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Abstract

Variations in the assemblages and abundances of calcareous nannoplankton have al-

lowed us to interpret changes in oceanic and atmospheric dynamics in the Guyana

Basin, mainly linked to the southeast trades over the last climatic cycle.

Records of the paleoproductivity index of coccolithophores (N ratio) allowed us to5

monitor the nutri-thermocline fluctuations. Additionally, nannofossil accumulation rates

vary closely with the N ratio, indicating a strong correlation between these two pale-

oproductivity proxies. The dominance of upper (small Noelaerhabdaceae, Emiliania

huxleyi and Gephyrocapsa oceanica), over lower photic zone dwellers (Florisphaera

profunda) during Termination II and interglacial substages 5.1 and 5.3 is related to10

eutrophic conditions due to a shoaling of the nutri-thermocline as a consequence of

enhanced southeast Trade Winds. This activated an upwelling at the continental mar-

gin of the Guyana Basin. Low N ratio values and the dominance of F. profunda over the

glacial substages of MIS 5 and glacial MIS 2-4 are linked to a deep nutri-thermocline

(deep stratification of the mixed layer), at times of low influence of the southeast Trade15

Winds, and a weak upwelling. However, the N ratio during MIS 2-4 was slightly higher

than those seen for the MIS 4/5 boundary and glacial substages 5.2 and 5.4. These

micropaleontological proxies follow the insolation at high northern latitude (65
◦
N): the

high N ratio and NAR data from the Guyana Basin during Termination II and inter-

glacials 5.1. and 5.3 are correlated with high insolation values, and low values of the20

N ratio and NAR during the MIS 4/5 boundary, glacials 5.2, 5.4 and MIS 2-4 are corre-

lated with low insolation at the same latitudes. This situation suggests a link between

the ITCZ, the southeast Trade Wind dynamics and the Northern Hemisphere climate

changes during the last climatic cycle.
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1 Introduction and background

Coccolithophorids are photosynthetic planktonic algae living in the photic layer of the

ocean (Hibberd, 1976, Brand, 1994; Young, 1994; Winter et al., 1994) that play a sig-

nificant role in carbonate precipitation (Siesser and Winter, 1994; Steinmetz, 1994).

The temporal and spatial distribution of coccolithophores may respond to major envi-5

ronmental factors in the upper oceanic layer such as temperature, nutrients, the trophic

regime and sunlight levels (Brand, 1994; Young, 1994). For example, F. profunda, a

phytoplankton species, thrives in the lower photic layer (Okada and Honjo, 1973; Okada

and McIntyre, 1977) at times of high nutrient concentration, pointing to a deep nutri-

cline (Molfino and McIntyre, 1990a, b; de Menocal, 1995; Beaufort et al., 1997; Wells10

and Okada, 1997; Flores et al., 1999; 2000; Kinkel et al., 2000; Beaufort et al., 2001;

Gibbs et al., 2004; among others). Thus, the relationship between dwellers from the

upper photic zone and those from the lower photic zone has been used to reconstruct

changes in nutricline depth caused by variations in the southeast Trade Winds in the

tropical Atlantic (Molfino and McIntyre, 1990a, b) and in the Western Tropical Atlantic15

(Kinkel et al., 2000), as well as in the other parts of the ocean (Okada and Honjo, 1973;

Young, 1994; Okada and Wells, 1997; Wells and Okada, 1997; Beaufort et al., 1997,

1999, 2001, 2003; Beaufort and Buchet, 2003; Flores et al., 2000; Liu and Herbert,

2004; Baumann and Freitag, 2004).

The production and sedimentation of coccolith-derived calcite in the deep ocean20

plays an important role in the carbon cycle through photosynthesis and calcification

(Westbroek et al., 1993; Marsh, 2003; Brand, 1994, Young, 1994; Steinmetz, 1994).

These organisms are one of the most important contributors to carbonate sedimen-

tation in the open ocean and in continental slopes (Milliman, 1993; Steinmetz, 1994),

such as in the Guyana Basin (Shipboard Scientific Party, 2003), an area controlled by25

a setting of hemipelagic deposition. This region has been documented as the main

route of interhemispheric heat flux exchange from the South to the North Atlantic.

The Guyana Basin is located in the area of annual shift of the Intertropical Conver-
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gence Zone (ITCZ) that moves between 10
◦
N and 5

◦
S (Müller-Karger, 1989). The

northward or southward position of the ITCZ causes a significant impact on water dis-

charge from the Amazon and Orinoco rivers, as well as variations in the direction and

speed of the Guyana Current (GC) and the southeast Trade Winds (Müller-Karger,

1989; Wilson et al., 2002; Ffield, 2005; Stramma et al., 2005) (Fig. 1).5

During the boreal summer, the southeast Trade Winds are stronger and, the South

Equatorial Current (SEC) and the North Brazilian Undercurrent (NBUC, which brings

salty water from the South Atlantic) are well developed (da Silveira et al., 1994;

Stramma et al., 1995, and Masson and Delecluse, 2000). Over that season, the west-

ward displacement of the SEC pileup surface waters along the eastern coast of South10

