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Abstract

The variational methods widely used for other environmental systems are applied to a

spatially distributed flash flood model coupling kinematic wave overland flow and Green

Ampt infiltration. Using an idealized configuration where only parametric uncertainty

is addressed, the potential of this approach is illustrated for sensitivity analysis and5

parameter estimation. Adjoint sensitivity analysis provides an extensive insight into the

relation between model parameters and the hydrological response and enables the use

of efficient gradient based optimization techniques.

1 Introduction

Critical and interrelated issues like state and parameter estimation, sensitivity and un-10

certainty analysis have received growing attention from the hydrological community.

Since effective parameters are not directly measurable and potentially compensate for

various sources of uncertainty, the focus has been primarily on parametric uncertainty.

Experiences on the calibration of lumped conceptual models using a single objective

function revealed that its response surface contains several regions of attraction, dis-15

continuous derivatives and other geometrical properties compromising the use local

methods, especially those using derivative information (Duan et al., 1992). There-

fore, most applications and methodological developments to model calibration entail

a stochastic exploration of the parameter space (global optimization) using compu-

tationally intensive Monte Carlo methods and/or evolutionary algorithms (Beven and20

Binley, 1992, Duan et al., 1992; Yapo et al., 1997; Kuczera and Parent, 1998; Bastidas

et al., 1999; Vrugt et al., 2003a,b). Assuming that parametric uncertainty can depict

the other sources of uncertainty, all plausible parameter sets are retained depending

on their ability to meet different believability criteria (threshold on likelihood measure,

Pareto optimality).25

Significant efforts have been dedicated to the quantification and reduction of predic-
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tive uncertainty, but most contributions are characterized by a very limited assessment

of model structure. Sensitivity analysis (SA) is mostly perceived as an additional in-

formation derived from stochastic simulations whereas it should be considered as a

crucial and mandatory step in the modeling process. An extensive analysis of the re-

lation between model input factors and output variables is an essential step to identify5

potential deficiencies in model structures and formulation, explain and correct the lack

of fit of hydrological models, provide guidance for model reduction and parametriza-

tion, analyse the information content of available observations, and lastly describe the

subspace (i.e. of the original control space) driving predictive uncertainty.

The Regional Sensitivity Analysis (RSA) of Hornberger and Spear (1981) inspired10

numerous applications and developments for the analysis of hydrological systems

which includes the contribution of Beven and Binley (1992). Some authors address

the extension to multiples objectives (Bastidas et al., 1999) or the combination with

the powerful variance-based Global Sensitivity Analysis Methods Ratto et al. (2001),

combination which is particularly suited for the identification of the input factors driv-15

ing behavioral simulations (Monte Carlo Filtering). By combining RSA with recursive

estimation techniques (Vrugt et al., 2002, Wagener et al., 2003) really investigate the

model behavior. Apart from RSA-based methods, relatively sophisticated SA tech-

niques received the attention of practitioners using complex models structures (Chris-

tiaens and Feyen, 2002; Yatheendradas et al., 2005, Sieber and Uhlenbrook, 2005);20

including non point source pollution modeling (Francos et al., 2003; Muleta and Nick-

low, 2004; van Griensven et al., 2006). Those were applied only recently to lumped

hydrological models (Ratto et al., 2006; Tang et al., 2006). In accordance with the

paradigm currently adopted for the calibration of hydrological models, Global Sensitiv-

ity Analysis methods are characterized by a multi-dimensional averaging (Saltelli et al.,25

2000) of the sensitivity measures over the feasible parameter space.

From the forcing to the initial condition and the model parameters, the dimensionality

of the input space if greatly increased. Since the commonly employed global sensitivity

and non-smooth optimization techniques are sampling based, dimension reduction is
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necessary and usually operated using very simple heuristics. In fact, most of the ap-

proaches adopted for the automatic calibration of hydrological models were developed

for lumped conceptual models. They have been transfered to distributed models by

means of a drastic reduction of the control space. Scalar multipliers are used to adjust

spatial distributions derived from a priori information. The same type of strategy is em-5

ployed in order to make Global Sensitivity Analysis methods computationally tractable

(Yatheendradas et al., 2005; Hall et al., 2005).

The distributed modeling of catchment hydrology offers great potential for under-

standing and predicting the rainfall-runoff transformation. However, the curse of di-

mensionality associated to scarce observations of the physical system make some of10

the previously mentioned issues very challenging. Since the commonly used meth-

ods can be limited in handling computer intensive spatially distributed systems, some

of the lessons learned from other geophysical applications (such as meteorology and

oceanography) using high dimensional and computer intensive models should be ex-

ploited.15

For instance, the variational methods provide a unified framework to investigate both

sensitivity analysis and parameter estimation. The adjoint state method, yielding to an

efficient calculation of the derivatives of an objective function with respect to all control

variables, is particularly suited when the dimension of the response function to be anal-

ysed (or cost function to be optimized) is small compared to the number of inputs to be20

prescribed (dimension of the control space). The variational methods have contributed

to numerous applications related to the analysis and forecasting of meteorological and

oceanographic systems (data assimilation, sensitivity analysis, observation targeting).

