

Exhumation of metamorphic rocks in N Aegean: the path from shortening to extension and extrusion

R. Lacassin, N. Arnaud, Philippe-Hervé Leloup, R. Armijo, Bertrand Meyer

► To cite this version:

R. Lacassin, N. Arnaud, Philippe-Hervé Leloup, R. Armijo, Bertrand Meyer. Exhumation of metamorphic rocks in N Aegean: the path from shortening to extension and extrusion. eEarth Discussions, 2007, 2 (1), pp.1-35. hal-00330775

HAL Id: hal-00330775 https://hal.science/hal-00330775

Submitted on 18 Jun 2008

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés. eEarth Discuss., 2, 1–35, 2007 www.electronic-earth-discuss.net/2/1/2007/ © Author(s) 2007. This work is licensed under a Creative Commons License.

eEarth Discussions is the access reviewed discussion forum of eEarth

Exhumation of metamorphic rocks in N Aegean: the path from shortening to extension and extrusion

R. Lacassin¹, N. Arnaud², P. H. Leloup³, R. Armijo¹, and B. Meyer⁴

¹Institut de Physique du Globe de Paris, UMR7174 CNRS, Paris, France
 ²Lab. Dynamique de la Lithosphère, UMR 5573 CNRS, USTL, Montpellier, France
 ³Lab. Sciences de la Terre, UMR5570 CNRS, UCB Lyon, France
 ⁴Lab. Tectonique, UMR7072 CNRS, Univ. P. et M. Curie, Paris, France

Received: 22 December 2006 - Accepted: 9 January 2007 - Published: 18 January 2007

Correspondence to: R. Lacassin (lacassin@ipgp.jussieu.fr)

2, 1-35, 2007 Exhumation of metamorphic rocks in N Aegean R. Lacassin et al. **Title Page** Introduction Abstract Conclusions References Tables Figures Back Close Full Screen / Esc Printer-friendly Version Interactive Discussion

Abstract

The Olympos-Ossa-Pelion (OOP) ranges, in NW Aegean, encompass Greece highest summit and are located near the extremity of the North Anatolian Fault (NAF). Structural and thermochronological data gathered in the OOP ranges show that the main exhumation of metamorphic nappes occurred in the Eocene, at ca. 43–39 Ma. This early exhumation, associated with ductile, then brittle-ductile normal faulting with northeastward transport, is nearly coeval with orogenic shortening in the close area. Cooling rates, and likely exhumation, have been low between ~40 Ma and ~20 Ma. ⁴⁰Ar/³⁹Ar crystallization ages (between 20 and 15 Ma) appears related to brittle-ductile normal faulting and likely associated with the onset of Aegean back-arc extension. The dating of a diabase dyke, and the geometry of associated brittle jointing, of onshore and offshore active normal faults imply a shift in extension direction after 4 Ma. Such a shift is probably related the propagation of the NAF in northern Aegean known to have occurred around 5 Ma.

15 **1** Introduction

There is some consensus on the view that Aegean continental extension (Fig. 1) can be explained by some combination of gravitational forces in a thickened crust with pull forces associated with the retreat of the Hellenic Arc (e.g. McKenzie, 1978; Le Pichon and Angelier, 1981; Jolivet et al., 2003). It is also agreed that it postdates
the compressional stacking of the Hellenic thrust-nappes, which is of upper Mesozoic to Lower-Cenozoic age in the internal part of the belt (Mercier et al., 1989; Vergely and Mercier, 1990; Schermer et al., 1990; Lips et al. 1998, 1999). However, the timing of inception of continental stretching, which is critical for constraining mechanical evolution models of the Aegean lithosphere, remains poorly constrained. Estimates
range from 5 Ma (e.g. McKenzie, 1978) to more than 24 Ma (e.g., Gautier and Brun, 1994; Gautier et al., 1999).

Evidence for extension in the Aegean comes from separate sets of observations. One set derives from seismology and earthquake geology. It focuses on the brittle, steeply-dipping normal faults that account for the present-day deformation of the upper crust. A second set, derives from observations of older (Tertiary) ductile structures. It has been inferred from the latter that large amounts of extension of the lithosphere, 5 associated with significant amounts of shear on shallow-dipping detachments at midcrustal levels, induced rapid exhumation of metamorphic core complexes (e.g. Lister et al., 1984; Buick, 1991; Brun et al., 1994; Jolivet et al., 1994; Gautier et al., 1999). Finally a distinctive feature of the Aegean extension derives from recent tectonic and geodetic (GPS) observations: the mechanical interaction between the Aegean exten-10 sion and the westward-propagating North Anatolian Fault (NAF), which entered the Aegean at 5 Ma (e.g. Armijo et al., 1996, 1999) and induced transtension (Mc Neil et al., 2004). The relations between orogenic shortening, continental extension and NAF propagation, and their temporal evolution remain subject of debate. Is the exhumation of metamorphic cores mainly due to extensional collapse or is it coeval with the stack-15

ing of the thrust-nappe edifice? To what extent is the Aegean extension controlled by motion on the NAF (or vice-versa)?

The Olympos, Ossa and Pelion (OOP) ranges (Figs. 1, 2a) are key to answer these questions because they are described as culminations affecting thrust-nappes, encom-²⁰ pass Greece highest summit and are located along the SW edge of the North Aegean trough at the extremity of the NAF. We report structural observations coupled with new ⁴⁰Ar/³⁹Ar dates in the time period covering the passage from compression to extension in the OOP ranges where some important structural information is well exposed. In particular, the OOP ranges are the footwall of active normal faults that splay from

the NAF and show exposures of low angle ductile normal faults. Our structural observations and dates provide constraints both on the timing and on the mechanics of stretching in the Aegean.

2 Exhumation of Olympos-Pelion nappe edifices

20

2.1 Overview of structure of Olympos-Ossa-Pelion ranges

The OOP ranges constitute the uplifted and tilted footwall of NE-dipping normal faults (Figs. 2b, c). Offshore, in the W part of the North Aegean trough (Figs. 1, 2a), N 90° E
to N 120° E striking normal faults cut the top sedimentary layers and the seafloor topography (Laigle et al., 2000; Papanikolaou et al., 2002). These normal faults are connected to strike-slip fault segments splaying from the Northern branch of the NAF (Fig. 2a). They strike more easterly than the overall trend of the Pelion-Ossa coast, of the Thermaikos Gulf and Chalkidiki Peninsulae (Fig. 2a). In the prolongation of
the offshore normal faults, the Mount Olympos piedmont is cut by several tens of meters high scarps (Figs. 2a, b). These scarps that correspond to recent normal faults, strike N 110 to N 130° E oblique to the main Olympos range-front fault, which strikes ~N 160° E (Figs. 2a, b). More to the S, near Volos, W of the Pelion, the young normal faults strike E-W to WNW-ESE and, together with earthquake fault-plane solutions
(Hatzfeld et al., 1999; Goldsworthy et al., 2002), indicate N-S to NNE-SSW extension oblique to the trend of the Pelion range (Fig. 2a).

The OOP ranges are classically described as antiforms, affecting the SW-verging thrust edifice of the Hellenic belt internal zones (e.g. Celet and Ferrière, 1978), and bounded to the NE by the Vardar suture, which is buried under the sediments of the Thermaikos Gulf and the North Aegean trough (Figs. 1, 2a).

The Olympos range (Fig. 2b), forms a half-window with para-autochthonous sediments in the core (Vergely and Mercier, 1990) overlain by nappes of metamorphic rocks containing HP/LT assemblages (Schermer, 1993). The core series (Mesozoic carbonate rocks) are topped by nummulite-bearing limestones of Paleocene to lower

Ypresian age (Fleury and Godfriaux, 1974) conformably capped by undated detritic sediments (turbidites). Final emplacement of the metamorphic nappes onto these rocks thus occurred after the lower to middle Eocene (~50 Ma). The normal range front fault that bounds the eastern Olympos flank strikes NNW-SSE (Schermer, 1993; Jo-

2, 1–3	5, 2007					
Exhumation of metamorphic rocks in N Aegean R. Lacassin et al.						
Title	Page					
Abstract Introduction						
Conclusions	References					
Tables Figures						
I	۶I					
•	•					
Back	Back Close					
Full Screen / Esc						
Printer-friendly Version						
Interactive Discussion						

livet and Patriat, 1999). It displays triangular facets, suggesting steep normal faulting, more or less parallel to the foliation in the hanging-wall units of marbles. Foliation dips 20–30° ENE, with N 55° E-directed stretching lineations and down-to-the ENE ductile shear (Fig. 2b). This suggests that steep normal faulting has exhumed earlier extensional ductile deformation that was occurring in a N 55° E direction, transverse to the strike of the range-front fault.

