is suitable to characterize a
in North Sea):H;=5.1m and,=140n. Dimensional so-called freak wave event whefmax/ Hs>2.2 (see Ap-

domain length: 11 489. pen_dix D). . . . .
Figure 7 plots the evolution of this parameter against time.

Here is chosen=0.08 (i.e. E=0.0032) which belongs to Several patterns can be observed all along the 1000 peak
the range of classical values for North Sea wavefields (se@eriods of simulation. Very brief events are detected at
Socquet-Juglard, 2005). It represents a typical steep waver/T,=800 and 950 for example. Longer events are also
field, yet without being among the steepest ones. present, i.e. that stay longer in the wavefield (see e.g. be-

www.nat-hazards-earth-syst-sci.net/7/109/2007/ Nat. Hazards Earth Syst. Sci., 7, 109-122, 2007



116 G. Ducrozet et al.: 3-D HOS simulations of extreme waves

~ 05
0
05}
0 2I0 4I()X/A‘p SIO BIO 6 X/Kp
Fig. 8. 2-D surface elevation of the freak wave evert8607),. Fig. 9. Zoom on the 2-D freak wave event=860T),.

tweent/T,=800 and 900). The latter case corresponds to
a high amplitude wavegroup that remains coherent for sev-
eral periods in a row and produces successive extreme event:
This second pattern is similar to the one described by Trulsen MK
(2000) in its investigation to recreate the Draupner wave. As 1
far as marine structures and ships are concerned, the prob a5
ability of encountering such series of large waves is much a2
greater than that of single large waves since the life time of [ |-02
the former is longer. 0

To further investigate this kind of wavegroup, we focus our =t
attention on the series aroung:8607), in Fig. 7. Figure 8 _ o )
represents the free surface elevatiom-a8607, when the ~ Fig- 10.3-Diinitial surface elevation.
highest wave of the series is produced. The extreme event
consists of a single wave twice as high as the second highest

wave in the domain. than before, except that we choose a mean steepness of the

~One can observe on the closer view of the extreme evenfyayefields=0.1 accounting for the highest sea-states:
given in Fig. 9, a rather deep trough preceding the extreme

wave. This corresponds to a wave hei@hta=2.4H; and a — Wave field characterized by E=0.005
steepness of 7% if evaluated Hgax/ A with the measured i.e.a=0.016 H,=0.28 in adimensional quantities,
zero-crossing wavelength,.=1.2. This naturally emerged

event fits well with the numerous reported observations of — Domain length:L, =421, x L,=42,,

steep walls of water. | notice here that Brandini (2001) did

same kind of simulations with a classical HOS method and — Number of modes usedN,=1024 x N,=512, HOS
perform statistical analysis of freakwave occurences. His orderM =5,

long-time simulations are computed during ZQGn a do-
main of length 32, with a HOS order/=4. We produce
here results on a longer time of simulations with a larger
domain and a non-neglictable increase of HOS order (up to

M=8).
) The domain length inc and the HOS order chosen have

However this simulation 1S two_dlmgnsmnal and one has top o o, slightly reduced compared to the previous 2-D case to
wonder about the effect of directionality on the occurrence ofkeep a reasonable CPU time. With these numerical condi-

extreme events.

— Dimensional quantities give, if we fiX,=9.5s (typical
in North Sea):H;=6.2m and,=140n. Dimensional
domain area: 5740 5740 m.

tions, a simulation lasting 250 peak periods requires about

10 CPU days on a 3GHz-Xeon single-processor PC.

3.2.2 Sample 3-D long-time evolution Figure 10 shows the initial surface elevation for a direc-
tionality parameten=2 (cf. Eq. 12).

We study here the evolution of a 3-D directional wavefield. The simulation is run for 250 peak periods and the

The wavefield and chosen numerical conditions are the same/ave height is monitored to detect freak wave events (see
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Fig. 14. Probability distribution of the free surface elevation.