With the growing complexity of hydrological models, the theoretical and methodolog-

ical developments carried out in the variational framework (Le Dimet and Talagrand,25

1986; Hall and Cacuci, 1983; Navon, 1998; Ghil and Malanotte-Rizzoli, 1991; Ben-

nett, 1992 to cite a few) are of great interest for various problems related to hydro-

logical modelling. Early applications of variational methods to hydrological systems

have been carried out for parameter estimation and sensitivity analysis in groundwa-
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ter hydrology (Chavent, 1974; Sun and Yeh, 1990). The state estimation problem was

also addressed in this deterministic framework in land surface hydrology (Callies et al.,

1998; Margulis and Entekhabi, 2001; Reichle, 2000) and more recently in river hy-

draulics (Piasecki and Katopodes, 1997; Mazauric, 2003; Belanger and Vincent, 2005;

Honnorat et al., 2006). Concerning the transformation of rainfall into runoff very few5

attempts have been made but provide interesting contributions to data fitting (state and

parameter estimation) in catchment scale hydrology (White et al., 2003; Seo et al.,

2003a,b,c).

In this prospective study, using a very simple and very common model structure,

the potential of variational methods for sensitivity analysis and parameter estimation in10

rainfall-runoff modelling is illustrated. The paper is structured as follows: a very brief

overview of the deterministic framework is followed by the presentation of the model

and case study adopted. Then, representative examples are provided for the sensitivity

analysis of scalar and vectorial responses. Lastly, adjoint sensitivities are used for the

resolution and regularization of the inverse problem to be solved for model calibration.15

2 Brief overview of variational methods

Variational methods provide a deterministic framework for the theoretical formulation

and numerical approximation of numerous problems related to the analysis and control

of physical systems, especially those governed by partial differential equations (Lions,

1968). The mathematical formalism, based on functional analysis and differential cal-20

culus, was largely expanded by related disciplines such as optimal control theory and

optimization. Sensitivity analysis and nonlinear least squares estimation (state and

parameters) can be addressed using a unified framework. For a very succinct presen-

tation of the approach, let us consider a generic model of the form

{ ∂x

∂t
= M(x,α )

x(t0) = 0
(1)25
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where x is the state variable of dimension Ns, M a nonlinear operator (after space

discretization) and α a variable of dimension Np denoting the model parameters. As-

suming that we are interested in analysing a given aspect of the system behavior or in

fitting data with the model diagnostic variables, we define a scalar functional:

J(x,α ) =

∫ tf

t0

φ(t;x,α )dt (2)5

where φ is a nonlinear function of the state variables and model parameters. Depend-

ing on the targeted objective, φ will represent a quantity of interest (model response)

or a cost function measuring the misfit between the simulated variables and the obser-

vations. The gradient of the scalar functional J with respect to α at the point ᾱ :

∇αJ(x̄, ᾱ ) =

(

∂J

∂α1

, · · · ,
∂J

∂αNp

)T

ᾱ

(3)10

provides a quantitative measure (local measure) for the relative influence of the various

model parameters on the response of interest. When φ is a performance measure to

be optimized, the derivatives can drive very efficient algorithms for the estimation of the

optimal α
∗

minimizing the misfit with observations. A very common and straightforward

technique for the evaluation of the gradient components consists in running the model15

twice with different values for the parameters. For the i th component, this first order

approximation is given by

si =

[

∂J

∂αi

]

ᾱ

≈
J(ᾱ1, · · · , ᾱi + ε, · · · , ᾱNp) − J(ᾱ )

ε
(4)

where ε refers to a perturbation applied to the nominal value of αi . Even if the pre-

cision and efficiency of this technique are very limited, it allows a very quick imple-20

mentation. Because of the inherent truncation and roundoff errors, the choice of ε is

critical. Furthermore, Np+1 evaluations of the model are necessary and this number is
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greatly increased for more accurate approximations (central difference or second order

approximation). Using the formalism employed by Cacuci (1981), let us consider the

Gâteaux derivative, a generalization of the concept of directional derivative in differen-

tial calculus, of the objective function at the point ᾱ in the direction α̂ :

Ĵ(ᾱ , α̂ ) =

∫ tf

t0

([

∂φ

∂x

]

ᾱ

x̂ +

[

∂φ

∂α

]

ᾱ

α̂

)

dt (5)5

where x̂ refers to the variations on the state variable x resulting from perturbations on

the parameters α in the direction α̂ . Given that x is governed by the generic model

given by Eq. (1), x̂ is solution of the following system:






∂x̂

∂t
−

[

∂M

∂x

]

ᾱ

x̂ =

[

∂M

∂α

]

ᾱ

α̂

x(t0) = 0

(6)

where
[

∂M/∂x
]

represent the Jacobian of the model with respect to the state variables.10

The system given by Eq. (6) is the so-called tangent linear model. In order to obtain

J(x̄,ᾱ ), this system has to be solved and the composition with Eq. (5) leads to the

quantity of interest. The problem with this approach is that only the precision problem

is addressed. In fact, since Ĵ(ᾱ , α̂ )= < ∇αJ , α̂ >, the operation should be repeated

for all the directions in the parameter space in order to obtain all the components of the15

gradient. In order to circumvent this problem, the linearity of Ĵ(ᾱ , α̂ ) with respect to α̂

is produced using the introduction of an auxiliary variable p (of dimension Ns). It can

be shown (Lions, 1968) that if p is governed by the following system






∂p

∂t
+

[

∂M

∂x

]T

ᾱ

p =

[

∂φ

∂x

]