The thrust nappe edifice in the Ossa range, S of the Olympos, is less exhumed and dissected by erosion (Celet and Ferrière, 1978; Walcott, 1998). Offshore active normal faults bound the range to the NE and account for the steep sea-facing range-front.

- ¹⁰ Further S, the Pelion range (Fig. 2c), made of gneisses and micaschists interlayered with marbles and locally serpentinite slices, is considered to be the equivalent of the Ossa-Olympos nappe-stack, with some mélange (Celet and Ferrière, 1978; Walcott, 1998). Metamorphism and deformation characters are typical of relatively low P-T conditions (greenschist facies) although remnants of HP/LT assemblages are locally found
- ¹⁵ (Walcott, 1998). The presence of raised fossil marine beaches along the eastern Pelion coast attests to recent uplift probably driven by the offshore faults. E-dipping units, forming the E flank of the range (Fig. 2c), show greenschist facies foliation dipping 10– 20° NE and ~N 45° E stretching lineations (Walcott, 1998) associated with dominantly northeastward normal shear (Figs. 3a, 3b). Macro- (Fig. 3b) and micro- (Figs. 3c, 3d)
- textures of mylonitic gneisses are typical of ductile deformation at medium temperature >300°C (e.g. Passchier and Trouw, 1998). Lower grade, NE-dipping brittle-ductile normal shear-zones affect these units and mark often the contacts between them. At the outcrop-scale, the flat-lying foliation is overprinted by steeper brittle-ductile shears and by nearly vertical joints (Fig. 3e), implying an evolution under decreasing PT conditions down below these of the brittle ductile transition (-200°C).
- down below those of the brittle-ductile transition (\sim 300°C).

2, 1–35	, 2007				
Exhumation of metamorphic rocks in N Aegean R. Lacassin et al.					
Title F	Page				
Abstract Introduction					
Conclusions References					
Tables Figures					
I	▶1				
	×				
Back Close					
Full Screen / Esc					
Printer-friendly Version					
Interactive Discussion					

- 2.2 Geochronology, cooling history of the OOP ranges and evidence for Eocene exhumation
- 2.2.1 Summary of previous geochronological studies

tile deformation.

Published results of ⁴⁰Ar/³⁹Ar dating on white micas (WM) and feldspars from the OOP
ranges (Schermer et al., 1990; Lips et al., 1998, 1999) are summarized in Table 1. In the Olympos, most phengites and one microcline show age gradients in their spectra, with low temperature (LT) steps between ~36 and 42 Ma, and high temperature (HT) steps between 53 and 100 Ma (Table 1). Other phengites yield plateau or isochron ages between ~40 and 60 Ma. This was interpreted as an evidence for several phases of nappe stacking and metamorphism starting at ~100 Ma and ending at ~40 Ma (Schermer et al., 1990). Alternatively, the LT steps could be interpreted as the result of cooling of all samples below phengite closure temperature (~350°C) at that time. Microclines generally show diffusive gradients with younger LT steps between ~17 and 28 Ma (Table 1), suggesting enhanced cooling at these ages (Schermer et al., 1990).

In the Ossa range, all but one (WM3) of Lips et al.'s (1998) recrystallized WM ages are older than 50 Ma (~55 Ma in greenschist mylonites, 78–85 Ma in blueschist mylonites) while porphyroclasts give 293–102 Ma cooling ages (Table 1). Lips et al. (1998) infer the following history: cooling below WM closure temperature (~350°C) before 102 Ma, thrusting events at 78–85 Ma during blueschist metamorphism, and at 54– 55 Ma during cooling below 300°C. The last event could have lasted up to 45 Ma (WM3 age), time since which the whole Ossa thrust-stack is at temperatures too low for duc-

As in the Ossa range, the ages of WM porphyroclasts from the Pelion are Paleozoic or lower Cretaceous (95 Ma) suggesting that Tertiary deformation occurred below ~350°C (Lips et al., 1999). All but one (WM9 ~54 Ma) ages of fine-grained WM from mylonite fabrics are in the 40–15 Ma range (Table 1). Lips et al. (1999) relates these latter ages to crystallisation of WM below their closure temperature, during extensional

foliation-parallel shear mostly towards the NE.

2.2.2 Thermochronology of the Pelion metamorphic rocks

New K-Feldspar ⁴⁰Ar/³⁹Ar thermochronology and mica dating from the eastern Pelion range provide further constrains on its cooling and exhumation history. In most cases
 pseudoplateaus were used to calculate the ages (see Appendix A). K-feldspars are known to record cooling histories and especially rapid cooling events, which are theoretically marked by flat portions of the age spectra (Lovera et al., 1991). These flat portions may be used to define pseudoplateaus or isochrons and to statistically calculate ages. Details on interpretation of feldspar age spectra are given in Appendix A
 together with analytical procedures. Appendix B lists analytical results, and Table 2 summarizes age results.

Two feldspars from mylonitic orthogneisses along a NE-SW section of the range (sample G5 from a quarry SE of Kalamaki at 350 m a.s.l.; G7 from the seashore 2 km NW of the quarry) give a climbing age spectrum with a well-defined low temperature (LT) pseudo-plateau (5 to 35% Argon release) and a progressive increase towards older ages at high temperature steps (Figs. 4a and b). The first 5% of each age spectrum is obscured by excess argon, correlated with strong chlorine content (see ³⁸Ar/³⁹Ar correlation) likely associated with fluid inclusions decrepitation at LT as is often the case in K-feldspars. Mean ages on the LT steps are confirmed by inverse isochron diagrams that include all young steps (thus more data than pseudo-plateaus)

- Isochron diagrams that include all young steps (thus more data than pseudo-plateaus) suggesting that excess argon can be corrected even in the first steps, and that pseudo-plateau ages are meaningful. Such pseudoplateaus followed by an age increase can be interpreted as resulting from rapid cooling events, which occurred in the present case around 40 Ma. Note that G5 plateau is slightly older (42.7±2.4 Ma) than that
- of G7 (39.2±0.8 Ma). An alternative interpretation is that feldspar growth happened during nappe-stacking metamorphism around old feldspar cores. In this case pseudoplateaus correspond to quenching of those neoformed feldspar mantles after deformation. In any case, and given the fairly low argon retentivity in feldsdpars, this suggests

that the dated samples are at temperatures below 220-150°C since 43-39 Ma, and that no later reheating is needed to explain the age spectrum. Such temperatures are too low for quartz plasticity and for only ductile deformation in gneissic rocks, implying that the ductile northeastward shear affecting the gneisses of the E Pelion flank have ^₅ occurred before ~40 Ma.

Mylonitic samples G9606 and G9607 (micaschists affected by northeastward shear) were sampled 2 km NW of Kalamaki guarry close to to a ~10° E dipping fault contact in units directly overlying the orthogneisses. Finegrained plagioclase (G9606) gives a fairly good plateau at 17.9±0.5 Ma on two steps that correspond to more than 90% of the gaz release (Fig. 4d). Muscovite (G9607) shows a raising spectra with a low

- temperature average age of 17.8 ± 0.6 Ma on the two first steps (42% of gaz release, Fig. 4c), prior to ages that rise up to 250 Ma. Such age spectra is interpreted as the result of mixing ~18 Ma muscovites with older metamorphic grains. Like those obtained by Lips et al. (1999) on fine-grained white-micas (40–15 Ma, Table 1), these \sim 18 Ma
- 15 ages likely correspond to crystallization ages associated with continuing normal motion on foliation parallel shear zones. This implies that extensional shear towards the NE occurred during the 40–15 Ma period thus after the cooling event documented on K-feldspars. Altogether the data ages suggest that part of the penetrative shear occurred at relatively low temperature (less than 220°C) probably by brittle-ductile shear localized in micaschists and marbles.