is given in Fig. 13. In the main direction of propagation, this
extreme event has a2k, wavelength. In the transverse di-
rection, the wave group is rather short: the observed event
Fig. 12. 3-D surface elevation of the extreme event=a26.57),. is shaped like a single peak wave whose width is less than a
peak wavelength. The directionality is expected to play also
a significant role in modifying the probability of occurrence
of extreme events.
Appendix D). The evolution of the detection parameter
Hmax/ H; is plotted in Fig. 11. 3.3 Influence of directionality
At t/T,=0, a spurious extreme event is created by the lin-
ear initialization of the simulation. The accepted thresholdHere is presented a parametric study of the influence of the
of 2.2 is overshot several times in this simulation. Due to thedirectionality on freak wave formation. To this purpose, the
large size of the simulated domain, a high number of freakinteger defining the directional spreading of the wave spec-
waves are observed. The large overshoot observed aroungum is varied. The first value=2 is the one used in Tanaka
t/T,=26 lasts for several periods: it corresponds to a local-(2001a) and Tanaka (2001b); then more “realistic” choices
ized wavegroup of high amplitude that produces several frealof directionality are studiedz=30 and 90. The first thing
waves in arow, as we observed previously in two dimensionswe looked at is the probability distribution of the free sur-
As we carry out a three dimensional simulation, it is also face elevation for these different values. In Fig. 14 is shown
interesting to look at the shape of the freak wave events. Figthe comparison of the probability distribution for different
ure 12 shows the free surface elevation/df,=26.5 when  directional spreadings to the Gaussian one. The probability
the strongest event is observed. The small white square at theistribution is evaluated from simulations as an average over
bottom left corner encloses the peak of which a closer viewthe last 20 peak periods of simulation.
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Fig. 15. Visualization of all the extreme events in the computational Fig. 1§.Visua|ization of all the extreme events in the computational
domain, forn=2. domain, forn=30.

) i or belong to groups of freak waves. For instance, it appears

The Flg._ 14 clearly_ depicts the cr_e_st/trough _asymmetry ofthat close to the positiot /%, y/,)=(6, 10) a high am-
the numerical wavefields: the positive elevations are moreyjiyyde wave group appears, that remains coherent for several
frequent than in the linear Gaussian distribution and the NeJpheriods in a row. This can be compared to the more isolated
ative ones are less frequent. This gives a consistentindicatiog,ents also present, whose “life time” is shorter (with respect
of the nonlinear behavior of the simulated wavefields. Be-y, the Hmax,/ H; criterion).
sides, one can observe that the directionality seems to have \ynen we simulate a wavefield with lower spreading
no direct effect on the probability distribution as the three n=30, we notice in Fig. 16 that, as expected, the mean trans-
curves fom=2, 30 and 90 are almost superimposed. verse wavelength is enlarged:, ,,~4.3%,. We still ob-

We then focus ourselves to the occurrence and shapes @lerve in this figure the distinction between isolated events, at
the freak events in order to characterize their possible im(x/xp, y/x»)=(12, 40) for instance, and groups of extreme
pact on structures. All along the simulation, the position of events, e.g(x /A, y/A,)=(12 10). Nonetheless, the former
the freak waves are recorded, as well as their shapes. Thgecome more scarce.
freak events are detected by a zero-crossing analysis in the For a wavefield with narrow directional spreading-0),
mean direction of propagation which givéfnax and the  the mean transverse wavelength of the freak events is again
corresponding wavelength,. The 2-D criterium is used increased.,, ,,~5.8%,, see Fig. 17. This behavior resem-
(Hmax/ Hs>2.2). At the same time, a second zero crossingples the “wall of water” commonly described by sailors.
in the transverse direction gives a transverse extgnand Comparing the last three figures, one can also clearly ob-
enables us to investigate the shape of the freak waves pekerve that when the directionality of the wavefield is in-
pendicular to the direction of propagation. We report in the creased / lower), the number of extreme events seems
next three figures, Figs. 15, 16 and 17, the results:¥2,  |arger. In Table 2 is thus reported the number of extreme
30 and 90 respectively. Each rectangular box represents @vents with respect to the parameter of directionalityln
detected freak wave, with the dimension of the box being thehis table is also given the mean valuefihax/ H, i.e. the
values ofL, and L, characterizing the spatial extent of the averaged value of its time evolution (such as the evolution
freak wave. reported in Fig. 11 fon=2).