ᾱ

p(tf ) = 0

(7)

the gradient is given by20

∇αJ =

∫ tf

t0

(

[

∂φ

∂α

]

ᾱ

−

[

∂M

∂α

]T

ᾱ

p

)

dt (8)
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where
[

∂M/∂x
]T

denotes the transposed of the Jacobian of the model with respect

to the state variables. It is important to note that x̂ and α̂ do not appear in Eqs. (7)

and (8). Therefore, once p is known by integration (backward in time) of the system

described by Eq. (7), all the components of the gradient ∇αJ needed for sensitivity

analysis and nonlinear least squares estimation can be calculated.5

Especially because of the terms
[

∂M/∂x
]T

and
[

∂M/∂α
]T

in Eq. (7) and Eq. (8), for

a given model the practical implementation of the adjoint state method can require sub-

stantial efforts. Different paths can be pursued depending if the operations are carried

out on the continuous form of the direct model, on its discretized form or directly on the

computer code implementing the composition of Eq. (1) and Eq. (2). From a numerical10

point of view, the best representation of the functional to be derived is the associated

computer code. Tremendous advances have been made in algorithmic differentiation

(Griewank, 2000) and consequently the code based approach is facilitated by the ad-

vent of powerful automatic differentiation (AD) engines (see http://www.autodiff.org).

The derivatives computed by means of algorithmic differentiation are accurate to the15

machine precision. Considering the computer code implementing the direct model

(model and objective functional) as a concatanated sequence of instructions, algorith-

mic differentiation is based on a rigorious application of the chain rule, line by line. The

application of the chain rule from the inputs to the outputs of the function is denoted as

the forward mode of AD (such as in Eqs. 6 and 5) whereas the reverse mode operates20

from the outputs to the inputs. For vector valued response functions, it can be shown

that when the ratio between the dimension of the input space and the dimension of

the output space is greater than one, the reverse mode is more efficient in computing

the Jacobian. The reverse mode of AD is the discrete equivalent of the adjoint state

method from optimal control theory and it is perfectly suited when the response is a25

scalar.
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3 Flash flood model

In order to illustrate the potential of variational methods for catchment scale hydrolog-

ical modelling, an event-based distributed rainfall-runoff model is applied to a small

watershed in the upper part of the Thoré watershed (Tarn department, South West of

France).5

3.1 Model description

The underlying physics of MARINE flash flood model (Estupina-Borrell et al., 2006) is

adapted to events for which infiltration excess dominates the generation of the flood.

In the version used for this study, rainfall abstractions are evaluated using the Green

Ampt infiltration model and the resulting surface runoff (hillslope flow) is transferred us-10

ing the Kinematic wave approximation (KWA). The complex geometry of the watershed

is described by a uniform grid in which each cell receives water from its upslope neigh-

bors and discharge to a single downslope neighbor (steepest direction). For a one

dimensional downslope flow of average velocity u and average depth h, the continuity

equation can be expressed as:15

∂h

∂t
+
∂uh

∂x
= r − i (9)

where r is the rainfall intensity and i the infiltration rate. Using the KWA approximation,

which has shown the ability to represent channelized and sheet overland flow (Singh,

2001), the momentum conservation equation reduces to an equilibrium between the

bed slope S0 and the friction slope Sf . The Manning equation (uniform flow on each20

grid cell) is used to relate the flow velocity and the flow depth:

u =

R2/3S
1/2

f

n
with R =

hw

2h + w
(10)

where R is the hydraulic radius, n the Manning roughness coefficient and w the ele-

mental flow width. In this simplified version of the model, the flow width is constant
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(rectangular section) and given the ratio between the width (grid resolution) and the

flow depth, the hydraulic radius is approximated by the water depth (i.e R=h). The

resulting equation governing the overland flow is given by:

∂h

∂t
+

S
1/2

0

n

∂h5/3

∂x
= r − i (11)

In the right hand side of Eq. (11), which represents the excess rainfall, the infiltration5

rate i (t) is estimated using the Green and Ampt equation, a very classic simplified rep-

resentation of the infiltration process. For an homogeneous soil column characterised

by its hydraulic conductivity K and ψ the soil suction at the downward moving wetting

front, the potential infiltration rate is given by

i (t) = K

(

ψ∆θ

I(t)
+ 1

)

with ∆θ = η(1 − θ) (12)10

where θ is the initial soil moisture content, η the soil porosity and I(t) the cumulative

infiltration at time t. After ponding (Mein and Larson, 1973), the cumulated infiltration

at time t+∆t can be calculated by the following equation

It+∆t − It − ψ∆θ ln

[

It+∆t + ψ∆θ

It + ψ∆θ

]

= K∆t (13)

which is solved by the Newton’s method.15

3.2 Case study

The previously described model is applied to a very small catchment area (25 km
2
)

(see Fig. 1) from the upper part of the Thoré basin which was affected by a catastrophic

flood event in November 1999. Unfortunately the event was not gauged since all mea-

suring devices were washed away by the flood. Therefore, a priori values (derived from20

published tables) for the parameters are used in the generation of a reference virtual

hydrological reality. Although, different parametrizations will be used in this paper, for
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the information of the reader typical uniform values are shown in Table 1. When rain-

fall forcing is estimated from real radar data (from Météo France) the nominal values

specified produce specific discharges typical for Mediterranean flash flood events.

