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Abstract

Very short-term rainfall forecasting models designed for runoff analysis of catchments, particularly those subject to flash-floods,
typically include one or more variables deduced from weather radars. Useful variables for defining the state and evolution of a
rain system include rainfall rate, vertically integrated rainwater content and advection velocity. The forecast model proposed in
this work complements recent dynamical formulations by focusing on a formulation incorporating these variables using volumet-
ric radar data to define the model state variables, determining the rainfall source term directly from multi-scan radar data, explic-
ity accounting for orographic enhancement, and explicitly incorporating the dynamical model components in an
advection-diffusion scheme. An evaluation of this model is presented for four rain events collected in the South of France and in
the North-East of Italy. Model forecasts are compared with two simple methods: persistence and extrapolation. An additional
analysis is performed using an existing monodimensional microphysical meteorological model to produce simulated rain events
and provide initialization data. Forecasted rainfall produced by the proposed model and the extrapolation method are compared
to the simulated events. The results show that the forecast model performance is influenced by rainfall temporal variability and
performance is better for less variable rain events. The comparison with the extrapolation method shows that the proposed model
performs better than extrapolation in the initial period of the forecast lead-time. It is shown that the performance of the proposed
model over the extrapolation method depends essentially on the additional vertical information available from voluminal radar.

Introduction

Specific aspects of environmental water resources, such as
evaluation of potential for flash flooding and real-time
management of urban runoff systems, require very short-
term rainfall forecasts. The spatial and temporal charac-
teristics of a rainfall forecast depend on the hydrological
requirements: lead times of interest range on the order of
fifteen minutes for urban applications to one or two hours
for flash-floods, so that the required spatial resolution of
the rainfall forecasts varies from about one to a few hun-
dred km? depending on the catchment geomorphology.
These requirements are not satisfied by typical operational
numerical weather prediction models, including meso-
scale models (Collier, 1991). The ideal solution would
involve the use of site-specific models, incorporating non-
hydrostatic cloud physics, and designed to meet the spa-
tial and temporal resolution needs of the hydrological
application environment. A recent study (Thielen and
Creutin, 1997) confirmed that the site-specific approach
remains a long-term objective and depends on the suc-
cessful completion of additional research and more practi-

cal issues such as: i) availability of on-site data necessary
for model initialization, ii) methods for real-time assimila-
tion of local data such as radar data into numerical weather
prediction models (Collier, 1991), and iii) computational
time consistent with hydrological applications.
Considering these issues, a viable alternative consists of
adapting suitable modelling methods to observational mea-.
surements that are routinely available. Knight (1987) sug-
gested simplifying models the better to connect them to
field data and applications; that work inspires this
approach. Typical operational observations consist of
ground meteorological data, volumetric radar data, and
satellite data. Actually, methods addressing very short-
term rainfall forecasting consider these data type simplic-
itly. For instance, most forecasting methods based on radar
data extrapolate the displacement of rainfields recorded by
low elevation radar images (Bremaud and Pointin, 1993;
Bellon and Zawadzki, 1994). In order to address the prac-
tical issues mentioned earlier, these advection methods
assume implicitly that: (i) rainfield evolution is governed
by its velocity as deduced from previous observations, and
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(ii) rainfall dynamics, which are difficult to characterize by
low elevation radar data, are in a steady state.
Incorporation of rainfall dynamics was addressed by
Georgakakos and Bras (1984a and b) who proposed a sim-
plified dynamical approach considering an atmospheric
column as a reservoir of liquid water to describe the rain-
fall evolution at the catchment scale. The formulation
required only ground meteorological observations and
later, was extended to two dimensions (Lee and
Georgakakos, 1991). Seo and Smith (1992) and French
and Krajewski (1994) reformulated the model to benefit
from volumetric radar observations that provide an esti-
mate of the liquid water content. An enhanced form of this
model was tested in an orographic region (Andrieu et al.,
1996). The more recent improvement (Lee and
Georgakakos, 1996) introduces a parameter for character-
izing the intensity of convection in the atmospheric col-
umn and proposes an equation for real-time updating of
this parameter.

