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Abstract

Gas is trapped in polar ice sheets at ∼50–120 m below the surface and is therefore

younger than the surrounding ice. Firn densification models are used to evaluate this

ice age-gas age difference (∆age) in the past. However, such models are not well

tested on low accumulation and cold sites of the East Antarctic plateau, especially for5

periods with different climatic conditions. Here we bring new constraints to test a firn

densification model applied to the EPICA Dome C (EDC) site for the last 50 kyr, by

linking the EDC ice core to the EPICA Dronning Maud Land (EDML) ice core, both

in the ice phase (using volcanic horizons) and in the gas phase (using rapid methane

variations). We use the structured
10

Be peak, occurring 41 kyr before present (BP) and10

due to the low geomagnetic field associated with the Laschamp event, to experimen-

tally estimate the ∆age and ∆depth during this event. It allows us to evaluate the model

and to link together climatic archives from EDC and EDML to NorthGRIP (Greenland).

Our results reveal an overestimate of the ∆age by the firn densification model during

the last glacial period at EDC. Tests with different accumulation rates and tempera-15

ture scenarios do not entirely resolve this discrepancy. Our finding suggests that the

phase relationship between CO2 and EDC temperature inferred at the start of the last

deglaciation (lag of CO2 by 800±600 yr) is overestimated and that the CO2 increase

could well have been in phase or slightly leading the temperature increase at EDC.

1 Introduction20

The timing of climatic events in the two hemispheres is a key information for a better

understanding of the mechanisms of climate change. Comparison of Greenland and

Antarctic ice records can be accomplished using atmospheric gas records as correla-

tive tools. Ice cores from high accumulation rate sites are preferable as they minimize

uncertainties in the difference between the age of the gas and the age of the sur-25

rounding ice matrix (∆age) (Schwander et al., 1997). Atmospheric trace gases with
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lifetimes exceeding the interhemispheric mixing time and showing significant changes

in the past, can be considered as time markers on a global scale. The most prominent

trace gases measured routinely on extracted air from ice cores are carbon dioxide,

methane and nitrous oxide (CO2, CH4, N2O) (Stauffer et al., 2002; Siegenthaler et al.,

2005; Spahni et al., 2005). Additionally available is the isotopic composition δ
18

O of5

O2 (δ
18

Oatm), a proxy for biologic productivity and ice volume changes (Sowers et al.,

1993). Atmospheric CH4 and δ
18

Oatm records are preferentially used for synchronisa-

tions during the last glacial period. The reconstructed CO2 concentration suffers from

in situ production in Greenland ice cores (Anklin et al., 1995), and N2O shows sporadic

artefacts occurring in depth intervals with elevated dust concentrations, hence in ice10

covering glacial time periods (Sowers, 2001; Stauffer et al., 2003). CH4 is of special

interest for three reasons: the past atmospheric signal is reliably recorded in ice cores

from both polar regions, it shows large temporal concentration variations, and it closely

follows Greenland rapid climatic variability during the last glaciation and deglaciation

(Chappellaz et al., 1993).15

Several studies have already used the O2 isotopes and/or the CH4 concentration to

constrain the climatic relation between the hemispheres at the last glacial inception

(Landais et al., 2004), the last glaciation (Bender et al., 1994; Blunier et al., 1998;

Blunier and Brook, 2001) and the last deglaciation (Blunier et al., 1997; Steig et al.,

2002). Best information about the timing of climate events comes from high-resolution20

gas records which have absolute or synchronized timescales with uncertainties smaller

than 500 yr (Blunier and Brook, 2001). Based on the methane correlation it has been

proposed that for each large Dansgaard-Oeschger (DO) event in Greenland exists a

corresponding warming event in Antarctica (Blunier et al., 1998; Blunier and Brook,

2001). The abrupt DO warming in Greenland is preceded by a slower warming in25

Antarctica. In addition Antarctic temperatures peak at about the time of the abrupt

warming in Greenland. This north-south interaction suggests a strong teleconnection

between the two poles through heat transport by the ocean circulation (Stocker and

Johnsen, 2003). This connection feature has been termed “bipolar seesaw”. Recently