4 Sensitivity analysis

Most contributions to sensitivity and uncertainty analysis in hydrology have been car-5

ried out in statistical framework. Since it is necessary to sample the control space

in such analysis, the computational cost is always dependent on the number of vari-

ables considered (curse of dimensionality). However, depending on the purpose of

the sensitivity analysis, it may not be necessary to average information over the entire

bounded parameter space and local approaches around the behavioral nominal values10

may prove very informative.

In order to corroborate and improve our understanding of the way the different model

parameters control the hydrological response, the tangent linear and adjoint models

of MARINE were developed using the direct and reverse modes of the TAPENADE

automatic differentiation engine (Hascoët and Pascual, 2004).15

The nominal values for the parameters, the initial and boundary conditions define a

trajectory in the model phase space. For a given trajectory we compute local sensitivity

indices by means of derivative information. The outcome to be analysed is a gradient

for a scalar response and the entire Jacobian matrix of the transformation for a vectorial

response.20

4.1 Numerical experiments with parametrization of reduced dimensionality

For the distributed modelling of catchment hydrology, parameters are discretized ac-

cording to the spatial discretization of model state variables. However, even if different

values can be assigned to every single element of the discretization using a priori infor-

mation, some simplification of the structure for this high-dimensional space is manda-25
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tory to make the inverse problem tractable. While very sophisticated techniques have

been developed in groundwater modelling for the identification of optimal parametriza-

tions (Sun and Yeh, 1985; Ben Ameur et al., 2002; Tsai et al., 2003), zonation based

on a priori information is the most commonly used strategy in distributed rainfall-runoff

modelling. With a fixed pattern for the whole watershed (or a very limited number of5

zones), scalar multipliers are used for both sensitivity analysis and parameter estima-

tion.

This classical reduction of the control space is adopted, a correction factor for the

drainage network and another one for the hillslopes are specified. The relative impor-

tance of those input factors on two aspects of the hydrological response (flood volume10

and flood peak) is provided by Figs. 2 and 3. Due to the mathematical formulation of

the infiltration model Eq. (12), θ, ψ and η have the same first order effect. It is impor-

tant to note that all sensitivities are negative because increasing the nominal value for

all the parameters reduces the magnitude of the response. The analysis of Fig. 2 con-

firms that the flood volume is mainly determined by the infiltration parameters on the15

hillslopes (hydraulic conductivity K and initial soil moisture θ). Additional experiments,

which are not reported here show that the wetter the soil at the beginning of the event,

the faster the decay of the infiltration rate to the hydraulic conductivity and therefore

the greater the relative influence of K compared to the initial soil moisture θ. The pre-

viously mentioned parameters have a significant influence on the flood peak but they20

are largely overtaken by the correction factor affecting the roughness in the drainage

network (see Fig. 3). Due to the flow concentration, the roughness coefficient plays a

more important role in partitioning infiltration and runoff in the drainage network.

If the quantification of the effect of parameter variations on the complete hydrograph

is of interest, a vectorial response containing the temporal evolution (80 time steps)25

of the simulated discharge can be considered. Due to the ratio between input and

output space dimensions (i.e. 6/80), the Jacobian matrix is computed using the multi-

directional tangent mode of TAPENADE. Each column of the Jacobian matrix is the

result for all the time steps composing the response of an infinitesimal perturbation on
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one of the input parameters. While one can propose a physical interpretation for the

lines and/or columns of the Jacobian matrix, a very interesting view angle is provided

by its singular value decomposition (SVD). The singular value decomposition of an

m×n matrix A is a factorization of the form

A = USVT (14)5

where S is a diagonal matrix containing the singular values of A in the decreasing

order while U and V are orthogonal matrices (respectively of dimension m × m and

n×n). The resulting
{

σ1, σ2, · · · , σmin(m,n)

}

is referred as the singular spectrum of A. The

columns of U= {u1,u2, · · · ,um} and V = {v1, v2, · · · , vm} are the left and right singular

vectors in the input and output spaces of the transformation represented by A. The10

magnitude of the singular values in S represent the importance of the corresponding

singular vectors in the columns of U and V. This factorization is widely used for the

analysis of linear ill-posed problems (Hansen, 1998) and its potential extrapolation to

nonlinear systems using the Jacobian, the adjoint or the Hessian or the model operator

is spreading (Buizza and Palmer, 1995; Clément et al., 2004; Le Dimet et al., 2002; Li15

et al., 2005).

With the adopted parametrization of reduced dimensionality, the singular spectrum is

given by Table 2 and the components of the first two singular vectors in the parameter

space (right singular vectors) are shown in Fig. 4. The subscript “r” corresponds to the

drainage network and the subscript “v” corresponds to the hillslopes. From Table 2 it20

can be seen that the decay of the singular values is very rapid. Most of the variabil-

ity (more than 96%) is contained by the first two vectors and because they represent

othorgonal directions in the parameter space their components exhibit a clear distinc-

tion between the production and transfert of runoff. Given the components of the first

singular vector and the magnitude of the singular value associated, the domination of25

friction parameters, particularly the scaling factor affecting the roughness coefficient in

the drainage network, is very clear. The analysis of the second singular vector compo-

nents indicates a predominance of the hillslopes infiltration parameters and a potential
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compensation with friction parameters. This is probably due to the fact that the in-

crease in friction causes speading of the flood hydrograph: discharge values diminish

up to the flood peak and increase after.

