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Abstract

This paper presents some analytical results and numerical illustrations on the asymp-
totic properties of flood peak distributions obtained through derived flood frequency ap-
proaches. It confirms and extends the results of previous works: i.e. the shape of the
flood peak distributions are asymptotically controlled by the rainfall statistical proper-5

ties, given limited and reasonable assumptions concerning the rainfall-runoff process.
This previous result is partial so far: only two types of rainfall intensity distributions
have been considered (extreme value distributions of types I and II), and the impact of
the rainfall spatial heterogeneity has not been studied. From a practical point of view,
it provides a general framework for analysis of the outcomes of previous works based10

on derived flood frequency approaches and leads to some proposals for the estimation
of very large return-period flood quantiles. This paper, focussed on asymptotic distri-
bution properties, does not propose any new approach for the extrapolation of flood
frequency distribution to estimate intermediate return period flood quantiles. Neverthe-
less, the large distance between frequent flood peak values and the asymptotic values15

as well as the simulations conducted in this paper help quantifying the ill condition of
the problem of flood frequency distribution extrapolation: it illustrates how large the
range of possibilities for the shapes of flood peak distributions is.

1. Introduction

Eagleson (1972) was the first to combine a rainfall stochastic model and a rainfall runoff20

model to generate synthetic “derived flood frequency distributions” (DFFD). The objec-
tive of this approach was twofold. Firstly, it aimed at understanding the relationship
between the flood peak distributions (FPD) and the climatic and hydrologic charac-
teristics of a watershed: to identify the main control parameters of the FPD shape,
to compare the FPD of various watersheds or to anticipate the effect of changes, for25

instance land use or climatic evolutions on FPD. Secondly, it appeared intellectually
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more satisfactory, for statistical interpolation and extrapolation purposes, to derive the
shape of flood peak distributions from the selection of a rainfall statistical model and
of a rainfall-runoff model adapted to the considered case study, rather than to directly
select a theoretical distribution chosen on the basis of the extreme value theory or for
mathematical convenience.5

As statistical extrapolation tools, DFFD, if properly used, probably have perfor-
mances comparable to the conventional procedure based on theoretical distribution
fitting. But there is, for the moment, no reason to think that they perform better. The
unavoidable simplifications of the runoff generating processes and of the rainfall sta-
tistical structure in the DFFD tools, the limited extrapolation capacities of the available10

simplified rainfall-runoff models reduce their potential advantage over conventional sta-
tistical extrapolation methods as illustrated by some works (Raines and Valdes, 1993;
Moughamian et al., 1987). This probably explains why despite the numerous works
conducted on DFFD since the first paper of Eagleson (De Michele and Salvadori,
2002; Loukas, 2002; Arnaud and Lavabre, 1999; Blaskova and Beven, 2002; Gupta15

et al., 1996; Goel et al., 2000; Cameron et al., 2000; Iacobellis and Fiorentino, 2000;
Raines and Valdes, 1993; Smith, 1992; Sivapalan et al., 1990), such procedures are, to
our knowledge, seldom used in an operational context (Lamb and Kay, 2004; Blaskova
and Beven, 2004; Arnaud and Lavabre, 2000).

Nevertheless, DFFD are also interesting tools to study the functional relationship20

between the FPD shape and the climatic and hydrologic characteristics of the corre-
sponding watershed. But what general conclusions about the shape of the FPD can
be drawn on the basis of DFFD approaches? This question is still wide open. A large
variety of rainfall stochastic models and rainfall-runoff models have been tested in the
previous works on DFFD. Some of these works are purely numerical approaches based25

on Monte-Carlo simulations (Loukas, 2002; Arnaud and Lavabre, 1999; Hashemi et al.,
2000). With an ad hoc choice of rainfall and rainfall-runoff models it is sometimes
possible to derive an approximate (Diaz-Granados et al., 1984; Eagleson, 1972) or a
completely analytical form of the resulting FPD (De Michele and Salvadori, 2002; Goel
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et al., 2000). The impact of the parameters of the rainfall and the rainfall-runoff models
used on the FPD shape are generally analyzed but it is not possible through these
various works to evaluate the influence of the models themselves.