437

http://www.clim-past-discuss.net
http://www.clim-past-discuss.net/3/435/2007/cpd-3-435-2007-print.pdf
http://www.clim-past-discuss.net/3/435/2007/cpd-3-435-2007-discussion.html
http://www.copernicus.org/EGU/EGU.html


CPD

3, 435–467, 2007

Gas age-ice age

differences along the

EPICA cores

L. Loulergue et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

◭ ◮

◭ ◮

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

EGU

a high-resolution methane record combined with a detailed isotopic profile was pro-

duced from the EDML ice core in Antarctica (EPICA Community Members, 2006). It

indicates that even the smaller DO events in Greenland have a counterpart in Antarc-

tica. The amplitude of the Greenland warming appears to be linearly correlated with

the duration of the preceding warm phase in Antarctica. EDML is indeed an interessant5

ice core, located in the Atlantic sector of Antarctica, showing this one-to-one coupling.

The gas dating tool provides a relative chronology between ice cores, not an abso-

lute dating. The quality of this relative chronology strongly depends on how accurate

the calculation of the ∆age is. The latter can be estimated by a firn densification model

assuming that we know the ice chronology and the past variations of surface temper-10

ature and accumulation rate at the site of deposition. ∆age is small and very well

determined in Greenland over the last glacial period, due to the relatively high accu-

mulation rate. This characteristic of Greenland ice cores further allows annual layer

counting as used in the new ice chronology GICC05 for NorthGRIP (Andersen et al.,

2006; Rasmussen et al., 2006; Svensson et al., 2006; Vinther et al., 2006). In addition15

to the model results, ∆age can be determined directly from the Greenland ice core it-

self. The abrupt Greenland surface warmings induce a temperature gradient in the firn

column. This temperature gradient causes isotopically heavier molecules to migrate

towards the cold end. This thermal diffusion affects the isotopic ratios of atmospheric

nitrogen and argon, which are thought to be constant over time in the atmosphere.20

Therefore, anomalies of the isotopic ratios allow to calculate the amplitude of fast

temperature changes in the past. Further, they set the start point of these changes in

the gas record. Since the temperature variation is recorded in the isotopic composition

of the ice and in the isotopic composition of the gases of the enclosed air, the difference

of the respective depths (∆depth) is directly accessible. With an underlying timescale25

we find also the corresponding ∆age, e.g. for each DO event individually. Unfortunately,

in Antarctica, thermal diffusion produces isotope anomalies usually too small to be

detected. In addition, the lower accumulation rate results in relatively uncertain ∆age

calculations.
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One way to improve the accuracy of ∆age estimates in Antarctica is to rely on a strati-

graphic marker recorded in the ice matrix of two ice cores. This allows the correlation

of the ice records in addition to the gas correlation. The
10

Be anomaly (Raisbeck et

al., 2002) provides such a marker. It is observed as a highly structured peak believed

to be due to a low geomagnetic field associated with the Laschamp Event (Mazaud5

et al., 1994), centered at 40.4±2 kyr BP (Guillou et al., 2004). Yiou et al. (1997) and

Raisbeck et al. (2002) showed that this
10

Be peak is contemporary with the DO event

# 10.

Here we present new CH4 data obtained on the EDC ice core (75
◦′

S, 123
◦
E,

3233 m a.s.l., 25 kg m
−2

yr
−1

) over the last 55 kyr BP (before AD 1950), that comple-10

ment recently published CH4 data along the EDML ice core (75
◦
S, 0

◦
E, 2892 m a.s.l.,

64 kg m
−2

yr
−1

) (EPICA Community Members, 2006) and a stack of Greenland CH4

records (Blunier et al., 2007). We then evaluate different accumulation and temper-

ature scenarios against the objective that the ∆age at EDC and EDML obtained by

the densification model should produce 1) two consistent gas age scales at EDC and15

EDML; and 2) a North-South synchronisation compatible with the one obtained from

the
10

Be peak during the Laschamp event.

2 Data

2.1 Ice chronologies

When evaluating the ice/gas difference (as a function of age at the same depth – here-20

after ∆age – or as a function of depth at the same age – hereafter ∆depth) with a firn

densification model, a chronology for the ice has to be imposed.