Furthermore, using the adjoint state method (reverse mode of AD) the computational

cost related to the evaluation of local sensitivities is not related to the dimension of the5

input space, therefore a similar analysis is proposed without any a priori reduction of

the control space.

4.2 Numerical experiments with fully distributed parameters

The use of sampling based sensitivity analysis methods is not tractable for distributed

parameter systems without dimension reduction. Since this limitation does not apply to10

the local sensitivity analysis method adopted in this paper, we use in this paragraph the

full potential of the adjoint method in order to analyse the influence on the hydrological

response of the value specified for all the elements of the discretization. Considering

the scalar responses analysed in the previous paragraph, a single integration of the

adjoint model yields to sensitivity indices for all parameters.15

For, the sensitivity of the flood volume to the hydraulic conductivity and the sensitivity

of the flood peak to the roughness coefficient, the spatial variability of sensitivity indices

is provided by Fig. 5. The darker the pixel, the more important is the sensitivity of

the response to the parameter. As expected, sensitivities are more important around

the drainage network for both parameters. There is no contradiction with the results20

obtained previously because since the hillslopes cover a larger surface, a scaling factor

affecting this area be more influent than the one modifying the values in the drainage

network on the overall runoff coefficient.

For the sensitivity of the maximum discharge to the roughness coefficient, two color

scales were used due to positive and negatives sensitivities encountered over the sur-25

face of the watershed. In fact, depending on the location, increasing the roughness co-

efficient can have antagonist effets on the peak discharge. While all sensitivities have

the expected sign along the main stream (i.e. negative), some positive sensitivities can

376

http://www.hydrol-earth-syst-sci-discuss.net
http://www.hydrol-earth-syst-sci-discuss.net/4/363/2007/hessd-4-363-2007-print.pdf
http://www.hydrol-earth-syst-sci-discuss.net/4/363/2007/hessd-4-363-2007-discussion.html
http://www.copernicus.org/EGU/EGU.html


HESSD

4, 363–405, 2007

Adjoint sensitivity

analysis and

parameter estimation

W. Castaings et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

◭ ◮

◭ ◮

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

EGU

counterbalance the overall effect in some concomitant sub-bassins. Therefore, when

applying scalar multipliers, compensation effects usually occur which are very difficult

to identify without such analysis. For example, increasing the nominal by 10% for all

roughness coefficients leads to –4.5% change on the peak discharge. This variation

is –5.9% when only the cells showing a negative sensitivities are modified and +1.5%5

when the same operation is carried out on the cells featuring positive sensitivities. If

one is interested in ranking the different parameters, the norm (carefully choosen) of

the normalized gradient can be derived and provide rigorous sensitivity indices.

When considering the vectorial response, due to the absence of parametrization for

the 3 parameters the ratio between the dimensions of the input and output spaces is10

now very close to 100 (i.e. 3×2582/80). The Jacobian matrix is computed line by line

using multiple integrations of the adjoint model. The multi-directional reverse mode

is not yet implemented in TAPENADE but it should lead to a significant reduction of

the computational effort in the near future. In order to ensure the comprehensibility

of the SVD results, the factorization is performed on sub-Jacobians. Each sub-matrix15

accounts for a single parameter but for all spatial locations. Even if the relative influence

of the different parameters is not taken into account, at the parameter level the analysis

contributes to an extensive understanding of the influence of the values specified over

the entire watershed.

The singular spectrum for all the parameters and different forcing conditions (lumped20

and spatially variable) is given by Fig. 6. The analysis of this figure reveals that the

decay of singular values is faster for the roughness coefficient compared to the in-

filtration parameters. It is also important to note that this gap is reduced when the

spatial variability of rainfall is taken into account. In order words, we corroborate the

natural reasoning stating that spatially variable precipitation emphasizes the influence25

of the spatial variability in friction parameters. It seems that more complex param-

eterizations are needed to capture the influence of heterogeneity for the infiltration

parameters K and θ . In order to quantify the number identifiable degrees of freedom

in the parametrization more precisely , the relative importance of the parameters and
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the level of noise in the observations should be taken into account. However, using

this approach it is possible to measure the effect of increasing the information con-

tent in observations (such as internal gauging stations or several flood events) on the

identifiability of the parameters.

The visualization of singular vectors in the parameter space for n and K (Figs. 75

and Fig. 8) also provide an extensive insight into the model behavior. The presence

of two concomitant sub-basins driving the variability of the simulated discharges at the

outlet of the watershed is clearly characterized. For the roughness coefficient n and

the hydraulic conductivity K , the first singular vector is dominated by the main stream

and its reception basin (Figs. 7a and 8a). For the hydraulic conductivity, the sensitivity10

magnitude is decreasing with the distance from the principal convergence zone in the

river network. In an analogous manner, positive components are encountered mainly

on the other sub-basin for the second singular vectors (see Figs. 7b and 8b). For the

roughness coefficient, only some elements, situated very close from the outlet are part

of the main sub-basin whereas some elements situated very far from the outlet also do15

for the hydraulic conductivity. When analyzed in the observation space, the potential

interactions between the two sub-basins is outlined. For the roughness coefficient,

the components of u1 and u2 (singular vectors in the observation space) are plotted

together with the outlet discharge (see Fig. 9). Analyzing this figure, it is evidenced that

the slight disruptions of the hydrograph during both the rising limb and the recession are20

not due to the temporal variability of the rainfall but to the interaction of the flood waves

traveling in the sub-basins. As expected, there is a perfect correspondence between

the singular vectors of the input and output spaces. Due to the fact that the smaller

sub-basin (holding v2) is closer to the outlet of the catchment, the resulting smaller

concentration time leads to a quicker response at the outlet perfectly characterized by25

u2.