The shape of a FPD, as will be shown hereafter, highly depends of course on the
dynamics of the rainfall-runoff processes and the range of possibilities is quite large.5

But, general conclusions can be drawn concerning the asymptotic behavior of the FPD
(i.e. the shape of the FPD as the return period or the peak discharge tends to infinity)
for a large variety of rainfall-runoff dynamics and DFFD tools.

This paper explores the link between the rainfall intensity statistical characteristics
and the asymptotic behavior of FPDs. The results presented are a generalization of10

results already obtained on specific DFFD tools (De Michele and Salvadori, 2002; Ea-
gleson, 1972). Limited and reasonable assumptions are made concerning the rainfall-
runoff process. The demonstration is first conducted with a simple rainfall stochastic
model used in many previous DFFD works: the rainfall events are supposed to be
rectangular pulses with a given duration and a constant intensity. Two rainfall intensity15

distribution types are considered: exponential distribution and extreme value distribu-
tion of type II.

The results are then generalized to any rainfall temporal structure. Numerical results
obtained with a DFFD tool combining a 5-min point rainfall stochastic model (Mouhous
et al., 2001) and a rainfall-runoff model presented in Appendix A1 are shown as an20

illustration.
The last part of the paper is devoted to the discussion. The “Gradex” statistical

extrapolation method based on assumptions concerning the asymptotic behavior of
flood peak distributions as well as the limits of the common practice consisting of fitting
theoretical statistical distributions to small peak discharge series are questioned in light25

of the results presented herein.
This work remains partial: the influence of the spatial heterogeneity of rainfall is for

instance not studied.

1838

http://www.copernicus.org/EGU/hess/hessd.htm
http://www.copernicus.org/EGU/hess/hessd/2/1835/hessd-2-1835_p.pdf
http://www.copernicus.org/EGU/hess/hessd/2/1835/comments.php
http://www.copernicus.org/EGU/EGU.html


HESSD
2, 1835–1864, 2005

On the asymptotic
behavior of flood
peak distributions

E. Gaume

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Print Version

Interactive Discussion

EGU

2. Basic concept

2.1. The key idea: the simplification of the rainfall-runoff process in a DFFD frame-
work

Let us begin with a very simple representation of a rainfall event: a rectangular pulse
(i.e. a constant intensity event over a given duration). This is the representation se-5

lected in many papers dealing with DFFD, including the paper of Eagleson (1972).
In this very simple case, any rainfall-runoff model can be summarized in the following

form, as far as the peak discharge is concerned:

Y = CX (1)

The peak discharge Y is a given proportion of the rainfall intensity X . If the baseflow is10

neglected, this proportion C, a kind of runoff rate, is included in the interval [0,1] and
may depend on the duration of the rainfall event, the rainfall-runoff dynamics and the
state of the watershed (antecedent soil moisture for instance). Note that the condition
imposed on C implies reasonable conditions concerning the rainfall-runoff process:
the peak discharge can not be a negative value and can not exceed the intensity of the15

rainfall event. If p(x) is the probability density function of the rainfall intensity X , then
the survival function of Y has the following form:

P (Y ≥ y) = F (y) =
∫ 1

0

∫ ∞

y/c
p(c|x)p(x)dxdc (2)

where p(c|x) is the conditional density of C given X . We will now try to find an approxi-
mation of F (y) as y tends to infinity for various types of density functions p(x) and with20

as few assumptions as possible concerning the function p(c|x). An exponential density
function will be considered for X in the following text. Results concerning the extreme
value type II distribution are presented in the Appendix C1.
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2.2. C is independent of X and X is exponentially distributed

Let us begin with the very simple case where C is uniformly distributed over the interval
[0, 1]. The survival function of the flood peak Y then has the following form:

F (y) =
∫ 1

0

∫ ∞

y/c
λe−λxdxdc (3)

or5

F (y) =
∫ 1

0
e−λy/cdc. (4)

We are looking for an approximation of this integral when y tends to infinity. One
method consists of finding an upper and a lower boundary for this integral have the

same limit when y tends to infinity. Let us first note that e−λy/c is an increasing function
of c. Therefore, obviously:10

F (y) ≤ e−λy
∫ 1

0
dc (5)

or

log F (y) ≤ −λy. (6)

Moreover, the function e−λy/c takes positive values over the interval [0, 1]. Then

F (y) ≥
∫ 1

ε
e−λy/cdc (7)

15

for any ε in [0,1]. Recalling that e−λy/c is an increasing function of c:

F (y) ≥ e−λy/ε
∫ 1

ε
dc (8)
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or

F (y) ≥ e−λy/ε(1 − ε) (9)

or

log F (y) ≥ −λy
(

1
ε
−

log(1 − ε)

λy

)
(10)

for any ε<1, as close to 1 as wished, the right hand term of Eq. (10) tends to −λy/ε5

when y tends to infinity. We can then write:

− λy ≥ log F (y) ≥ −λy
ε

[1 + o(1)] (11)

where o(1) stands for a function of y that tends to 0 when y tends to infinity. As y tends
to infinity the lower boundary of the inequality (11) can be taken as close to the upper
one as desired. In other words, log F (y) converges to −λy as y tends to infinity (i.e. the10

flood peak distribution will asymptotically appear as a straight line with slope λ on a
conventional semi-logarithmic plot). According to the inequality (11), log F (y) has the
following asymptotic shape.

log F (y) = −λy [1 + o(1)]. (12)

Equation (12) is equivalent to15

F (y) ≈ h(y)e−λy (13)

or

log F (y) ≈ −λy + logh(y) ≈ −λy
(

1 −
logh(y)

λy

)
(14)

with h(y) any function verifying limy→∞ logh(y)/(λy)=0. In the particular case where
C is uniformly distributed over the interval [0,1] and independent of Y , it can be shown20

that h(y)=1/(λy) (see Appendix B1).
1841
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The same demonstration leads to a similar result if C has any distribution indepen-
dent of X and Y with a strictly positive density over the interval [0,1]:

F (y) =
∫ 1

0
p(c)

∫ ∞

y/c
λe−λxdxdc (15)

F (y) =
∫ 1

0
p(c)e−λy/cdc (16)

F (y) =
∫ 1

0
e−y(λ/c+log[p(c)]/y)dc (17)

5

In this case, whatever the function p(c), the term log[p(c)]/y tends to 0 when y tends
to infinity for any value of c. Integrals (4) and (17) have the same asymptotic behavior
as y tends to infinity. Figures 1 and 2 show the distributions of Y =CX obtained through
Monte Carlo simulations with X exponentially distributed (mean equal to 1) and C being
a Beta random variable taking values in the interval [0,1]. Different values for the mean10

and the variance of this Beta variable have been tested. In each case, the slope of the
distribution of Y appears to converge, even though very slowly, towards 1: the slope of
the distribution of X (continuous lines in Figs. 1A and 2A). It may appear more clearly
on Figs. 1B and 2B that the slope of the distribution of − log F (y)−y tends towards 0
as − log F (y) or y tend to infinity. The asymptote when C is uniformly distributed is15

− log F (y)−y= log(y) (see Appendix B1).
Let us finally note, to be more general, that the function p(c) can take non-zero

values over a reduced interval [c1, c2] with 0≤c1≤c2≤1. In this case the preceding
developments will obviously lead to the following asymptotic relation:

log T (y) =
λy
c2

[1 + o(1)] (18)
20
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3. Generalization of the previous results

3.1. Rainfall events still have a constant intensity but the density function of C may
depend on X

The statistical independence between C and X , that is the independence between
the rainfall intensity and the “runoff rate” is an unrealistic assumption if the model is5

supposed to simulate a runoff process. In the case of an “infiltration excess” also called
“Horton” runoff process, C and X are clearly linked. If a “saturation excess” process is
simulated, C is related to the rainfall amount of each event. The evolution of the density
p(c|x) with x will, in this last case, depend on the relation between the intensity and
the rainfall amount of an event. Since rectangular pulse events are considered, it will10

depend on the relation between the intensity and the duration of the rainfall events. The
conditional expectancy of the rainfall volume of an event may decrease as its intensity
increases in the very tricky situation where the rainfall event duration and intensity are
highly negatively correlated (case tested by Goel et al., 2000). But usually, even if the
rainfall event intensity and duration are slightly negatively correlated, the expectancy of15

the rainfall volume and therefore, the expectancy of the “runoff rate” will increase as the
rainfall intensity of an event increases. Moreover, the event intensity distribution seems
to control the asymptotic shape of the volume distribution (De Michele and Salvadori,
2003). It can therefore be foreseen, for “realistic” rainfall stochastic model and rainfall-
runoff model combinations, that the runoff rate expectancy will have a general tendency20