America deepens the nutri-thermocline in the Western Tropical Atlantic (WTA) (Has-

tenrath and Merle, 1987). When the SEC reaches South America, it splits into two

branches: one turns southward, supplying the Brazilian current (BC), and the other one

takes off towards the north and feeds the North Brazilian Current (NBC), which is called

the Guyana Current (GC) when it reaches the Guyana Basin (Fig. 1). The Intertropical15

Convergence Zone (ITCZ) is displaced to the northernmost position (6
◦
N–10

◦
N), gen-

erating a wet season north of ∼5
◦
N (Müller-Karger and Aparicio-Castro, 1994). The

NBC (or GC) is mostly retroflexed, contributing to the North Equatorial Countercurrent

(NECC) between 5
◦
N–10

◦
N (Müller-Karger et al., 1988), allowing anticyclonic rings to

enter the continental margin and pass northwestward to merge with the Orinoco River20

plume (Müller-Karger, 1989; Ffield, 2005). These current rings transport and advect

the Amazon River plume and, together with the NBUC, develop a zone of minimum

surface salinity, warm temperatures and a shallower and stronger halocline, where the

river flow is dispersed (Masson and Delecluse, 2000). The other component of the GC

is directed to the North Atlantic, transporting relatively warm and fresher waters via25

the Caribbean Sea (feeding Caribbean current, CC) and the Gulf of Mexico (where it

supports the Gulf Stream, GS) (Showers and Bevis, 1988; Schmitz, 1995; Stramma

and Schott, 1996; Lynch-Stieglitz et al., 1999).

During the boreal winter the northeast Trade Winds dominate and relocate the ITCZ
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to the southermost position (0
◦
–5

◦
S), causing dry conditions in the north of South

America. River plumes decrease in intensity, and together with the GC, are mostly

driven into the coastal area, carrying relatively colder and saltier waters to the North

Atlantic. During this season, the NBUC mainly feeds the Equatorial Undercurrent

(EUC) at the equator and cannot cross the equator to the North Atlantic (Masson5

and Delecluse, 2000 and references therein). The actual mean position of the North

Equatorial current (NEC) has been found north of 10
◦
N (Lazar et al., 2002). This

atmosphere-ocean dynamic in the WTA plays a major role in the cross-equatorial heat

flux to the North Atlantic (Ffield, 2005), producing relatively cooler surface waters south

of the equator, and warmer surface waters north of the equator (>24
◦
C) in the WTA.10

This study focuses on a high-resolution micropaleontological analysis of coccoliths

over the last climatic cycle. The primary goal is to reconstruct the patterns of cal-

careous nannoplankton production and their relationship with fluctuations in the nutri-

thermocline and ocean dynamics in the Guyana Basin (Fig. 1).

2 Materials and methods15

2.1 Core location and materials

Core MD03-2616 was recovered in the Guyana Basin in the Western Tropical Atlantic

(WTA) (7
◦
48.75

′
N, 53

◦
00.80

′
W) at a water depth of 1233 m, during the PICASSO

Cruise by the Marion Dufresne R/V (Fig. 1). This area is characterized by the influence

of the Guyana current, at the continental margin of French Guyana. The core shows20

an undisturbed high-quality sedimentary section of 39 m spanning the Pleistocene. It

mainly consists of olive green silt and clay, rich in foraminifera and calcareous nanno-

plankton and with slight bioturbation levels and high organic matter remains (Shipboard

Scientific Party, 2003). Here we report the uppermost 14.75 m (a detailed description

was reported by the Shipboard Scientific Party, 2003).25
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2.2 Age model and biostratigraphy

The age-depth assignments are primarily based on a series of 16 oxygen isotope con-

trol points performed on tests of the benthonic foraminifer Uvigerina peregrina. Stable

isotope analyses were performed using an automated carbonate preparation line cou-

pled to a Finningan MAT 251 mass spectrometer at the Laboratoire des Sciences du5

Climat et de l’Environnement in Gif-sur-Yvette (France). Isotopic events were identified

up to Marine Isotope Stage 6, MIS 6 (∼155 Ka), by comparison of the benthic δ
18

O

from the Core MD03-2616 and the benthic δ
18

O stack of Lisiecki and Raymo (2005)

(Fig. 2) (López-Otálvaro et al., 2008
1
).

We analyzed the >150µm fraction to detect the qualitative abundance of planktonic10

foraminifer species typical of the WTA. Study of planktonic foraminifer assemblages

allowed the identification of the Ericson Climatic Biozones W 1, X , Y , Z of Ericson

and Wollin (1956) and the YP.obl iq. of Kennett and Huddlestun (1972). In our record,

Biozone W 1 was identified by the consistent and lower occurrence of the Globorotalia

menardii group from the bottom (155 Ka) of the section studied up to 133 Ka. This15

event was dated by Kenneth and Huddlestun (1972) from 150 Ka to Termination II

(128 Ka); i.e., slightly above ours. Biozone X was dated from 133 Ka to the middle

phase of substage 5.1 (84.3 Ka). Prell and Damuth (1978) reported the top of the

Biozone X at 85 Ka; i.e. slightly below ours. The G. menardii complex is absent

from Biozone Y (Ericson and Wollin, 1956; Kennett and Huddlestun, 1972), as we20

report here. The disappearance datum of Pulleniatina obliquiloculata (YP.obliq.) was

recognized at ∼39 Ka, but this datum is diachronous across the tropical Atlantic (Prell

and Damuth, 1978; Kennett and Huddlestun, 1972). Biozone Z was identified close to

the end of MIS 2 (over the latest Wisconsin) in agreement with Kennett and Huddlestun

(1972), although other authors have placed its bottom at the MIS 1/2 boundary (Ericson25

and Wollin, 1956; Maslin and Mikkelsen, 1997) (Fig. 2).