This work continues the effort to produce a rainfall fore-
casting model suited to routinely available data and useful
for hydrologic applications. It extends the study of Andrieu
et al. (1996) and differs in several aspects. In particular, the
rainfall forecast model is modified to use only volumetric
radar data. This change emphasizes the importance and
dominant role of volumetric radar data for identification of
the primary dynamics of rainfall systems at short time scales
and is comparable to a simplified form of a detailed meteo-
rological model. The modifications are possible by focusing
on the evolution of rainwater content as observed from vol-
umetric radar data. Comprehensive evaluation of any rain-
fall forecasting model requires long duration sets of quality
controlled radar data. Unfortunately, due to the relatively
recent archiving of volumetric weather radar data, such data
sets are not readily available. In the present case, the model
is tested using four rainfall events: two events recorded at a
well controlled radar site, (Andrieu ef al., 1997); and two
rain events recorded by the volumetric radar of Monte-
Grande in Italy (Borga and Frank, 1998). An additional val-
idation based on a microphysical model is used to
complement the tests based on real-world data. The micro-
physical model produces realistic precipitation and related
rainwater content states, and these variables can be consid-
ered as error-free measurements. The model evaluation is
performed by sampling these simulated measurements,
using the values to drive the forecast model, and validating
the forecasted rainfield to the reference provided by the
microphysical model. This type of simulation study is use-
ful to gain insights into and to understand the behaviour
and limitations of the proposed rainfall forecasting model.

The paper is organized in the following way. The model
formulation focuses on the modifications introduced to
make it fully consistent with volumetric radar data. The
section on model evaluation introduces the observations
data, describes the sensitivity analysis of the model to
hydrometeorological variables and presents and discusses
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results of the case studies. The detailed model analysis
conducted using the microphysical model follows.

Model formulation

This section summarizes the rainfall model dynamics. The
precipitating cloud is conceptualized as an atmospheric
column of rainwater; the influx of rainwater and the
response time of the cloud are deduced from volumetric
radar data. The advection and lateral mixing are explicitly
incorporated and the rainwater influx evolution is explic-
itly defined. This type of formulation is well suited to be
initialized and updated in real time from volumetric radar
data. The multi-scan radar provides the means for evalu-
ating the total rainwater content, the rain rate and the hor-
izontal displacement vector of the atmospheric column.
The model state incorporates only processes associated
with the final stages of precipitation production, includes
water vapour influx component, but does not explicitly
address the spectrum of precipitation formation processes.

RAIN WATER CONTENT

The temporal evolution of the total rainwater content or
vertically integrated liquid water content V7L (kg/m?) for
the atmospheric column is given by the difference between
the influx of rainwater S(¢) and the rainfall rate at the col-
umn base R(?):

= S(t) = KtWIL(t) )
—— —

R()

AVIL()
dt

where k(7) is the inverse of the model response time.
Equation (1) is similar to the model proposed by
Georgakakos and Bras (1984a); however in this work, the
VIL represents the rainwater category of atmospheric
water and can be measured directly using weather radar.

The source term S(¢) is not directly measurable, but can
be estimated using consecutive radar images and a form of
Eqn. (1).

The term R(2) is the output flux of moisture, i.e. the
rainfall rate at the cloud column base, and is assumed to
be equivalent to the rainfall rate at ground level. The coef-
ficient 4(¢) depends on the vertical profile of rainwater and
is deduced from: ‘

R(@)
h(t) = ———
© VIL(t)
In order to move the atmospheric columns, an advective

component is included in (1) and the final form of the con-
servation equation of rainwater content becomes:

@

WL, y,1) _ _ VI 31) _ | VILG, y,1)
or Ox o
_h(x’ Vs t)VIL(xv Ys t) + S(xa Vs t) (3)

where u and v are vertically-averaged horizontal velocities.



Evaluation of a conceptual rainfall forecasting model from observed and simulated rain events

The other aspect introduced into the model formulation
concerns the estimation and evolution of the source term

S().

THE SOURCE TERM EVOLUTION

The initial condition for the source term is deduced from
volumetric radar data and the advective dynamics over the
radar domain defined by the following:

38, 3,1) _ _, 3@ p1) _ 9, 3,1)
o o &

+Gs(x, 3,0) (4)

where Gy represents the generation and decay rate of the
influx of rainwater. In order to maintain the intent of this
work, it is appealing to relate Gs to meteorological vari-
ables influencing rain cell evolution. In this formulation,
Gs only accounts for orographic influences, and is para-
meterized as (Bell, 1978; Alpert and Shafir, 1989; Andrieu
et al., 1996):

Gy(x,t) = Oty V(t) Vzo(x,y) (5)

where 0, is a calibration parameter representing a con-
stant rainwater flux, ¥,(z) is an indicator of the horizontal
wind vector and VZz, is the ground slope vector. The hor-
izontal advection displacement vector (x,v) is taken as an
indicator of the horizontal wind velocity.

