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Abstract

Recently Feed-Forward Artificial Neural Networks (FNN) have been gaining popularity for stream flow forecasting. However, despite the
promising results presented in recent papers, their use is questionable. In theory, their “universal approximator” property guarantees that, if
a sufficient number of neurons is selected, good performance of the models for interpolation purposes can be achieved. But the choice of a
more complex model does not ensure a better prediction. Models with many parameters have a high capacity to fit the noise and the particularities
of the calibration dataset, at the cost of diminishing their generalisation capacity. In support of the principle of model parsimony, a model
selection method based on the validation performance of the models, ‘traditionally’ used in the context of conceptual rainfall-runoff modelling,
was adapted to the choice of a FFN structure. This method was applied to two different case studies : river flow prediction based on knowledge
of upstream flows, and rainfall-runoff modelling. The predictive powers of the neural networks selected are compared to the results obtained
with a linear model and a conceptual model (GR4j). In both case studies, the method leads to the selection of neural network structures with
a limited number of neurons in the hidden layer (two or three). Moreover, the validation results of the selected FNN and of the linear model
are very close. The conceptual model, specifically dedicated to rainfall-runoff modelling, appears to outperform the other two approaches.
These conclusions, drawn on specific case studies using a particular evaluation method, add to the debate on the usefulness of Artificial

Neural Networks in hydrology.

Keywords: forecasting; stream-flow; rainfall-runoff; Artificial Neural Networks

Introduction

Accurate stream flow predictions are required in many
hydrological applications, e.g. water resources management,
flood warning systems and optimisation of water treatment
plants. Among the models for stream flow forecasting, feed-
forward artificial neural networks (FNN) have attracted
much interest recently (Karunanithi ez al., 1994; Hsu et al.,
1995; Minns and Hall, 1996; Dimopoulos et al., 1996;
Shamseldin, 1997; Zealand et al., 1999; Sajikumar and
Thandaveswara, 1999; Jain et al., 1999; Coulibaly et al.,
2000). The main reason for this popularity is that, as is the
case with other black-box models, they seem to be easy to
use. Unlike conceptual modelling , no hydrological expertise
is needed to derive functional relationships between the
independent and the dependent variables; these are
determined automatically in the calibration phase. Moreover,
like polynomials and in contrast to linear models, the FNN's
are universal approximators (Hornick er al., 1989); with a

sufficient level of complexity, they can approximate any
continuous function, to any degree of accuracy. Therefore,
the FNNs appear to be good candidates for reproducing
hydrological processes, which are well known to be non-
linear. However, despite the promising results published
recently, the use of FNNs for stream flow prediction is
questionable.

If a sufficient number of neurons is selected, the “universal
approximator” property of the FNN guarantees good
performance of the model for interpolation purposes i.e.
during calibration. This property does not mean that
extrapolations using the model will be accurate. As noted
by many environmental model users (Perrin ef al., 2001;
Jorgensen, 1988) but also by neural network model
developers (Amari et al., 1997), increasing the complexity
of amodel does not ensure a better predicting power: beyond
a certain level of complexity (i.e. a certain number of
parameters), additional parameters may reduce the
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predicting power of the model. This difficulty can be
addressed from two different points of view and solved in
two ways. On the one hand, any decrease in performance
of the model on a validation data set can be considered as
indicative that the FNN has been ‘over-fitted’. Beyond a
certain number of parameters in an FNN, its calibration (i.e.
training) must not be carried too far. The stopping criteria
has, then, to be adjusted through a calibration-validation
(i.e. cross-validation) procedure, as proposed by Maier and
Dandy, (2000), Coulibaly et al. (1999) and Amari et al.
(1997). The effectiveness of cross-validation methods is still
discussed (Hassoun, 1995). Alternatively, the model can be
considered as over-parameterised: i.e. the available data set
is inadequate to calibrate the parameters of the proposed
model. The complexity of the model required for satisfactory
calibration results must be balanced against its subsequent
performances when applied in extrapolation mode and the
number of parameters may have to be adjusted.

The principle of parameter parsimony, well known to
modellers (Box and Jenkins, 1970), leads to a plethora of
model identification criteria (Akaike, 1973; Jakeman and
Hornberger, 1993) and can also be applied when designing
a FNN structure.

