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Abstract. This paper presents the SPH (Smoothed Particlegor granular debris-flows and which can tentatively be used
Hydrodynamics) numerical method adapted to complex rhefor dry-snow avalanches considering as Naaim and Naaim-
ology and free surface flow. It has been developped to simBouvet (2000) and Dent et al. (1998) that natural flows ex-
ulate the local effect of a simple obstacle on a granular flow.hibit a dependence between normal and tangential stresses in
We have introduced this specific rheology to the classical for-that case (Fig. 1).

malism of the method and thanks to experimental devices, The Mohr-Coulomb model assumes that the ratio tangen-
we were able to validate the results. Two viscosity valuestial to normal stress is a constant depending on the internal
have been simultaneously computed to simulate “plugs” andriction angle of the material. In our case, we will use glass
“dead zone” with the same code. First, some experimentpeads whose value of internal friction angle is about Eor
have been done on a simple inclined slope to show the accuhis material, previous studies have shown Pouliquen (1999)
racy of the numerical results. We have fixed the mass flowthat steady uniform flows exist only inside a small range of
rate to see the variations of the flow depth according to thechannel slope. We consider here a slope angle inside the
channel slope. Then we put a weir to block the flow and werange 29to 32 (9 = 3(° is chosen in practice). To carry out
analysed the dependence between the obstacle height and tloratory experiments, we must take into account similarity
length of influence upstream from the obstacle. After hav-criteria and especially the Froude number = —==, where

ing shown that numerical results were consistent, we havg, is the mean velocityh the flow depth ang thge gravity.
studied speed profiles and pressure impact on the structur&now avalanches generally have a Froude number ranging
Also results with any topography will be presented. This will from 1 to 5 (Ancey, 1997), while granular debris-flows gen-
have a great interest to study real flow over natural topograzrally have a Froude number close to 1. The mass flow rate
phy while using the model for decision help. must be adjusted to obtain valueswofind/ coherent with
these criteria. We will present first the numerical method, the
rheological model, the way it is considered in the model, the
state equation and the boundary conditions that are used. In a
second time, we will present the validation of the model and
This article deals with the application of Smoothed Parti- itS use to show interesting data inside the flow that we can't
cle Hydrodynamics (SPH) to the study of granular flows Obtain experimentally. In a third time, the adaptation of the
over rigid obstacles down an inclined channel. The inter-model to any type of topography will be presented.

action between an obstacle and the flow is extremely im-

portant to investigate the influence of singularities in terms

of energy dissipation, bypassing... We will focus interest2 Numerical method

on the modification of the flow resulting from the presence ]

of a weir and especially on the zone of influence upstrean?-1 ~ General presentation

of the structure. The application of this study is dedicated

mainly to the improvement of defence structures against dry>PH numerical method is a particular lagrangian method
snow avalanches and granular debris-flows. In that aim, weéVhich was developed at the end of the seventies to simulate

will consider a Mohr-Coulomb rheology, classically used astrophysical phenomena (Lucy, 1977; Monaghan, 1988). It
requires no mesh of the spatial domain. Lots of work has

Correspondence td®. Lachamp been carried out on compressible fluids but incompressible
(philippe.lachamp@cemagref.fr) flows are not so much referred to in the literature. To sim-

1 Introduction
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< 0.75 — S/N For free-surface flows, the source tefreduces to gravity,
-:-:_-' 0.50 = u is the velocity vector and is the full Cauchy tensor (in-
‘; cluding pressure and deviatoric parts). We will come back
> 0.25 later to the definition of this tensor (see Sect. 2.2.2). When
o 0.00 no viscosity of the fluid is considered, Eqgs. (2) and (3) can
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Time (seconds dug a(@) aB)
E( ) 7:ZW[IB 7 —Z—Haﬁé)vaWaﬁ‘i‘g (4)
o
Fig. 1. Results of experiments (Dent et al., 1998) with an@v‘: ped P
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BeG