According to currently available data, the reversal in the abundance of the coccol-

1
López-Otálvaro et al., in preparation, 2008.
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ithophore species E. huxleyi and Gephyrocapsa muellerae is not clear. Thierstein et

al. (1977) placed this datum at around 73–85 Ka. The absence of Pseudoemiliania

lacunosa, the relatively low abundance of G. caribbeanica species (less than 3%), and

the occurrence of both E. huxleyi and G. muellerae along the interval studied suggest

that our sediment sequence is younger than 268 Ka (Fig. 2).5

2.3 Calcareous nannoplakton preparation and counting techniques

Slides were prepared following the decantation technique outlined by Flores and Sierro

(1997) to obtain quantitative measurements (coccoliths per gram, accumulation rates

of coccoliths and coccolith-derived carbonate). These slides were examined at a 4-

cm spacing (representing approximately ∼0.120 Ka to ∼0.700 Ka) with a polarized mi-10

croscope at 1000X magnification. 380 samples were examined, and more than 500

coccoliths were counted on each slide in order to identify the coccolith assemblage

quantitatively.

Variations in the production of calcareous nannoplankton, and hence fluctuations in

the nutricline, were expressed as a function named the N ratio (modified from Flores et15

al., 2000; López-Otálvaro et al., 2008), based on the relative proportion of taxa usually

living in the upper photic zone (small Noelaerhabdaceae, E. huxleyi and G. oceanica;

Okada and Honjo, 1973; Okada and McIntyre, 1979; Giraudeau, 1992; Young, 1994;

Okada and Wells, 1997; Wells and Okada, 1997; Flores et al., 1999, 2000, 2003;

Bollman et al., 1998; Beaufort et al., 1999; Beaufort and Buchet, 2003; Hagino and20

Okada, 2004, among others) versus the lower photic zone dwellers (F. profunda; Okada

and Honjo, 1973; Okada and McIntyre, 1977; Molfino and McIntyre, 1990a, b among

others). High N ratio values (close to 1) indicate a high production of upper photic

species against the production of lower photic species, as result of a shallow nutri-

thermocline. Low N ratio values (close to 0) reveal a proliferation of F. profunda, in25

agreement with a deep stratification and a deep nutri-thermocline (Okada and Honjo,

1973; Okada, 1980; Molfino and McIntyre, 1990a, b; Wells and Okada, 1997; Flores et

al., 2000).
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A qualitative preservation index of coccoliths, CEX’, a proxy of the coccolith lyso-

cline position (Dittert et al., 1999; Boeckel and Baumann, 2004), was used based on

the relationship of the small Noelaerhabdaceae and E. huxleyi as the thinnest coccol-

ithophoral species versus Calcidiscus leptoporus as a highly calcified species.

The accumulation rate of coccoliths (NAR, liths*cm
−2

*Ka
−1

) has been widely used5

by several authors as a reference for high paleoproductivity of coccolithophores and

particle flux out of the mixed layer (Steinmetz, 1994 and references therein; Su, 1996;

Baumann et al., 2004). This parameter was estimated following the standard method

of Flores and Sierro (1997), and it involves knowledge of the absolute abundances of

coccoliths, the sedimentation rate and the dry sediment bulk density.10

3 Results

The small Noelaerhabdaceae, G. oceanica and F. profunda proved to be the domi-

nant species in the calcareous nannoplankton assemblage. Gephyrocapsa muellerae

and Umbilicosphaera sibogae species (Appendix B and C) were identified as impor-

tant secondary components. Additionally, Helicosphaera spp. and C. leptoporus were15

considered subordinate species because they were present in lower proportion (less

than 2%) along the record studied. U. sibogae was the most abundant species (up to

12%) of the group of warm taxa, accounting for less than 4% and include Calciosolenia

murrayi, Discosphaera tubifera, Neosphaera coccolithomorpha, Oolithothus spp., Pon-

tosphaera spp., Rhabdosphaera clavigera, Syracosphaera spp. and Umbellosphaera20

spp. U. sibogae was separated from this group to analyze its paleoecological behavior

along the section studied (Appendix B). The preservation of coccoliths was good along

the last climatic cycle, except during the cooler MIS 5.2 and MIS 5.4 and the end of MIS

5.5. Decreases in the CEX’ index and marked increases in the relative abundances of

the most resistant species in the assemblage (G. oceanica and F. profunda), at least25

during MIS 5.4 and later MIS 5.5, confirmed this situation.

Based on the temporal evolution of calcareous nannoplankton, the sedimentary se-
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quence was separated in two scenarios: Glacial MIS 6, interglacial MIS 5 and Termi-

nation II, and glacial stages 2–4 and the Holocene (Figs. 3 and 4).

