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Abstract. This paper presents the SPH (Smoothed Particles
Hydrodynamics) numerical method adapted to complex rhe-
ology and free surface flow. It has been developped to sim-
ulate the local effect of a simple obstacle on a granular flow.
We have introduced this specific rheology to the classical for-
malism of the method and thanks to experimental devices,
we were able to validate the results. Two viscosity values
have been simultaneously computed to simulate “plugs” and
“dead zone” with the same code. First, some experiments
have been done on a simple inclined slope to show the accu-
racy of the numerical results. We have fixed the mass flow
rate to see the variations of the flow depth according to the
channel slope. Then we put a weir to block the flow and we
analysed the dependence between the obstacle height and the
length of influence upstream from the obstacle. After hav-
ing shown that numerical results were consistent, we have
studied speed profiles and pressure impact on the structure.
Also results with any topography will be presented. This will
have a great interest to study real flow over natural topogra-
phy while using the model for decision help.

1 Introduction

This article deals with the application of Smoothed Parti-
cle Hydrodynamics (SPH) to the study of granular flows
over rigid obstacles down an inclined channel. The inter-
action between an obstacle and the flow is extremely im-
portant to investigate the influence of singularities in terms
of energy dissipation, bypassing... We will focus interest
on the modification of the flow resulting from the presence
of a weir and especially on the zone of influence upstream
of the structure. The application of this study is dedicated
mainly to the improvement of defence structures against dry
snow avalanches and granular debris-flows. In that aim, we
will consider a Mohr-Coulomb rheology, classically used
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for granular debris-flows and which can tentatively be used
for dry-snow avalanches considering as Naaim and Naaim-
Bouvet (2000) and Dent et al. (1998) that natural flows ex-
hibit a dependence between normal and tangential stresses in
that case (Fig. 1).

The Mohr-Coulomb model assumes that the ratio tangen-
tial to normal stress is a constant depending on the internal
friction angle of the material. In our case, we will use glass
beads whose value of internal friction angle is about 27◦. For
this material, previous studies have shown Pouliquen (1999)
that steady uniform flows exist only inside a small range of
channel slope. We consider here a slope angle inside the
range 29◦ to 32◦ (θ = 30◦ is chosen in practice). To carry out
laboratory experiments, we must take into account similarity
criteria and especially the Froude numberFr =

u
√

gh
, where

u is the mean velocity,h the flow depth andg the gravity.
Snow avalanches generally have a Froude number ranging
from 1 to 5 (Ancey, 1997), while granular debris-flows gen-
erally have a Froude number close to 1. The mass flow rate
must be adjusted to obtain values ofu andh coherent with
these criteria. We will present first the numerical method, the
rheological model, the way it is considered in the model, the
state equation and the boundary conditions that are used. In a
second time, we will present the validation of the model and
its use to show interesting data inside the flow that we can’t
obtain experimentally. In a third time, the adaptation of the
model to any type of topography will be presented.

2 Numerical method

2.1 General presentation

SPH numerical method is a particular lagrangian method
which was developed at the end of the seventies to simulate
astrophysical phenomena (Lucy, 1977; Monaghan, 1988). It
requires no mesh of the spatial domain. Lots of work has
been carried out on compressible fluids but incompressible
flows are not so much referred to in the literature. To sim-
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Fig. 1. Results of experiments (Dent et al., 1998) with snow:S
N

=

cste.

ulate flows of incompressible fluids we will consider them
as weakly compressible fluids. In that way, we are going
to solve the momentum equation for incompressible fluids
Eq. (2) but in the same time, the conservation of the mass
will be solved thanks Eq. (3). This method is the most often
used even when considering compressible flows (Monaghan,
1988; Gingold and Monaghan, 1983). The advantage of the
SPH method is that it allows a three-dimensional approach
without too much complexity and furthermore the position
of the free surface for gravity-driven flows is easily com-
puted. The model being three-dimensional, pressure and ve-
locities (two essential variables in the framework of the study
of flow-structure interactions) can be computed locally. Pres-
sure is computed using a state equation which takes into ac-
count both hydrostatic and dynamic effects.

2.2 SPH equations

2.2.1 Classical formalism

Equations of motion are determined on the basis of the clas-
sical continuity equation for fluids interpolated on a mesh
structure based on the position of the particles. The mesh,
initially organised, rapidly becomes disorganised. The inter-
polation is based upon a classical quadrature technique using
a cut-off function whose limit is a Dirac around the consid-
ered particle. The most common cut-off function Monaghan
(1989) writes:

W(s) =
C

hλ

1 −
3s2

2 +
3s3

4 , 0 ≤ s ≤ 1
1
4(2 − s)3, 1 ≤ s ≤ 2

0, s ≥ 2.

