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Abstract— In this paper, a novel approach for parallel 
kinematic machine control relying on a fast exteroceptive 
measure is implemented and validated on the Orthoglide robot. 
This approach begins with rewriting the robot models as a 
function of the only end-effector pose. It is shown that such an 
operation reduces the model complexity. Then, this approach 
uses a classical Cartesian space computed torque control with a 
fast exteroceptive measure, reducing the control schemes 
complexity. Simulation results are given to show the expected 
performance improvements and experiments prove the 
practical feasibility of the approach. 

I. INTRODUCTION 
xperience shows that parallel kinematic machines are 

not as accurate as expected, specially for high speed 
machining application [1], [2], [3]. The causes of 

accuracy losses are numerous. First, due to the complex 
mechanical structure, the models used in control are 
generally simplified, leading to non-negligible errors [2]. 
Performant modeling methods [4], [5], [6] could yet be used 
to improve the accuracy while decreasing the computational 
burden. Second, the presence of numerous passive joints 
leads to a lack of accuracy, due to the unavoidable 
clearances [7]. An identification process [7] can decrease the 
clearances influence but not cancel it. Other causes can be 
found, such as assembly errors, thermal deformations, 
vibrations and so on [2]. Nevertheless, the benefit of adapted 
models with a performant identification is not the only way 
to improve the performances. 

Indeed, a parallel kinematic machine is generally 
controlled with the same laws as a serial one, namely single 
axis control for machine tool [8] or joint space computed 
torque control for high-speed manipulators [9]. It was 
already shown that these strategies are not relevant for 
parallel kinematic machines [10], [11], [12]. In fact, [12] 
shows that a parallel kinematic machine should be 
controlled with a computed torque control compensating for 
the high dynamic coupling between, even at low speed [12]. 
Moreover, this control should include a Cartesian space 
dynamic modeling, which is relevant for parallel kinematic 
 

1LASMEA - UMR CNRS 6602 24, Avenue des Landais 
63177 

Aubière Cedex, France. 
2IrCCYN - UMR CNRS 6697 1, Rue de la Noë, 44321 

Nantes 
Cedex 3, France. 
This work was supported by Région d’Auvergne through 

the Innovapôle project and by the European Union through 
the Integrated Project NEXT no. 0011815. 

machines [13], [10]. Therefore, a Cartesian space control is 
more adequate than a joint space one. 

Indeed, as theoretically shown in [11], the Cartesian space 
computed torque control of a parallel kinematic mecha-nism 
is a state feedback controller (dual to the joint space 
computed torque control of a serial kinematic mechanism). 
Moreover, the dynamics of the regulated error is subject to 
less unmodelled terms than for the usual control schemes.  

However, using a Cartesian space computed torque 
control requires a fast and accurate measure of the end-
effector pose. In this way, one could avoid solving the 
forward kinematic problem since the latter, being a square 
problem, might be biased by the numerical estimation errors 
and the geometrical errors. Furthermore, the reliability and 
speed of the estimation are not ensured. In this way, an 
exteroceptive measure is more relevant since it does not 
depend of the accuracy of a mechanical model and a heavy 
nonlinear estimation. To our mind, computer vision could be 
a good approach [14], following [15] which showed some 
advantages of the visual servoing for parallel kinematic 
machines. Nevertheless, the classical visual servoing does 
generally not ensure high-speed task, since it is a kinematic 
control scheme. 

Consequently, the proposed approach tries to reach good 
high-speed performances by combining fast exteroceptive 
measure, Cartesian space models and Cartesian space 
computed torque control. It is coherent with Fakhry’s work 
for serial robots [16] while being adapted to parallel 
kinematic machines and aiming at faster tasks. Moreover, 
our approach is slightly different of the other recent work on 
fast visual servoing [17] since vision is not used in an 
external compensation loop modifying the reference path of 
an internal dynamical control, but directly in the control 
loop compensating for the dynamics in real time. 

The contribution of this paper is to propose the first, to 
our knowledge, experimental results for high-speed 
visionbased control of parallel kinematic machines, which 
validates the theoretical results of [11]. This validation is 
done on the Orthoglide [18], which is designed for high 
speed machining. The dynamical modeling method is 
updated to the use of exteroceptive sensing and compared 
with the classical ones based on joint sensing. Last but not 
least, simulations are provided to show the potential 
improvements that this method unveils. The paper is 
organized as follows. Section II deals with the modeling of 
the test-bed. Section III recalls the various control schemes 
and gives comparative simulation results. Section IV 
provides the first experimental results and Section V 
concludes the paper with a discussion on further 
improvement possibilities. 
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Fig. 1. Experimental set-up: the Orthoglide is observed by 

a high-speed camera. 