3.1 Glacial MIS 6, Termination II and interglacial MIS 5

Small Noelaerhabdaceae dominate the assemblage, showing high relative abun-

dances during MIS 6, the interglacial substages 5.1 and 5.3 and Termination II. By con-5

trast, the relative abundance of F. profunda indicates a predominance of this species in

the assemblage throughout the glacial substages of MIS 5, following an inverse trend

to small Noelaerhabdaceae and G. oceanica (Fig. 3). The proportion of G. oceanica

has low values and this points to moderate fluctuations during MIS 5, except during

the end of MIS 5.5 and MIS 5.4 (when the assemblage underwent dissolution, as seen10

by the low CEX’ values, Fig. 4). Mild percentage peaks of G. oceanica are seen along

the MIS 4/5 boundary and glacial substage 5.2. The percentages of U. sibogae vary

between 2% and 6%, with maxima during interglacials 5.1, 5.3 and early 5.5 (Fig. 3).

Common high NAR values during MIS 5.1, 5.3 and early 5.5 are seen for small

Noelaerhabdaceae and U. sibogae. The former species also display high NAR values15

along Termination II and MIS 6. The NAR peaks of G. oceanica only occur during MIS

5.1 and early MIS 5.5, while the highest NAR of F. profunda occurs along MIS 5.2 and

MIS 5.3. Owing to dissolution, all species show minimum NAR values throughout MIS

5.4 and late MIS 5.5.

Stronger gradients of the main taxa are observed in the relative abundances of20

calcareous nannofossils (between 10% and 80%) and partial NAR values (1×10
11

and 1×10
9
liths*pg

−
1*cm

−2
Ka

−1
for small Noelaerhabdaceae; 8×10

9
and 1×10

8

liths*pg
−1

*cm
−2

Ka
−1

for G. oceanica; and 1*10
9

and 3.5*10
10

liths*pg
−1

*cm
−2

Ka
−1

for F. profunda) during MIS 5 (Figs. 3 and 4).

The variation in total NAR is very similar to that of the N ratio, showing stronger25

gradients between the interglacial and glacial substages of MIS 5, with values between

0.9 to 0.2 for the N ratio and, 1.2×10
11

and 1×10
10

liths*pg
−1

*cm
−2

Ka
−1

for the total

NAR (Fig. 4).
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3.2 Isotope stages 2-4 and the Holocene

During MIS 2-4 and the Holocene, dominant species exhibit less amplitude (lower gra-

dients) but more frequent variability in their relative abundances than along MIS 5. F.

profunda is the most abundant species, showing stable values in its percentages (up

to 45%). The proportions and NAR values of this species vary in the opposite sense to5

those of G. oceanica and small Noelaerhabdaceae (Fig. 3).

The relative abundances of G. oceanica (10–20%) are lower than the steady propor-

tion of small Noelaerhabdaceae (20–38%), in spite of its slight increase in the former

species during MIS 3. Higher NAR values of G. oceanica appear during early and late

MIS 3 and the Holocene. On the other hand, the stronger drop in the NAR values of10

small Noelaerhabdaceae during MIS 2-4 and the Holocene is comparable to the values

found for the glacial MIS 5.2.

The percentage abundance of U. sibogae is somewhat higher during glacial 2–4 (val-

ues comparable to those of MIS 6) than during MIS 1 and MIS 5. However, the vari-

ability in the NAR values of this species is similar between the Holocene, the boundary15

of MIS 5/4 and MIS 5.1.

Frequent and mild fluctuations in the N ratio and total NAR occur throughout MIS

2-4 and the Holocene. They are comparable to those observed at the end of MIS 5.2

(Fig. 4). These parameters are strongly influenced by the dominant species in the

assemblage and in consequence display low gradients during glacial MIS 2-4 (Figs. 320

and 4).

4 Discussion

4.1 Productivity of calcareous nannoplankton

The evolution of the calcareous nannoplankton assemblage (revealed by the N ratio,

the NAR of individual species and the total NAR values) is mainly a response to a25
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productivity pattern in the Guyana Basin (Figs. 3 and 4), but the production rate of cal-

careous nannoplankton is limited by the release of nutrients to the mixed layer (Young,

1994). The question thus arises as to which oceanic mechanism allowed the produc-

tion of calcareous nannoplankton.

All proxies studied in Core MD03-2616 (N ratio, species percentages and NAR val-5

ues) indicate a shallow nutri-thermocline and more nutrient-enriched conditions in the

mixed layer during MIS 6, Termination II and the interglacial substages of MIS 5 (Figs. 3

and 4). This situation would have resulted in a higher primary production and eutrophic

conditions, and such a scenario implies the influence of the southeast Trade Winds

blowing parallel to the coast (Gibbs, 1980), favoring upwelling and eastward water10

transport through the well-developed NECC (a situation analogous to the hydrological

conditions prevailing during the boreal summer, Fig. 1). Moreover, during the glacial

substages of MIS 5, the data support a deeper nutri-thermocline and more nutrient-

depleted surface waters, resulting in a lower primary production in a deep stratified

photic layer (Figs. 3 and 4). This scenario implies a weaker influence of the southeast15