25

Pliocene reorganization along the edge of the Aegean through 3

The ductile fabric associated with eastward normal shear along the E coast of Pelion is cut by numerous joints and tension gashes (Fig. 3e), which are generally filled with guartz and/or epidote-chlorite, or locally with diabase dykes (Fig. 3f). The joints are nearly vertical and strike N 140° E on the average. They are perpendicular to stretching lineations in the surrounding rocks and roughly parallel to the trend of the coast. An outcrop on the seashore near Milopotamos (~10 km N of section of Fig. 2c) displays a

eED 2, 1–35, 2007						
Exhumation of metamorphic rocks in N Aegean R. Lacassin et al.						
Title	Page					
Abstract	Abstract Introduction					
Conclusions	References					
Tables Figures						
14	۶I					
	•					
Back	Back Close					
Full Screen / Esc						
Printer-friendly Version						
Interactive Discussion						

diabase dyke parallel to the N 140° E gash set (Fig. 3f). A younger set of vertical joints, striking N 80° E to N 100° E, cuts obliquely the N 140° E gashes and the dyke, as well as the surrounding rock fabric (Fig. 3f). The sample G9611 taken from the diabase dyke has a saddle-shape age spectra characteristic of excess argon. The two steps with minimum age give 5.4±0.2 Ma age while the inverse isochron age is 4.0±0.2 Ma with a clear indication of excess argon (Fig. 4e). We interpret the isochron age as dating the

emplacement of the dyke. The simplest interpretation of joint geometry and dyke age is that northeastward

brittle-ductile shear was followed by the formation of the N 140° E gashes at ca. 5.4 Ma. The fact that the N 140° E gashes are perpendicular to the stretching lineation suggests that the gashes formed at a time when the extension direction (σ 3) was roughly the same than the stretching direction during ductile normal shearing. This could suggest that the extension direction remained roughly the same since 40 Ma until ~4 Ma. Alternatively, the gashes may have formed at the end of ductile shear just after 40 Ma,

and the diabase dykes would have intruded at ~4 Ma within the resulting, still favorably oriented, anisotropy. In any case, the late, ~E-W joint set, clearly formed after ~4 Ma. It reveals a recent, early Pliocene–Quaternary shift towards a more N-S extension direction consistent with the strike of onshore and offshore active faults and the moment tensor solutions of regional earthquakes (Fig. 2a).

20 4 Timing of metamorphic rock exhumation and of North Anatolian Fault propagation

Our structural observation and Ar/Ar data yield us to conclude that final exhumation of the OOP range resulted from three successive tectonic stages, all involving normal faulting (Fig. 5). Structural observations and cooling histories imply that, in the Pelion range (Lips et al., 1999; this work), as well as in Ossa and Olympos (Schermer et al., 1990; Lips et al., 1998), a large part of the exhumation of metamorphic units occurred before or during the Eocene. In eastern Pelion, rapid cooling down to temperatures

2, 1–3:	5, 2007					
Exhumation of metamorphic rocks in N Aegean R. Lacassin et al.						
Title	Page					
Abstract	Abstract Introduction					
Conclusions	References					
Tables Figures						
I	►I					
•	•					
Back	Back Close					
Full Scre	Full Screen / Esc					
Printer-frier	Printer-friendly Version					
Interactive Discussion						

below 220°C occurred around 40 Ma. At that time, presently outcropping gneisses were brought to less than ca. 10 to 6 km depth (for thermal gradients between 20 and 40°/km), and the ductile, penetrative eastward normal shear started to be more localized and brittle. The stacking of thrust nappes occurred after the deposition of
the post-Ypresian turbidites in the Olympos, thus after ~50 Ma. Same age constrain (Lutetian nummulites in the Almyropotamos unit) on thrusting exist in Eubeoa, SE of Pelion (e.g. Shaked et al., 2000). We thus infer that the main phase of normal ductile detachment and exhumation, before and around 40 Ma, was most probably coeval with the final stacking of thrust nappes, and older than the onset of Aegean extension

- (Fig. 5). It could be due to upward wedge extrusion above a crustal thrust ramp as in the Himalayas or Pamir (e.g. Hodges et al., 1992; Brunel et al., 1994). As the Pelion units remained at temperatures compatible with brittle-ductile extensional shear and white-micas crystallization until ~18 Ma, we infer a modest amount of cooling (few tenths of degrees) between ~40 Ma and ~18 Ma and thus a limited exhumation (Fig. 5).
- The low-temperature crystallization ages between 20 and 15 Ma (Lips et al., 1999; this work), as well as the 17–28 Ma cooling event(s) in the Olympos range (Schermer et al., 1990), are ascribed to a second episode of extension nearly coaxial with the first one. That second event is associated with NNE-SSW normal faults responsible for the overall relief and trend of the coast. The age of that event corresponds to the onset of Aegean back-arc extension (Fig. 5; Jolivet et al., 1994; Gautier and Brun, 1994).

A final phase of extension, and possibly of exhumation, was triggered by the propagation of the North Anatolian fault (NAF) that entered the N Aegean about 5 Ma ago (Armijo et al., 1999). Along the Olympos-Pelion range and in the North Aegean trough, the onset of NAF-related deformation is marked by the formation of new faults (Figs. 1,

2a) that cut obliquely older extensional structures. Our results suggest that the change in the extension direction and in the geometry of the faults occurred after 4 Ma (Figs. 4e, 5), thus immediately after the NAF propagated across the Dardanelles, W of the Marmara sea (Fig. 1), at ~5 Ma (Armijo et al., 1999).

Although our conclusions require more data (e.g. low T° thermochronology) to be

2, 1–35	o, 2007				
Exhumation of metamorphic rocks in N Aegean R. Lacassin et al.					
Title F	Page				
Abstract Introduction					
Conclusions	References				
Tables Figures					
I4 PI					
	•				
Back Close					
Full Scre	en / Esc				
Printer-friendly Version					
Interactive Discussion					

confirmed, we infer that multiphased exhumation histories, associated to changes in fault geometry and kinematics, like those we document in the OOP ranges, are probably common in the Aegean. In particular, a large part of the exhumation of metamorphic units may have been synorogenic, as suggested by Avigad and Garfunkel (1991)

Jolivet and Patriat (1999) and Jolivet et al. (2003), for instance. In addition, the inception of the most recent active fault system is not the straightforward continuation of the Aegean back-arc extension. Our age constrains, as well as the documented large-scale changes in fault geometry and kinematics (e.g. Armijo et al., 1996, 2004), suggest that it has been largely affected by the propagation of the NAF since ~5 Ma.

10 Appendix A

A1 ⁴⁰Ar/³⁹Ar techniques

The minerals were separated using heavy liquids, a Frantz magnetic separator and finally by hand picking under a binocular microscope. The samples were irradiated at the Phoenix Memorial Laboratory reactor of the University of Michigan, in the L67 position for 20 h under a 10¹⁸ neutrons cm⁻² s⁻¹ flux. Irradiation interference on K, Ca and Cl were corrected by irradiation of KCl and CaF₂ pure salts. J factors were estimated by the use of duplicates of the Fish Canyon sanidine standard with an age of 28.48 Ma (Schmitz et Bowring, 2001; Schmitz et al., 2003).

The samples were analyzed in Clermont-Ferrand. Samples were loaded in aluminum

²⁰ packets into a double vacuum Staudacher type furnace, which temperature is calibrated by means of a thermocouple, and step heated. The gas was purified by the means of cold traps with liquid air and Al-Zr geters. Once cleaned, the gas was introduced into a VG3600 mass spectrometer, and 2 min were allowed for equilibration before analysis was done statically. Signals were measured by the mean of a Faraday cup with a resistor of 10¹¹ ohm for ⁴⁰Ar and ³⁹Ar while ³⁹Ar, ³⁸Ar, ³⁷Ar and ³⁶Ar were analyzed with a photomultiplier after interaction on a Daly plate. Gain between both

collectors was estimated by duplicate analysis of ³⁹Ar on both during each analysis, and also by statistical analysis on a period of several years. This gain is in average of 95 and is know at better than 1.5%. This error is included in the age calculation, along with analytical errors on each signal and errors on the blank values. Age plateau given ⁵ are weighted mean plateaus which error takes the error on the J factor into account. The isochron ages are obtained in an inverse isochron diagram of ³⁶Ar/⁴⁰Ar versus ³⁹Ar/⁴⁰Ar (Roddick, 1978; Roddick et al., 1980), which allows homogeneous excess components to be individualized in many occasions. Errors on age and intercept age include individual errors on each point and linear regression by York's method (1969).

¹⁰ The goodness of it relative to individual errors is measured by Mean Square Weighted Deviation (MSWD).

For Micas, classical furnace step heating was conducted to extract age spectra and inverse isochrons. A more peculiar step heating schedule was conducted on K-feldspar in order to retrieve diffusion characteristics (Harrison et al., 1991; Lovera et al., 1989,

15 1991). We also conducted duplicated isothermal step heating at low temperatures (450–800°C), often yielding a sawtooth-shaped age spectrum where the second of the two stages is systematically younger and probably less affected by excess argon.

A2 Interpretation of age spectra, notably on K-felspars

With the historical decrease of analytical errors, strict plateau criteria (Dalrymple and Lanphere, 1974; Berger and York, 1981) are less and less easily reconciled with real data, and thus pseudoplateaus were defined, when a significant amount of continuous steps overlap globally at 2σ even if contiguous steps do not. The use of pseudoplateaus or isochrons on series of steps on K-feldspars is justified by their peculiar structure, allowing, in certain circumstances the extraction of cooling histories and especially rapid cooling events, which are theoretically marked by flat portions of the age

spectra (Lovera et al., 1989, 1991).