II. MODELING OF THE TEST-BED  

A. Presentation of the Orthoglide  
The Orthoglide [18] is a 3 DOF translational parallel 

kinematic machine (Figure 1). Its mechanical structure 
consists of three identical PRPaR legs (P: Prismatic, R: 
Revolute, Pa: Parallelogram). Only the prismatic joints are 
actuated, the others are passive. Its maximal performances 
are 1.2m.s−1 for speed and 20m.s−2 for acceleration. In 
order to ensure accurate tracking at such speeds, a 
computed torque control is required to compensate for the 
dynamic coupling between legs. The complete modeling 
of this machine is now detailed, where the focus is put on 
the simplifications generated by the use of an 
exteroceptive measure rather than a proprioceptive one. 

B. Kinematic modeling 
The inverse kinematic model links the active joint 

variable (q1i where i is the leg number) to the end-effector 
pose   [   ]T

e e eX X Y Z= . There are 8 inverse kinematic 
solutions, but only one is located in the robot workspace 
[19]: 

 (1) 
where D4, D6 and a are geometrical parameters. The 

Orthoglide has the great advantage of having an analytically 
defined forward kinematic model since (1) yields a second 
order equation, whose solution is given by [19]: 

 (2) 

 (3) 

 (4) 

 (5) 

 (6) 
where 

 
and the sign in (3) is such that the solution corresponds to 

the actual assembly mode, defined by 0eZ > . 
The inverse instantaneous kinematic model links the 

active joint speeds to the end-effector velocity. This model 
is obtained by differentiating (1). However, this model is 
here written directly as a function of the end-effector pose 
whereas it is generally written as a function of the joint 
variables: 

 (7) 
where 

 (8) 

C. Dynamic modeling 
The general form of the inverse dynamic model of a 

parallel kinematic machine is written as [6]: 

 (9) 
where: 
• D is the forward instantaneous kinematic matrix of the 

machine, computed as the inverse of the inverse 
instantaneous kinematic matrix described in (7) 

• ( )P PM X g= −&&F  are the end-effector dynamics  
• 3piJ I=  is the Jacobian linking the last leg joint 

variables to the end-effector Cartesian variables 
• 1J −  are the legs inverse instantaneous kinematic 

matrices  
• iH  are the leg dynamics, here computed with the 

Newton-Euler algorithm [20] 
• g is the gravity acceleration 
Several computational schemes are available depending 

on how much one relies on the end-effector pose measure. 
The first scheme, used in the classical joint space approach, 
is 

1) Computation of the end-effector pose, speed and 
acceleration from the forward kinematic model and the joint 
values 

2) Computation of the passive joint variables, speeds and 
accelerations 

3) Computation of the legs dynamics Hi with the Newton-
Euler algorithm 

4) Computation of Γ  with (9)  
Alternately, a second scheme is proposed now, associated 



to the Cartesian space approach used in this paper. Indeed, 
the dynamics do not depend, in fact, on the passive joint 
variables, but on their sines and cosines. Actually, the latter 
can be expressed using only the end-effector pose: 

 (10) 
from which the legs inverse instantaneous kinematic 

matrices can also be expressed using only the end-effector 
pose: 

 (11) 
Knowing that, the second scheme decomposes in: 
1) Computation from the end-effector pose measure of the 

expressions in (10), and the passive joints speed and 
acceleration from the first and second order instantaneous 
leg kinematics (whose closed-form expression can be 
derived from (11)); 

2) Computation of the legs dynamics with the Newton-
Euler algorithm; 

3) Computation of Γ  using with (9) 
Therefore, using a Cartesian space model allows for 

simplifying algorithms as compared to the classical joint 
space modeling.  

A third scheme is sometimes possible, where the 
numerical Newton-Euler algorithm is replaced by a closed-
form expression. The third scheme is clearly the best in 
terms of computational cost and modeling errors. Indeed, 
only the useful terms are employed and there is no extra 
computation. However, this method is not always achievable 
because the forward instantaneous kinematic matrix does 
not always have a closed-form expression. Nevertheless, an 
analytical expression of the legs dynamics could generally 
be used.  

Anyhow, the second scheme should be preferred to first 
scheme when used in a Cartesian space control with an 
exteroceptive measure. Indeed, the gain of computation cost 
allows for higher control speed, higher accuracy since 
simpler models are used leading to a decrease of modeling 
errors. The second scheme is thus the one implemented and 

tested in the sequel. 