Neural network applications usually involve many
parameters; in hydrology, this number may exceed one
hundred (Coulibaly ef al., 1999), in contrast to the usual
hydrological conceptual models which depend on as few as
two or three. Without a direct way of determining the optimal
number of neurons (corresponding to an optimal number of
parameters) of the FNN network, there is a risk of selecting
‘over-parameterised’ models: i.e. models so complex that
they cannot be considered reliable when applied beyond
the range of the calibration data-set. In the present study,
selection of the model was based on the validation
performance of the models tested, ‘traditionally’ used in the
context of conceptual rainfall-runoff modelling, was adapted
to detect evidence of ‘over-parameterisation’ and to
determine the optimal number of neurons in a network. It
was applied to two different case studies, one involving river
flow prediction based on upstream mean daily flows (i.e. a
routing problem), and the other involving rainfall-runoff
prediction. The predictive power of the FNNs selected was
compared to the results obtained with a linear model and
with a conceptual model referred to as GR4;.

The selected forecasting models

FEED-FORWARD ARTIFICIAL NEURAL NETWORKS

Three-layer feed-forward neural networks used in this study
(Fig. 1) have been widely used for hydrological modelling,
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Fig. 1. The n-input, single-output, three-layer feed-forward neural
network

because three layers are sufficient to generate arbitrarily
complex output signals (Lippmann, 1987). Each of these
three layers has a precise role. The first input or passive
layer is dedicated to the capture of the external inputs and
to their delivery to each of the neurons of the next layer.
The second, also called the hidden layer, performs complex
non-linear mapping of the input data, to simulate the
relationship between inputs and outputs of the model. The
outputs of the hidden layer are gathered and processed by
the last or output layer, which delivers the final output of
the network. The FNNs are only one example of the many
possible structures of Artificial Neural Networks (ANNs).

A neuron is a processing unit with » inputs (x X X r),
and only one output y, with

y=f(X %0000 %) = A{ZWX } (1)

where the w, are the weights of the neuron, 4 is the constant
bias, and 4 is the so called activation or transfer function.
In a FNN, the outputs of the neurons of a layer are the inputs
of the neurons of the next layer. A sigmoid activation
function (Fig. 2) was chosen for the neurons of the hidden
layer, the identity function being used for the input and
output neurons. Hereafter, the notation FNN(j,m,[) will
define a three layer FNN structure with j neurons in the
first layer, m neurons in the second layer, and / neurons in
the last, with /=1 in the present case study.

As is the case with any empirical model, the FNNs need
to be calibrated, an operation called “training” in the neural
network terminology. The root mean square error (RMSE)
is the chosen objective function or criterion. The calibration
is performed through the Levenberg-Marquardt algorithm,
which is remarkable for its accuracy and its high
convergence speed, particularly when it is applied to
calibrate FNNs of moderate size (Hagan and Menhaj, 1994).
The Levenberg-Marquardt algorithm uses the following
updating procedure at each optimisation step &:
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Fig. 2. The sigmoid (or logistic) function - almost linear on the
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where 0, is the vector of the parameters (weights and biases)
of the network neurons at the step k of the optimisation, z,
is a parameter, E is the vector of the network errors, with :

E(0) =X -F () 3)

X is the vector of the measured data and /(6 is the vector
of the simulated data. J is the Jacobian matrix, which
contains the first derivatives of the function F with respect
to the weights and biases, i.e.

oF,
Jeii=| == : 4
ki, ] 26, “)
0 = Hk
When g, is large, Eqn. (2) becomes:
1
O+1 =0k —— IKE(©6)) (5)
Hy
or
1
O11=0 ——VE(b) (6)
Hy

which is equivalent to the well known back-propagation
algorithm, with 1/4, as the learning rate. When g, is small,
Eqn. (2) can be approximated by :

1
9k+1:‘9k_[~]lt<~]ky IE@) )

If the calibration criterion is the sum of squares, this is an
approximation of the powerful Newton algorithm, with the
assumption that :

Hy ~JLJ, (8)

where H_ is the Hessian matrix, which contains the second
derivatives of the function F with respect to the weights
and biases. The value of y, is decreased after each successful
step corresponding to a reduction in the error function, and
is increased otherwise. The goal is to switch as quickly as
possible from the back-propagation algorithm to Newton’s
method which is faster and more accurate near a minimum
of the criterion function.