An analysis of Fig. 15 gives an estimation of the mean The mean value affmax/ H, and the number of observed
transverse wavelength, _,~2.1%,. For such a large direc- extreme events both decrease when the directionality param-
tional spreadingr{=2), the freak wave events appear to have eter increases. The occurrence of extreme events is then
a rather short transverse extent and would look like pyrami-closely linked to the directionality, even if the probability
dal events (see also Fig. 13). This figure also enables us tdistribution of the free surface elevation does not seem be
monitor whether the freak waves appear as isolated eventdirectly influenced by this spreading (cf. Fig. 14).
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i Table 2. Number of extreme events in the simulation and mean of
40 Hmax/ Hy, as functions of the directionality parameter

i i N=2 ~N=30 N=90

1 Mean of Hmax/ Hy 2.13 2.05 2.0

30k n |:| Number of freak events 2350 756 443

yin,

201 lations is also described; a directional JONSWAP wave spec-
trum representing real sea-states is thus specified in the sim-
i ulations.
l] H Different kinds of simulations of wavefield evolutions are
1or performed. Firstly, dorced 3-D freak wave event is gen-
erated through the directional focusing of some components
of the initial sea-spectrum. This way, a very large event is
- . - - obtained, whose crest height is twice the significant wave
X height. To get more realistic freak waves, long-time sim-
ulations of directional wave-spectrum with random initial
Fig. 17. Visualization of all the extreme events in the computational phases have then been carried out. A 2-D evolution Iastlng
1000 peak periods has thus been computed, demonstrating
the ability of the present model to accurately simulate se-
ries of realistic extreme evematurally appearing within the
wavefield. Then, 3-D evolutions have been performed to fur-
However, our statistical analysis being made over a du-her investigate the effect of the directionality. In the large
ration of 20 peak periods, it is likely that the population of domain of computation used (covering more than 30 square
extreme events is not representative, as too rare, during thikilometers of ocean), several extreme events appear during
time. The double zero-crossing analysis we performed is in dhe simulation; a group of freak waves is in particular stud-
sense more appropriate to an extreme events statistics sinced. Finally, a parametric study of directionality is carried out
at each time step over the 250 peak period long simulationand reveals that the number and shape of the detected freak
each single wave is detected and the extreme ones recordedave events largely depends on the directional spreading.
This more convenient kind of study should be the startingFor widely spread seas, the number of extreme events is high
point for further statistical analysis. and their width in the transverse direction tends to be lim-
More systematic analysis of the detected 3-D freak wavedted. When the spreading decreases, the freak events number
will be made possible once the ongoing parallelization of ourdecreases and their tranverse extent increases, leading to the
model is achieved. We will then be able to run more calcula-well known “walls of water” for quasi uni-directional seas.
tions in larger 3-D domains and over longer times of simula-Another remarkable feature shown by our approach is the
tion, providing data for further statistical analyses. groupiness of freak events, especially when the directional
spreading is limited, as shown in Fit6 where several suc-
cessive freak wave events appear in the same wave group.
4 Conclusions More refined studies have to be now undertaken regarding
that point.
In the present paper, a numerical investigation of extreme The results obtained are hence encouraging for the pur-
wave events occurring in two- and three-dimensional open-suit of investigations in this domain using the presented HOS
sea domains has been conducted. The numerical approachodel. More systematic studies over repeated long-time sim-
used is the HOS method which has been chosen for its spailations are in particular required to obtain stochastically sig-
cific attractive features: i) a fast resolution thanks to the usenificant results. The latter could help understanding the freak
of FFTs coupled to an accelerated scheme, and ii) a fast corwave formation and development mechanisms, and their oc-
vergence providing a high accuracy when the nonlinear prodeurrence probability. These studies are already easily feasi-
ucts involved are carefully dealiased. The enhanced modeble in two dimensions with the present model, and will be
employed is presented, and successfully verified on a humeonducted soon. And for making possible systematic three-
ber of validation test cases which are briefly reported. Indimensional investigations, we are presently working on the
particular, 3-D wave-spectra simulated evolutions have beemarallelization of the code.
found in accordance with the Hasselmann’s theory. The pro- Thus, the abilities of our model have been pointed out,
cess followed to initialize the wavefield in the different simu- as well as its efficiency with huge calculations performed

domain, forn=90.
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on a single processor. Nonetheless, if this model permits taespectively forgp ™ (x, z, ). Afterwards, the single prob-
simulate open-sea evolutions, it does not allow to reproducéems are successively solved by means of a spectral method
sea evolutions obtained in wavetanks. The latter laboratorysing the spectral basis functions described in Sect. 2.2.
facilities are however the only possible way to experimen- The vertical velocity is then evaluated using the same Tay-
tally study wavefield characteristics in details. Indeed, in thelor expansion as the one previously described