 
Fig. 2. Single-axis control scheme 

 
TABLE I 

Position defects in µm on a 5cm square at 3m.s−2 for several control 
strategies, sensor accuracy and identification accuracy, first row is static 
accuracy (mean of error) and second is dynamic accuracy (standard 
deviation of error) 

 
TABLE II 

Position defects in µm on a 5cm circle at 3m.s−2 for several control 
strategies, sensor accuracy and identification accuracy, first row is static 
accuracy (mean of error) and second is dynamic accuracy (standard 
deviation of error) 

III. SIMULATION 
We propose a comparison between the standard single 

axis control (Figure 2), the more elaborated joint space 
computed torque control (Figure 3), the advanced Cartesian 
space computed torque control with forward kinematic 
model (Figure 4) and the proposed vision-based computed 
torque control (Figure 5). This comparison is achieved on 
classical machining trajectories: a square and a circle in the 
XY plan. The displacement is computed with a fifth order 
polynomial interpolation. Acceleration is fixed at 3m.s−2. 
The control rate is fixed at 400Hz and the tuning of the PID 
controller at 6Hz. The joint sensors have either 10µm or 
1µm accuracy. The vision sensor has either 100µm or 10µm 
accuracy and allows for a 400Hz measure. In a first time, the 
uncertainty is fixed at 100µm on the geometric parameters 
and 10% on the dynamic parameters (in the order of a 
classical identification errors). In a second time, these 
uncertainties are then fixed at 10µm and 1% (accurate 
identification). 

Figure 6 shows the trajectories in the XY plane achieved 
by the four control strategies when the reference trajectory is 
a 50mm square at 3m.s−2 with a classical identification. 



 
Fig. 3. Joint space computed torque control scheme for parallel kinematic machines, where X̂  is the estimated end-effector pose and Xϖ = &&  is a control 

signal 

 
Fig. 4. Cartesian space computed torque control scheme for parallel kinematic machines with forward kinematic model, where X̂  is the estimated end-

effector pose and Xϖ = &&  is a control signal 

 
Fig. 5. Cartesian space computed torque control scheme for parallel kinematic machines with high speed vision, where Xϖ = &&  is a control signal 

 
Fig. 6. Comparison between single-axis, joint space computed torque, 

Cartesian space computed torque control and vision-based computed torque 
control on a 50mm square at 3m.s−2 with a classical identification 

All the control strategies allows for a satisfactory 
tracking. Single-axis, joint space and Cartesian space 
computed torque control have a similar accuracy except at 
the beginning of the trajectory where the single-axis 
presents an overshoot. The vision-based computed torque 
seems to be a bit closer to the reference. This is numerically 
shown in Tables I and II. Indeed, the single-axis and joint 

space computed torque control have very closed static and 
dynamic accuracies, thesecond control is a bit better than the 
first one on the square but not on the circle. On the opposite, 
the Cartesian space and the vision based computed torque 
controls allow for small improvement in term of accuracy on 
both trajectories, when vision based control seems to be the 
best. Moreover, it be can be noticed that the accuracy of 
these three first control strategies depends only on the 
identification accuracy and not the sensors accuracy. The 
vision based computed torque reaches the best accuracy on 
the the square. On the opposite, the vision based computed 
torque control accuracy mainly depends on the sensor 
accuracy and seems insensitive to the identification one. 

These simulation results first show that vision based 
computed torque control should allow for the best accuracy 
and does not depends on the identification of the mechanical 
structure. Indeed, as the end-effector pose is measured and 
not estimated with the forward kinematics, the quality of the 
feedback information depends only on the sensor accuracy. 
The benefit of an accurate identification is thus less 
important than the quality of the sensors and the control 
tuning. On the opposite, the three other control strategies 
require an accurate identification rather than a perfect tuning 
and sensor accuracy. In fact, the model accuracy is essential 
because the necessary information (end-effector pose) has to 
be estimated through this model. 

These simulation results show secondly that the use of the 



Cartesian space control, with forward kinematics and 
especially with vision, allows for a noticeable accuracy 
improvement (up to 40% in static and 60% in dynamic when 
an accurate vision sensor is used). The decrease of the 
model use and avoidable modeling errors are the main 
sources of this accuracy improvement.  

 
Fig. 7. Control architecture 

Let us also remark that, on a light parallel kinematic 
machine, as dynamics are nearly linear, a single-axis control 
allows for similar accuracy as joint computed torque control. 
Indeed, the use of a complex structure model in the control 
loop is not necessarily an improvement because of heavy 
useless computation and estimation errors injection. This 
opposes to the case of heavy mechanical structures, where a 
computed torque control, even in joint space, improves the 
accuracy [11], [12]. 