Because of its speed, the use of this algorithm allowed a
large number of calibrations.

LINEAR MODEL

The linear model used in this study consists of a weighted
sum of all its inputs (x, x,,..., x ), and adds a bias to compute
the output y :

n
y= f(xl’XZ’"'!Xn):(_leixij""b 9)
i=

Equation 9 is equivalent to Eqn. (1) if any linear function is
chosen as the activation function 4. This implies that a neural
network for which all the activation functions are linear is a
linear model (thanks to the stability of the linear functions
ensemble).

A CONCEPTUAL MODEL : GR4J

GR4j is a four-parameter lumped conceptual model. This
reflects a drastic parsimony, limiting parameter
interdependence which tends to plague the calibration of
conceptual models (Edijatno et al., 1999). The flow chart
of the model is shown in Fig. 3.

Let P and E denote precipitation and potential
evapotranspiration, respectively in mm day™'. E is a climatic
average over several years, derived from 10-day data. The
first transformation is done by an interception reservoir of
zero-value capacity :

if P>E then P =P-Eand E =0 (10)

otherwise P =0 and E =E-P (11)

A moisture accounting reservoir with capacity X,
executes the next operation. Let S be its current storage
value. Depending on S, fluxes into P and out £ of this
reservoir occur when P and £ are positive, respectively.
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Fig. 3. Schematic representation of the GR4j model

If E>P then P,=0 and ES=E,

‘Y . (%)

" 2X,-S

(12)

If E<P then E=0 and pS:Pn(Xifsz).u
pn+)(()(2)
2+S

(13)

The new storage value of the reservoir is computed at the
end of each time step.

S=S+PF + Eg (14)

The effective rainfall (P — P ) is then divided into two parts:
a direct runoff (10%) and a delayed flow (90%). Both are
transformed by a unit hydrograph, of which the time to
peak is X,. The shapes of the unit hydrographs are given by
the following equations:
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for the unit hydrograph 1

. \3
If...0< j < X, smm:(‘} (15)
Xy
If...]>X,, SHI(j)=1 (16)
UH(j) =SH1(j) - SHI(j -1) (17
for the unit hydrograph 2
. \3
if...0<j <X, SHZ(j):;[XJJ (18)
4 . \3
it X, < [ <2X,, SHZ(j):l—l(Z—Jj (19)
2 X,
if... ] >2X,, SH2(j)=1 (20)
UH2(j)=SH2(j)-SH2(j -1) @1

where j is the time step index and UH!(j) and UH2(j) are
the values of the unit hydrographs 1 and 2 for the j* time step.

Exchanges with groundwater are also simulated. The
exchange rate F' (mm day™') depends on the value of the
storage value R of the second reservoir and on a parameter
X,

4
R
F=Xs - 22

3( Xl) 22
The delayed flow is routed through a second reservoir,

from which the outflow Q_(mm/day) depends on its current
storage content R and on the parameter X,.

R = max(0,R+ F +UH1) 23)
Q =R —(R*+X;%) 4 @
R=R -Q 25)

The final output of the model is the sum of the direct and
delayed components of the flow. The four parameters that
have to be calibrated are X, X, X, and X (Rakem, 1999).

Unlike the FNN or linear models, conceptual rainfall-
runoff models do not generally incorporate the last measured
discharges. Their mean error value can be much larger than
the day-to-day discharge variations. Therefore, they must
be adapted for use as stream-flow prediction tools: the
rainfall-runoff model can be combined with an auto-
regressive (AR) model of its forecast errors or its parameter
values updated at each time step to take into account the
most recent forecast errors.
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If properly implemented, updating methods seem to
perform slightly better than the combination with an AR
model (Yang and Michel, 2000). Nevertheless, for the sake
of clarity, the combination with an AR model has been
selected in the present case study. In both cases, the
adaptation involves additional parameters: the parameters
of the AR model (generally the one or two previous time
steps are considered), or the number of previous time steps
considered in the updating procedure and the relative weight
of'the optimisation criteria computed on the whole available
series and on the previous time steps which have to be
adjusted for each case study. The version of GR4j tested
herein comprises six parameters; the four original
parameters and the two parameters of the AR model with
which it is combined.