References

15

20

- Armijo, R., Meyer, B., King, G. C. P., Rigo, A., and Papanastassiou, D.: Quaternary evolution of the Corinth Rift and its implications for the late Cenozoic evolution of the Aegean, Geophys. J. Int., 126, 11–53, 1996.
- Armijo, R., Meyer, B., Hubert, A., and Barka, A.: Westward propagation of the North Anatolian Fault into the northern Aegean; timing and kinematics, Geology (Boulder), 27, 267–270, 1999.
 - Armijo, R., Flerit, F., King, G., and Meyer, B.: Linear elastic fracture mechanics explains the past and present evolution of the Aegean, Earth Planet. Sci. Lett., 217(1–2), 85–95, 2004.
- Avigad, D. and Garfunkel, Z.: Uplift and exhumation of high-pressure metamorphic terrains: the example of the cycladic blueschist belt (Aegean Sea), Tectonophysics, 188, 357–372, 1991.
 Berger, G. W. and York, D.: Geothermometry from ⁴⁰Ar/³⁹Ar dating experiments, Geochem. Cosmochem. Acta, 45, 795–811, 1981.
 - Brun, J. P., Sokoutis, D., and Van den Driessche, J.: Analogue modeling of detachment fault systems and core complexes, Geology, 22, 319–322, 1994.
 - Brunel, M., Arnaud, N., Tapponnier, P., Pan, Y., and Wang, Y.: Kongur Shan normal fault: type example of mountain building assisted by extension (Karakoram fault, eastern Pamir), Geology, 22, 707–710, 1994.

Buick, I. S.: The late alpine evolution of an extensional shear zone, Naxos, Greece, J. Geol. Soc. London, 148, 93–103, 1991.

Celet, P. and Ferrière, J.: Les Hellénides internes: le Pélagonien: Eclogae Geologicae Helveticae, 71, 467–495, 1978.

Dalrymple, G. B. and Lanphere, M. A.: ⁴⁰Ar/³⁹Ar age spectra of some undisturbed terrestrial samples, Geochim. Cosmochim. Acta, 38, 715–738, 1974.

- Fleury, J. J. and Godfriaux, I.: Arguments pour l'attribution de la série de la fenêtre de l'Olympe (Grèce) à la zone de Gavrovo Tripolitza: présence de fossiles du Maastrichtien et de l'Eocène inférieur (et moyen ?), Annales de la Société Géologique du Nord, 94, 149–156, 1974. Gautier, P. and Brun, J. P.: Ductile crust exhumation and extensional detachments in the central Aegean (Cyclades and Evvia Islands), Geodinamica Acta, 7, 57–85, 1994.
- Gautier, P., Brun, J.-P., Moriceau, R., Sokoutis, D., Martinod, J., and Jolivet, L.: Timing, kinematics and cause of Aegean extension: a scenario based on a comparison with simple analogue experiments, Tectonophysics, 315, 31–72, 1999.

2, 1–3	5, 2007					
Exhumation of metamorphic rocks in N Aegean R. Lacassin et al.						
Title	Page					
Abstract	Abstract Introduction					
Conclusions	References					
Tables Figures						
I۹	۶I					
	•					
Back	Back Close					
Full Screen / Esc						
Printer-friendly Version						
Interactive Discussion						

- Goldsworthy, M., Jackson, J., and Haines, J.: The continuity of active fault systems in Greece, Geophys. J. Int., 148, 596–618, 2002.
- Harrison, T. M., Lovera, O. M., and Heizler, M. T.: ⁴⁰Ar/³⁹Ar results for alkali feldpsars containing diffusion domains with differing activation energy, Geochim. Cosmochim. Acta, 55, 1435–1448, 1991.
- Hatzfeld, D., Ziazia, M., Kementzetzidou, D., Hatzidimitriou, P., Panagiotopoulos, D., Makropoulos, K., Papadimitriou, P., and Deschamps, A.: Microseismicity and focal mechanisms at the western termination of the North Anatolian Fault and their implications for continental tectonics, Geophys. J. Int., 137, 891–908, 1999.
- Hodges, K. V., Parrish, R. R., Housh, T. B., Lux, D. R., Burchfiel, B. C., Royden, L. H., and Chen, Z.: Simultaneous Miocene extension and shortening in the Himalayan orogen, Science, 258, 1466–1470, 1992.
 - Jolivet, L., Brun, J. P., Gautier, P., Lallemant, S., and Patriat, M.: 3D-kinematics of extension in the Aegean region from the early Miocene to the present; insights from the ductile crust,
- ¹⁵ Bull. Soc. Geol. Fr., 165, 195–209, 1994.

5

- Jolivet, L. and Patriat, M.: Ductile extension and the formation of the Aegean Sea, in: The Mediterranean basins: Tertiary extension within the Alpine orogen, edited by: Durand, B., Jolivet, L., Horvath, F., and Séranne, M., Geol. Soc. Spec. Publ., London, 156, 427–456, 1999.
- Jolivet, L., Faccenna, C., Goffé, B., Burov, E., and Agard, P.: Subduction tectonics and exhumation of high-pressure metamorphic rocks in the Mediterranean orogens, Am. J. Sci., 303, 353–409, 2003.
 - Laigle, M., Hirn, A., Sachpazi, M., and Roussos, N.: North Aegean crustal deformation: An active fault imaged to 10 km depth by reflection seismic data, Geology, 28, 71–74, 2000.
- Le Pichon, X. and Angelier, J.: The Aegean sea, Phil. Trans. R. Soc. Lond., A, 300, 357–372, 1981.
 - Lister, G. S., Banga, G., and Feenstra, A.: Metamorphic core complexes of cordilleran type in the Cyclades, Aegean Sea, Greece, Geology, 12, 221–225, 1984.
- Lips, A. L. W., White, S. H., and Wijbrans, J. R.: 40Ar/39 Ar laserprobe direct dating of discrete deformational events; a continuous record of early Alpine tectonics in the Pelagonian Zone,
 - NW Aegean area, Greece, Tectonophysics, 298, 133–153, 1998. Lips, A. L. W., Wijbrans, J. R., and White, S. H.: New insights from ⁴⁰Ar/³⁹Ar laserprobe dating of white mica fabrics from the Pelion Massif, Pelagonian Zone, internal Hellenides, Greece;

2, 1–35, 2007 Exhumation of metamorphic rocks in N Aegean

R. Lacassin et al.

eEC

implications for the timing of metamorphic episodes and tectonic events in the Aegean region, in: The Mediterranean basins, Tertiary extension within the Alpine Orogen, edited by: Durand, B., Jolivet, L., Horvath, F., and Séranne, M., Geol. Soc. Spec. Publ., London, 156, 457-474, 1999.

⁵ Lovera, O. M., Richter, F. M., and Harrison, T. M.: The ⁴⁰Ar/³⁹Ar thermochronometry for slowly cooled samples having a distribution of diffusion domain sizes, J. Geophys. Res., 94, 17917-17 935, 1989.

- Mascle, G. and Martin, L.: Shallow structure and recent evolution of the Aegean sea: a synthe-10 sis based on continuous reflection profiles, Marine Geol., 94, 271-299, 1990.
 - McKenzie, D. P.: Active tectonics of the alpine-himalayan belt: the Aegean sea and surrounding region, Geophys. J. Roy. Astr. Soc., 30, 109–185, 1978.

McNeil, L. C., Mille, A., Minshull, T. A., Bull, J. M., Kenyon, N. H., and Ivanov, M.: Exten-

sion of the North Anatolian Fault into the North Aegean trough: Evidence for transtension, 15 strain partitioning, and analogues for Sea of Marmara basin models, Tectonics, 23, TC2016, doi:10.1029/2002TC001490, 2004.

Mercier, J. L., Sorel, D., Vergely, P., and Simeakis, K.: Extensional tectonic regimes in the Aegean basin during the Cenozoic, Basin Res., 2, 49–71, 1989.

²⁰ Papanikolaou, D., Alexandri, M., Nomikou, P., and Ballas, D.: Morphotectonic structure of the western part of the North Aegean Basin based on swath bathymetry, Mar. Geology, 190, 465-492, 2002.

Passchier, C. W. and Trouw, R. A. J.: Microtectonics, Springer, Berlin, 289 pp., 1998.

25

Roddick, J. C.: The application of isochron diagrams in (super 40) Ar - (super 39) Ar dating, a discussion, Earth Planet. Sci. Lett., 41, 233-244, 1978.