initial HOS formulation, no wave generation or absorption @

is possible, making difficult the comparison to experiments @)y o ;) = 8‘7’_()(, 0, 1)

conducted in wavetanks, where are also present wall and 322) -

beach reflecfuorjs,' ggneratlon of spurious free waves, 'etc.. TOW(Z)(X, 0.1) = %(x, 0.1 — 778 ¢ x.0.1)

overcome this limitation of the original HOS method, signif- 9z 972

icant efforts have been dedicated to the developmentand val- |

idation of a new fully-spectral mod&lOST (for HOS Tank) : =
able to numerically reproduce a wavetank (see Bonnefoy
etal., 2004; Ducrozet et al., 2006). The next step will thus be,W
from open-sea extreme events such as the ones obtained in
the present work, to reproduce them in the 5030 mx30m The two formulations of Dommermuth and Yue (1987)
Ecole Centrale de Nantegavetank by usingdOST The key  and West et al. (1987) are equivalent up to this point. How-
point in this process will be to adjust the wavemaker mo- ever, we employ the one of West et al. which propose a con-
tion characteristics, in order to obtain the best fit betweensistent treatment (with respectd¢pof W in the free surface
the target freak wave previously obtained in open-sea conboundary conditions (see Tanaka (2001a)). That is to say, if
ditions, and its reproduction in laboratory conditions. The we denote by, the sumZ%:1 W and Wy, _, the sum
proposed combination of open-sea and wavetank simulationgl/g;f wm | Eq. (3) writes

is intended to provide useful information on the freak-wave

m—1 nk ak+l¢(m—k)

(m) X, O,t == — — Xv Ovt A3
0,00 = =3 —mr—%.0.0 (A3)

formation mechanisms. (1+ |V;7|2> W =Wy + |Vn*Wy_2
, Additional details can be found in e.g. Tanaka (2001a), Le
Appendix A Touze (2003) or Bonnefoy et al. (2004).
HOS method
Appendix B

Here is described the HOS method first introduced by West

etal. (1987) and Dommermuth and Yue (1987). The evaluaacceleration procedure

tion process of the vertical velocity at the exact free surface

position (VV:";—‘QZZW(XJ)) is first based on a series expansion The acceleration procedure is based on the scheme presented
of the velocity potential. This series expansion with respectby Fructus et al. (2005). It appears that the system of Egs. (2,

to ¢, being a measure of the wave steepness, gives 3) to solve is very stiff for high frequencies, which leads to
I very small time steps. The key point of this scheme is, thanks
b(X, 2, 1) = Z o™ (X, 2, 1) (A1) to an adequate change of variables, to solve the nonlinear part
1 of the equations as a problem in itself and not as an adjust-

) ) ) ) ment of the linear solution. The linear part of the equations
whereM is the order of nonlinearity and™ a quantity of g then analytically integrated while nonlinear evolution of
orderO(e™). Reporting this series into the definition of the the system is computed numerically using a classical fourth-
surface velocity potentiah’=¢|.—,x..), We then performa  order Runge-Kutta scheme with adaptative time step. For the

Taylor expansion of the potentigl aboutz=0. Arranging  details of the procedure, one can refer to see Fructus et al.
according to the orden one obtains (2005).

¢P(x,0,1) = ¢*(x, 1)
D

ad .
$@(x,0,1) = _,,‘g_(x’ 0.1 Appendix C
Z
Dealiasing
(m) e A The nonlinear products involved in the free surface boundary
#0N == k' Bk x.0.2) (A2)  conditions (2, 3) are computed in the physical space instead

k=1 of the spectral space. This leads to the well-known alias-

The full Dirichlet problem forp (x, z, t) onz=n(X, t) can ing phenomenon which has to be addressed to obtain precise
then be simplified intd/ simpler Dirichlet problems op=0, results (see e.g. Canuto et al., 1987). In general, dealiased
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computations can be obtained by using spectra extended witttum peak period) and perform this zero up-and-down cross-
zero padding. ing analysis of the obtained free surfaces. The significant
The number of collocation points in the physical space iswave height,H,, of the wavefield as well as the maximum
then to be adequately determined for removing aliasing erwave height at a given time stefinax, are then derived.
rors made on multiple products. The latter products are found  For analyzing 3-D wavefields, we chose to define the wave
in the free surface boundary conditions on the one hand, angleight as its height in the mean direction of propagation.
within the iterative HOS obtention d¥ (see Appendix A)  Thus, we perform the same kind of analysis than in 2-D (zero
on the other hand. They afé-products at the most (prod- yp-and-down crossing along the x-axis which is the mean
ucts involvingM terms). Applying théhalf rule, the number  direction of propagation of our wavefield) but recursively
of points to use in the physical spadé,(, Ny,) to getafull  with respect to the y-direction to get the height at the wave