Methodology

ON FNN MODELS IDENTIFICATION AND
PARAMETER CALIBRATION

The initial values of the parameters are chosen randomly
during calibration. Therefore, depending on the initial
parameter values selected and on the form of the calibration
criterion (objective function), several calibration trials of
one FNN structure can lead to different sets of parameters.

The minimum values of the objective function (i.e. the
local optima) obtained during the calibration trials on
measurements appear to be very close to one another and
the best calibration parameter set obtained is not necessarily
the best validation set. Therefore, it is not really possible to
choose sensibly between the various minima of the objective
function that occur whenever a FNN has more than one
hidden neuron.

Most previous papers present the validation performance
obtained with one of the possible FNN structures identified
through calibration — generally after multiple random
initialisation of the network parameters — (Zealand et al.,
1999; Imrie et al., 2000) or through a cross-validation
approach (Coulibaly et al., 2000). In both cases, the choice
of the parameter values of the FNN is partly due to chance,
and the performance of the FNNs may appear case-
dependent or variable (Shamseldin, 1997). It is the opinion
of the authors that, with such an approach, the comparison
of the performance of various types of models and neural
networks is difficult, if not impossible. Therefore, to reduce
the possible effect of chance in the estimation of the
efficiency of the FNNSs, several plausible parameter sets have
been considered in the present study, rather than a single
‘best’ set.

THE CALIBRATION-VALIDATION PROCEDURE

A ‘constructive’ approach (Kwok and Yeung, 1997) is used
to determine the optimal structure (i.e. the optimal number
of neurons in the hidden layer) of the FNN. The validation
performance of the FNN is compared as the number of
neurons in the hidden layer is increased systematically. In
view of the need to consider several equally plausible
optimum sets of parameters, 20 different calibration trials
of each tested network structure were performed, followed
by the 20 corresponding validations. Twenty trials represent
a compromise between a good representation of the diversity
of plausible parameter sets and an acceptable computing
time. The twenty root mean square error (RMSE) values, or
rather the performance criteria based on the RMSE values,
are represented on two box-and-whisker plots (see Figs. 4,
7, 8, 11 and 13), one for the calibration errors and one for
the validation errors.

The line in the boxes is the median value. The boxes end
at the data quartiles, and the whiskers extend to the most
extreme data points which are no more than 1.5 times the
interquartile range from the box. Outliers are represented
as circles. In the interpretation of the results, reference will
be made to the median validation performances of the FNN;
these correspond to the median prediction performance that
can be expected if the FNN is chosen on the basis of one
calibration trial. It could be that, by chance, a selected FNN
leads to a better validation result. But it could just as well
lead to a worse result.

While it is expected that the median calibration criterion
of the FNN will decrease as the number of neurons is

percentage a outlier
of values in
each range
25 9, highest value
g but not higher than
L Xm 25 (XX )
________ : higher quartile x'*
25%
________ median value x ,,
25 % .
________ ; lower quartile x,,
25 % !
t  lowest value

but not lower than
Xm= 2.5 (Xpm- Xppg)

Fig. 4. Meaning of a box-and-whisker plot
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increased, after a certain point, the addition of new neurons
will raise the median criterion of the FNN on the validation
data-set. The optimum FNN structure adopted is that having
the lowest median validation criterion.

Applications

MEAN DAILY RIVER FLOW PREDICTIONS BASED
ON UPSTREAM MEASURED FLLOWS

To predict the mean daily flow at the Noisiel station, the
data used were ten years (1989—-1998) of measurements of
daily mean flows at three gauging stations on the river Marne
watershed in France: Noisiel and Chalons-sur-Marne on the
river Marne, and Pommeuse on the Grand Morin. The Grand

Morin is a tributary stream of the river Marne (Fig. 5). The
1989—-1994 period was used for calibration and the 1995—
1998 period for the validation of the model. The two data
sets have very close characteristics (Fig. 6 and Table 1).
The flood propagation time between Chalons-sur-Marne and
Noisiel is about three days for medium floods and five days
for larger events (Gaume and Tassin, 1999). Hence, the
measurements of the five previous days at Chalons-sur-
Marne were used as input data for the FNNs and for the
linear model. For simplicity, the last five measurements at
the two other gauging stations were used, giving a total
amount of 15 inputs for both types of models. In this
configuration, the number of parameters of each neural
network is 16 times the number of neurons (15 input
variables and one constant per neuron).