to grow as the magnitude of the intensity of the rainfall event grows.
The function p(c|x) can have two types of behaviors as x tends to infinity. It can

either converge towards a limit density function p∗(c) defined over an interval [c1, c2]
with c1<c2 or it can concentrate around one value c2. In this last case, Y is asymptot-
ically equal to c2X : i.e. the asymptotic distribution of the flood peak discharges is the25

distribution of the rainfall intensities multiplied by c2. Let us add that if c=1 belongs
to the domain of the possible, which is the case for most hydrological models if the
rainfall spatial heterogeneity is not considered, than c2=1. In other words, the asymp-
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totic statistical distribution of the peak discharges of a watershed obtained through a
DFFD framework will either have the same shape parameter than the distribution of the
rainfall event intensities or be the distribution of the rainfall intensities.

This result confirms and extends the conclusions drawn from the detailed analysis
of some specific DFFD frameworks: i.e. for DFFD frameworks in which rainfall events5

are considered as rectangular pulses, asymptotically “the shape parameter of the flood
distribution is the same as that of the rainfall (intensity) distribution” (De Michele and
Salvadori, 2002). Figure 3 illustrates this for two previous DFFD tools. Note that in
the study of Eagleson, the runoff is supposed to be produced on a part of the total
catchment area: the direct runoff producing area. The specific peak discharges have10

been computed considering this direct runoff producing area.

3.2. Generalization to any type of rainfall representation

In the more general case, where the temporal variations of rainfall intensities during an
event are considered, the peak discharge expressed in mm/h can be higher than the
mean intensity of the event. The coefficient C in Eq. (1) is not limited to 1 any more.15

But a formula, comparable to Eq. (1) can be proposed to summarize the rainfall-peak
discharge relation.

Y = CYm (19)

where Ym represents the peak discharge of the watershed obtained for a runoff coeffi-
cient equal to 1: i.e. if the watershed is supposed to be impervious. Again, in Eq. (19),20

the coefficient C is included in the interval [0,1] if the baseflow is not considered. Let us
note that there is a link between the distribution of Ym and the statistical characteristics
of the rainfall and particularly the so-called intensity-duration-frequency curves. This
relation depends on the transfer function of the flood flows on the watershed.

If this transfer function is linear, the peak discharge is highly correlated with the25

maximum mean rainfall intensity over a duration generally lower than the time of con-
centration of the watershed (see Fig. 4a). Hence, the statistical distribution of Ym is the
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distribution of the maximum mean rainfall intensities over this duration (Fig. 5a). Just
recall that the high correlation between peak discharge values and mean rainfall inten-
sity over a given duration is at the basis of the development of the well known rational
method.

If the transfer function is not linear, the link between the distribution of Ym and the5

Intensity-duration-frequency curves is less direct (Fig. 5b). When the “kinematic wave”
model is used, the time of concentration of the watershed decreases as the discharge
and the water mean velocity increases. For the chosen theoretical watershed and
parameters, this time of concentration appears to be about 1 h for a discharge equal to
20 mm/h and 30 min for a discharge equal to 120 mm/h. Looking at Fig. 5b, it appears10

that the maximum mean intensity of the rainfall event over a duration close to the time
of concentration of the watershed still controls the shape of the distribution of Ym in the
non-linear transfer case. But then, the time of concentration depends on the discharge
or the return period.

Recalling the theoretical results of the first part of this paper, the flood peak discharge15

distribution obtained with any rainfall-runoff model should asymptotically either (1) have
the same shape parameters than the distribution of c2Ym if the density function of the
coefficient C tends to a dense function on the interval [c1, c2], or (2) be the distribution
of c2Ym if the density function of C concentrates around c2 as Ym tends to infinity.