For the NorthGRIP core, we use the GICC05 chronology obtained by annual layer

counting from 0 to 42 kyr BP (Andersen et al., 2006; Rasmussen et al., 2006; Svensson

et al., 2006; Vinther et al., 2006. The uncertainty of GICC05 is around 1.6 kyr at the25

location of the
10

Be peak. Its GICC05 age of 41.2 kyr BP matches recent independent
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estimates within a few centuries (Svensson et al., 2006). Note that the uncertainty on

the time spent between two nearby depth levels (which can be expressed as e.g. the

number of uncertain counted layers per meter) is smaller than the error on the absolute

ages, the latter being cumulative with depth.

The new EDC ice chronology (hereafter EDC3, Parrenin et al., 2007
1
) is based on5

a relatively simple ice flow model applied to ice domes. Several control age windows

are used (from absolutely dated horizons and from comparison to others paleoclimatic

records) to constrain the free parameters of the model via an inverse method (Parrenin

et al., 2001). For the last 50 kyr, EDC3 is matched onto GICC05 (Parrenin et al.,

2007
1
) at several tie points: during the last 6 kyr (by

10
Be-

10
Be synchronization), during10

the last deglaciation (by methane-isotope synchronization) and during the Laschamp

event (by
10

Be-
10

Be synchronization).

The corresponding chronology for EDML (hereafter EDML1, Ruth et al., 2007) has

been derived by synchronizing the EDML and EDC ice cores using volcanic and dust tie

points based on continuous sulfate, electrolytic conductivity, dielectric profiling, partic-15

ulate dust and Ca
2+

data available for both cores (Severi et al., 2007). Due to common

changes in the Patagonian dust source strength and the hemispheric significance of

major volcanic eruptions, this procedure is justified. For the last 75 kyr (the period of

interest in this study), the synchronization is mainly based on unambiguous volcanic

markers recorded in the sulphate parameter, providing a synchronization to better than20

±100 years (on average ±35 years, Ruth et al., 2007).

1
Parrenin, F., Barnola, J.-M., Beer, J., Blunier, T., Castellano, E., Chappellaz, J., Dreyfus, G.,

Fischer, H., Fujita, S., Jouzel, J., Kawamura, K., Lemieux, B., Loulergue, L., Masson-Delmotte,

V., Narcisi, B., Petit, J.-R., Raisbeck, G. M., Raynaud, D., Ruth, U., Schwander, J., Severi, M.,

Spahni, R., Steffensen, J. P., Svensson, A., Udisti, R., Waelbroeck, C., and Wolff, E.: The EDC3

agescale for the EPICA Dome C ice core, Clim. Past Discuss., submitted, 2007.
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2.2 Temperature and accumulation parameterizations

∆age estimates from a firn densification model (Pimienta et al., 1987; Arnaud et al.,

2000; Goujon et al., 2003) require knowing the history of surface temperature and

accumulation rate at the site of deposition. Below we present the temperature and

accumulation parameterizations that will be used further on.5

Accumulation rate A and temperature T are deduced from the deuterium content of

the ice δD, through the following relationships:

T = T 0
+ α∆δDcorr (1)

A = A0 expβ∆δDsmo (2)

where A
0

and T
0

are surface accumulation and temperature for the present. ∆δDcorr10

corresponds to the present-day value δD0 isotope corrected for the variations in tem-

perature and isotope at the source of the air masses (Parrenin et al., 2007). The latter

is determined through isotopic reconstructions of benthic foraminifera (Bintanja et al.,

2005). ∆δDsmo is a 50-yr running average of ∆δDcorr (to remove the noise of water

isotopic ratios unrelated with accumulation rate changes). α represents the spatial15

slope of the present-day isotopic thermometer. β is a corrective factor influencing the

glacial-interglacial relationship between accumulation rate and δD changes.

As EDML was measured for δ
18

O instead of δD, the following relationship is used

δD = 8 · δ18O + 10 (3)

The present-day isotopic content, temperature and accumulation rates are respectively20

δD0=–396.5‰, T
0
=217.5 K, A

0
=2.84 cm-of-ice/yr for EDC (Parrenin et al., 2007

(5)
)

and δD0=-351.22‰, T
0
=228.65 K, A

0
=6.4 cm-of-ice/yr for EDML (supplementary ma-

terial, EPICA, Community Members, 2006).