Fig. 5. The Marne river and the three gauging stations
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Fig. 6. Discharges measured at the Noisiel gauging station: calibration (black line) and validation (grey line) data sets.
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Table 1. Descriptive statistics of the calibration and validation
data sets at the Noisiel gauging station.

Calibration Validation
set set
Mean daily flow 90.4 m*s™ 100.2 m* s™!
Median daily flow 56.2 m*s™ 51.7 m? s
Minimum daily flow 17.8 m* s™ 23.1 m*s™!
Maximum daily flow 506 m*s™ 477 m? 57!
% days over 100 m® s™ 24 28.5
% days over 50 m* s 59 68

Non-informative or redundant inputs may reduce the
efficiency of neural networks (Shamseldin, 1997) and some
authors suggest that the number of neurons in the passive
layer should also be optimised (Abrahart ef al., 1999). The
optimal selection of the number of external inputs is beyond
the range of the present paper. Nevertheless, to indicate the
possible influence of the number of input data on the results
obtained, a series of tests was affected with a smaller number
of neurons in the input layer. Six input data were selected :
the measured mean daily flow at the Noisiel station during
the two preceding days, the mean discharge measured at
the Pommeuse station the day before, and the discharge

067 ~— i _
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° —
5 a7 — -
[&]
—
=2
0.8 -
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T
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E= —
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measured at Chalons between three and five days before. In
view of the estimated flood propagation times between the
three gauging stations (three to five days between Chalons
and Noisiel and about one day from Pommeuse to Noisiel),
this input data set represents a bottom set for a flow
prediction model at Noisiel based on the data of the three
gauging stations. The neural networks tested in this second
trial have a number of parameters equal to 7 times the
number of their neurons in the hidden layer.

The proposed calibration-validation method is applied to
the Marne example. Figures 7 and 8 summarise the results.
The mean square error is not plotted directly on these and
the following figures but a prediction efficiency criterion,
the value of which is less dependent on the case study and
on the set of measurements used. The selected criterion has
the following form :

vie-qf
Yi(Q-Q )

Where Q, is the discharge measured at Noisiel at the i time
step, Q,"is the predicted discharge for the same time step.
An efficiency criterion value of 1 corresponds to a perfect
prediction. A negative value of the criterion indicates that
the mean square error of the model is higher than the
variance of the day to day fluctuation in discharge: i.e. the

CRIT=1- (26)

T
Lin.15 6.2.1 1521 6.3.1 153.1 6.4.1 154.1 6.10.1 15101

Fig. 7. Flow propagation modelling: box-and-whiskers plots of the proposed calibration-validation method applied to the river Marne flow
prediction, comparison of the performances of the FNN with 6 and 15 inputs
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Fig. 8. Flow propagation modelling: box-and-whiskers plots of the proposed calibration-validation method applied to the river Marne flow
prediction, results obtained for the FNN with 15 inputs

simple prediction model repeating the previous observations
would then have a higher prediction efficiency.

The prediction efficiency in calibration (Figs. 7 and 8 (a))
tends to increase with the number of neurons but the
calibration becomes more and more difficult. This is
reflected in the growing size of the boxes, which denotes a
scattering of the calibration trajectories, resulting in different
values of the optimum criterion.

The validation criterion (Figs. 7 and 8 (b)) behaves
differently. After a small increase corresponding to
FNN(15,2,1), the median criterion value begins to decrease.
The very high error values found for FNN(15,3,1) and
FNN(15,4,1) are signs of over-parameterisation.
Consequently, FNN(15,2,1) presents the smallest median
error (i.e. the best median efficiency criterion value) on the
validation data-set.