Looking in detail at the rainfall-runoff simulations (Figs. 4b, 6, see Appendix A1 for a20

description of the model), it appears that the expectancy of the parameter C increases
and seems to tend towards 1 as Ym increases for the chosen DFFD framework. The
asymptotic distribution of the peak discharge is therefore the distribution of Ym. This
convergence is very slow when the standard “soil conservation service” (SCS) model
is used and does not appear clearly on the Fig. 6a. Does the convergence of C to-25

wards 1 depend on the rainfall-runoff used? Hydrological models simulating infiltration
or saturation excess runoff generating processes will all show an increase of the runoff
coefficient expectancy with the mean rainfall intensity over a given duration. But, the hy-
drological model may have a major influence on the shape of the flood peak distribution
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and on the convergence speed of c towards its asymptote. To illustrate this, a second
series of computations where conducted with the same rainfall-runoff model including
a modified version of the SCS model (see Appendix A1). The conventional SCS model
simulates a very progressive convergence of the runoff coefficient towards 1 as the
rainfall amount increases, behavior which seems not to be in accordance with some5

recent observations (Gaume et al., 2004). The proposed modified version of the SCS
model simulates a rapid evolution of the runoff coefficient over a given rainfall amount
threshold. This behavior induces a change of the convergence speed of the flood peak
distribution towards its asymptote (Fig. 6). The flood peak distribution resulting from
the DFFD framework has a strange “S” shape with two extremes dominated by the pre10

and post-threshold behaviors of the rainfall-runoff model and a large transition phase.
This is of course a purely theoretical example, but it shows that flood peak distributions
may have a large variety of shapes depending on the dynamics of the rainfall-runoff
process. Considering the distance between the actual and the asymptotic distributions
for low return periods, the range of possibilities is certainly quite large.15

4. Discussion

4.1. On the “Gradex” method

The result concerning the asymptotic behavior of flood peak distributions has some
similarities with the “Gradex” theory (Naghettini et al., 1996; Guillot and Duband, 1967),
popular in France and in some other countries. This theory states (1) that the distri-20

butions of the daily rainfall amount is exponential, (2) that over a given return period
value, the mean daily discharge distribution will have the same slope on a semi-log plot
than the daily rainfall amount, if both are expressed in the same unit, and (3) that the
ratio between mean daily and peak discharges is independent of the return period. But
there are some differences.25

Firstly, the slope of the peak discharge Y appears rather linked to the slope of the
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distribution of Ym which is more related to the so called intensity-duration-frequency
curves than to the slope of the mean daily rainfall amount distribution. Both would be
asymptotically equivalent if the ratio between the quantiles of Ym and of the mean daily
rainfall amounts were constant, which is generally not the case.

Secondly, we have presented here an asymptotic result. The shape of the flood peak5

distribution and the convergence speed towards its asymptote are highly dependent on
the dynamics of the rainfall-runoff process summarized in the density function p(c|x).
A large variety of FPD shapes can be produced especially if there are thresholds in the
rainfall-runoff relation as illustrated herein or previously by Sivapalan et al. (1990). The
Gradex is not necessarily the maximum possible slope of the flood peak distribution.10

4.2. About statistical extrapolations

The debate on the estimation of extreme values in hydrology is still lively (Koutsoyian-
nis, 2004; Klemes, 2000). The results presented herein provide some elements of
discussion on this issue. Concerning the quantile estimations of very large return pe-
riod floods, the distribution of the maximum mean rainfall intensity over a duration of15

the order of the time of concentration of a watershed should be considered as the pos-
sible flood peak asymptotic distribution. Concerning the estimation of medium return
period flood quantiles, typically 50 to 500 years, the present paper does not lead to any
new proposal. But the awareness of the distance between the asymptotic distribution
and the low return period flood quantiles gives an idea of the range of the possibilities20

for the shape of the flood peak distributions (i.e. for the way the actual distribution will
converge towards its asymptote). Let us illustrate this last idea with the real example
of the flood peak distribution of a small river (watershed area of 40 km2) located in
the south of France (see Fig. 7). This example will also show that the simulated “S”
shaped distribution (Fig. 6) is realistic. 24 years of measured discharges are available25

on the Clamoux river. On 13 November 1999 occurred an extreme flood event whose
estimated peak specific discharge (16 mm/h) lies far over the measured ones. The ex-
trapolation based on the measured series leads to a return period for this discharge of
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a few thousand years if the EV II distribution is used and of some hundred million years
if the EV I distribution is used. But some clues indicate that the return period can not
be so high: comparable floods seem to have been observed on the same river during
the last century. The 100-year maximum mean rainfall intensity over two hours, esti-
mated time of concentration of the Clamoux watershed during the 1999 flood, is about5