ulate flows of incompressible fluids we will consider them in which each particle (resp.$) has a massi, (resp.mg),
as weakly compressible fluids. In that way, we are going@ VeloCityu, (resp. ug), a stress tensar (o) (resp. o.(8))
to solve the momentum equation for incompressible fluidsand & density, (resp. pg). G is the set of particle in the
Eq. (2) but in the same time, the conservation of the masglomain of interest/ is the identity tensor. The derivative of
will be solved thanks Eq. (3). This method is the most often W @long coordinates of particte writes:

used even when considering compressible flows (Monaghang w4 P Fap
1988; Gingold and Monaghan, 1983). The advantage of thew =3 (7)

i
ox/,

(6)
SPH method is that it allows a three-dimensional approach ¢
without too much complexity and furthermore the position Wherergs = |Irqpll is the distance between particleand
of the free surface for gravity-driven flows is easily com- particle . The exponant designates any coordinates. And
puted. The model being three-dimensional, pressure and védMonaghan and Gingold, 1983)

locities (two essential variables in the framework of the study

. . —acpap+bul
of flow-structure interactions) can be computed locally. Pres-. %W, Ugp.rap <0 )
sure is computed using a state equation which takes into ac- o= 83 u ~0
’ aﬁ~r0(ﬁ -

count both hydrostatic and dynamic effects.
is a numerical viscous pressure possibly used when shocks,

2.2 SPH equations for instance, are considered. For the treatment of free-surface
) ) flows, we choose = 0.01,b = 0 and, in Eq. (8)y = 0.1h
2.2.1 Classical formalism (Monaghan, 1994).u,; is the difference between the two

i , ) . speed vectors,g = u, —ug. c is the “average speed sound”
Equations of motion are determined on the basis of the clas(—)f particlese and 8. In our simulations, we considered a

sical continuity equation for 'fluids interpolgted on a mesh constant value of the parametefsee Sects. 2.3 and 2.5). In
structure based on the position of the particles. The mesth' @),

initially organised, rapidly becomes disorganised. The inter-

polation is based upon a classical quadrature technique usin _ hugp.rap @8)

a cut-off function whose limit is a Dirac around the consid- ¢ ~ r(fﬁ + 52

ered particle. The most common cut-off function Monaghan _ .
(1989) writes: Pap 1S the average value of the density between partieles

H x __ Mapatmgpg
c[1-%+¥ 0<s<1 andp (-8 Pup = Zonutms )
W) =771 1@-9%1<s=<2 (1) 2.2.2 Introduction of the fluid behaviour in SPH method
0,s > 2.

The formalism of SPH considering the Mohr-Coulomb rhe-
wheres = ”Z—” (r = |Ir| is the distance between two particles ology has been introduced by Savage, Oger and Gutfraind
and i depends on the initial spatial steypx: for the 2-D  (Oger and Savage, 1999; Gutfraind and Savage, 1997) for the
cases >~ 1.2Ax), A is the dimension of space adtakes  study of ice floes drifting under the action of the wind. The
the values3, 22, 1 respectively for. = 1,2 or 3. This  rheology is considered through the use of an apparent viscos-
polynomial form provides a strictly compact support to the ity based on the assumption that principal axes of stress and
cut-off function W. Let us consider the classical equations strain rates are collinear. Thus, the apparent viscasityf

of the fluid mechanics. We have: particlea writes

(Py + 04) Sing )
| é1(a) — éa() | "™

du _g. (Eg) +F @) = min( )

dr — T \p
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é1(a) andéx(a) are the principal components of the strain But in our case, it's impossible to solve simultaneously
rate tensor of particler (i.e. é(«) is defined later)g, is Egs. (10) and (14). In this aim, we use a thermodynamic ap-
a possible cohesiong is in our case the internal frictional proach. We introduce an equation of state which determines
angle of the used material (some numerical data are given ithe pressure value on the basis of the density and writes
Sect. 3.1). Furthermore, it should be noted that the pressuréMonaghan, 1989):
P,, the cohesiown, and the angle take only positive values. 2