The performances of the FNN with 15 inputs are higher
than those ones with six inputs during calibration but also
during validation. The shapes of the box-plots are similar.
No clear evidence of a perturbing effect of eventually
superfluous input data in the FNN structure with 15 inputs
appears on the basis of this comparison. The lower validation
performances of the FNN with 6 inputs indicate that the
linear model as well as the FNN with 15 inputs take
advantage of input data which could appear of secondary
importance on a first analysis.

The criterion obtained with the linear model on the

700

validation period (0.5 corresponding to a mean square error
of 9.2 m®s™) is close to the median value found for the
FNN selected (0.56 corresponding to a mean square error
of 8.5 m*s™).

The analysis of the results of both models (Fig. 9) shows
that the predictions during (b) rising and (c¢) falling limbs
of flood hydrographs are very close. For other events, such
as (a) floods and (b) low water periods, the FNN approach
is a marginal improvement on the predictions made by the
linear model. This suggests that the smaller value of the
mean error found for the FNN approach is due to better
predictions made during low water periods, which
outnumber those of flood events.

The FNN approach and the linear model exhibit very close
behaviours : they show the same inability to anticipate the
increasing flow (Fig. 9 (a)) and their predicted hydrographs
are similar, even if the FNN predictions are usually closer
to the measurements than the corresponding linear
predictions.

The near-linearity of the modelled process (mainly small
hydrograph shifts and tributary flow additions) can explain
why the results of the FNN are only marginally better than
those of the linear model. This led the present authors to
study a rainfall-runoff process, well known for its non-
linearity; this should exploit the potential of the FNNs to
adapt to such non-linear relationships.



Over-parameterisation, a major obstacle to the use of artificial neural networks in hydrology ?

L L L L L L L
24 26 28 30 22 3 38 38

4001

350 —— Measured flow

o FNN(152,1)
+ Linear model

Flow {ma/s}

~
=]
8

1501

100

. , . . . . |
720 725 730 735 740 745 750 755
Day

(d)

Fig. 9. Flow propagation modelling : forecasted and observed hydrographs for (a) a flood event (21 Jan. 1995), (b) a low water period (30
Aug. 1995), (¢) a rising (8 Nov. 1996), and (d) a decreasing (4 Mar. 1997) limb of flood hydrographs of the river Marne.

MEAN DAILY RIVER FLOW PREDICTIONS BASED
ON METEOROLOGICAL DATA (PRECIPITATION
AND EVAPOTRANSPIRATION)

The rainfall-runoff process is often described as being highly
non-linear, particularly in small catchment areas (Bras,
1990). Rainfall and flow measurements from the river Le
Sauzay in France — having an upstream catchment area of
81 km? — have been used. The data consist of the daily
mean flows at the outlet of Le Sauzay’s catchment area,
mean 10-day potential evapotranspiration computed each
day and daily precipitation from a nearby meteorological
station. The 1986-1990 period was used for calibration and
the 1991-1995 period was used for validation of the models.
The two data sets appear comparable (Fig.10 and Table 2).
The data of the previous five days were used to predict the
flow on the following day. This amount of input data
represents a compromise. The calibrated linear model takes
into account only the data of the two preceding days: the

parameters differ significantly from zero only for the two
preceding days. In this configuration, the number of
parameters of each neural network is 16 times the number
ofneurons (15 input variables and one constant per neuron).
As previously, further tests were conducted with a FNN
structure with a reduced number of input neurons to assess
the possible perturbing effect of eventually superfluous input
data. The selected input data were the measured river flows
for the two preceding days, the daily precipitation of the
three preceding days and the mean 10-day potential
evapotranspiration computed for the previous day. The
number of parameters of the neural networks is then seven
times the number of neurons.

The application of the calibration-validation procedure
exhibits the same characteristics as in the previous example
(Fig. 11). Contrary to expectation, evidence of over-
parameterisation appears as quickly as previously as the
number of parameters is increased. FNN(15,2,1) is selected
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Fig. 10. Discharges and rainfall rates measured on the Sauzay catchment: calibration (black lines) and validation (grey lines) data sets.

Table 2. Descriptive satistics of the calibration and validation
data sets available for the Sauzay catchment.