70 mm/h in this area. According to the preceding conclusions, the return period of the
1999 peak specific discharge can therefore be of the order of 100 to a few hundred
years. This relatively low return period seems to be confirmed by the analysis of the
data existing on the major historical flood since 1850 as illustrated on Fig. 7 (Payrastre
et al., 2005).10

This example is typical for small watersheds in the French Mediterranean area
(Payrastre et al., 2005; Gaume et al., 2004). The conclusion is that the “range of
the possibilities” for the shape of flood peak distributions is large and, of course, not
limited to the theoretical distributions generally used for extrapolation purposes, as for
instance the extreme value distributions of type I or II. Thus, how meaningful is it to15

extrapolate tendencies identified on short series of data for the estimation of larger
return-period flood quantiles? As mentioned in the introduction, DFFD tools due to
their inherent simplifications, can hardly be considered as an efficient alternative to the
conventional statistical extrapolation methods. As a conclusion, the only way to reduce
the large uncertainties on estimated flood quantiles is to enlarge the studied series20

of data using the available information on historical floods as illustrated here and/or
combining various data sets in a regional approach.

5. Conclusions

In summary, it has been shown herein that:
(a) The asymptotic statistical distribution of flood peaks Y obtained through a DFFD25

approach is of the same type and has the same shape parameter than the distribu-
tion of the rainfall mean intensity X for simple DFFD frameworks, i.e. of the maximum

1848

http://www.copernicus.org/EGU/hess/hessd.htm
http://www.copernicus.org/EGU/hess/hessd/2/1835/hessd-2-1835_p.pdf
http://www.copernicus.org/EGU/hess/hessd/2/1835/comments.php
http://www.copernicus.org/EGU/EGU.html


HESSD
2, 1835–1864, 2005

On the asymptotic
behavior of flood
peak distributions

E. Gaume

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Print Version

Interactive Discussion

EGU

possible peak discharge Ym for DFFD accounting for the temporal variations of the in-
tensity during the rainfall event. Of course, Y , X and Ym must have the same units
for this result to be valid. In other words, the distribution of Y will appear linear and
with the same slope as the distribution of X or Ym on a semi-log plot for exponential
type distributions or on a log-log plot for “extreme value” of type II distributions. If the5

maximum possible value of C is c2 rather than 1, the same conclusions can be drawn
for Y/c2.

(b) From a practical point of view the asymptotic properties presented herein shed
a new light on previous DFFD results as illustrated in Fig. 3. They also reveal that
the distribution of Ym or more simply of the mean maximum rainfall intensity over a10

duration of the order of the time of concentration of a watershed should be considered
and used as a guideline for any extrapolation of a flood peak distribution, especially for
large return periods. It should be nevertheless taken into account that the impact of
the rainfall spatial heterogeneity has not been considered herein.

Appendix A1: Presentation of the rainfall-runoff model used in the DFFD numer-15

ical simulations

The rainfall-runoff simulation results presented here have been obtained with a simpli-
fied rectangular shaped watershed composed of two rectangular slopes and a central
river reach having a rectangular cross-section (see Fig. A1). The main characteristics
of the rainfall-runoff model used are as follows: 1) the flood flows are assumed to be20

essentially composed of surface runoff water, and other sources are set aside, 2) The
SCS (“soil conservation service”) model is used to calculate the evolution of the mean
runoff coefficient on each sub-watershed during the storm event (see Eq. A1), and
3) the flood flows can be either routed through the watershed using a linear transfer

1849
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function or the “kinematic wave” model.

Ct = 1 −
(

S
(Pt + 0.8S)

)2

. (A1)

The standard SCS model simulates a progressive and asymptotic growth of the runoff
coefficient Ct towards 1 as the rainfall amount increases (see Fig. A2). This SCS func-
tion shape has been selected for mathematical reasons: an asymptotic convergence is5

the only possible solution for functions including one parameter only. But this asymp-
totic dynamics does not correspond to some recent hydrological observations (Gaume
et al., 2004, 2003). Therefore, an other model including a threshold has been tested:
the SCS model is used to compute the runoff rate Ct until it reaches 30% and the runoff
rate is set equal to 1 over this threshold (Fig. A2).10

Appendix B1: Shape of the function h(x) when C is uniformly distributed over
the interval [0,1]

The mathematical developments of this appendix are due to Alain Mailhot of the Institut
National de la Recherche Scientifique (Québec, Canada) who suggested them during
a discussion about the content of the present paper.15