MODEL OPERATION

Implementation of the model equations requires initial
conditions for all variables: V'JL, source term representing
rainwater flux, response time and rainfield velocity com-
ponents. One advantage of a model suited for use with
radar includes the direct means available for initialization
and updating model variables in real-time from observed
radar data. The following section provides a description of
the operational algorithms and procedures introduced to
create an environment for model implementation. In some
cases, such as in dealing with the presence of bright band,
a direct and effective means of addressing the issues is
described. In such conditions, the proposed approach is
only one of several viable options for addressing opera-
tionally challenging issues. The remaining components of
model initialization and operation are summarized in the
following points:

— the VIL is estimated from volumetric radar observations
of reflectivity, reflectivity being transformed into water
content according to the relationship: M = ¢Z%, where
M is liquid water content, Z is reflectivity, ¢ and 4 are
two constants. The bright band, the peak of reflectivity
due to the melting layer, is corrected by replacing the
peak of reflectivity by a linear decrease in rainwater con-
tent.

~ the components of the rainfield velocity are determined
using a classical cross-correlation analysis of successive

base-level radar reflectivity observations (Bellon and
Austin, 1984).

— the rainfall rate is determined from the lowest elevation
radar data according to the relationship Z = 200R!S,

— the initial value of the source term is developed from
consecutive radar images by tracing the rainwater influx
associated with an observed VIL variation. The source
term is estimated at a 2 km X 2 km radar grid resolu-
tion, and averaged over the grid trace displacement
within the rainfield.

— the response time is estimated at the beginning of each
forecast lead-time using (2).

After initialization, the rainfall forecast is carried out
according to the following assumptions:

— the vertical profile of rainwater, the response time and
the horizontal velocity components remain constant dur-
ing the forecast lead-time,

— the source term evolution is described by the evolution
equation (Eqn. 4), i.e. the source term is advected
explicitly and accounts directly for the orographic influ-
ence.

— the VIL evolution is driven by the integration of the rain-
water content evolution equation (Eqn. 3). Integration is
performed in conjunction with an advection component
based on a finite difference, antidiffusive scheme
(Smolarkiewicz, 1983).

Model evaluation

CASE STUDIES AND OBSERVATION DATA

Two case studies are used to illustrate the model imple-
mentation and provide an environment for model perfor-
mance evaluation. In each case, the rainfall is forecasted
for 4 catchments in the radar domain. The catchment
averaged rainfall rates are compared to the model forecast
of the same. The first case study is composed of two rain
events recorded in the mountainous region of Cevennes in
the South of France, and the second case study groups two
rain events recorded by the radar of Monte Grande in
North-Eastern Italy.

Two significant rain events were recorded during the
Cevennes Radar Experiment: 13-15 November 1986
(denoted NOV86), and 46 October 1987 (denoted
OCT87), respectively grouping 38 hours and 35 hours of
data. Detailed characteristics of these data are described in
(Andrieu et al., 1996). The VIL and rainfall rate are esti-
mated every 8 minutes on a 2 km X 2 km grid. The rain-
fall rate and rainwater content at the cloud column base
are provided by the lowest angle radar scan. Multi-scan
radar provides a means of estimating the VIL and in this
case study, the radar recorded two elevation angles (1.1
deg and 3.1 deg). A specific procedure was designed to
deduce the vertical profile of reflectivity (VPR) from the
two PPI (plan position indicator) radar scans (see Andrieu
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and Creutin, 1995 and Andrieu e al., 1995). This identi-
fication method assumes that the profile of reflectivity is
homogeneous over the study area during a one hour time
interval. The VPR is reinitialized each hour using the lat-
est observations. The assumption of a homogenous and
constant VPR is a minor limitation, and then principally
in convective rainfall systerns that vary rapidly in time and
space. This is somewhat characteristic of the OCT87 event
and will be discussed later. The indirect estimation of VIL
is the primary control on model performance in this sec-
tion on model evaluation.