(1)

wheres =
‖r‖

h
(r = ‖r‖ is the distance between two particles

and h depends on the initial spatial step1x: for the 2-D
case,h ' 1.21x), λ is the dimension of space andC takes
the values2

3, 10
7π

, 1
π

, respectively forλ = 1, 2 or 3. This
polynomial form provides a strictly compact support to the
cut-off functionW . Let us consider the classical equations
of the fluid mechanics. We have:

du

dt
= ∇ ·

( 1

ρ
σ
)

+ F (2)

∂ρ

∂t
= ∇ · (ρu) (3)

For free-surface flows, the source termF reduces to gravity,
u is the velocity vector andσ is the full Cauchy tensor (in-
cluding pressure and deviatoric parts). We will come back
later to the definition of this tensor (see Sect. 2.2.2). When
no viscosity of the fluid is considered, Eqs. (2) and (3) can
be rewritten as:

duα

dt
=

∑
β∈G

mβ

(σ(α)

ρ2
α

+
σ(β)

ρ2
β

− 5αβI
)
∇αWαβ + g (4)

∂ρ

∂t
=

∑
β∈G

mβuαβ .∇αWαβ (5)

in which each particleα (resp.β) has a massmα (resp.mβ ),
a velocityuα (resp. uβ ), a stress tensorσ(α) (resp. σ(β))
and a densityρα (resp. ρβ ). G is the set of particle in the
domain of interest.I is the identity tensor. The derivative of
W along coordinates of particleα writes:

∂Wαβ

∂xi
α

=
∂

∂xi
α

W
( rαβ

h

)
(6)

whererαβ = ‖rαβ‖ is the distance between particleα and
particleβ. The exponanti designates any coordinates. And
(Monaghan and Gingold, 1983)

5αβ =


−acµαβ+bµ2

αβ

ρ∗
αβ

, uαβ .rαβ < 0

0, uαβ .rαβ ≥ 0
(7)

is a numerical viscous pressure possibly used when shocks,
for instance, are considered. For the treatment of free-surface
flows, we choosea = 0.01,b = 0 and, in Eq. (8),η = 0.1h

(Monaghan, 1994).uαβ is the difference between the two
speed vectorsuαβ = uα −uβ . c is the “average speed sound”
of particlesα andβ. In our simulations, we considered a
constant value of the parameterc (see Sects. 2.3 and 2.5). In
Eq. (7),

µαβ =
huαβ .rαβ

r2
αβ + η2

(8)

ρ∗
αβ is the average value of the density between particlesα

andβ (i.e. ρ∗
αβ =

mαρα+mβρβ

mα+mβ
).

2.2.2 Introduction of the fluid behaviour in SPH method

The formalism of SPH considering the Mohr-Coulomb rhe-
ology has been introduced by Savage, Oger and Gutfraind
(Oger and Savage, 1999; Gutfraind and Savage, 1997) for the
study of ice floes drifting under the action of the wind. The
rheology is considered through the use of an apparent viscos-
ity based on the assumption that principal axes of stress and
strain rates are collinear. Thus, the apparent viscosityζα of
particleα writes

ζα = min
( (Pα + σa) sinφ

| ε̇1(α) − ε̇2(α) |
, ζmax

)
(9)
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ε̇1(α) and ε̇2(α) are the principal components of the strain
rate tensor of particleα (i.e. ε̇(α) is defined later),σa is
a possible cohesion.φ is in our case the internal frictional
angle of the used material (some numerical data are given in
Sect. 3.1). Furthermore, it should be noted that the pressure
Pα, the cohesionσa and the angleφ take only positive values.

Expression (9) leads to two different types of behaviour:
whenζα < ζmax, particleα has a plastic behaviour and when
ζα = ζmax, it has a viscous behaviour.