- Roddick, J. C., Cliff, R. A., and Rex, D. C.: The evolution of excess argon in alpine biotites, Earth Planet. Sci. Lett., 48, 185-208, 1980.
- Schermer, E.: Geometry and kinematics of continental basement deformation during the Alpine Orogeny, Mt. Olympos region, Greece, J. Struct. Geol., 15, 571–591, 1993.

30 Schermer, E. R., Lux, D. R., and Burchfiel, B. C.: Temperature-time history of subducted continental crust, Mount Olympos region, Greece, Tectonics, 9, 1165-1195, 1990. Shaked, Y., Avigad, D., and Garfunkel, Z.: Alpine high-pressure metamorphism at the Almy-

ropotamos window (Soutern Evia, Greece), Geol. Mag., 137, 367-380, 2000.

eED 2, 1–35, 2007						
Exhumation of metamorphic rocks in N Aegean R. Lacassin et al.						
Title	Page					
Abstract	Introduction					
Conclusions	References					
Tables Figures						
I.	۶I					
Back	Back Close					
Full Screen / Esc						
Printer-frie	Printer-friendly Version					
Interactive Discussion						

Lovera, O. M., Richter, F. M., and Harrison, T. M.: Diffusion domains determined by 39Ar released during step heating, J. Geophys. Res., 96, 2057-2069, 1991.

Schmitz, M. D. and Bowring, S. A.: U-Pb zircon and titanite systematics of the Fish Canyon Tuff: an assessment of high-precision U-Pb geochronology and its application to young volcanic rocks, Geochim. Cosmochim. Acta, 65, 2571–2587, 2001.

Schmitz, M. D., Bowring, S. A., Ludwig, K. R., and Renne, P. R.: Comment on "Precise K-Ar, 40Ar-39Ar, Rb-Sr and U-Pb mineral ages from the 27.5 Ma Fish Canyon Tuff reference

5

10

standard" by M. A. Lanphere and H. Baadsgaard, Chemical Geology, 199, 277–280, 2003. Vergely, P. and Mercier, J. L.: La fenêtre métamorphique de l'Olympe (Macédonie, Grèce): compression et extension cénozoique, Bull. Soc. Geol. Fr., 6, 819–829, 1990.

Walcott, C. R.: The alpine evolution of Thessaly (NW Greece) and late Tertiary Aegean kinematics, Geologica Ultraiectina, Utrecht University, 162, 176 pp., 1998.

York, D.: Least squarefitting o a straight line with correlated errors, Earth Planet. Sci. Lett., 5, 320–324, 1969.

2, 1–3	5, 2007				
Exhumation of metamorphic rocks in N Aegean R. Lacassin et al.					
Title	Page				
Abstract Introduction					
Conclusions References					
Tables	Tables Figures				
I	۶I				
•	•				
Back Close					
Full Screen / Esc					
Printer-friendly Version					
Interactive Discussion					

Table 1. Summary of published Ar-Ar ages from the Olympos – Ossa – Pelion ranges.

Unit	Mineral (sample No.)	Age	Remarks	Exhumation of metamorphic rocks in
Mount Olympos - Sch	nermer et al. (1990)			N Aegean
Unit: Ambelakia	Phengite (A1) Phengite (A2–3)	39.6±0.9 37–100 (A2) 32–69 (A3)	Plateau age Gradient in age spectrum	R. Lacassin et al.
Unit: Pierien	Phengite (P1) Microcline (P1) Phengite (P2–3)	57±1.8 (HT) 28–49.6 40–56 (P2) 36–55 (P3)	HT plateau age, LT gradient down to 45 Ma Diffusive gradient – LT steps at ~28 Ma Gradient in spectrum	Title Page
	Phengite (P4)	53.9±0.8 (pla) 53.1±0.7 (iso)	Plateau and isochron ages	Abstract Introduction
	Phengite (P5)	61.7±0.8 (pla) 60.7±1.3 (iso)	HT plateau/isochron age, LT gradient down to 41 Ma	Conclusions References
	Phengite (P6)	57–66 (grad) 60.3±1.4 (iso)	Gradient spectrum – Isochron age	Tables Figures
	Microcline (P7) [1]	36–84	Diffusive gradient – LT steps at ~36 Ma	
	Microcline (P8) Phengite (P9–10–11)	23–45.5 38–58 (P9) 42–59 (P10) 40–72.6 (P11)	Diffusive gradient – LT steps at ~24 Ma Gradient in spectrum	
	Microcline (P10-11)	16.25–56 (P10) 19.5–53.5 (P11)	Diffusive gradient – LT steps ~17 (P10) and 20 (P11)	
Unit: Infrapierien	Phengite (IP1)	56–98	Gradient in spectrum – 98±2.3 Ma isochron on HT steps	Back Close
	Phengite (IP3)	51–65	Gradient in spectrum – 63.3±1.7 Ma on HT steps	Full Screen / Esc
Notes	[1] Weakly deformed gra	anodiorite with ~295 N	Aa hornblende and biotite cooling ages.	Printer-friendly Version

2, 1–35, 2007

Interactive Discussion

Table 1. Continued.

Unit	Mineral (sample No.)	Age	Remarks	Exhumation of		
Ossa – Lips et al. (1998)				metamorphic rocks in		
Allochtoneous units (W flank of Ossa)	WM 1 [2]	54.2±2.8	Plateau age – age of mylonitic fabric	N Aegean		
,	WM 3	45.5±1.4	id-	R. Lacassin et al.		
	WM 138	53.7±3.6	id-	Th. Edddoolff of di.		
	WM 146	55.4±1.7	id-			
	WM 149	55.8±4.0	id-			
Notes	micas in mylonitic foliat We only report in this ta	on). WM Porphyrod able the ages of WM between ca. 78 and	Ilations in each sample (porphyroclasts, fine-grained clasts gave cooling ages between ca. 293 and 102 Ma. I in greenschist mylonitic fabrics. WM from blueschist d 85 Ma (fabric age). One biotite gave a well defined	Title Page Abstract Introduction		
Delien Line et el (1000)		(ocomig age).		Conclusions References		
Pelion – Lips et al. (1999)				Tables Figures		
Pelion massif	WM 5 [3]	37.1±1.1	Plateau age – age of mylonitic fabric	Tableo Tiguroo		
	WM 5	21.5±1.8	id-			
	WM 5	15.5±3.2	id-	▶		
	WM6	34.9±2.6	id-			
	WM 6	15.5±2.0	id-			
	WM 7	26.8±4.1	id-			
	WM 9	53.9 ± 5.9	id-			
	WM 9	39.1±1.6	id-	Back Close		
	WM 9	39.4±1.5	id-			
	WM 10	32.3±1.25	id-	Full Screen / Esc		
Notes	Pelion massif. WM porp Cretacous ages (95 Ma	phyroclasts from Pe). WM from Antihas	nicas (WM) in greenschist mylonitic fabrics from the lion samples gave Paleozoic(293, 305 Ma) or sia (SW of Olympos) and Mavrovouni (between Pelion lesozoic cooling ages (89 to 150 Ma).	Printer-friendly Version		
				Interactive Discussion		

eED

2, 1–35, 2007

Table 2. ⁴⁰Ar/³⁹Ar ages statistical analysis obtained on metamorphic minerals from the Pelion ranges. For each sample, the age spectra and inverse isochrons are analysed, with selected steps and resulting age, plus notes detailing the reasons for the choice of selected steps. Age spectra: the range of ages on the spectra is indicated, plus the calculated age on the selected steps below; inverse isochron: the calculated age is shown with selected steps below, the resulting ⁴⁰Ar/³⁶Ar intercept and the MSWD of the regression. Finally, when age spectra and inverse isochron analysis disagree on age results, a preferred age is proposed for the reason given in notes.

eED

2, 1-35, 2007

Exhumation of metamorphic rocks in N Aegean

R. Lacassin et al.

Title Page						
Abstract	Abstract Introduction					
Conclusions References						
Tables Figures						
I4 M						
•						
Back Close						
Full Screen / Esc						
Printer-friendly Version						
Interactive Discussion						