Two rain events recorded by the Monte Grande radar
constitute the second case study: the rain events were
recorded during the period 14-18 October 1996 (denoted
OCT96) and 13-17 November 1996 (denoted NOV96),
respectively grouping 117 hours and 120 hours of data.
During these two rain events, the observed rain rates are
moderate and do not exceed 10 mm/h. The total volume
of rainfall collected per catchment for these events is 60
mm. The Monte Grande radar is a multi-scan C-band
radar operating at 5.5 cm and a volume scan consists of 10
PPI scans at elevation angles ranging from 0.5° to 15°
(Borga and Frank, 1998). The radar domain covers a zone
of 240 km X 240 km centred on the radar location. The
VIL and rainfall rate are estimated every 15 minutes on a
2 km X 2 km grid using respectively the volume scan and
the lowest elevation angle.

A digital terrain model is used to define the ground slope
and the catchment area extent. Model calibration was per-
formed using a simplex method and a simplified method of
Rosenbrock’s algorithm; both lead to a similar result.

The conceptual rainfall forecast model, denoted
MODEL, is used to forecast spatially-averaged rainfall
accumulation in the two case studies over four catchments,
ranging from 300 to 600 km? (Fig. 1).

The performance criteria used to evaluate the model are
the coefficient of efficiency (CE) or Nash criterion (Nash
and Sutcliff, 1970), the root mean square error (RMSE)
between the observed rainfall and the forecasted rainfall
and the corresponding coefficient of correlation (CC).
Model performance is best when CE approaches 100%,
RMSE is low and CC approaches 1.

Additionally, model performance is compared with two
simple rainfall forecasting methods: persistence (PERS)
and advection (EXTRA). The persistence method implies
that the rainfield is fixed in space, its dynamics are in a
steady state and the rainfall rate remains constant over the
forecast lead-time. The advection method is based on the
assumption that the atmospheric column dynamics are in
a steady-state, and the rainfall rate evolution at a given
location is driven by the rainfield velocity.

SENSITIVITY ANALYSIS

This section addresses the influence of model variables,
the advection procedure and VIL initialization on model
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performance for the first case study. The source term
includes two components: an advective component and an
orographic component representing the generation of rain-
water influx due to the relief (Eqn. 4). The model sensi-
tivity to the two components of the source term is shown
by Fig. 2 which represents the variation of the coefficient
of efficiency due to a variation of these components. The
optimal value is defined by a CE of 85% prior to the intro-
duction of any variation in the advective component or the
optimal value of the parameter. The model presents a weak
sensitivity to the orographic component of the source term
and shows a high sensitivity to the advective component of
the source term. The advective component of the source
term influences both the coefficient of efficiency which
measures deviation between modelled and observed rain-
fall rate, and the correlation coefficient (not shown) which
depends on the temporal evolution of modelled and
observed rainfall rate.

The advection of the atmospheric columns is performed
by applying a uniform displacement vector over the entire
radar domain. The role of the advection procedure on
model performance is analyzed by using the model, alter-
natively, in a Lagrangian and an Eulerian system explicitly
accounting for vertically-averaged lateral mixing. The
variation observed in model performance is small for the
NOV86 event; a weak improvement of the model perfor-
mance using the Eulerian approach is observed for the
OCT87 event. The coefficient of efficiency varies from
67% in the Lagrangian system to 71% in the Eulerian sys-
tem for the one-hour lead-time forecast. In summary,
implementation of an explicit advection algorithm using a
uniform velocity improves model performance to a limited
degree. -

As observations of rain water content become available
from the radar, the VIL term in Eqn. (3) is reinitialized.
In Eqn. (3), rather than excluding the model estimate from
reinitialization of the VIL state, the state can be updated
as an optimal combination of observed and model fore-
casted VIL (Gelb, 1974) as:

VIL = K,VIL, + (1 - K)VIL, (6)

where VIL, is the observed VIL, VIL, the model forecasted
VIL and K is the Kalman filter gain depending on both
model and data variance. The influence of VIL initializa-
tion, in two different cases, is analyzed: in the first case,
VIL is updated at the beginning of each forecast lead-time
only from the observed VIL (K = 1); in the second case, the
VIL is updated from model forecasted VIL i.e. only the
source term is updated from observation data (K = 0). The
model performance is similar for both cases; the coefficient
of efficiency varies from 87.0% (K =1) to 83.0% (K =0)
for NOV86 and from 71.2% (K = 1) to 69.0% (K = 0) for
OCTS87. An additional test shows that the model perfor-
mance decreases regularly when the Kalman gain filter, K,
varies from 1 to 0. The VIL initialization is important for
model performance, but implementation of a Kalman filter
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Fig. 2. Sensitivity of the model to rainwater influx components.

for updating the V7L improves model performance only to
a limited degree. Consequently, the complete Kalman
filter was not implemented in this work.