This apparent viscosity is introduced through the follow-
ing viscoplastic model Eq. (10):

σij (α) = −Pαδij + 2ζα

(
ε̇ij (α) −

1

2
ε̇kk(α)δij

)
(10)

ε̇(α) is the strain rate tensor of particleα that we classicaly

define byε̇(α) =
1
2

(
∇uα + (∇uα)t

)
. Thanks to Eq. (10),

we can define the shear stress by Eq. (11):

τα = σ12(α) sinφ (11)

To increase the time step, we have chosen to distinguish
two cases: one for which the strain rate and the velocity are
equal to zero (dead zone) and one for which the strain rate is
zero and the velocity is constant but not equal to zero (plug).
To achieve that, we introduce a critical velocityvc so that ζα = min

(
(Pα+σa) sinφ
|ε̇1(α)−ε̇2(α)|

, ζ 0
max

)
, ‖uα‖ < vc

ζα = min
(

(Pα+σa) sinφ
|ε̇1(α)−ε̇2(α)|

, ζ 1
max

)
, ‖uα‖ ≥ vc

(12)

Thus,ζ 0
max � ζ 1

max. To choose the values of these param-
eters, we come back to the definition of the rheology (that
allows us to determine the mean velocity inside the zone of
interest). It was possible to find a consistent value forvc. To
determine the values ofζ 0

max andζ 1
max, we can approximate

the average value oḟε inside the boundary layer to estimate
its size (see Sect. 2.5). This technique is worthwhile to stop
the particles inside the “dead zone”.

We can finally write the equation of motion considering
normalσ and shearτ stresses.

dui
α

dt
=

∑
β∈G

mβ

(σii(α)

ρ2
α

+
σii(β)

ρ2
β

− 5αβ

)∂Wαβ

∂xi
α

+

∑
β∈G

mβ

( τα

ρ2
α

+
τβ

ρ2
β

)∂Wαβ

∂x
j
α

+ gi (13)

i andj designate any components (i 6= j ). In that way, for
our 2-D cases, we have a set of two equations (one for each
component of the speed vector).

2.3 The equation of state

As stated before, even incompressible fluids must be treated
as weakly compressible fluids in the framework of SPH
method. Thus, the pressure must be computed at each point.
The pressure should be determined thanks the following
Eq. (14).

Pα = −
1

2

(
σ11(α) + σ22(α)

)
(14)

But in our case, it’s impossible to solve simultaneously
Eqs. (10) and (14). In this aim, we use a thermodynamic ap-
proach. We introduce an equation of state which determines
the pressure value on the basis of the density and writes
(Monaghan, 1989):

Pα = P0 + c2(ρα − ρ0) (15)

First, the relation∂Pα

∂ρα
= c2 is verified. Furthermore, we con-

sider that the compressibility and the speed sound are linked
by 1ρα

ρα
= M2

α (i.e. Mα is the Mach number of particleα and

is defined byMα =
‖uα‖

c
). In that way, the compressibility

of particleα is defined by1ρα = ρα.M2
α and if the sound

speed is around ten times the maximal value of the flow, the
maximal compressibility will be around one per cent.

We can determine the dynamic pressure asPα = ρα‖uα‖
2

which is computed with the real instantaneous density and
not an average one that should be constant. Let us remark
that the pressure does not depend on the sound speedc, thus
we are allowed to choose a low (non physical) value ofc

to increase the time step in the application of the numerical
method. Numerical data will be developed in Sect. 2.5.

2.4 Boundary conditions

The boundary conditions are quite easy as long as simula-
tions concern flows on a flat surface. But when accelerations
like the effect of gravity are considered, problems appear in
the vicinity of boundaries. Lots of different techniques have
been applied in previous works to take into account the effect
of the boundary. Here, we consider the force that applies to
a particle writes, forr ≤ r0 (Monaghan, 1994):

f (r) = D

[( r0

r

)p1
−

( r0

r

)p2
]

r

r2
(16)

and f(r) set to 0 ifr > r0. D = kgH , 1 ≤ k ≤ 10,H being
the initial height of the fluid in the case of a dam break.r is
the distance between the considered particle and the bound-
ary,r0 = 1x. p1 andp2 are chosen to be respectivly 4 and 2
(Monaghan, 1994). But this expression is not fully compat-
ible with the pressure inside the fluid. In fact the repulsive
force and the pressure at the boundary have to be compati-
ble. Thus, we must satisfy the following expression:∫

�

f (z)φ(x, z)dxdz =

∫
∂�

Pφ(x, 0)dx (17)

� is the spatial domain and∂� its boundary.φ Eq. (17) must
be verified for any value ofx. In that way, we can simplify
this condition:

∫
f (z)dz = P . This is the continuous form of

the compatibility relation. Then the discret form of Eq. (17)
writes:∑

f φ1x1z =

∑
Pφ1x (18)

If we now assume that only one layer of particles interacts
with the boundary, each sum in Eq. (18) reduces to one term:

1x1zf = P1x (19)
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Table 1. Some numerical parameter values