Trade Winds in the Guyana Basin and the intensification of the northeast Trade Winds

blowing perpendicularly to the coast (Gibbs, 1980). Enhanced northeast trades favor

the piling up of surface waters dragged by the NEC and the disappearance of the NECC

that transports water away from shore. Additionally, the ITCZ is shifted to a southward

position (between 0
◦

to 5
◦
S, Müller-Karger, 1989) and the GC follows a northwest direc-20

tion (Fig. 1). Bassinot et al. (1997) and Vink et al. (2001) have suggested a southward

latitudinal migration of the atmospheric and hydrographic circulation in the WTA during

the last glacial and Vink et al. (2001) proposed a displacement of 6
◦

southward for the

NEC during the same time. Similarly, Kinkel et al. (2000) recorded a shallow nutricline

and high coccolithophore productivity along the interglacial times and a deeper nutri-25

thermocline along the glacial stages and substages in the WTA during the last climatic

cycle.

The glacial MIS 2-4 and the Holocene are associated with recurrent, steady and low

amplitude variations in the shoaling/deepening of the nutri-thermocline, pointing to a

21
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G.-E. López-Otálvaro et

al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

◭ ◮

◭ ◮

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

weak upwelling. This latter situation reveals the entrance of a mesotrophic regimen in

surface waters as a result of the periodic variability of Trade Wind dynamics in the WTA

(Peterson et al., 2000; Vink et al., 2001) (Figs. 3 and 4).

Gibbs (1980), Pujos and Froidefond (1995, and references therein) indicated sea-

sonal scenarios where southeast Trade Winds are enhanced and blow alongshore5

in French Guyana, favoring wind-induced upwelling in the basin. Their work was re-

stricted to the equator and 5
◦
N. The geographic position of the core studied falls within

the areas studied by those authors, and hence the same hydrological conditions can be

considered (wind-induced coastal upwelling). This atmospheric dynamic displaces the

ITZC to a more northern position (6
◦
N–10

◦
N), and permits the NBC (or GC) retroflec-10

tion (Müller-Karger, 1989) and the formation of the NECC between 5
◦
N–8

◦
N (Busalac-

chi and Picaut, 1983). Additionally, other authors (Ryther et al., 1967; Hulburt and

Corwin, 1969; Müller-Karger, 1995) have examined the occurrence of upwelling at the

continental margin of the Guyana Basin (7
◦
N±1

◦
, Müller-Karger, 1995; Wilson et al.,

2002) associated with the origin of the retroflection of the NBC (GC), and with the15

enhancement of the southeast Trade Winds.

Furthermore, cool sea surface temperatures from the North Atlantic are in phase with

changes in ice sheet volume, reflecting glacial-interglacial oscillations and controlling

Trade Wind intensity (Manabe and Broccoli, 1985; Ruddiman and McIntyre, 1984; Rud-

diman et al., 1989). Changes in the temperature/pressure gradients between the North20

and South Atlantic affect the meridional wind component and define the latitudinal posi-

tion of the ITCZ (Hastenrath and Greischar, 1993; Hastenrath and Druyan, 1993). This

association accounts for the relationship between cold/warm periods in high latitudes

in the North Atlantic and drier/wetter conditions over northern South America (Haugh

et al., 2001). Visual comparison of the N ratio and NAR records with a northern in-25

solation curve (mean insolation, 1 June to 30 September, 65
◦
N) reveals peaks in the

production and accumulation rates of calcareous nannoplankton and a shallow nutri-

thermocline that follows the maxima in insolation at 65
◦
N. This correlation suggests

a close connection between the shifts of the nutri-thermocline, Trade Wind dynamics,

22
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and the latitudinal migration of the ITCZ. Molfino and McIntyre (1990a, b) and Wolff et

al. (1999) found that variations in the position of the nutri-thermocline are controlled by

the Trade Winds in the eastern tropical Atlantic (but in contrast with the present findings

in the WTA, they reported a shallow nutri-thermocline during glacial periods).

Variations in the position of the thermocline have been reported by Hüls and Zahn5

(2000) and Vink et al. (2001) in a nearby core taken from the Tobago Basin. These

authors studied Core M35003-4, which was collected at 12
◦
05

′
N, 61

◦
15

′
W at a water

depth of 1229 m (a similar water depth to Core MD03-2616; 1233 m). They found the

shallowest thermocline for MIS 3 (∼50 m depth) in comparison with the glacial MIS

2 (∼80 m depth) and the Holocene (150 m depth). Furthermore, Pailler et al. (1999)10

reported that the main thermocline is currently 150 m deep in a section of the WTA

located between 0
◦
N–45

◦
W and 8

◦
20

′
N–41

◦
W, which surrounds the core position of

this study.

4.2 River runoff

Some authors have suggested that the main freshwater source that affects the WTA15

is the Amazon River, which is mostly responsible for the low sea surface salinity in

the WTA (Masson and Delecluse, 2000) since the waters of the Orinoco flow down-

stream towards the Caribbean Sea (Ffield, 2005). Several authors have indicated that

high abundances of phytoplankton are associated with higher seasonal river runoff

and lower salinities in the northern Caribbean Sea (14
◦
N and 18

◦
N) than in the typical20

waters of the WTA (Müller-Karger et al., 1989 and references therein).