RESULTS AND DISCUSSION

The model calibration required the estimation of one para-
meter, O, associated with the orographic component of
the source term. Calibration was performed using the first
case study, and the parameter remained constant at this
value for the four catchments in the study region. Under
these conditions, the optimal value for the parameter is 1.6
X 10+ for the NOV86 event, and 1.5 X 10~* for the
OCT87 event. For the second case study, the orographic
enhancement of the rainfall is negligible which allows the
model to be applied without calibration. The results are
grouped in Tables 1 and 2 that compare the tested model
to the persistence and extrapolation methods for the four
catchments. For three of the four rain events, the model
performs better than the two other methods: persistence
(PERS) and extrapolation (EXTRA) (Tables 1 and 2).
However, for the OCT87 event, model performance is
similar to the EXTRA method and better than the PERS
approach (Tables 1 and 2). Overall peaks of catchment-
averaged rainfall rate are relatively well predicted by the

“model for the one-hour lead-time rainfall forecast (Fig. 3a,

b, ¢ and d). A study of a two-hour lead-time forecast
showed that the {_recast model performance remains good.
The performance decreases respectively from 87.0% and
71.2% to 62.0% and 47.0% for the two rain events of the
first case study, and respectively from 87.2% and 87.0%
to 68.0% and 63.0% for the two rain events of the second
case study. The change in model performance for the two-
hour lead-time forecast is essentially due to the changes in
boundary conditions, and to rain development during the
second-hour of the forecast period.

For the first case study, the orographic influence is more
pronounced during the NOV86 event, explaining the
poorer performance of the EXTRA method for this rain
event. Performance of all methods is decreased for the
OCT87 event, which consists of a convective rain system
induced by a cold front. For the second case study, the
performance of the EXTRA method is equally good for
the one-hour forecast. The PERS method gives the poor-
est results by all the criteria.

Model validation is performed by inverting the model
parameter for each event: the calibrated parameter value
determined from the NOVS86 rain event is used in fore-
casting the OCT87 rain event and vice versa. Results
(Table 3) illustrate the overall stability of the model; in
validation, model performance is similar to the calibration
case. Figure 3 illustrates the spatially-averaged rainfall rate
hyetographs of observed and one-hour lead-time forecasts
for the Ceze catchment in the Cevennes region (Fig. 3 a
and b) and the Posina catchment in the Monte Grande
region Fig. 3 ¢ and d). The convective nature of the
OCT87 event and the homogeneous spatial characteristics
associated with the estimated vertical profile of reflectivity
are reasons for the deterioration of model performance in
this case. One of the primary appealing features of the con-
ceptual model lies in the direct use of three-dimensionally
scanning radar data for improving short-range rainfall
forecasting.

Table 1. First case study. One-hour lead-time rainfall forecsat.

Method parameter Performance Criteria

Oy, CE(%) RMSE(mm/h) CC
NOV86 rain event
MODEL 1.6 X 10# 87.0 1.2 0.94
PERS 30.7 27 0.65
EXTRA 75.4 1.6 0.94
OCT87 rain event
MODEL 1.5 X 104 71.2 1.8 0.87
PERS —4.2 3.5 0.48
EXTRA 73.3 1.8 0.90
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Table 2. Second case study. One-hour lead-time rainfall forecast.

Method Performance
Criteria

CE(%) RMSE(mm h') CC
OCT96 rain event
MODEL 87.2 0.3 0.94
PERS 17.0 0.8 0.58
EXTRA 82.5 0.4 0.92
NOV96 rain event
MODEL 87.0 0.2 0.93
PERS -50.0 0.6 0.25
EXTRA 84.5 0.2 0.92

Model analysis

The sensitivity analysis and application described in the
previous section have shown the importance of the source
term, the VIL update, and the influence of the rainfall
variability on model performance. However, the limited
number of rain events and the influence of the spatially-
homogeneous vertical profile of reflectivity on one event in
the first case study, to some degree limits the generalization
of results. To supplement and refine the results, an addi-
tional evaluation of the model utilizing simulated rain events,

8y e EXTRAPOLATION
MODEL
OBSERVATION

EXTRAPOLATION
MODEL
OBSERVATION

1 4 7 10

13

Time (hour)

created with a microphysical model was performed. The
microphysical model is used to produce realistic precipita-
tion and related rainwater contents that are free of measure-
ment error. The analysis, based on simulated data, avoids the
influence of measurement error and allows the application to
account only for errors associated with model structure. The
rain events are simulated by a mono-dimensional micro-
physical model, equivalent to a fixed atmospheric column or
a column moving in a Lagrangian frame of reference.
Moreover, this simple context allows the analysis to focus on
the terms in (1) representing the VIL evolution.