It was shown in this section that the derivatives obtained with algorithmic differen-

tiation provide a valuable introspection into the relation between the model parame-

ters and the simulated hydrological response. Furthermore, the availability of accurate
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adjoint-based sensitivities enable the use of efficient gradient based optimization tech-

niques.

5 Parameter estimation

Whatever the complexity of the mathematical representation for hydrological systems,

parameters are not directly measurable entities. Although the development of strate-5

gies for the a priori estimation of model parameters have received growing attention,

calibration is still an important step in the modelling process. Mostly due to of the nu-

merical artefacts produced by the mathematical, numerical and algorithmic represen-

tation of hydrological processes in lumped conceptual models, the classical and very

efficient gradient-based parameter estimation methods have been abandoned. With10

the evolution of the underlying philosophy and perceived objectives of model calibra-

tion, together with the rapid increase of computational power, the computer intensive

non-smooth global search strategies have become the forefront in hydrology.

The calibration of spatially distributed models using very scarce observations of the

hydrological response leads to ill-posed inverse problems if no regularization strategy is15

adopted. In meteorological or oceanographic data assimilation (state updating), an ad-

ditional term (Tikhonov regularization) is added to the cost function for the penalization

of control variables iterates which are too far from the a priori value (result of a model

integration) for the state of the atmosphere. Because it is acknowledged as a fact

that behavioral parameters may lie in very different regions of the parameter space,20

global optimization methods are used for distributed models with very parsimonious

parametrizations in terms of reduced flexibility in the spatial variability (scalar multipli-

ers). However, when a priori values for the parameters are relevant, it was shown local

search methods may offer advantages over global techniques (Kuzmin et al., 2004
1
).

1
Kuzmin, V., Seo, D., and Koren, V.: Fast and efficient optimization of hydrologic model

parameters using a priori estimates and stepwise line search, J. Hydrol., submitted, 2007.
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Concerning the widely discredited continuity of the objective function derivatives, it

has been shown that for some cases many problems can be avoided using appropriate

and robust model implementation (Kavetski et al., 2006b,c). The formulation of hy-

drological processes and the computational approach usually adopted for distributed

models tend to produce smoother response surfaces. It can be very difficult to avoid the5

presence of internal model thresholds, especially when they are really due to physical

features of the system. In the algorithmic representation of computer models, inter-

nal thresholds transform into conditional statements determining the control flow of the

computer program. Therefore, the derivatives computed with algorithmic differentiation

are valid only in a certain domain around the nominal values for the input variables10

(Araya-Polo, 2006). The author even implemented the evaluation of this safe interval

and the facility is now proposed by the forward mode of TAPENADE. However, it is

also important to note that the objective functions used for the calibration of model

parameters involve an integration of the residuals over time for integrated hydrolog-

ical responses (spatio-temporal smoothing). Thereby, internal thresholds, especially15

when occurring at the grid element level, do not necessarily produce discontinuous

derivatives for the objective function. Even if they do, in the context of variational data

assimilation Zhang et al. (2000) have shown that differentiable minimization algorithms

such as quasi-Newton (BFGS) may still work well for minimizing non-smooth cost func-

tions. The use of non-differentiable optimization algorithms (such as Bundle methods)20

employing subgradients can be considered if difficulties are encountered. In this paper,

a bound constrained (inequality constraints) quasi-Newton (BFGS) optimization algo-

rithm (Lemarchal and Panier, 2000) from the MODULOPT library was used. Using the

adjoint sensitivities, the algorithm estimates the active set by performing a Wolfe line

search along the gradient projection path.25

For the evaluation of the approach, synthetic observations are generated with the

reduced parametrization used in the previous section with kr=4 mmh
−1

, kv=2 mmh
−1

,

nr=0.05, nv=0.08 and θ=0.5 (uniform over the watershed). The Nash criterion is used

to measure the misfit between model simulations and the synthetic observations. As
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shown in Fig. 10, all control variables are retrieved independently from the initialization

point. The relative importance of the parameters inferred from SA results is retrieved:

the more sensitive is the response to a parameter, the greater is the identifiability of

this parameter and therefore the faster the iterates convergence to the reference value.

Furthermore, the sensitivity analysis results are usually used to assess but also en-5

hance the identifiability of model parameters. Since the analysis carried out in the

previous section exhibit the spatial variability of the hydrological response sensitivity to

the model parameters, rather than simply guiding the choice of calibration parameters

(factor fixing), SA might provide guidance for a reasonable increase of the parametriza-

tion complexity. In fact, the sub-space from the original parameter space driving the10

simulated discharges is spanned by the first vectors (right singular vectors) from the

SVD of the Jacobian matrix. Given that a small number of singular values are dominant,

as illustrated in Fig. 6, most of the variability can be captured with very few orthogonal

directions in the parameter space. Even if linearization is a local concept, the right sin-

gular vectors are mainly determined by the topography of the watershed and we do not15

expect important modifications when the Jabobian is evaluated for different trajectories

in the model phase space. In order to compute the vectors describing the relevant sub-

space for data fitting, the factorization was performed for the Jabobian calculated with

spatially uniform rainfall forcing and model parameters (reference values of Table 1).