Expression (9) leads to two different types of behaviour: Fe = Po+ ¢“(pa = po) (15)

whend, < {max particlea has a plastic behaviour and when ot the relatiorf?x = ¢? is verified. Furthermore, we con-

fo = ¢max it has a viscous behaviour. sider that the compressibility and the speed sound are linked
This apparent viscosity is introduced through the follow- by 22« — M2 (i.e. M, is the Mach number of particte and
ing viscoplastic model Eqg. (10): P ¢ ﬁu i o
1 is defined byM,, = =2). In that way, the compressibility
0ij (@) = — Pyij + 24 (éij (@) — Eékk(a)gij) (10) of parti.clea is defineq byApy = pa_.M‘f and if the sound
speed is around ten times the maximal value of the flow, the

€(e) is the strain rate tensor of partiakethat we classicaly maximal compressibility will be around one per cent.
define bye(a) = l(vua + (Vua)f>_ Thanks to Eq. (10), We can determine the dynamic pressur@as= pq |uq |_|2
= which is computed with the real instantaneous density and
not an average one that should be constant. Let us remark
Ty = o12(a) Sing (12) that the pressure does not depend on the sound spéaas
To increase the time step, we have chosen to distinguisr\Ne. are allowed .to choosg a low (nqn physmal) value O.f
i . . . to increase the time step in the application of the numerical
two cases: one for which the strain rate and the velocity are . . .
. : .method. Numerical data will be developed in Sect. 2.5.
equal to zero (dead zone) and one for which the strain rate is
zero and the velocity is constant but not equal to zero (plug), 4 Boundary conditions

To achieve that, we introduce a critical velocityso that

we can define the shear stress by Eq. (11):

. ((Poto)sin The boundary conditions are quite easy as long as simula-
o = min (BbelSng c0). o < v - -
@ lér(@)—éa(@)]* >max - e ¢ (12)  tionsconcern flows on a flat surface. But when accelerations
{o = Min (%, ;“r%ax>, ol > ve like the effect of gravity are considered, problems appear in

the vicinity of boundaries. Lots of different techniques have

Thus, £ 9ax > {hax TO choose the values of these param- been applied in previous works to take into account the effect
eters, we come back to the definition of the rheology (thatof the boundary. Here, we consider the force that applies to
allows us to determine the mean velocity inside the zone ofa particle writes, for < ro (Monaghan, 1994):
interest). It was possible to find a consistent valuevforTo
determine the values a@ff,, and¢q,, We can approximate ¢ (y) — D[(r_o)pl _ (@)pZ}L (16)
the average value @f inside the boundary layer to estimate r r r2
its size (see Sect. 2.5). This technique is worthwhile to stop, 4 f(r) setto 0 if > ro. D = kgH, 1 < k < 10, H being

the partlclef; |nﬁ|de the “gead zone”. ot oring 1€ initial height of the fluid in the case of a dam breaks
We Ican 'gahy write the equation of motion considering y,q gistance between the considered particle and the bound-
normalo and shear stresses. ary,ro = Ax. p1 andp, are chosen to be respectivly 4 and 2

dul, _ Z - oii (@) n oii(B) I )BWaﬂ (Monaghan, 1994). But this expression is not fully compat-
dt = B 02 p§ ap axt, ible with the pressure inside the fluid. In fact the repulsive
force and the pressure at the boundary have to be compati-
+3 mp T_"; n T_/Z)w Y (13)  ble. Thus, we must satisfy the following expression:
BeG Pa  Pg xd

i and j designate any componeniss£ ;). In that way, for /Qf(z)¢>(x, Q)dxdz = /m Pe(x, Oydx (17)

our 2-D cases, we have a set of two equations (one for each ) ) )
component of the speed vector). Q2 is the spatial domain arfif2 its boundaryg Eq. (17) must

be verified for any value of. In that way, we can simplify
2.3 The equation of state this condition:f f(z2)dz = P. Thisis the continuous form of
the compatibility relation. Then the discret form of Eq. (17)
As stated before, even incompressible fluids must be treatedrites:
as weakly compressible fluids in the framework of SPH
method. Thus, the pressure must be computed at each poinz foAxAz ="y PpAx (18)