Parameter Value

Number of particle 10 000
1x 1.510−3 m

Sound speed (c) ' 10× vmax = 20 m.s−1

vc ' 10%× vmax = 0.2 m.s−1

ζ0
max 150 Pa.s

ζ1
max 0.5 Pa.s
φ 27◦

σa 0
P0 0
ρ0 1, 500 kg.m−3

so thatf =
P
1z

. In the two-dimensional case,1z = 1x =√
m
ρ

and we can define the body force by a constant depend-

ing on the local pressure, density and mass by:

f =
P√

m
ρ

(20)

All the calculation has been done without considering any
particle. In fact, the applied force should be written:

fα =
Pα√
mα

ρα

nα (21)

in which fα is the force that must be applied to the particle
α andnα is a unit normal vector according to particleα. We
can note thatf α depends on the distance to the boundary
through the values of the mass, the density and the pressure.

2.5 Initial numerical conditions

Numerical parameters values used in the code are presented
in the following table (Table 1).

3 Results

3.1 Comparison with experimental data

3.1.1 Presentation of the experimental device

Experiments were carried in a laboratory inclined flume, two
meters long and five centimeters wide (Fig. 2). Pumps circu-
late material (sand or glass beads) with a mass flow rate rang-
ing from 0.3 to 1.5 kg.s−1. For this kind of material, some
steady uniform flow may occur only inside a narrow range of
channel slope which depends essentially on the internal fric-
tion angle. For glass beads, the internal friction angle is 27◦

and the considered slope ranges from 29◦ to 33◦.

Fig. 2. Experimental device.

3.1.2 The simplest configuration

First, we have tested the code without any obstacle for differ-
ent channel slopes. In that way, we were able to quantify the
depth of the flow depending on the channel slope by keep-
ing a constant mass flow rate. This test has been made to
control the chosen behaviour law. The mass flow rate was
fixed atQm =0.35 kg.m−3 (depending only on the size of
the hopper exit at the top of the channel). Results are shown
on Fig. 3. In that case, we are not obliged to compute both
viscosities. In fact, we have no “dead zone” except in the
hopper but it doesn’t matter. It has permitted us to determine
the value ofζ 1

max. The maximal speedvmax (at the free sur-
face) is around 2 m.s−1 and the flow is between one and two
centimeters deep (d is the depth of the flow). In the follow-
ing equation,p designates the relative pressure exerted by a
column of fluid. Thus we may estimate

ζ 1
max =

p
vmax

d

'
ρgd2

vmax
=

ρgd3

Qm

' 0.5 Pa.s (22)

3.1.3 Data of interest and validation

SPH method is used here because of its capacity to represent
the free surface of the flow more easily than classical meth-
ods using a grid of the spatial domain. Furthermore, this
method gives access to some accurate representation (espe-
cially around obstacles) of the pressure and velocity fields.
We can also plot density profiles. The main influence of an
obstacle on the flow is the formation of a “dead zone” (veloc-
ity equal to zero) upstream of the structure. We have chosen
to validate the model by comparison of computed and ex-
perimentally observed features of this dead zone. The main
characteristic of this zone is its lengthL (the shape of the
free surface over the dead zone is modified, Fig. 4). We have
considered a fixed slope (θ = 30◦) and a fixed mass flow
rate (Qm = 0.35 kg.s−1) and we have plotted the lentghL
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Fig. 3. Flow depth versus channel slope for a fixed mass flow rate.

Fig. 4. Measured lengths L andhobs

of the dead zone versus the heighthobs of the obstacle result-
ing from experiments and from simulations. In that case, we
have to estimateζ 0

max. By introducing the critical speedvc

(see Table 1), we can write:

ζ 0
max '

ρgd
vc

d

' 150 Pa.s (23)

It can be seen in Fig. 5 that experimental and computed
points are very close to each other. Most of the points were
obtained for low height of the obstacle because simulating a
very long flume was too much time-consuming. However,
this first result allows us to conclude that the model is con-
sistent with the observations.

3.2 Pressure and velocity profiles

3.2.1 Results

The main interest of the method presented here is the accu-
racy of the computation close to singularities. With classical
numerical methods using grids of the spatial domain, it is
necessary to refine the size of grids to control large evolu-
tions of dynamic variables. With SPH we get some informa-
tion on the pressure, density and velocity for each particle
location. Thus, we are able to compute correctly the veloc-
ity profile (Fig. 6) everywhere in the flume, and especially
around obstacles. Figure 6 brings us information concerning

Fig. 5. Comparison between numerical and experimental results.