We are looking for an approximation of the following integral as y tends to infinity:

F (y) =
∫ 1

0
e−λy/cdc. (B1)

Changing the variable in this integral u=λy/c and du=−λy/c2dc leads to:

F (y) = −λy
∫ λy

+∞

e−u

u2
du. (B2)

1850
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This integral can be evaluated using integration by parts:

F (y) = −λy
[
e−u

u

]λy

+∞
+ λy

∫ λy

+∞

e−u

u
du (B3)

or

F (y) = e−λy − λy
∫ +∞

λy

e−u

u
du. (B4)

The second term of Eq. (B4) has a well known Taylor expansion:5

F (y) = e−λy − λy
e−λy

λy

(
1 − 1!

λy
+

2!

(λy)2
− ...

)
(B5)

so

F (y) =
e−λy

λy

(
1 − 2!

λy
+

3!

(λy)2
− ...

)
. (B6)

We can then conclude that when y tends to infinity:

F (y) ≈ e−λy

λy
. (B7)

10

Appendix C1: C is independent of X and the statistical distribution of X is an
extreme value distribution of type II (Fréchet)

The density function of the rainfall intensities has the following form:

p(x) =
α
b

(
x − a
b

)−(α+1)

e−( x−a
b )−α (C1)

1851
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with α>0. If p(c) is the density function of the runoff rate C, the survival function of the
peak discharges is:

P (Y > y) = F (y)
∫ 1

0
p(c)

(
1 − e

−
(
y/c−a

b

)−α)
dc. (C2)

The term e
−
(
y/c−a

b

)−α
tends to 1 −

(
y/c−a

b

)−α
when y tends to infinity. Then

F (y) ≈
∫ 1

0
p(c)

(
y/c − a

b

)−α
dc. (C3)

5

This integral can be furthermore simplified when y tends to infinity:

F (y) ≈
∫ 1

0
p(c)

(
y
cb

)−α
dc (C4)

or

F (y) ≈
∫ 1

0
p(c)cα

(
y
b

)−α
dc (C5)

which is equivalent to10

F (y) ≈
(
y
b

)−α ∫ 1

0
p(c)cαdc. (C6)

α is greater than 0 by definition of the EV II distribution and p(c) is the density function
of a variable defined over the interval [0, 1]:∫ 1

0
p(c)dc = 1. (C7)

Necessarily15

0 ≤
∫ 1

0
p(c)cαdc ≤ 1. (C8)

1852

http://www.copernicus.org/EGU/hess/hessd.htm
http://www.copernicus.org/EGU/hess/hessd/2/1835/hessd-2-1835_p.pdf
http://www.copernicus.org/EGU/hess/hessd/2/1835/comments.php
http://www.copernicus.org/EGU/EGU.html


HESSD
2, 1835–1864, 2005

On the asymptotic
behavior of flood
peak distributions

E. Gaume

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Print Version

Interactive Discussion

EGU

Let A be the limit of this integral when y tends to infinity, A ∈ [0,1]:

A = lim
y→∞

(∫ 1

0
p(c)cαdc

)
. (C9)

The result is much more simple than the one obtained in the exponential case. Unless
A is equal to zero, which is non-realistic for a rainfall-runoff model since it implicates
that c tends to zero when y tends to infinity, the asymptote of the survival function of Y5

is a EV II function with the same shape parameters α as the rainfall intensity survival
function.

F (y) ≈ A
(
y
b

)−α
(C10)
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Figures

Fig. 1. Distributions ofY = CX obtained with various values of the variance ofC. The mean ofC

is equal to0.5. The black diamonds correspond to a uniform distribution forC over[0, 1].

Fig. 2. Distributions ofY = CX obtained with various values of the mean ofC. The variance ofC

is equal to1/12. The black diamonds correspond to a uniform distribution forC over[0, 1].

Fig. 3. Example of peak specific discharge frequency distributions obtained with two DFFD models

(thick lines) and comparison with the distributions of the rainfall event intensities (thin lines).

19

Fig. 1. Distributions of Y =CX obtained with various values of the variance of C. The mean of
C is equal to 0.5. The black diamonds correspond to a uniform distribution for C over [0, 1].
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Figures

Fig. 1. Distributions ofY = CX obtained with various values of the variance ofC. The mean ofC

is equal to0.5. The black diamonds correspond to a uniform distribution forC over[0, 1].