The pressure should be determined thanks the followingy e o assume that only one layer of particles interacts

Eq. (14). with the boundary, each sum in Eq. (18) reduces to one term:
1
Py = —E(Ull(a) + 022(05)) (14) AxAzf = PAx (19)
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Table 1. Some numerical parameter values

'
o R

Parameter | Value
Number of particle 10000 i & i s
Ax 15103 m A | R
Sound speed} ~ 10X vmax= 20 m.s’1 . \\ ) u

ve ~ 10%x vmax = 0.2 m.s"1 N i/

0 150 P - s I

{max a.s 2 i

Chax 0.5 Pa.s o 2 7 :
¢ 27° \\ N

Oa 0 ! o e
Pg 0 ;i \\\\ : 'I[m
£0 1,500 kg.n13 i }%/\ |[

v G e e

Fig. 2. Experimental device.
sothatf = £. In the two-dimensional cas@\z = Ax =
Az

% and we can define the body force by a constant depend-
ing on the local pressure, density and mass by: 3.1.2 The simplest configuration

P First, we have tested the code without any obstacle for differ-

f= \/_E (20) ent channel slopes. In that way, we were able to quantify the

P depth of the flow depending on the channel slope by keep-

. . L ing a constant mass flow rate. This test has been made to

All the calculation has been done without considering aNYcontrol the chosen behaviour law. The mass flow rate was
particle. In fact, the applied force should be written: fixed atQ,, =0.35 kg.n3 (depending only on the size of

the hopper exit at the top of the channel). Results are shown

P . ;
fo = ——ng (21) on Fig. 3. In that case, we are not obliged to compute both
My . . i " .
Narm viscosities. In fact, we have no “dead zone” except in the

hopper but it doesn’t matter. It has permitted us to determine
in which f, is the force that must be applied to the particle the value of¢},, The maximal speednax (at the free sur-
« andn,, is a unit normal vector according to particte We face) is around 2 m2 and the flow is between one and two
can note thatf, depends on the distance to the boundarycentimeters deepi(is the depth of the flow). In the follow-
through the values of the mass, the density and the pressuréng equation,p designates the relative pressure exerted by a

column of fluid. Thus we may estimate
2.5 Initial numerical conditions

1 p _pgd®  pgd®

Numerical parameters values used in the code are presentéﬁl‘ax T O,
in the following table (Table 1).

~ 0.5 Pa.s (22)

m

3.1.3 Data of interest and validation

3 Results SPH method is used here because of its capacity to represent
the free surface of the flow more easily than classical meth-

3.1 Comparison with experimental data ods using a grid of the spatial domain. Furthermore, this
method gives access to some accurate representation (espe-

3.1.1 Presentation of the experimental device cially around obstacles) of the pressure and velocity fields.

We can also plot density profiles. The main influence of an
Experiments were carried in a laboratory inclined flume, two obstacle on the flow is the formation of a “dead zone” (veloc-
meters long and five centimeters wide (Fig. 2). Pumps circu-ity equal to zero) upstream of the structure. We have chosen
late material (sand or glass beads) with a mass flow rate range validate the model by comparison of computed and ex-
ing from 0.3 to 1.5 kg:s!. For this kind of material, some perimentally observed features of this dead zone. The main
steady uniform flow may occur only inside a narrow range of characteristic of this zone is its length (the shape of the
channel slope which depends essentially on the internal fricfree surface over the dead zone is modified, Fig. 4). We have
tion angle. For glass beads, the internal friction angle fs 27 considered a fixed slop® (= 30°) and a fixed mass flow
and the considered slope ranges fror 2933°. rate (Q,, = 0.35 kg.s'1) and we have plotted the lentgh
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Comparison between experimental and numerical resuits (Q = 0.35kg.s™)

0,009
am = 0.35 Kgis 07
0,008

0,007 08

0,006 05

m)

0,005

Flow depth (in
4

0,004 E
3

4 Experimental points 03
0,003

02 ©Experimental

0,002
CINumerical

0,001 01 L

7 bl 9 a0 31 2 3 3 ks 36 i
Channel slope (in °) 0 001 002 0.03 0.04 0.05 0.06
h(m)

Fig. 3. Flow depth versus channel slope for a fixed mass flow rate. Fig. 5. Comparison between numerical and experimental results.