I. EXPERIMENTS 
We propose an experimental validation of the above 

simulations. The set up is shown in Figure 1 and the 
complete control architecture in Figure 7. The image 
acquisition is achieved with a 1024×1024 global shutter 
CMOS camera. To achieve a 400Hz visual measure, only a 
360×360 region of interest is used. The tracking in the 
image of the visual pattern uses the first order moment of the 
grayscale pixels in a small region of interest around each 
blob. The pose estimation is achieved via the well know 
Dementhon algorithm [21] and sent to the dSpace 1103 
Board via an RS422 Serial Link. On the opposite, the 
dSpace Board sends a 400Hz synchronisation signal 
launching the acquisitiontracking-pose measurement 
process. The dSpace 1103 board is also assigned to the 
computed torque control loop and the fifth degree path 
generation between two points. Then the interface computer 
sends orders and grabs information such as actuators 
positions, end-effector pose, and so on.  

In a first part, the visual measure is tested to show its 
accuracy. This test is achieved on a linear actuator with a 
1µm linear sensor. The test trajectory is a 200mm linear 
displacement with accelerations ranging from 1m.s−2 to 
10m.s−2. Figure 8 (left) shows the measured position by the 
visual sensor and the actuator sensor and Figure 8 (right) 
shows the visual measure accuracy with regards to the 
actuator sensors considered as the ground-truth. It can be 
noticed that the visual measure is quite accurate at low 
speed. The faster are the moves, the worse is the measure 
accuracy as numerically shown in Table III. The visual 
sensor allows for a 198µm static accuracy and a dynamic 
accuracy ranging from 286µm (at 2m/s−1) to 4.468mm (at 
10m/s−1).  

This is a fair result, which could be improved, at least 
only by means of the current technological development 

rate, not to count on scientific advances.  
In a second part, the visual based computed torque is 

implemented and tested on a 60mm circle with maximal 
speed of 0.2m.s−1 and maximal acceleration of 3m.s−2. 
Figure 9 shows the achieved circle by the Cartesian space 
computed torque control with the forward kinematic model 
and the vision-based computed torque control in the XY 
plan and Figure 10 shows the resulting error on the Z axis. 
For a fair comparison, both controls are tuned with the same 
gains, that are reduced with respect to the model-based 
control in place in order to cope with the vision constraints 
(noise and delay). The trajectory tracking is similar in both 
cases, as numerically shown in Table IV, with perhaps a 
slightly better performance in the vision-based case.  

This validates the principle of the proposed approach, 
where, let us underline it, no joint sensing at all is used and 
where the vision sensor is not as accurate as it could or shall 
be. Yet, improving the visual sensor should allow for 
increasing the tuning and thus the accuracy. 

 

 
Fig. 8. Comparison between 400Hz visual measure and 1µm optical 

sensor with acceleration ranging from 1m−2 to 10m−2 

Acceleration (m.s−2) 1 3  5 10
Dynamic Error (µm) 286 801  1946  4468

TABLE III 

Dynamic error between 500Hz visual measure and 1µm optical sensor 
where static error is 198µm 

 
Fig. 9. 60mm circle at 3m.s−2 achieved by the Cartesian space computed 

torque control with the forward kinematic model and the vision-based 
computed torque control in the XY plan 



 
Fig. 10. Position errors on Z axis on a 60mm circle achieved by the 

Cartesian space computed torque control with the forward kinematic model 
and the vision-based computed torque control 

II. CONCLUSIONS 
In this paper, a recent theoretically novel approach for 

parallel kinematic machine control was experimentally 
validated. Recall that this approach relies on an 
exteroceptive measure of the end-effector pose (here 
computer vision), rather than on solving for the forward 
kinematic problem. This allows for simplifying the models 
used in the control schemes by writing them as a function of 
the only endeffector pose measure (that is, the actual state of 
parallel kinematic machines). This approach relies hence on 
a Cartesian space computed torque control using the 
exteroceptive measure in the feedback loop, which was 
shown to be a state feedback control. The control scheme is 
thus reduced to its simplest expression. This is not only 
theoretically proper, but leads in simulation to a better 
accuracy to the modelbased joint-based classical methods, 
namely the joint space computed torque control and the 
Cartesian space one with the forward kinematic model. 
Moreover, such a strategy was shown, again in simulation, 
to be less sensitive to the mechanical identification than the 
classical approaches. Finally, the experimental validation of 
the approach on the Orthoglide shows that even with a sub-
optimal vision sensor, the approach competes with the well 
established methods. Yet, the simulation results provided in 
this paper let us expect even greater performances in terms 
of accuracy with a more accurate exteroceptive sensor. 

To conclude optimistically, there might not be “Still a 
long way to go on the road for parallel mechanisms”[22] to 
reach better performances than serial mechanisms. 
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