Calibration Validation

set set
Mean annual rainfall 792 mm 798 mm
Mean annual flow 356 mm 348 mm
Mean annual number of 188 189
rainfall days
Maximum rainfall rate 44 mm/j 44 mm/j
Maximum mean daily discharge 7.1 mm/j 7.4 mm/j
Minimum mean daily discharge 0.19 mm/j 0.23 mm/j
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here also because it presents the smallest median error on
the validation dataset. Larger FNN structures show evident
signs of over-parameterisation.

The comparison of the results obtained with the linear
model and the FNN with 15 and 6 inputs show more or less
the same characteristics as before. The best performances
during the validation are obtained with the FNN(15,2,1).
The relative validation performances of the FNN models
15 and 6 inputs appear erratic: no systematic tendency
indicates a noticeable ‘perturbing’ effect of the superfluous
data possibly included in the input data-set of the FNN with
15 inputs.
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Fig. 11. Rainfall-runoff modelling : box-and-whiskers plots of the calibration-validation method applied to the river Le Sauzay flow prediction,
comparison of the performances of the FNN with 6 and 15 inputs and of the GR4j rainfall-runoff model
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Moreover, the difference between the smallest validation
root mean square error found for the FNN and the error of
the linear model is relatively small (0.14 m’ s™' against
0.16 m* s7! respectively). For comparison, the GR4j model
was also used with the same rainfall-runoff data-set; the
root mean square error on the validation dataset dropped to
about 0.09 m® s
Again, it is interesting to analyse in which cases each model
outperforms the others. The hydrographs (Fig. 12) illustrate
these performance variations.

It appears that the predictions made during flood events
(d), rising (b) and decreasing (c) limbs of flood hydrographs
are approximately equivalent for the linear model and the
selected FNN structure. This confirms that, in esssence, the
FNN approach is more accurate than the linear model during
low water periods (a).

GR4j also performs particularly well on the low water
periods (Fig. 12(a)). Performances in other situations are
difficult to evaluate, as the three models seem to be
equivalent elsewhere but GR4j is the only model capable

of anticipating the rising of hydrographs, which is an
important feature for flood forecasting issues.

Discussion

The results obtained in the two case studies are somewhat
disappointing as far as the FNNs are concerned. When
compared to the linear model, the predictions are only
marginally improved and, in the second case study, both
simulation approaches are outperformed by the conceptual
model. On the one hand, the noise present in the hydrological
measurements can explain the difficulties encountered
during the calibration of the FNN models and their poorer
validation results. The first part of the discussion will be
devoted to the influence of noise on the efficiency of the
FNNs. On the other hand, the comparison of the prediction
performance the FNNs and of the conceptual model leads
to another question which will be discussed in the second
part: are black-box models, like the FNNs, really suitable
for forecasting issues?
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Fig. 12. Rainfall-runoff modelling : forecasted and observed hydrographs for (a) a low water period (17 June 1992), (b) a rising (22 Nov.
1993), (¢) a decreasing (2 Apr. 1997) limb of flood hydrographs, and (d) a flood (10 Jan. 1995) of the river Le Sauzay.
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Noise is a recurrent problem in hydrological time series.
In particular, flow measurements obtained by measuring
stage (water-surface elevation) are subject to many errors.
Approximations made in determining the stage-discharge
relationship, or changes in the cross section of the stream
after a flood event, for example, may affect the accuracy of
the measurements. In fact, the definition of noise also
includes the processes which are not taken into account in
the model. Noise levels in hydrological data usually range
between 5 and 15% (Sivakumar ez al., 1999).

To test the possible effect of noise on the prediction
efficiency of the FNNs, the same calibration-validation
method was used to select an optimal FNN for predicting
synthetic flow series simulated using the GR4j model on
Le Sauzay catchment. The data on which the FNNs are
calibrated are, in this case, produced by a purely
deterministic non-linear process. A Gaussian noise was

added to the input data and to the simulated dataset, with
various relative standard deviations (0, 5, 10 and 15%). The
results are summarized in Fig. 13. The criterion values
obtained using the GR4j model for the calibration and
validation procedure are also shown.