Likewise, but addressing paleoclimatic changes at orbital scales, other studies have

confirmed the northward position of the ITCZ along the interglacial substages of MIS

5 (in the Caribbean Sea, Mart́ınez et al., 2007), and interglacial substages of MIS 3

(in the Cariaco Basin, Peterson et al., 2000; in the WTA and in the Tobago Basin,25

Vink et al., 2001), favoring the influx of river nutrients to the ocean and the config-

uration of an oceanic system that supports a superficial nutri-thermocline and conse-

quently increased biological productivity in those regions. Similarly, Showers and Bevis
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(1988) documented an increase in the Amazon River runoff during Termination I un-

til 5–6 Ka B.P. Other authors have reported the southward geographic situation of the

ITCZ over the last glacial and consequently drier conditions over northern South Amer-

ica (Kolla et al., 1979; Balsam et al., 1995), decreasing the influence of the river flow

system, deepening the nutri-thermocline and reducing bioproductivity (Peterson et al.,5

2000; Vink et al., 2000, 2001, 2002). According with these suggestions and the chloro-

phyll concentration data (primary distribution) presented by SeaWIFS Project (Fig. 1),

the influence of an enhanced nutrient supply by rivers in the production of calcareous

nannoplankton cannot be completely ruled out. However, there is no clear indicator

within the association of calcareous nannoplankton able to account for a greater dis-10

charge from the Amazon during the interglacials and neither are there any indicators

within the association to suggest relationships with variations in the salinity of surface

waters. U. sibogae has been directly related to surface water salinity in the North Pa-

cific (Roth and Coulbourn, 1982), has been found in warm oligotrophic waters (Okada

and McIntyre, 1979; Roth, 1994; Young, 1994; Böeckel and Baumann, 2004; Ziveri15

et al., 2004), but also in medium-to-high fertility waters (Roth and Berger, 1975; Roth

and Coulbourn, 1982) with temperatures ranging from 18
◦
C to 25

◦
C (McIntyre and Bé,

1967; Okada and McIntyre, 1979). Additionally, G. oceanica has also been observed

in relatively warm, highly saline and fertile waters (Winter, 1982, 1985; Mitchell-Innes

and Winter, 1987). However, U. sibogae and G. oceanica do not show a systematic20

correspondence with temperature or salinity. This implies that G. oceanica and U. sibo-

gae respond to a productivity pattern rather than to a pattern of temperature or salinity,

especially significant in MIS 2-4 (Fig. 3).

4.3 Dissolution of calcareous nannoplankton

Coccolith dissolution episodes (Figs. 3 and 4) suggest either a shallowing of the lyso-25

cline or dissolution above the lysocline. Curry and Cullen (1997) have documented high

carbonate dissolution during glacial periods in response to deep water mass changes

at greater depths in the WTA (>3000 m water depth). Owing to the shallow depth po-
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sition of Core MD03-2616, dissolution below the lysocline is less probable, because

aragonite and calcite lysoclines have been reported at 2200 and 4000 m, respectively

(in Vink et al., 2001). Dissolution above the lysocline may be a response to the acidifi-

cation of interstitial waters due to the oxidation of organic matter within the sediments.

However, this hypothesis is not supported by the available observations, and hence its5

confirmation requires detailed benthonic isotope δ
13

C data, sedimentological studies,

and further oceanographic reconstructions in the Guyana Basin.

5 Conclusions

Variations in the evolution of calcareous nannofossils have allowed us to elucidate

changes in the oceanic and atmospheric dynamics in the Guyana Basin; such changes10

are primarily linked to the southeast Trade Winds.

The data on the accumulation rate of coccoliths (NAR) resemble those of the N

ratio when dissolution is lacking, suggesting a close connection between the produc-

tion of calcareous nannoplankton and the accumulation of coccoliths. Higher values

of the N ratio and NAR during interglacials are linked to a persistent shallow nutri-15

thermocline, in contrast to low N and NAR values during glacials, which indicate a

deep nutri-thermocline. A shallow nutri-thermocline gives rise to more surface nutrient-

enriched waters during Termination II and interglacial substages of MIS 5.1 and 5.3,

involving more productive conditions. By contrast, a deep nutri-thermocline reveals

deep stratified conditions during the glacial substages of MIS 5 and MIS 2-4.20

The greater productivity of calcareous nannoplankton was due to the upwelling of

cool waters from depth (termination II and interglacial substages of MIS 5), which is

consistent with the enhanced southeast Trade Winds that blew parallel to the coast

and displaced the ITCZ to a more northerly position, while deep stratified conditions

would have resulted from weakened southeast Trade Winds and enhanced northeast25

Trade Winds. Northeast Trade Winds allowed the southward displacement of the ITCZ

and blew perpendicularly to the coast, piling up waters transported by the NEC and re-
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ducing upwelling. However, the influence of continental-derived nutrients and a fresh-

ening of surface water masses in the ocean through Amazon River runoff cannot be

discarded.