The microphysical model describes the evolution of
atmospheric water categories including water vapour,
cloud water, rainwater and snow. The moisture input
component of the microphysical model is controlled by the
distribution of the vertical velocity and requires a defini-
tion of the vertical profiles of temperature, dewpoint and
pressure profiles (Hales, 1989).

MODEL APPLICATION

The moisture input in the microphysical model, denoted
MODM, is driven by the updraft velocity. However, the
equation of vertical motion is not implemented explicitly.
The vertical distribution of the updraft »(z,?) is approxi-
mated by the following parabolic distribution (Kessler,
1969).

©
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Fig. 3. Forecasted and observed rainfall rate for an one-hour lead-time a) NOVSE6 rain event b) OCT87 rain event ¢) OCT96 rain event d)

NOV9% rain event.
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Table 3. Model validation. One-hour lead-time rainfall forecast.

Rain events parameter Performance
Criteria
CE(%) RMSE(mm/h) CC
NOV86 1.5 X 10+ 85.1 1.2 0.94
OCT87 1.6 X 10+ 71.1 1.8 0.87
4D (£) 2
y )= —mexh s _—— 7
w(z, 1) H, (z H, 7)

where H,, is the height of the updraft column, w,,,, is the
maximum updraft and z the vertical direction. For the
present simulation purpose, the temporal evolution of
the updraft velocity is given by:

a-1 b1
. __t
Puai(f) = ﬂ(a,b)(tm.x) (l t.m) ®

where w,, is 2 magnitude constant of the updraft, ,, is
the duration of the simulated rain event, a,b) is the -
function, and @ and b are shape parameters. Rainfall vari-
ability is produced by modulating the magnitude and
shape function of the updraft velocity.

The microphysical model is initialized using an idealized
and realistic vertical profile of temperature, dewpoint tem-
perature and pressure profile as determined from ground-
level pressure. The simulated rain events are produced by
integrating the dynamic equations of the model over the
duration of the rain events.

The evaluation of the forecast model is based en three
simulated rain events of six hours duration, denoted
EVTI, EVT2, EVT3. Figure 4 shows the rainfall rate over
the duration of the event. As illustrated by Fig. 4, the
events display an increasing temporal variability defined by
the slope (dw/dt) of the vertical velocity temporal varia-
tion. The evaluation procedure for the forecast model is
carried out in an identical manner as in the case of
observed data. At the beginning of the forecast lead-time,
the variables, rainwater content and rainfall rate, are ini-
tialized by assuming that they are measured, these mea-
surements being generated by the microphysical model
MODM. The rainwater content in the forecast model is
assumed implicitly as the sum of both solid and liquid
rainwater content. This initialization stage of the forecast
model is repeated each thirty minutes. In particular, the
source term S(#) and the response time A(t) are constant
during the forecast lead-time.

MODEL RESULTS

The forecast model performance is evaluated by compar-
ing the predicted rainfall rate to the rainfall rate generated
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by MODM using the same criteria as in the previous sec-
tion. The forecast lead-time is equal to 30 minutes, and a
forecast is generated every minute. The performance
results for the three simulated rain events are presented in

o K
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Fig. 4. Comparison of the MODEL and EXTRA rainfall rates to
the MODM rainfall rate for 30 minutes lead-time forecast a) EVTI
b) EVT2 ¢) EVT3.