Compared to the parameter estimation experiments carried out in the previous sec-20

tion, a more complex virtual hydrological reality was used for the generation of the

synthetic discharge series. Deterministic spatial distributions where imposed for the

different model parameters: the hydraulic conductivity K is decreasing linearly with the

ground elevation; the roughness coefficient n is derived using a land-use classification

from SPOT satellite data for the hillslopes and uniform in the drainage network; and25

lastly the initial soil moisture θ is constant over the watershed. Then, the calibration

problem is tackled using parametrizations of increasing dimensionality. The number of

degrees of freedom for each parameter, the Nash performance of the identified param-

eter set and the inverse of the condition number are given in Table 3.
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Starting with the very simple parameterizations P1 and P2, the number of degrees of

freedom is increased gradually using the singular vectors driving X% of the variability

for parameters K and n (labelled PSV X in the table). The condition number was calcu-

lated with H the quasi-hessian after the last BFGS update (i.e. at the optimum). We

recall that the larger the ratio 1/κ(H), the better is the conditioning of the optimization5

problem. From the results obtained in Table 3, it seems that using this description of

the parameter space the number of control variables can be increased without alter-

ing conditioning of the optimization problem. The previous statement is valid as long

as the vectors describing the kernel in the parameter space (the specified degress of

freedom which do not significantly alter the hydrological response) are not introduced10

in the parametrization. The results obtained with PSV 90 show that even with noise-free

observations the use of those directions for the description of the affordable sub-space

lead to instability in the inverse problem.

However, it is interesting to note that with respectively 7 and 10 degrees of free-

dom (i.e. PSV 70 and PSV 80), the conditioning it is even better than the one obtained15

with parametrization P2. As emphasized by Tonkin and Doherty (2005), the subspace

determined from the truncated singular value decomposition of the Jacobian (TSVD)

is determined from the information content of the observations whereas the subspace

constructed from a prior parsimony strategy is not. The previously cited authors used

TSVD of a finite difference Jacobian matrix intervening in the linearized equations of the20

Levenberg-Marquardt method for the regularization of the inverse problem. In order to

prevent over-fitting and combine the advantages of TSVD and Tikhonov regularizations

an hybrid regularization methodology is proposed and embedded in the last version of

the PEST package (Doherty, 2004).

While the truncation level of the SVD is the only mechanism for preventing over-25

fitting, the quadratic penalization term of the Tikhonov approach is also a way to insert

a priori information on the parameters. Even if physically acceptable bounds were

assigned for each parameter (a singular value across the watershed surface), the im-

provement of performances in terms of Nash coefficient do not necessarily come with
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behavioral parameters (see Table 4).

For the ideal situation where the estimated parameters can be compared to the vir-

tual hydrological reality, the Nash N
X

and the coefficient of determination R2X
(esti-

mated versus reference values) were computed for the different parametrizations. Ex-

cept for the parameter θ (poorly constrained by the observations), which was used to5

compensate for the lack of degrees of freedom for overly simple parametrizations, P2

seems superior to other strategies. However, the compensation effects are reduced

with the increasing complexity for the other parameters and this lead to a better identi-

fication of θ.

Using the combination with Tikhonov regularization, one could introduce additional10

a priori information with a penalization term enforcing the correlation with a reason-

able spatial distribution. The investigation of an the hybrid strategy similar to the one

proposed by Tonkin and Doherty (2005) is beyond the scope of this paper but special

care should be taken for the specification of the regularization parameter. The choice

of the mathematical formulation for this regularization term should maintain a good15

compromise between flexibility and stability.

6 Conclusions and discussion

Recent advances in computing power and observation capabilities enable the repre-

sentation of the spatial variability characterizing the atmospheric forcing and the catch-

ment attributes. Although the choice of the necessary and affordable model complexity20

providing accurate and reliable predictions for the hydrological response of a watershed

to rainfall forcing is still an open problem, models are gradually evolving from simplified

bucket models to more complex structures. Even if they can be limited for real time

flood forecasting distributed models are valuable tools for understanding hydrological

processes. However, the analysis and control of those complex systems is very chal-25

lenging and all aspects cannot be addressed using the paradigm inherited from lumped

hydrological models (low dimensionality, low computational cost, no sizable constraints
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on parameter values). For the moment, little regard was paid to the potential contribu-

tion of deterministic methods that have proven successful for other disciplines facing

the same challenges. As Margulis and Entekhabi (2001) emphasized for land surface

hydrology applications, many of the issues that led meteorologists and oceanographers

to use adjoint techniques are now at the forefront in hydrology.5

Using a very simple and common model structure, an ideal test case configuration, it

has been shown that the potential of variational methods for catchment scale hydrology

should be considered. Although for this particular application most of the outcomes re-

duce to evidence retrieval, the adopted techniques should be further exploited. The

approach is not model-free but its practical implementation is largely facilitated by the10

advent of very efficient automatic differentiation tools such as the one used for this

study. It is important to emphasize that a single integration of the adjoint code, encom-

passing the forward integration of the direct model and the backward integration of the

adjoint model, yields all spatial and even temporal sensitivities (Hall and Cacuci, 1983)

for the nominal values prescribed for the control variables. The key advantage of this15

technique is that the computational cost is independent from the dimension of the con-

trol space. Given the abundance of extracted information, adjoint sensitivity analysis is

profitable step to be carried out before the assimilation of observations for parameter

and state estimation. The results obtained in this paper show that the influence of each

input factor in the high-dimensional parameter space can be investigated (spatial SA).20