The production of calcareous nannoplankton and the shifting of the nutri-thermocline

covary with insolation at high northern latitudes: a high N ratio and a high NAR oc-5

curred during periods of high northern insolation (interglacials) and viceversa. Such

variations are in agreement with an intensification (weakening) of the southeast Trade

Wind dynamics and with the northern (southern) latitudinal migration of the ITCZ that

activated (reduced) the upwelling system at the continental margin of the Guyana

Basin.10
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Appendix A

Taxonomic appendix

Calcidiscus leptoporus (Murray and Blackman, 1898) Loeblich and Tappan, 1978

Calciosolenia murrayi Gran, 1912

Coccolithus pelagicus (Wallich, 1877) Schiller, 1930

Emiliania huxleyi (Lohmann, 1902) Hay and Mohler in Hay et al., 1967

Florisphaera profunda Okada and Honjo, 1973

Gephyrocapsa aperta Kamptner, 1963

Gephyrocapsa ericsonii McIntyre and Bé, 1967

Gephyrocapsa caribbeanica Boudreaux and Hay, 1967

Gephyrocapsa muellerae Bréhéret, 1978

Gephyrocapsa oceanica Kamptner, 1943

Hayaster perplexus (Bramlette and Riedel 1954) Bukry 1973

Helicosphaera carteri (Wallich, 1877) Kamptner, 1954

Neosphaera coccolithomorpha Lecal-Schlauder, 1950

Oolithotus (Cohen, 1964) Reinhardt, in Cohen and Reinhardt, 1968

Oolithotus antillarum Reinhardt, in Cohen and Reinhardt, 1968

Pontosphaera Lohmann, 1902

Pseudoemiliania lacunosa (Kamptner 1963) Gartner 1969

Rhabdosphaera clavigera (Murray and Blackman, 1898)

Reticulofenestra Hay, Mohler and Wade 1966

Syracosphaera Lohmann, 1902

Syracosphaera lamina Lecal-Schlauder 1951

Syracosphaera pulchra Lohmann, 1902

Umbellosphaera Paasche, in Markali and Paasche, 1955

Umbilicosphaera hulburtiana Gaarder, 1970

Umbilicosphaera sibogae var. foliosa (Kamptner, 1963) Okada and McIntyre, 1977

Umbilicosphaera sibogae var. sibogae (Weber-van Bosse, 1901) Gaarder, 1970
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Appendix B

Taxonomic information

The systematic classification of coccoliths is based on their morphology. The mor-

phological differences used for the genus Gephyrocapsa were adopted from Flores et5

al. (2000) and are summarised in Appendix C. Small placoliths (such as Gephyrocapsa

aperta and G. ericsonii, small Reticulofenestra and Emiliania huxleyi) with an open or

closed central area and smaller than 3µm were classified together in the group of

small Noelaerhabdaceae. Gephyrocapsa spp. contain Gephyrocapsa species larger

than 3µm such as G. oceanica, G. muellerae, and G. caribbeanica. Different sizes of10

G. oceanica were also considered for carbonate calculations (medium Gephyrocapsa

3–4µm and large Gephyrocapsa 4–5µm), but later on these sizes were lumped to-

gether as G. oceanica for paleoecological purposes. Additionally, Oolithotus spp.,

Pontosphaera spp., Rhabdosphaera clavigera, Syracosphaera spp., Umbellosphaera

spp. and Umbilicosphaera spp. were included as the group of warm taxa (Hiramatsu15

and De Deckker, 1997; Boeckel and Baumann, 2004). The genus Umbilicosphaera in-

cludes U. hulburtiana, U. sibogae var . foliosa and U. sibogae var. sibogae (the lat-

ter species here designated U. sibogae). The marked dominance of Umbilicosphaera

sibogae in the group of the warm taxa suggests that its paleoecological behaviour in

Guyana Basin should be analyzed. Calcidiscus leptoporus and Helicosphaera spp.20

species are characterized by their lower abundances and poor consistence along the

record studied. Helicosphaera spp. mainly include Helicosphaera carteri and in a

lower proportion H. pavimentum (below 1%).
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Appendix C

Taxonomic notes and morphological differences used for the genus

Gephyrocapsa (mainly adopted from Flores et al., 2000) in this study.

This Study Small Gephyrocapsa G. muellerae G. caribbeanica G. oceanica (G. oceanica

(G. ericsonii and G.aperta) (it includes G. margereli) and large Gephyrocapsa)

Coccolith length < 3 mm > 3µm > 3 µm 3–5µm (3–4µm and 4–5µm)

Bridge angle 5
◦
–40

◦
Central area closed >50

◦

Author equivalence

Thierstein et al., 1977 G. caribbeanica

Raffi et al., 1993 Small Gephyrocapsa Small Gephyrocapsa Small Gephyrocapsa Medium Gephyrocapsa

Bollmann, 1997 G. minute G. cold G. oligotrophic, G. transitional G. large, G. equatorial

Flores et al., 2000 Small Gephyrocapsa G. muellerae G. caribbeanica G. oceanica

Baumann and Freitag, 2004 G. ericsonii /G. aperta G. muellerae/G. margereli G. caribbeanica G. oceanica
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cycle of the Tropical Atlantic during the Last Glacial, Science, 290, 1947–1951, 2000.