Fig. 4 and Table 4. For a short forecast lead-time, the
forecast model performs better than the EXTRA method.
As clearly illustrated by Fig. 4, the accuracy of the fore-
cast model decreases when the forecast lead-time increases
and reaches a steady-state characterized by a constant rain-
fall rate driven by the source term. At the beginning of the
forecast lead-time, the forecasted rainfall is closer to the
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observed rainfall and deviates with the increasing of
the forecast lead-time. Figure 4 shows the performance of
both methods MODEL and EXTRA, decreases from
EVT1 to EVTS3, i.e. performance decreases with increas-
ing temporal rainfall variability. However, under the per-
formance criteria, the forecast model performs better than
EXTRA in all the events. The best performance of the
forecast model relative to EXTRA is obtained for the
moderately variable event EVT2. The performance of both
methods is relatively poor for the highly variable event
EVT3, which shows the need for an improved model for-
mulation addressing highly variable rainfalls, increasing
the forecast lead-time and model response time.

These results are further explained by the fact that a
conceptual model of the type developed here, can be posed
in the context of a linear reservoir model. The forecasted
rainwater content VIL(t+Ar) for a lead-time Ar and
response time A(#)"! is given by:

VIL(t + At) = 04 VIL@) + (1 — e 081 (9)

The forecasted rainwater content VIL(t+At) is a linear

Table 4. Models results for simulated rain events.

Method Performance

Criteria

CE(%) RMSE(mm/h) CC

Simulated rain event EVT1

MODEL 94.5 1.1 0.97
EXTRA 87.0 1.8 0.94
Simulated rain event EVT2

MODEL 84.0 2.9 0.92
EXTRA 54.2 4.8 0.76
Simulated rain event EVT3

MODEL 34.0 5.5 0.71
EXTRA 25.8 5.9 0.66

combination of the initial rainwater content VZL(t) and the
source term S(#). The weighting is a function of the ratio
of the lead-time At to the response time A(z)"!. For a lead-
time greater than the response time, the source term
becomes predominant and the need for a better descrip-
tion of the source evolution and the rainfall dynamics
arises. It is clear that the rainfall dynamics implemented in
the present model is limited in this way because it deals
only with the rainwater category and an indirect estimate
of the source term. Additionally, the rainwater source term
plays an important role in the model and its evolution
might be described in order to improve the conceptual
model performance.

By addressing only the evolution of rain water content
and not explicitly accounting for the cloud water content,

the conceptual forecast model partially represents the
processes of rain generation. Due to this control, the
response time of the modelled system can be shorter than
the expected response time of the natural system for some
cases. The result is that the source term is predominant
for long lead-time forecasts. The response time of the
modelled system is physically representative of the mean
fall duration of drops between the cloud and the ground.

Other more general considerations in the development
of operationally-oriented hydrologic rainfall models are
briefly stated here as related to this work. Underestimation
of the rainwater content can be a factor in decreased per-
formance. A formulation that neglects solid precipitation
content leads to a decrease in model performance by
affecting both the initial rainwater content and the model
response time. Additionally, an underestimation of the
modelled vertical profile of reflectivity can affect the esti-
mation of the total rainwater content of the atmospheric
column. Finally, an evaluation of the influence of radar
measurements errors on the model performance is an
important issue that remains to be addressed.

Conclusion

An approach using volumetric radar data, explicit advec-
tion dynamics, and orographic rainfall enhancement into a
short-term rainfall forecasting model was presented. An
application to four observed rain events illustrated the per-
formance of the model relative to persistence and advec-
tion forecast methods. A complementary evaluation of the
conceptual forecast model performance from rain events
simulated using a microphysical model confirmed the
results and provided an insight into the limits of the cur-
rent conceptual model formulation. The present model
does not explicitly account for cloud water and details of
microphysical processes; this implies a system response
time shorter than the expected natural system response
time. Additionally, the model source term is a key variable
for forecast lead-times exceeding the model response time.
The useful and realizable forecast lead-time is dependent
on the radar domain size, and also on the type of rain sys-
tem. For convective rain systems, where the rain system
evolves rapidly, the potential lead-time is short and appli-
cations are best suited to management of urban hydrologic
applications such as sewerage system control. The type of
investigation addressed in this work focused on conceptual
methods to both improve the description of microphysical
processes incorporated in hydrologic models and increase
rainfall forecast model response time as a component for
extending the realizable forecast lead-time.

Acknowledgements

This work was in part supported by the Commission of European
Communities, DG XII, Environment and Climate program, pro-
ject HYDROMET, contract N/060 ENV 4CT 960290. The



L. Dolciné, H. Andrieu and M.N. French

authors would like to thank Marco Borga (University of Padova)
for providing the radar data used in this work and for his com-
ments and discussions.