Fig. 6. Velocity profile above the obstacle.

the use of two different viscosities: in fact, in that case, the
obstacle height ishobs = 10−2 m. Just before the obstacle,
particles are quite stopped: the average speed is around 0.05
m.s−1. Above this “dead zone”, we can observe a strong
shear: speeds increase almost linearly. The last five centime-
ters constitute a “plug”: the speed is constant over a certain
height (around 6.10−3 m). Otherwise, we can plot the pres-
sure as a function of time: for specialists of structures, the
evolution in time of the maximum pressure (Fig. 7) on the
obstacle is a very interesting data. Figure 6 and Fig. 7 clearly
demonstrate the capabilities of SPH numerical method to
represent free surface flows of granular material. We can ob-
serve that all data are quite regular with no exceptional sin-
gularity. Velocity and pressure are the most interesting data
but we could have also plotted density profiles.

3.2.2 Comparison with engineering laws

To estimate the size of defence structures, engineers estimate
the pressureP like P = k × ρv2 in which ρ is an estimate
density andv is the speed of the flow. In our case, this value
of P should be aroudP ' k × 150 Pa. The simulations give
a pressure impact around 250 Pa. It means that the cofficient
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Fig. 7. Pmax (Pa) versus time around the obstacle.

k must be chosen around 1 and 2. In fact, while designing
defence structures, engineers are used to consider a value of
k between 1 and 4. In terms of value, results seem to be quite
well. But the most important information is based on the
duration of this sollicitation. And this is actually the main
result of this numerical modelling. Up to now, we don’t have
any other results to compare ours.

4 Flows over a complex topography

After the simulation of flows in basic geometry we will see
now how to take into account complex topographies. The
aim of this part is to establish how to simulate a flow over
a topography represented by a DTM. There are two ways to
define the topography. The first one is to build up a grid of
the boundary using supplementary particles which will in-
teract with the fluid particles. This method is interesting to
represent the frictional effect but is quite time consuming.
Another way consists in building up a grid of the spatial do-
main. We present here the two-dimensional case. Let us
define the topography between two abscissasxmin andxmax
and separate this domain into N-1 intervals. We assume the
elevationzi = z(xi) is known for eachi (0 ≤ i ≤ N ). Then
we can compute the elevation along each line using the fol-
lowing expression:

z =
zi+1 − zi

xi+1 − xi

(x − xi) + zi (24)

Knowing the coordinates(xα, zα) of fluid particleα, we can
estimate the distance between this particle and the boundary
and then determine if the body forcef α defined in Eq. (21)
must be applied. Up to now, only two-dimensional flows
(Fig. 8) have been considered but the same technique could
easily be applied to three-dimensional flows. We did not
carry out any validation of the result but at least we can anal-
yse it qualitatively. In the hopper, the velocity is almost zero

Fig. 8. Velocity field over a complex topography.

everywhere. In zones where the slope reduces, the velocity
diminishes and for steeper slopes, the flow shows a sheared
zone close to the boundary and an unsheared zone (“plug”)
close to the free surface. Qualitatively, all these results are
consistent.

5 Discussion and conclusion

In this paper, whe have shown how to compute a Mohr-
Coulomb type rheology into classical equations of mechan-
ics to simulate granular flows down a rough inclined chan-
nel. We made some tests to clearly demonstrate the capa-
bilities of the SPH method to solve these equations. Then,
we made new simulations of granular flows diverted by dif-
ferent weirs. Experimental and numerical results are well in
accordance. Some interesting data were shown concerning
velocity profiles and sollicitation on the structure. Simula-
tions were carried out assuming the material is purely fric-
tional. Some others numerical modellings were made with
any topography. However, as shown in Ancey (1997), gran-
ular flows generally have a frictional-collisional behaviour.
Thus, we have to explain why neglecting collisions however
leads to some consistent results. This seems to be a conse-
quence of boundary conditions. In fact the body force intro-
duces some energy dissipation whose order of magnitude is
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of the order of magnitude of collisional dissipations between
particles. Even if the body force is determined according
to the pressure, the acceleration imposed to particles when
they are close to the boundary generates a normal speed that
cannot be neglected. The consequence of this effect is phys-
ically close to collisions that take place in the real flow, thus
leading to flow height and velocities coherent with the mass
flow rate and slope of the flume. Further use of the model
requires some more validations with other mass flow rates
and slopes of the flume. A sensitivity analysis should be
carried out. In the near future, a similar work will be car-
ried out with yield-stress fluids (Herschel-Bulkley) to simu-
late muddy debris-flows. Thus the model will be able to treat
both simple and complex rheological behaviours over any to-
pography, leading to a complete tool dedicated to the study
of snow avalanche structures and debris-flow structures in-
teractions.
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