Prell, W. L. and Damuth, J. E.: The climate-related diachronous disappearance of Pulleniatina20

obliquiloculata in Late Quaternary sediments of the Atlantic and Caribbean, Mar. Micropale-

ontol., 3, 267–277, 1978.

Pujos, M., and Froidefond, J.-M.: Water masses and suspended matter circulation on the

French Guiana continental shelf, Cont. Shelf Res., 15, 1157–1171, 1995.

Richardson, P. L., Hufford, G., Limeburner, R., and Brown, W.: North Brazil Current retroflection25

eddies, J. Geophys. Res., 99, 5081–5093, 1994.

Roth, P. H.: Distribution of coccoliths in ocean sediments, in: Coccolithophores, edited by:

Winter, A. and Siesser, W. G., Cambridge University Press, Cambridge, 199–218, 1994.

Roth, P. H. and Berger, W. H.: Distribution and dissolution of coccoliths in the South and central

Pacific, Special Publications vol. 13, Cushman Foundation for Foraminiferal Research, 87–30

113, 1975.

Roth, P. H. and Colbourn, W. T.: Floral and solution patterns of coccoliths in surface sediments

of the North Pacific, Mar. Micropaleontol., 7, 1–52, 1982.

34

http://www.electronic-earth-discuss.net
http://www.electronic-earth-discuss.net/3/11/2008/eed-3-11-2008-print.pdf
http://www.electronic-earth-discuss.net/3/11/2008/eed-3-11-2008-discussion.html
http://creativecommons.org/licenses/by/3.0/


eED

3, 11–40, 2008

Pleistocene

productivity in the

Guyana Basin
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Ziveri, P., Baumann, K.-H., Böeckel, B., Bollman, J., and Young, J.: Present day

coccolithophore-biogeography in the Atlantic Ocean, in: Coccolithophores: From Molecu-

lar Processes to Global Impact., edited by: Thierstein, H. and Young, J., Springer-Verlag,30

403–428, 2004.

36

http://www.electronic-earth-discuss.net
http://www.electronic-earth-discuss.net/3/11/2008/eed-3-11-2008-print.pdf
http://www.electronic-earth-discuss.net/3/11/2008/eed-3-11-2008-discussion.html
http://creativecommons.org/licenses/by/3.0/


eED

3, 11–40, 2008

Pleistocene

productivity in the

Guyana Basin
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Fig. 1. Satellite images acquired by the SEAWIFS Program at the location of the Core MD03-

2616. Hydrographic and atmospheric features in WTA: Surface currents are indicated by con-

tinuous lines and subsurface currents are indicated by dotted lines. SEC: South Equatorial

Current, BC: Brazilian Current, NBC: North Brazilian Current, CC: Caribbean Current, NECC:

North Equatorial Counter Current, SECC: South Equatorial Counter Current, EUC: Equatorial

Undercurrent, NBCU: North Brazilian Countercurrent, ITCZ: Intertropical Convergence Zone.

(Adopted from http://oceancolor.gsfc.nasa.gov/SeaWiFS; Richardson et al., 1994 and Haug et

al., 2003.)
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O stack record (Lisiecki and Raymo, 2005), benthic δ
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O record from Core

MD03-2616 (López-Otálvaro et al. 2008
1
), sedimentation rates at Core MD03-2616 and the

relative abundance of the specific index species from calcareous nannofossils at Core MD03-

2616. The biozones X , Y , Z and W represent the biostratigraphic events from planktonic

foraminifers identified at Core MD03-2616. The YP.obl iq. biozone corresponds to the disappear-

ance of Pulleniatina obliquiloculata. Las cruces verdes in the δ
18

O record from Core MD03-

2616 correspond to the control points used for constructing the chronostratigraphic framework

at Core MD03-2616. Grey bars indicate interglacial marine isotope stages 1 throughout 5. MIS

5.1, 5.2, 5.3, 5.4, 5.5 correspond to the substages of MIS 5. Wisconsin and Illinoian episodes

correspond to the Ice Ages between 12 Ka and 80 Ka in the former, and 128 Ka and 310 Ka in

the later. T.I=Termination I, T.II=Termination II.
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Fig. 3. Relative calcareous nannofossil abundances (%) and nannofossil accumulation rates

(NAR, liths*gr
−1

*cm
−2

) of the most significant species. Grey bars indicate interglacial marine

isotope stages 1 throughout 5. MIS 5.1, 5.2, 5.3, 5.4, 5.5 correspond to the substages of MIS

5. Wisconsin and Illinoian episodes correspond to the Ice Ages between 12 Ka and 80 Ka in

the former, and 128 Ka and 310 Ka in the later. T.I=Termination I, T.II=Termination II.
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Fig. 4. Review of the bioproductivity proxies used for Core MD03-2616: N ratio vs. total nanno-

fossil accumulation rates (NAR, liths*gr
−1

*cm
−2

). Grey bars indicate interglacial marine isotope

stages 1 throughout 5. MIS 5.1, 5.2, 5.3, 5.4, 5.5 correspond to the substages of MIS 5.

Wisconsin and Illinoian episodes correspond to the Ice Ages between 12 Ka and 80 Ka in the

former, and 128 Ka and 310 Ka in the later. T.I=Termination I, T.II=Termination II.
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