Clearly, the noise level has an effect, but does not in itself
explain the shape of the validation box-plots: the optimum
FNN model remains a simple one even with the ‘perfect’ or
‘no noise’ data-set. The ‘no noise’ example indicates that
calibration results are, in fact very good with the FNN with
two neurons in the hidden layer (root mean square error of
0.02 m* s7'); they are improved only slightly by the addition
of new neurons. A perfect adjustment would certainly require
very many neurons. The ‘universal approximator’ property
of the FNN ensures that it is theoretically possible to find a
network capable of reproducing the simulated process with
any desired precision. It will, nevertheless, be difficult if
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Fig. 13. Evolution of the error values on the calibration and the validation datasets with different levels of noise perturbation. Calibration and
validation on series of discharge produced by the non-linear GR4j rainfall-runoff model. The dotted lines indicate the criterion values obtained

with the GR4j model
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not quite impossible to find this network through calibration
in some cases.

Figure 13 also indicates that, as the noise level increases,
it becomes more difficult to improve the prediction
performance of the FNNs during calibration by increasing
the number of neurons; indeed the distance between the
validation results of the FNNs and of the GR4j model, by
construction suited to the modelled process, increases
progressively. As in the rainfall-runoff application on the
Sauzay catchment (Fig. 11), the calibration and validation
criteria of the GR4j model are comparable while the median
calibration and validation criterion values of the FNNs move
apart as the number of neurons in the hidden layer is
increased. The calibration improvements obtained with more
complex FNN structures may reflect a better fit to the noise
rather than a more precise simulation of the underlying
process. Black-box models, like the FNN approach, cannot
distinguish between noise and process. Therefore, increasing
the number of parameters may be inefficient as far as the
predicting power of the model is concerned when the
measurements used are subject to noise.

Neural network simulation consists of a decomposition
ofasignal in a base of given functions (the sum of activation
functions in the present case). The calibration difficulties,
especially when the data are affected by noise, reveal that
the logistic function is not particularly well suited for
simulating hydrological processes. The search for efficient
activation functions was beyond the scope of this paper,
but some elements of discussion are published elsewhere
(Imrie et al., 2000). Nevertheless, the authors consider that
testing different types of activation functions selected a
priori with no insight into the dynamics of the process being
studied may not improve the forecasting performance of
the FNNs. If the functions used for interpolating
measurements are not relevant to the process being observed
(which will often be the case for black-box models in which
the function types are selected a priori), the model can lead
to ‘absurd’ results when used for predictions. Hence, it is
easier to trust predictions made with conceptual models
incorporating functions chosen on the basis of hydrological
expertise than black-box models such as FNNs.

Conclusion

The proposed calibration-validation procedure leads to the
choice of very simple FNN structures with two or three
hidden neurons in both case studies. If the number of
parameters is optimised, the FNN models appear to be better
forecasting tools than linear models. However, the benefit
is limited. The FNN approach improved the predictions
marginally, essentially during low flow periods. This

conclusion differs from the findings of previous reported
studies (Sajikumar and Thandaveswara, 1999; Coulibaly et
al., 2000). The various lengths of the data-sets used may
possibly explain this disagreement. In the present study, only
five year datasets were used to calibrate the models. While
short, this corresponds to many operational situations with
which engineers can be confronted. Too short a calibration
set may not provide the variety of hydrological situations
necessary for the model to ‘learn’ properly.

Nevertheless, these conclusions agree with previous
reports (Jakeman and Hornberger, 1993; Gaume et al.,
1998), that the data available in hydrology can support only
the development of models with limited complexity.

A conceptual model, with only six parameters, specifically
dedicated to rainfall-runoff simulation, outperformed the
FNN and linear simulation approaches. Cross-validation
methods, mentioned in the introduction, were not tested. A
different implementation of the FNN may improve their
forecasting performances in these two case studies. The data
used in this paper can be downloaded at the following
address for additional trials :  http:\\www.enpc.fr\cereve\
HomePages\gaume\hess2003.zip.

Nevertheless, in the opinion of the authors, the result
presented here is not surprising. Models based on classes
of functions, like FNN models, can be efficient only if those
functions are suitable for the process to be simulated, which
is generally not the case. Therefore, it is easier to trust
predictions made with conceptual models including
functions chosen on the basis of hydrological expertise than
black-box models like FNNs. The quest for a universal
model requiring no hydrological expertise may be hopeless.
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