In comparison, similar calculations using sampling based approaches would imply a

prohibitive computational cost. When the entire flood hydrograph is analyzed, the in-

terpretation of the singular vectors of the Jacobian in the parameter space and in the

observation space brings out very relevant information. The parameters really influ-

encing the hydrological response response (spatial location) and the measurements25

really constraining the parameters (temporal location) are identified. Although differen-

tial methods are intrinsically local, they are perfectly suited when the analysis of the

system in behavioral regions of the parameter space is of interest. The scope of the

analysis can be extended by varying event-based input factors such as antecedent soil
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moisture conditions and rainfall forcing (multi-local sensitivity analysis).

The availability of distributed physically based models does not, and will not in the

near future, overcome the need to calibrate at least part of the model parameters.

When applying parsimonious parametrizations, subgradients computed with the re-

verse mode of algorithmic differentiation (adjoint method) were found exceedingly ef-5

ficient in driving bound constrained quasi-newton optimization algorithms to the refer-

ence values used to generate synthetic observations. If no prior strategy is adopted

for the parametrization, the calibration problem is ill-posed. Exploiting the results ob-

tained during the sensitivity analysis, prospects are formulated and illustrated for the

regularization of the inverse problem using the truncated singular value decomposi-10

tion of the Jacobian matrix. By using a subspace from the original control space for

the calibration of model parameters, the approach is very similar to the reduced-order

strategies proposed in data assimilation (Blayo et al., 1998). In the variational data as-

similation framework, but also in the hybrid approach proposed by Tonkin and Doherty

(2005), this strategy is combined with the classical Tikhonov regularization to prevent15

overfitting and enforce the convexity of the cost function. In fact, in order to limit the

natural increase of parameter uncertainty resulting from an increasing parametrization

complexity, a priori information on the spatial organization and the nominal values for

the parameters could be used.

The authors acknowledge the fact that nominal values for the parameters are inferred20

from indirect and uncertain observations of the hydrological response, with imperfect

models driven by corrupted rainfall forcing and using performance measures based

on integrated catchment or sub-catchment response. The separation of the different

sources of uncertainty is very challenging because of complex compensation effects.

Following the development of mathematical formulations for meaningful error models,25

variational methods can provide an invaluable insight into the analysis and control of

the uncertain system dynamics (Vidard et al., 2000; Vidard et al., 2004). Alternatively,

for the integration of gradient-based methods to a Bayesian probabilistic framework,

the reader is referred to the very promising contributions of Kavetski et al. (2006a) and
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Kuczera et al. (2006).
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Table 1. Uniform values for model parameters.

Parameter Name Ref. value

Hydraulic conductivity (mm/h) K 3.

Porosity η 0.398

Suction (mm) ψ 218.5

Initial soil moisture θ 0.5

Manning roughness coefficient n 0.065
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Table 2. Singular values of the Jacobian matrix.

sing. values % of variability

9.07 84.83

1.30 12.20

0.24 2.25

0.04 0.42

0.02 0.28

0.001 0.01
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Table 3. Complexity, Nash efficiency and conditioning for the different parameterizations.

nK nn nθ Nash 1/κ(H)

P1 1 1 1 0.908 0.965E-08

P2 2 2 1 0.938 0.217E-11

PSV 70 4 2 1 0.968 0.889E-08

PSV 80 6 3 1 0.978 0.947E-08

PSV 90 9 5 1 0.986 0.242E-16
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Table 4. Error statistics for the estimated parameters.

NK R2K Nn R2n Nθ

P1 0.596 0.743 0.686 0.945 –0.939

P2 0.635 0.745 0.981 0.986 –0.635

PSV 70 0.510 0.729 0.797 0.952 0.651

PSV 80 0.445 0.565 0.793 0.936 0.736

PSV 90 –0.320 0.428 0.719 0.816 0.99
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Fig. 1. Catchment topography.
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Fig. 2. Sensitivity of flood volume to model parameters.
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Fig. 3. Sensitivity of flood peak to model parameters.
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Fig. 4. Singular vectors components in the parameter space.
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(a) (b)

Fig. 5. Spatial visualization of the sensitivity of the reponse to the parameters: (a) sensitiv-

ity of flood volume to hydraulic conductivity K ; (b) sensitivity of flood peak to the roughness

coefficient.
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Fig. 6. Singular values spectrum for lumped and spatially variable rainfall.
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(a) (b)

Fig. 7. Singular vectors (a) v1 and (b) v2 for the roughness coefficient n (red color ramp for

positive components and gray for negative).
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(a) (b)

Fig. 8. Singular vectors (a) v1 and (b) v2 for hydraulic conductivity K (red color ramp for positive

components and gray for negative).
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Fig. 9. Singular vectors in the observation space for the roughness coefficient n.
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Fig. 10. Convergence of the model parameters to the reference values for various initialization

points in the parameter space.
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