dealiasing is peak location in y. This seemed to be the more natural way
M+1 M+1 to analyze the 3-D wavefield.
Ny, = TN_Xs Ny, = — Ny

Edited by: E. Pelinovsky

However, for high-order nonlinearities, the rising of com- .
Reviewed by: two referees
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dealiasing for the 3-D computations wit¥1>3. We intro- References

duce the partial dealiasing as an iterative dealiasing of order

M’'<M. Then, to compute the nonlinear products of orderAnnenkov, S. and Shrira, V.: Numerical modelling of water-wave
M, we perform a dealiasing on the’ first products, then evolution based on the Zakharov equation, J. Fluid Mech., 449,
on the followingM’, etc. and finally on thé/—kM’ prod- 341-371, 2001'_ ) . o .

ucts left. This permits for large 3-D computations to keep Bonnefoy, F.: Moélisation ex@rimentale et nugrique degtats de

. . mer complexes, Ph.D. thesis, Ecole Centrale Nantes, (in French),
reasonable CPU times and memory requirements as well as 2005

a good accuracy (a detailed investigation of the accuracy 0]‘Sonnefoy, F., Le Toug, D., and Ferrant, P.: Generation of Fully-
this partial dealiasing technique has been achieved and will noplinear Prescribed Wave Fields using a High-Order Spectral
be reported soon in a separate publication). Model, in: Proc. 14th Int. Offshore and Polar Engng. Conf.,
Toulon, France, 2004.
Brandini, C.: Nonlinear Interaction Processes in Extreme Waves

Appendix D Dynamics, Ph.D. thesis, Univ. of Firenze, 2001.
Brandini, C. and Grilli, S.: Modeling of freak wave generation in
Location of the freak wave events a 3D-NWT., in: Proc. 11th Int. Symp. on Offshore and Polar

Engng., Vol. lll, pp. 124-131, Stavanger, Norway, 2001.
Classically, the so-called “freak wave” events are defined agcanuto, C., Haussaini, M., Quarteroni, A., and Zang, T.: Spectral
large waves which heights exceed the significant wave height Methods in Fluid Dynamics, Springer Series in Computational
H, by a factor in the rang¢2—2.2] (see Kharif and Peli- Physics, Springer-Verlag, Berlin, 1987. _
novsky, 2003). The first (linear) approximation for repre- Craig, W. and Sulem, C.: Numerical simulation of gravity waves, J.

senting a wavefield is that it can be considered as a station- Comp. Phys., 108, 73-83, 1993,
nDommermuth, D.: The initialization of nonlinear waves using an

ary random normal (|.g. Gausslqn) process. Under this as- adjustment scheme, Wave Motion, 32, 307317, 2000.
sumption, a mathematical definition of .a freak que eVemDommermuth, D. and Yue, D.: A high-order spectral method for the
can be expressed ¥max>2H;, Hmax being the height of study of nonlinear gravity waves, J. Fluid Mech., 184, 267-288,
this extreme event (see e.g. Kharif and Pelinovsky, 2003, for 1987.
details). Ducrozet, G., Bonnefoy, F., Le ToazD., and Ferrant, P.. Imple-
Accounting for nonlinearities in the process, a refined def- mentation and Validation of Nonlinear Wave Maker Models in a
inition tends to rise the limit of the freak wave height to ~ HOS Numerical Wave Tank, Int. J. Offshore Polar Engng., 16,
Hmax>2.2H,. The latter limit of 22H; is now commonly 161-167, 2006. o . _
accepted, for instance in the recent Rogue Waves WorkshopYsthe. K. Bf-- Notel_on a modu(f;catnon to the nonlinear $xd1ngerd
(2005), a number of papers used this limit for defining a freak  €9uation for application to deep water waves, R. Soc. Lond. A,
. 369, 105-114, 1979.
wave (Schober, 2003; Lavrenov and Porubov, 2003, see e.g.} - _ ,
o his criterion has b defined h q 2’'Fructus, D., Clamond, D., Grue, J., and Kristiansen, O.: An effi-
nc?t IS criterion has been de .ln(.a » One has t_o etermine cient model for three-dimensional surface wave simulations. Part
the height of the waves formed within the wavefield evolu- . free space problems, J. Comp. Phys., 205, 665-685, 2005.
tion. The way we analyze 2-D wavefields is to use a classicaHasselmann, K.: On the non-linear energy transfer in a gravity-
zero up-and-down crossing. We make several outputs of the wave spectrum. Part 1. General theory, J. Fluid Mech., 12, 481—
surface elevation (typically about 5 outputs per wave spec- 500, 1962.