References

Alpert, P. and Shafir, H., 1989. Meso-7=scale distribution of oro-
graphic precipitation: numerical study and comparison with
precipitation derived from radar measurements. 7. Appl.
Meteorol., 28(10), 1105-1117.

Andrieu, H. and Creutin, J.D., 1995. Identification of vertical
profile of reflectivity for hydrological applications using an
inverse method, 1-Formulation. 7. Appl. Meteorol., 34(1),
225-239.

Andrieu H., Delrieu, G. and Creutin, J.D., 1995. Identification
of vertical profile of reflectivity for hydrological applications
using an inverse methods, 2-Sensitivity analysis and case
study. 7. Appl. Meteorol., 34(1), 240-259.

Andrieu H., French M.N.,, Thauvin V. and Krajewski,
W.F.,1996. Adaptation and application of a quantitative rain-
fall forecasting model in a mountainous region. J. Hydrol., 184,
234-259.

Andrieu H., Creutin J.D., Delrieu G. and Faure D., 1997. Use
of a weather radar for the hydrology of a mountainous area.
Part 1. Radar measurement interpretation. 7. Hydrol., 193,
1-25.

Bell, R.S., 1978. The forecasting of orographically enhanced
rainfall accumulations using 10-level model data. Meteorol.,
Mag., 107, 113-124.

Bellon, A. and Austin, G.L., 1984. The accuracy of short-term
radar rainfall forecasts. 7. Hydrol., 70, 35—49.

Borga, M. and Frank, E., 1998. Use of radar-rainfall estimates
for flood simulation in mountainous basins, in Ribamod:
Proceedings of the 2nd- Expert Meeting: Integrated Systems
for real-time flood forecasting and warning, ‘Jino Tonini’
International Center of Hydrology, Montelice, Padova, Italy,
25-26 Sept. 1997. European Commission, 12p. (in press).

Bremaud, P.J. and Pointin, Y.L., 1993. Forecasting heavy rain-
fall from rain cell motion using radar data. 7. Hydrol., 142,
373-389.

182

Collier C.G., 1991. The combined use of weather radar and
mesoscale numerical model data for short period rainfall fore-
casting, in Hydrological applications of weather radar, editors
I.D. Cluckie, C.G. Collier, Ellis Horwood, 331-340.

French, M.N. and Krajewski, W.F., 1994. A model for real-time
quantitative rainfall forecasting using remote sensing, 1-
Formulation. Wat. Resour. Res., 30, 1075-1083.

Gelb, 1974. Applied optimal estimation, The MIT Press,
Cambridge, Mass, 374 pp.

Georgakakos, K.P. and Bras R.L., 1984a. A hydrologically use-
ful station precipitation model, 1-Formulation. Wat. Resour.
Res., 20 (11), 1585-1596.

Georgakakos, K.P. and Bras, R.L., 1984b. A hydrologically use-
ful station precipitation model, 2-Case studies. Water Resour.
Res., 20(11), 1597-1610.

Hales, J.M., 1989. A generalized multidimensional model for
precipitation scavenging and atmospheric chemistry. Atmos.
Environ., 23, 2017-2031.

Knight, C., 1987. Precipitation formation ih a convective storm,
F. Atmos. Sci., 44, 19, 2712-2726.

Kessler, E., 1969. On the distribution and continuity of water
substance in atmospheric circulations. Meteorol. Monographs,
AMS, 10(32), 84 pp.

Lee, T.H. and Georgakakos K.P., 1991. A two-dimensional sto-
chastic-dynamical quantitative precipitation forecasting model.
F. Geophys. Res., 95(D3), 2113-2126.

Lee, T.H. and Georgakakos, K.P.; 1996. Operational rainfall pre~
diction on meso-g scales for hydrologic applications, Wat.
Resour. Res., 32, 987-1003.

Nash, J.E. and Sutcliff, J.V.Z., 1970. River flow forecasting
through conceptual models. Part 1. A discussion of principles.
F. Hydrol. 10, 282-290.

Seo, D.J. and Smith, J.A. 1992. Radar-based short term rainfall
prediction, 7. Hydrol., 131, 341-367.

Smolarkiewicz, P.K., 1983. A simple positive definite advection
scheme with small implicit diffusion. Mon. Wea. Rev, 111,
479-486.

Thielen, J. and Creutin, J.D., 1997. An urban hydrological model
with high spatial resolution rainfall from a meteorological
model. 7. Hydrol. 200, 58-83.