Speed profile at x = 0.44 (obstacle at x = 0.45)

0.04
003
L _ 002 . ¥
E A3
h 0.02 .}“ o
e’
0015 PR
. 50 2
. 001 .g?‘f"
Fig. 4. Measured lengths L and, S
0.005 "wﬁi‘.’g‘*
ol Yk,

0 01 02 03 04 05 06 07
Vx (mis)

of the dead zone versus the heighi, of the obstacle result-
ing from experiments and from simulations. In that case, we
have to estimate2,,. By introducing the critical speed.
(see Table 1), we can write:

Fig. 6. Velocity profile above the obstacle.

the use of two different viscosities: in fact, in that case, the

pgd
Lax > v~ =150 Pas (23)  obstacle height i#,,, = 10-2m. Just before the obstacle,
d particles are quite stopped: the average speed is around 0.05

It can be seen in Fig. 5 that experimental and computedn.s 2. Above this “dead zone”, we can observe a strong
points are very close to each other. Most of the points wereshear: speeds increase almost linearly. The last five centime-
obtained for low height of the obstacle because simulating ders constitute a “plug”: the speed is constant over a certain
very long flume was too much time-consuming. However, height (around 6.16° m). Otherwise, we can plot the pres-
this first result allows us to conclude that the model is con-sure as a function of time: for specialists of structures, the

sistent with the observations. evolution in time of the maximum pressure (Fig. 7) on the
obstacle is a very interesting data. Figure 6 and Fig. 7 clearly

3.2 Pressure and velocity profiles demonstrate the capabilities of SPH numerical method to
represent free surface flows of granular material. We can ob-

3.2.1 Results serve that all data are quite regular with no exceptional sin-

o _ gularity. Velocity and pressure are the most interesting data
The main interest of the method presented here is the acclyyt we could have also plotted density profiles.

racy of the computation close to singularities. With classical

numerical methods using grids of the spatial domain, it is3.2.2 Comparison with engineering laws

necessary to refine the size of grids to control large evolu-

tions of dynamic variables. With SPH we get some informa- To estimate the size of defence structures, engineers estimate
tion on the pressure, density and velocity for each particlethe pressure? like P = k x pv? in which p is an estimate
location. Thus, we are able to compute correctly the veloc-density and is the speed of the flow. In our case, this value
ity profile (Fig. 6) everywhere in the flume, and especially of P should be arou® ~ k x 150 Pa. The simulations give
around obstacles. Figure 6 brings us information concerninga pressure impact around 250 Pa. It means that the cofficient
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Maximal pressure around the weir
¥y (m)

Fig. 7. Pmax (Pa) versus time around the obstacle.

k must be chosen around 1 and 2. In fact, while designing
defence structures, engineers are used to consider a value ¢
k between 1 and 4. In terms of value, results seem to be quite
well. But the most important information is based on the | I T
duration of this sollicitation. And this is actually the main ;
result of this numerical modelling. Up to now, we don’t have
any other results to compare ours. Vistey)

® (m)

0.o00 0.50 1.00 1.50 =2.00

Fig. 8. Velocity field over a complex topography.
4 Flows over a complex topography