Pelion – This work	Age spectra			Inverse isochro	n			Preferred age	Note
Mineral/Sample Lat Long coord.	Range of age in steps	Plateau (P) or Pseu- doplateau (PP) age (1)	Note (2)	Age (3)	⁴⁰ Ar/ ³⁶ Ar	MSWD	Note		
K-feldspar G5 N 39°19′50″ E 23°13′	40 to 136	42.7±2.4 (PP on 6–16, 26%)	LT steps	42.1±0.9 (6-16)	290±15	15,9		42.7±2.4	Age on LT steps, likely represent last cooling
K-feldspar G7 N 39°20'52'' E 23°13'38''	34 to 80	39.2±0.8 (PP on 8–19, 23.9%)	LT steps	39.6±0.4 (2, 4, 6, 8–19)	288±21	6,0	Isochron larger than plateau on all LT points	39.2±0.8	id-
Plagioclase G9606 N 39°21'18" E 23°11'53"	17.0 to >58	17.9±0.5 (PP on 1–2, 94%)	Used steps are the maximum of K/Ca on the spectra	-	-	-		17.9±0.5	
Muscovite G9607 N 39°21' E 23°21'	18.8 to >65	17.8±0.6 (PP on 1–2, 42%)	Used steps are the maximum of K/Ca on the spectra	26.6±2.3 (3–9)	1322±55	2,2	Isochron on HT points with strong excess, probably undercor- rected and leading to unrealistic age	17.8±0.6	
Basalt G9611 N 39°22'40'' E 23°12'18''	5.4 to >68 saddle shape	5.4±0.2 (PP on 3–4, 47%)	Used steps are the maximum of K/Ca on the spectra	5.3±0.8 (1-4)	312±17	26,0	HT points with excess rapidly increase MSWD	4.0±0.2	Saddle shape sug- gests excess revealed by isochron with best MSWD. Age probably close to real emplace- ment age.
				4,0±0.2 (2-4)	356±8	0,6	Isochron restricted to first 3 steps		

(1) All ages are pseudoplateau ages (criteria are discussed in the text) given with numbers of steps used to calculate them and the amount of 39Ar realeased comprised in the "plateau".

(2) LT: low temperature, HT: high temperature

(3) Ages are given with numbers of steps used to calculate them

Appendix B

Table of analytical results

Results ⁴⁰Ar/³⁹Ar dating by step heating analysis. For plagioclase (Table B1), micas (Table B2) and basalt (Table B3) the table gives isotopic data errors and age, with the experimental ³⁹Ar moles released and cumulative $\%^{39}$ Ar. Ratios are corrected for blanks, analytical deviations and neutron interference reactions only. J factor is given for each analysis. For the K-feldspars (Tables B4, B6), an additional table (Tables B5, B7) is provided, which gives diffusion parameters calculated during heating, with the inverse of absolute temperature (1000/T), and diffusion data for each step. Also shown are activation energy E and frequency factor as log(D_a/r_a²) obtained by linear regression on arrhenius plots with associated errors.

eED

2, 1–35, 2007

Exhumation of metamorphic rocks in N Aegean

R. Lacassin et al.

Title Page							
Abstract	Introduction						
Conclusions	References						
Tables	Figures						
	• •						
Back	Close						
Full Scre	en / Esc						
Printer-friendly Version							
Interactive I	Discussion						

2, 1–35, 2007

Exhumation of metamorphic rocks in N Aegean

R. Lacassin et al.

Title Page								
Abstract	Introduction							
Conclusions	References							
Tables Figures								
•	•							
Back	Close							
Full Scre	en / Esc							
Printer-friendly Version								
Interactive	Discussion							

EGU

Table B1.

Temp °C	⁴⁰ Ar/ ³⁹ Ar	³⁸ Ar/ ³⁹ Ar	³⁷ Ar/ ³⁹ Ar	³⁶ Ar/ ³⁹ Ar (10 ⁻³)	³⁹ Ar (10 ⁻¹⁴ moles)	F ³⁹ Ar released	% ⁴⁰ Ar*	⁴⁰ Ar*/ ³⁹ Ar	Age Ma	±1σ Ma
G 96–6	Plagioclase	J=0.01	74380							
700	8.188	0.025	0.024	26.340	7.68	25.15	6.66	0.55	17.07	0.56
900	0.821	0.018	0.013	0.830	20.97	93.81	70.06	0.57	18.00	0.38
1004	1.394	0.020	0.171	1.680	0.94	96.87	65.42	0.91	28.50	0.90
1203	3.423	0.020	0.735	5.471	0.75	99.32	54.87	1.89	58.48	1.38
1407	17.747	0.028	2.485	45.620	0.21	100.00	26.33	4.77	144.09	3.98

2, 1–35, 2007

Exhumation of metamorphic rocks in N Aegean

R. Lacassin et al.

Title Page								
Abstract	Introduction							
Conclusions	References							
Tables Figures								
•	•							
Back	Close							
Full Scre	een / Esc							
Printer-friendly Version								
Interactive	Discussion							

EGU

Table B2.

Temp °C	⁴⁰ Ar/ ³⁹ Ar	³⁸ Ar/ ³⁹ Ar	³⁷ Ar/ ³⁹ Ar	³⁶ Ar/ ³⁹ Ar (10 ⁻³)	³⁹ Ar (10 ⁻¹⁴ moles)	F ³⁹ Ar released	% ⁴⁰ Ar*	⁴⁰ Ar*/ ³⁹ Ar	Age Ma	±1 <i>σ</i> Μa
G	96 7	Ser	icite	J=0	.0174300					
700	5.402	0.022	0.135	16.561	16.56	19.75	11.14	0.60	18.85	0.45
804	0.677	0.018	0.089	0.435	18.72	42.09	81.34	0.55	17.24	0.35
914	1.236	0.018	0.452	0.410	41.09	90.96	92.27	1.14	35.62	0.71
956	1.923	0.019	1.710	1.172	5.11	96.98	87.79	1.71	53.04	1.05
1007	2.644	0.020	3.029	2.768	1.09	98.25	76.87	2.08	64.33	1.37
1054	6.474	0.019	12.122	6.796	0.42	98.70	81.64	5.86	175.33	3.46
1106	10.160	0.021	21.815	11.800	0.22	98.92	80.23	9.88	286.74	5.61
1202	9.866	0.020	16.047	11.134	0.28	99.21	77.79	8.81	257.72	5.12
1409	10.889	0.021	17.073	15.591	0.77	100.00	68.62	8.66	253.62	4.82

2, 1–35, 2007

Exhumation of metamorphic rocks in N Aegean

R. Lacassin et al.

Title Page							
Abstract	Introduction						
Conclusions	References						
Tables Figures							
I۹	FI						
•	•						
Back	Close						
Full Scre	een / Esc						
Printer-friendly Version							
Interactive	Discussion						

EGU

Table B3.

Temp °C	⁴⁰ Ar/ ³⁹ Ar	³⁸ Ar/ ³⁹ Ar	³⁷ Ar/ ³⁹ Ar	³⁶ Ar/ ³⁹ Ar (10 ⁻³)	³⁹ Ar (10 ⁻¹⁴ moles)	F ³⁹ Ar released	% ⁴⁰ Ar*	⁴⁰ Ar*/ ³⁹ Ar	Age Ma	±1 <i>σ</i> Μa
G 96 11		basalte	J=0.01	75000						
700	5.521	0.022	1.500	18.241	25.67	39.88	5.85	0.33	10.29	1.87
800	0.382	0.018	0.580	0.843	17.89	67.89	44.24	0.17	5.35	0.14
900	0.440	0.018	0.569	1.018	11.98	86.64	39.94	0.18	5.56	0.17
1000	0.912	0.019	0.773	2.378	5.96	95.95	29.25	0.27	8.46	0.22
1100	2.842	0.021	3.835	6.624	1.14	97.68	40.98	1.20	37.55	0.79
1200	4.554	0.023	5.358	9.546	0.54	98.50	46.73	2.22	68.88	1.66
1400	6.013	0.023	4.979	12.016	1.00	100.00	47.34	2.97	91.27	1.81

Table B4.