Equation (2) leads to an average glacial accumulation rate at the EDML drill site

of about 2.9 cm WE/year (EPICA Community Members, 2006), a value not far from25
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the present one of Dome C (2.5 cm WE/year) (EPICA Community Members, 2004).

Furthermore, smooth modifications of the accumulation rate at EDC were applied in

order to match EDC3 onto GICC05 back to 41 kyr BP (Parrenin et al., 2007
1
), creating

some artefacts of the accumulation rate during early Holocene.

2.3 Methane records5

We use CH4 records from EDC and EDML back to 55 kyr BP (Fig. 1) (EPICA Commu-

nity Members, 2006). For EDC, the resolution of the existing methane data (Spahni et

al., 2005) has been doubled (leading to an average temporal resolution of 93 years)

and extra samples were analyzed around DO 8 to 11 corresponding to the location of

the
10

Be peak. The measurements were performed at Bern and Grenoble with a wet10

extraction technique. Details of the method can be found in Chappellaz et al. (1997).

For consistency with previously published EDC and EDML CH4 data sets, the CH4 mix-

ing ratios obtained at LGGE are increased by 6 ppbv to be in accordance with the Bern

values (Spahni et al., 2005). The measurement uncertainty is ±10 ppbv (Chappellaz

et al., 1997).15

2.4 The 41 kyr
10

Be peak in Greenland and Antarctic ice cores

10
Be has been measured in detail on the EDC (Raisbeck et al., 2002, 2007

2
) and

GRIP (Yiou et al., 1997) ice cores, depicting the full structure of the peak at 41 kyr BP.

The uncertainty of the position of two sub-peaks during the Laschamp event is about

±1.1 m for both cores. The
10

Be record at NorthGRIP is not completed yet. There-20

fore the position of the
10

Be sub-peaks at NorthGRIP is based on GRIP-NorthGRIP

isotopic synchronization (Svensson et al., 2006). The uncertainty associated with this

GRIP-NorthGRIP synchronization is neglected here (NorthGRIP Community Members,

2004).

2
Raisbeck, G. M., Yiou, F., Jouzel, J., and Stocker, T. F.: Direct North- South Synchronization

of abrupt climate change records in ice cores using be10, in preparation, 2007.
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For EDML, the
10

Be peak has not yet been measured. To determine its probable

location in the core, we use the synchronization through volcanic horizons between the

EDML and EDC cores (Severi et al., 2007). The estimated depths of the two
10

Be sub-

peaks in the EDML core are shown in Table 1. The uncertainty of the corresponding

depths is ±0.23 m and ±0.35 m (Ruth et al., 2007).5

3 Empirical constraints on EDC and EDML ∆ages

Two types of empirical constraints on the EDC and EDML ∆ages are used. The first is

based on EDC and EDML ice (sulphate) and gas (methane) synchronisation during the

last glacial period (Sect. 3.1). The second involves their synchronisation to NorthGRIP

during the Laschamp event (Sect. 3.2).10

3.1 EDC-EDML CH4 synchronisation

As the ice of the two EPICA ice cores is well synchronized via volcanic horizons (±35

years, Severi et al., 2007; Ruth et al., 2007 ), a correct estimate of ∆age/∆depth at

both sites should lead to synchronised CH4 records in the gas phase. We use the

sharp methane transitions to define match points between the two cores, taken at15

middle slope of each CH4 sharp increase and decrease (Table 2), and to evaluate the

correctness of the two modelled ∆age/∆depth.

Note that contrary to the information inferred by comparison to NorthGRIP during the

Laschamp event, this constraint is only relative. Hence, we do not infer an estimate of

∆age (or ∆depth) at each site, but we determine if two scenarios of ∆age (or ∆depth)20

at each site are consistent. The accumulation rate being more than twice as large

at EDML than at EDC, its ∆age is smaller and better constrained. Consequently, the

EDML-EDC methane synchronisation brings more constraints on the EDC ∆age.