After the simulation of flows in basic geometry we will see .
now how to take into account complex topographies. The€verywhere. In zones where the slope reduces, the velocity

aim of this part is to establish how to simulate a flow over diminishes and for steeper slopes, the flow shows a sheared
a topography represented by a DTM. There are two ways tF°N€ close to the boundary anq an unsheared zone (“plug”)
define the topography. The first one is to build up a grid Ofclose_ to the free surface. Qualitatively, all these results are
the boundary using supplementary particles which will in- COnsistent.
teract with the fluid particles. This method is interesting to
represent the frict_ionql effgct. but is quit.e time consgming.S Discussion and conclusion
Another way consists in building up a grid of the spatial do-
main. We present here the two-dimensional case. Let usn this paper, whe have shown how to compute a Mohr-
define the topography between two abscissgs andxmax ~ Coulomb type rheology into classical equations of mechan-
and separate this domain into N-1 intervals. We assume thg:s to simulate granular flows down a rough inclined chan-
elevationz; = z(x;) is known for eachi (0 <i < N). Then  nel. We made some tests to clearly demonstrate the capa-
we can compute the elevation along each line using the folpilities of the SPH method to solve these equations. Then,
lowing expression: we made new simulations of granular flows diverted by dif-
ferent weirs. Experimental and numerical results are well in
(x—xi)+zi (24) accordance. Some interesting data were shown concerning
velocity profiles and sollicitation on the structure. Simula-
Knowing the coordinateér,, z,) of fluid particlea, we can  tions were carried out assuming the material is purely fric-
estimate the distance between this particle and the boundartyonal. Some others numerical modellings were made with
and then determine if the body forgg, defined in Eqg. (21) any topography. However, as shown in Ancey (1997), gran-
must be applied. Up to now, only two-dimensional flows ular flows generally have a frictional-collisional behaviour.
(Fig. 8) have been considered but the same technique coul@ihus, we have to explain why neglecting collisions however
easily be applied to three-dimensional flows. We did notleads to some consistent results. This seems to be a conse-
carry out any validation of the result but at least we can anal-quence of boundary conditions. In fact the body force intro-
yse it qualitatively. In the hopper, the velocity is almost zero duces some energy dissipation whose order of magnitude is

Zi+1l — Zi
Z = ——
Xi+1 — Xi
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of the order of magnitude of collisional dissipations betweenDent, J. D., Shmidt, D. S., Louge, M. Y., Adams, E. E., and Jazbutis,

particles. Even if the body force is determined according T.G.: Density, velocity and friction measurements in a dry-snow

to the pressure, the acceleration imposed to particles when avalanche, Annals of Glaciology, 26, 247-252, 1998.

they are close to the boundary generates a normal speed th&ngold, R. A. and Monaghan, J.J.: Shock simulation by the parti-

cannot be neglected. The consequence of this effect is phys- ¢/€ method SPH, Mon. Not. Roy. Astr. Soc., 204, 715, 1983.

ically close to collisions that take place in the real flow, thus GUtTaind, R. and Savage, S. B.. Smoothed Particle Hydrodynam-

leading to flow height and velocities coherent with the mass ics for the S'mu.lat.'on of broken-ice f'el.d.s' Mohr-Coulomb type

flow rate and slope of the flume. Further use of the model rheology and frictionel boundary conditions, J. of Comp. Phys.,
. . T 134, 203-215, 1997.

requires some more validations with other mass flow rateg ycy, L. B.: A numerical approach to the testing of the fission hy-

and slopes of the flume. A sensitivity analysis should be pothesis, Astron. J., 83, 1013, 1977.

carried out. In the near future, a similar work will be car- Monaghan, J. J. and Gingold, R. A.: Shock simulation by the parti-

ried out with yield-stress fluids (Herschel-Bulkley) to simu-  cle method SPH, J. of Comp. Phys., 52, 374-389, 1983.

late muddy debris-flows. Thus the model will be able to treatMonaghan, J. J.: An introduction to SPH, Comp. Phys. Comm., 48,

both simple and complex rheological behaviours over any to- 89, 1988.

pography, leading to a complete tool dedicated to the StudWonaghan, J.J.: On the problem of penetration in the particle meth-

of snow avalanche structures and debris-flow structures in- ©dS; J. of Comp. Phys., 82, 1, 1989. _
Monaghan, J. J.: Simulating free surface flow using SPH, J. of

teractions.
Comp. Phys., 110, 399-406, 1994.
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