Temp °C	⁴⁰ Ar/ ³⁹ Ar	³⁸ Ar/ ³⁹ Ar	³⁷ Ar/ ³⁹ Ar	³⁶ Ar/ ³⁹ Ar (10 ⁻³)	³⁹ Ar (10 ⁻¹⁴ moles)	F ³⁹ Ar released	% ⁴⁰ Ar*	⁴⁰ Ar*/ ³⁹ Ar	Age Ma	±1 <i>σ</i> Μa
G5	K-feldspar	J=0.0071350		wt=7.1 mg						
394	23.068	0.038	0.002	35.499	0.02	0.49	0.51	12.77	157.36	4.16
400	12.487	0.036	0.010	27.842	0.01	0.67	0.22	4.41	55.94	12.16
452	11.028	0.030	0.000	10.788	0.06	2.06	0.53	7.90	98.92	6.22
558	21.156	0.040	0.000	13.533	0.09	4.19	0.79	17.23	209.19	4.05
558	5.624	0.024	0.001	4.556	0.05	5.39	0.60	4.30	54.55	2.67
608	5.142	0.022	0.001	6.372	0.07	7.19	0.64	3.29	41.91	0.83
608	3.935	0.022	0.000	2.798	0.07	8.86	0.62	3.12	39.77	1.98
657	3.939	0.023	0.001	2.538	0.10	11.27	0.72	3.20	40.77	1.18
657	3.719	0.023	0.001	1.194	0.08	13.20	0.72	3.37	42.90	1.82
704	3.748	0.021	0.000	1.877	0.10	15.60	0.75	3.20	40.77	1.20
704	3.789	0.021	0.000	0.783	0.08	17.69	0.75	3.56	45.28	1.77
800	11.444	0.026	0.000	27.603	0.25	23.83	0.29	3.44	43.74	0.94
785	3.886	0.021	0.001	1.675	0.17	27.98	0.73	3.40	43.24	1.48
800	3.564	0.022	0.001	0.685	0.13	31.17	0.69	3.37	42.80	2.27
700	5.329	0.039	0.010	0.000	0.02	31.67	0.22	5.33	67.34	11.43
794	4.138	0.021	0.002	3.388	0.05	32.82	0.53	3.16	40.17	3.03
896	3.928	0.021	0.000	0.895	0.17	36.98	0.86	3.67	46.61	1.08
999	4.483	0.021	0.000	0.926	0.48	48.68	0.91	4.21	53.45	1.07
1097	7.081	0.024	0.000	1.357	0.71	66.28	0.93	6.69	84.09	1.65
1199	10.484	0.028	0.000	1.788	1.20	95.91	0.94	9.97	123.92	2.44
1400	12.604	0.027	0.001	5.597	0.17	100.00	0.80	10.98	136.08	2.91

eED

2, 1–35, 2007

Exhumation of metamorphic rocks in N Aegean

R. Lacassin et al.

Printer-friendly Version

Interactive Discussion

EGU

Table B5.

Temp	Time	f	D/r ²	1000/T (K ⁻¹)	$-\log(D/r^2)$	log(r/r _o)					
°C	min			(K)							
E=288	E=28899 cal/mol +- 1540 log(Do/ro)=1.39/s +-0.43										
394	20	0.49	1.55 E-08	1.499	7.809	-0.137					
400	30	0.67	9.43 E–09	1.486	8.026	0.014					
452	99	2.06	5.02 E08	1.379	7.299	-0.013					
558	21	4.19	8.31 E–07	1.203	6.081	-0.067					
558	30	5.39	5.01 E–07	1.203	6.300	0.043					
608	20	7.19	1.48 E-06	1.135	5.829	0.023					
608	30	8.86	1.17 E-06	1.135	5.933	0.075					
657	20	11.27	3.18 E-06	1.075	5.498	0.046					
657	30	13.20	2.06 E-06	1.075	5.685	0.140					
704	20	15.60	4.52 E–06	1.024	5.345	0.133					
704	30	17.69	3.03 E-06	1.024	5.519	0.220					
800	20	23.83	1.67 E-05	0.932	4.778	0.139					
785	45	27.98	6.26 E-06	0.945	5.204	0.310					
800	60	31.17	4.12 E-06	0.932	5.385	0.442					
700	140	31.67	2.93 E-07	1.028	6.533	0.714					
794	30	32.82	3.23 E-06	0.937	5.491	0.479					
896	20	36.98	1.90 E-05	0.855	4.721	0.352					
999	20	48.68	6.56 E-05	0.786	4.183	0.302					
1097	20	66.28	1.41 E–04	0.730	3.850	0.313					
1199	20	95.91	7.12 E-04	0.679	3.147	0.121					

eED

2, 1–35, 2007

Exhumation of metamorphic rocks in N Aegean

R. Lacassin et al.

EGL

Table B6.

⁴⁰Ar/³⁹Ar ³⁸Ar/³⁹Ar ³⁷Ar/³⁹Ar ³⁶Ar/³⁹Ar ³⁹Ar F³⁹Ar %⁴⁰Ar* ⁴⁰Ar*/³⁹Ar Age Temp $\pm 1\sigma$ (10⁻¹⁴ moles) (10^{-3}) °C released Ma Ma G7 K-Feldspar J=0.0071300 wt=18.7 ma 45.795 193.20 3.78 400 29.163 0.051 0.011 0.04 0.28 53.33 15.85 7.836 11.070 0.07 55.37 58.17 400 0.025 0.004 0.79 4.60 1.40 460 10.750 0.036 0.001 6.488 0.11 1.69 80.84 8.84 110.25 2.16 460 4.810 0.023 0.003 7.027 0.05 2.12 50.86 2.74 34.94 1.25 5.346 0.08 77.53 500 7.926 0.031 0.002 2.77 6.35 79.84 1.63 6.192 0.07 33.67 0.88 500 4.468 0.021 0.002 3.29 55.16 2.64 0.032 0.16 83.09 550 7.202 0.000 3.706 4.52 6.10 76.77 1.52 3.594 0.022 2.194 0.12 75.96 37.26 0.88 550 0.000 5.48 2.93 3.748 0.022 2.019 0.26 7.55 81.83 39.85 0.80 609 0.000 3.13 655 3.442 0.021 0.000 1.208 0.26 9.59 86.90 3.06 38.96 0.79 700 4.649 0.021 0.000 5.403 0.46 13.17 64.86 3.05 38.85 0.78 0.845 90.32 0.78 750 3.359 0.020 0.000 0.38 3.08 39.23 16.13 92.39 800 3.349 0.020 0.000 0.651 0.53 20.28 3.13 39.82 0.79 0.39 92.27 800 3.198 0.020 0.000 0.416 23.37 3.05 38.78 0.80 0.020 0.253 0.49 27.25 90.84 0.89 800 3.201 0.000 3.10 39.41 700 3.397 0.020 0.000 0.000 0.03 27.47 59.18 3.37 42.80 1.66 750 3.505 0.018 0.000 1.017 0.03 27.73 71.35 3.18 40.44 2.09 800 3.260 0.020 0.001 0.874 0.11 28.56 83.81 2.98 37.89 0.97 900 3.344 0.021 0.000 0.590 0.68 33.89 92.94 3.14 39.98 0.80 1000 3.753 0.021 0.000 0.622 1.45 45.30 93.96 3.54 45.00 0.97 0.839 94.26 1100 5.045 0.024 0.000 2.73 66.78 4.77 60.36 1.28 1200 6.373 0.027 0.000 0.739 3.80 96.68 95.89 77.16 1.65 6.13 1400 7.276 0.027 0.001 3.161 0.42 100.00 83.93 6.33 79.63 1.72

eED

2, 1-35, 2007

Exhumation of metamorphic rocks in N Aegean

R. Lacassin et al.

Printer-friendly Version

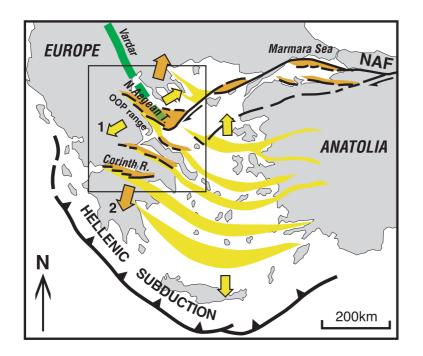
Interactive Discussion

EGU

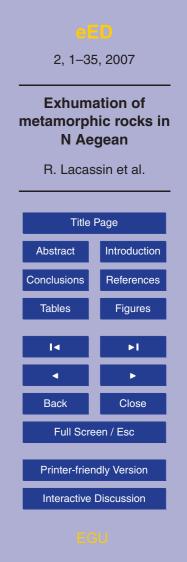
Table B7.