Fig. 2. Distributions ofY = CX obtained with various values of the mean ofC. The variance ofC

is equal to1/12. The black diamonds correspond to a uniform distribution forC over[0, 1].

Fig. 3. Example of peak specific discharge frequency distributions obtained with two DFFD models

(thick lines) and comparison with the distributions of the rainfall event intensities (thin lines).

19

Fig. 2. Distributions of Y =CX obtained with various values of the mean of C. The variance of
C is equal to 1/12. The black diamonds correspond to a uniform distribution for C over [0, 1].
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Fig. 1. Distributions ofY = CX obtained with various values of the variance ofC. The mean ofC

is equal to0.5. The black diamonds correspond to a uniform distribution forC over[0, 1].

Fig. 2. Distributions ofY = CX obtained with various values of the mean ofC. The variance ofC

is equal to1/12. The black diamonds correspond to a uniform distribution forC over[0, 1].

Fig. 3. Example of peak specific discharge frequency distributions obtained with two DFFD models

(thick lines) and comparison with the distributions of the rainfall event intensities (thin lines).
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Fig. 3. Example of peak specific discharge frequency distributions obtained with two DFFD
models (thick lines) and comparison with the distributions of the rainfall event intensities (thin
lines).
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Fig. 4. Relations between the simulated peak discharge (CN=100), the simulated runoff coefficient

C and the rainfall event 1-hour maximum rainfall intensity.

Fig. 5. Simulated flood peak (mm/h) distributions with CN=100 (bold line) compared to the rain-

fall event maximum mean intensities over various durations (other lines): (a) linear tranfer and (b)

kinematic wave.

20

Fig. 4. Relations between the simulated peak discharge (CN=100), the simulated runoff coef-
ficient C and the rainfall event 1-h maximum rainfall intensity.
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Fig. 4. Relations between the simulated peak discharge (CN=100), the simulated runoff coefficient

C and the rainfall event 1-hour maximum rainfall intensity.

Fig. 5. Simulated flood peak (mm/h) distributions with CN=100 (bold line) compared to the rain-

fall event maximum mean intensities over various durations (other lines): (a) linear tranfer and (b)

kinematic wave.

20

Fig. 5. Simulated flood peak (mm/h) distributions with CN=100 (bold line) compared to the
rainfall event maximum mean intensities over various durations (other lines): (a) linear tranfer
and (b) kinematic wave.
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Fig. 6. Simulated flood peak (mm/h) distributions for CN=100 (thin line), CN=65 (bold line), CN=65

and modified SCS (dots): (a) linear tranfer and (b) kinematic wave.

Fig. 7. Empirical flood peak specific discharge distributions of the Clamoux river (French Mediter-

ranean area): (a) based on a series of 24 years of measured data, (b) including the estimated peak

discharges of the major floods since 1850 with their estimated ranges of uncertainty.

21

Fig. 6. Simulated flood peak (mm/h) distributions for CN=100 (thin line), CN=65 (bold line),
CN=65 and modified SCS (dots): (a) linear tranfer and (b) kinematic wave.
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Fig. 6. Simulated flood peak (mm/h) distributions for CN=100 (thin line), CN=65 (bold line), CN=65

and modified SCS (dots): (a) linear tranfer and (b) kinematic wave.

Fig. 7. Empirical flood peak specific discharge distributions of the Clamoux river (French Mediter-

ranean area): (a) based on a series of 24 years of measured data, (b) including the estimated peak

discharges of the major floods since 1850 with their estimated ranges of uncertainty.
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Fig. 7. Empirical flood peak specific discharge distributions of the Clamoux river (French
Mediterranean area): (a) based on a series of 24 years of measured data, (b) including the
estimated peak discharges of the major floods since 1850 with their estimated ranges of un-
certainty.
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Fig. A1. Representation of a watershed in the rainfall-runoff model.
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Fig. A1. Representation of a watershed in the rainfall-runoff model.

Fig. A2. Relation between the runoff coefficientC and the total rainfall amountP : standard SCS

model (bold line) and modified SCS model (dotted line).

22

Fig. A2. Relation between the runoff coefficient C and the total rainfall amount P : standard
SCS model (bold line) and modified SCS model (dotted line).
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