www.nhat-hazards-earth-syst-sci.net/7/109/2007/ Nat. Hazards Earth Syst. Sci., 7, 109-122, 2007



122 G. Ducrozet et al.: 3-D HOS simulations of extreme waves

Haver, S., Eik, K., and Meling, T.: On the prediction of wave crest Tanaka, M.: A method of studying nonlinear random field of surface
height extremes., Tech. rep., Statoil, 2002. gravity waves by direct numerical simulation, Fluid Dyn. Res.,
Kharif, C. and Pelinovsky, E.: Physical mechanisms of the rogue 28, 41-60, 2001a.
wave phenomenon, Eur. J. Mech. B/Fluids, 22, 603—634, 2003. Tanaka, M.: Verification of Hasselmann’s energy transfer among
Krasitskii, V.: On reduced Hamiltonian equations in the nonlinear  surface gravity waves by direct numerical simulations of primi-
theory of water surface waves, J. Fluid Mech., 272, 1-20, 1994. tive equations, J. Fluid Mech., 444, 199-221, 2001b.
Lavrenov, |. and Porubov, A.: Three reasons for freak wave gen-Trulsen, K.: Simulating the spatial evolution of a measured time
eration in the non-uniform current, Eur. J. Mech. B/Fluids, 22, series of a freak wave, in: Proc. Rogue Waves 2000, pp. 265—

574-585, 2003. 273, Brest, France, 2000.
Longuet-Higgins, M.: Resonant interactions between two trains of Trulsen, K. and Dysthe, K. B.: A modified nonlinear Satlinger
gravity waves, J. Fluid Mech., 12, 321-332, 1962. equation for broader bandwidth gravity waves on deep water,

Phillips, O.: On the dynamics of unsteady gravity waves of finite ~ Wave Motion, 24, 281-289, 1996.
amplitude. Part 1. The elementary interactions, J. Fluid Mech.,Le Touz, D.. Méthodes spectrales pour la nétidation non-
9, 193-217, 1960. linéaire découlements surface libre instationnaires, Ph.D. the-
Schéffer, H.: On the Dirichlet-Neumann Operator for Nonlinear sis, Ecole Centrale Nantes (in French), 2003.
Water Waves, in: Proc. 20th Int. Workshop on Water Waves andVijfvinkel, E.: Focused wave groups on deep and shallow wa-
Floating Bodies, Longyearbayen, Norway, 2005. ter, Master’s thesis, University of Groningen, The Netherlands,
Schober, C.: Melnikov analysis and inverse spectral analysis of 1996.
rogue waves in deep water, Eur. J. Mech. B/Fluids, 22, 602-620West, B., Brueckner, K., Janda, R., Milder, M., and Milton, R.: A
2003. new numerical method for surface hydrodynamics, J. Geophys.
Socquet-Juglard, H.: Spectral evolution and probability distribu- Res., 92, 11803-11824, 1987.
tions of surface ocean gravity waves and extreme waves, Ph.DZakharov, V.: Stability of periodic waves of finite amplitude on the
thesis, University of Bergen, available at https://bora.uib.no/ surface of a deep fluid, J. Appl. Mech. Tech. Phys., 9, 190-194,
handle/1956/1103, 2005. 1968.
Stiassnie, M. and Shemer, L.: On modifications of the Zakharov
equation for surface gravity waves., J. Fluid Mech., 143, 47-67,
1984.

Nat. Hazards Earth Syst. Sci., 7, 109-122, 2007 www.hat-hazards-earth-syst-sci.net/7/109/2007/


https://bora.uib.no/handle/1956/1103
https://bora.uib.no/handle/1956/1103