Temp °C	Time min	f	D/r ²	1000/T (K ⁻¹)	-log(D/r ²)	log(r/r _o)				
E=31368 cal/mol +- 4546 log(Do/ro)=2.15/s +- 1.30										
400	20	0.28	5.15 E-09	1.486	8.288	0.126				
400	30	0.79	2.39 E-08	1.486	7.622	-0.207				
460	20	1.69	1.46 E–07	1.364	6.835	-0.184				
460	30	2.12	7.04 E–08	1.364	7.153	-0.025				
500	20	2.77	2.08 E-07	1.294	6.682	-0.019				
500	20	3.29	2.07 E-07	1.294	6.684	-0.017				
550	20	4.52	6.28 E-07	1.215	6.202	0.011				
550	30	5.48	4.22 E–07	1.215	6.375	0.097				
609	20	7.55	1.76 E–06	1.134	5.753	0.065				
655	20	9.59	2.28 E-06	1.078	5.642	0.202				
700	25	13.17	4.28 E–06	1.028	5.369	0.236				
750	20	16.13	5.66 E–06	0.978	5.247	0.348				
800	20	20.28	9.89 E06	0.932	5.005	0.383				
800	40	23.37	4.42 E–06	0.932	5.354	0.557				
800	100	27.25	2.57 E-06	0.932	5.590	0.675				
700	60	27.47	2.57 E-07	1.028	6.590	0.847				
750	30	27.73	6.20 E–07	0.978	6.208	0.828				
800	30	28.56	2.05 E-06	0.932	5.689	0.724				
900	25	33.89	1.74 E–05	0.853	4.759	0.532				
1000	25	45.30	4.73 E-05	0.786	4.325	0.544				
1100	25	66.78	1.34 E–04	0.728	3.874	0.515				
1200	25	96.68	6.22 E-04	0.679	3.206	0.351				

eED

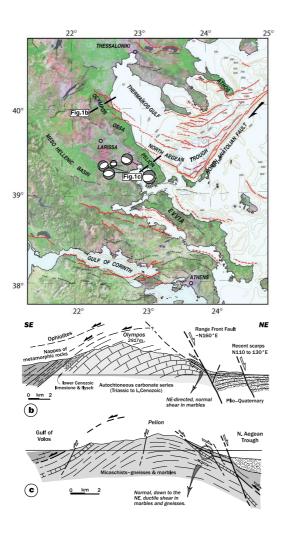

2, 1–35, 2007

Exhumation of metamorphic rocks in N Aegean


R. Lacassin et al.

EGU

Fig. 1. Tectonic framework of Aegean extension (after Armijo et al., 1996). Active right-lateral motion occurs on two branches of North Anatolian Fault (NAF). Northern branch of NAF propagated west of Marmara Sea pull-apart basins around 5 Ma (Armijo et al., 1999). Late Cenozoic rifts (in orange) open to the SW of NAF extremity (North Aegean Trough, Corinth Rift) and reactivate, with some obliquity, Oligo-Miocene extensional structures (in yellow). Orange and yellow arrows respectively indicate directions of present-day, and Oligo-Miocene extension. OOP: Olympos, Ossa, Pelion. Green: approximate location of Vardar suture. Boxed area corresponds to Fig. 2.



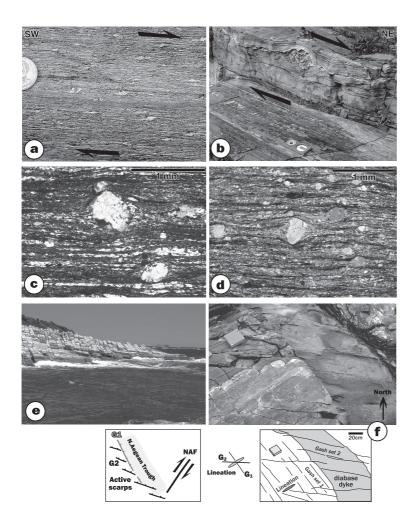


Fig. 2.

EGU

Fig. 2. (a) Sketch map of recent faults in northern Aegean. Major active faults, in red, are NE-SW strike-slip segments belonging to the northern branch of the North Anatolian Fault (NAF), and NW-SE to E-W normal faults; secondary faults are in black. W of Pelion, fault plane solutions of normal faulting earthquakes (Hatzfeld et al., 1999; Goldworthy et al., 2002), indicates ~N-S extension (see also Fig. 8 in Hatzfeld et al., 1999). Background image: NASA Landsat TM Mosaic (https://zulu.ssc.nasa.gov/mrsid/). Bathymetry from Mascle and Martin (1990) excepted in North Aegean Trough and along NAF (Papanikolaou et al., 2002). (b) and (c) Synthetic sections of Olympos (b) and Pelion (c) ranges, from geological maps and field observations (no vertical exageration). Olympos range displays nappes of metamorphic rocks (gneisses, schists, metasediments, ophiolites) overlying a core of Mesozoic to lower Tertiary sediments. It is cut by steep, NE-dipping recent normal faults (Schermer, 1993). Pelion range is made of metamorphic rocks equivalent to those of Olympos nappe stack. Its flanck facing North Aegean trough shows E-dipping units with evidence of NE-ward ductile to brittle-ductile shear. Dated samples (Fig. 4, Table 2) come from these units. Black arrows: motion on thrust nappe contacts; open arrows: motion on normal faults.

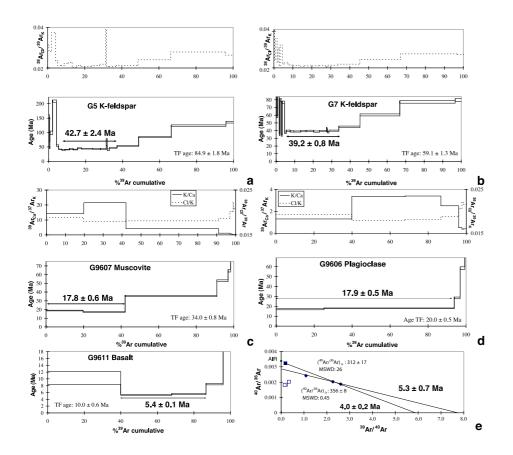
2, 1–35, 2007

Exhumation of metamorphic rocks in N Aegean

R. Lacassin et al.

Fig. 3.

Fig. 3. Deformation characters along eastern Pelion coast with macroscopic evidence of down to the NE (right) ductile shear in gneisses **(a)**, equivalent to dated sample G7 and in marbles **(b)**. Micro-textures of gneisses **(c)** and **(d)** show ribbons of recrystallized grains of quartz, recystallized mantles and elongated asymmetric tails around feldspar porphyroclasts, both typical of deformation at temperature >300°C. **(e)** along eastern Pelion flanck, pervasive joints and gashes, equivalent to G1 in (f), are parallel to trend of the coast. **(f)** a diabase dyke (sample G9611, 5.4 Ma, Fig. 4e), parallel to N 140° E gashes (Gash set 1, G1), intrudes earlier ductile fabric of marbles outlined by stretching lineations on foliation planes. It is cut obliquely by a second gash set (Gash set 2, G2) striking N 90° E on the average. Bottom-left inset shows analogy with regional-scale structures: G2 parallel to recent normal faults (Figs. 1, 2a); G1 parallel to older faults and to the overall trend of the Pelion coast.


eED

2, 1-35, 2007

Exhumation of metamorphic rocks in N Aegean

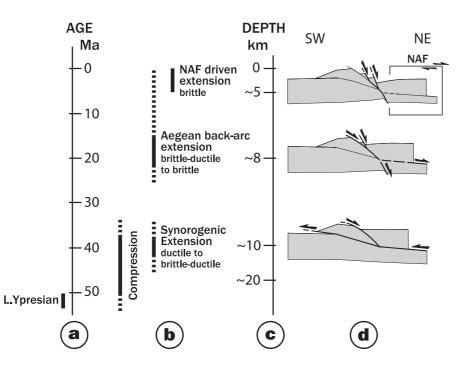
R. Lacassin et al.

2, 1-35, 2007

Exhumation of metamorphic rocks in N Aegean

R. Lacassin et al.

EGU


2, 1-35, 2007

Exhumation of metamorphic rocks in N Aegean

R. Lacassin et al.

Title Page Introduction Abstract Conclusions References Tables Figures Back Close Full Screen / Esc Printer-friendly Version Interactive Discussion

Fig. 4. ⁴⁰Ar/³⁹Ar dating of mylonites and schists. **(a–b)**: K-feldspar ages spectra (samples G5 and G7). LT steps define pseudo-plateaus whose ages are interpreted as dating a ca. 40 Ma cooling event (see discussion in text). The steps of highest ages, obtained above start of melting of feldspar, were not included in the models, but probably underline the existence of a relict core of old age, similar to that in the muscovites (Lips et al., 1999). **(c–d)**: age spectra of muscovite (G9607) and plagioclase (G9606), excess argon or inherited core for the muscovite is likely but not resolvable with the inverse isochrone approach. **(e)**: basalt whole rock spectra and inverse isochron using the first four steps (with an age of 5.4 Ma equal to the minimum age of the spectra) or the steps with lowest ages with an age 4 Ma which is preferred, suggesting that the minimum of the saddle is a maximum age as is usually the case when excess argon is present. Refer to Table 2 for precise Lat-Long location of samples.

Fig. 5. Interpretative sketch showing evolution of deformation in the Olympos-Ossa-Pelion range. (a): linear time-scale. (b): main tectonic events. (c): qualitative estimate of depth of presently outcropping eastern Pelion rocks constrained by: 1 - cooling history of K-feldspars implying depth <10 km after ~40 Ma, $2 - \text{low T}^\circ$ crystallisation ages implying moderate exhumation between ~40 Ma and ~20 Ma, 3 - existence of a large structural relief (several km) due to recent motion on post 4 Ma active faults. (d): crustal-scale sketches showing probable geometry of major faults.