In the following, this empirical constraint will be referred to as the EDC-EDML con-

straint.25
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3.2 ∆age and ∆depth constraints during the Laschamp event

∆age and ∆depth at the depth of the
10

Be peak in the two EPICA cores is estimated

by linking both their ice and gas signals to NorthGRIP. The ice link is obtained by
10

Be-
10

Be synchronisation for both
10

Be sub-peaks. The gas link is obtained by matching

the EPICA CH4 records to the NorthGRIP isotopic record, assuming that these two5

records are synchronous during the rapid DO transitions (Huber et al., 2006).

3.2.1 The ∆age method

The method is illustrated in Figs. 2 and 3 for EDC. One of the
10

Be sub-peaks is found

at the ice depths DC-d1 at EDC and NG−d1 at NorthGRIP. The corresponding GICC05

age is a1. The age of the methane at the same EDC depth DC-d1 is younger than10

the age a1 with a difference of ∆age. At EDC, the depth corresponding to the
10

Be

peak occurs during DO #8 in the gas phase. At EDML, the corresponding trapped gas

occurs during DO #9 due to the smaller ∆age. We synchronise this methane event

with its concomitant NorthGRIP isotope event, being found shallower than the
10

Be

sub-peak at a depth NG-d2 and with a GICC05 age a2. Therefore, the age difference15

a1−a2 is an indirect measurement of the ∆age at the EDC depth DC-d1.

The overall uncertainty of this ∆age corresponds to the square root of the sum of the

uncertainties on:

1. the
10

Be NorthGRIP-EDC synchronisation;

2. the isotope-methane NorthGRIP-EDC synchronisation;20

3. the GICC05 age difference a1−a2, that is to say the number of uncertain annual

layers between the NG-d1 and NG-d2 depths (which is much smaller than the un-

certainty on the absolute age at these depths). Consequently, our ∆age estimate

is directly dependent on the GICC05 age scale.
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EDC ∆age with this method is found to be 3408±240 yr and 3692±315 yr for both EDC
10

Be sub-peaks (Table 1).

The same procedure is applied for EDML, adding the uncertainty due to the EDML-

EDC synchronisation through volcanic horizons. EDML ∆age is found to be 909±286 yr

and 892±364 yr (Table 1).5

In the following, these empirical constraints will be referred to as the EDC-∆age and

EDML-∆age constraints respectively.

3.2.2 The ∆depth method

The method is illustrated in Figs. 2 and 3. We start again by considering the EDC

ice depth DC-d1 of the
10

Be sub-peak, and the corresponding NorthGRIP ice depth10

NG-d1. Assuming that CH4 and the Greenland isotopes change synchronously, the

methane variation corresponding to the NorthGRIP isotope variation at depth NG-d1 is

found in the EDC ice deeper than the
10

Be peak, at the depth DC-d2. The gas age at

DC-d2 is identical to the ice age at DC−d1, and the depth difference DC-d2- DC-d1 is

an indirect measurement of ∆depth. With this method, uncertainties in the age scales15

are not relevant.

The uncertainty on the ∆depth evaluation corresponds to the square root of the sum

of the uncertainties on:

1. the
10

Be NorthGRIP-EDC synchronisation;

2. the isotope-methane NorthGRIP-EDC synchronisation.20

∆depth for the two
10

Be sub-peaks amounts to 53.5±4.2 m and 53.1±4.2 m (Table 1).

The same procedure is applied to EDML, adding the uncertainty on the EDML-EDC

synchronisation. ∆depth then amounts to 24.7±1.7 m and 25.1 m±1.7 m (Table 1).

In the following, these empirical constraints will be referred to as the EDC-∆depth

and EDML-∆depth constraints respectively.25
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4 Testing firn densification model scenarios

We use the Arnaud firn densification model (Arnaud et al., 2000) which considers two

densification processes: pure sliding of snow grains for density lower than ∼0.55, and

pure deformation of grains for density higher than ∼0.55. Diffusion and advection of

temperature in the firn are also considered, and lead to an average temperature at the5

close-off depth slightly higher than at the surface (Goujon et al., 2003).

In this section, we test different temperature and accumulation rate scenarios at

EDC and EDML (supplemental material http://www.clim-past-discuss.net/3/435/2007/

cpd-3-435-2007-supplement.zip) against the ∆age and ∆depth empirical constraints

described in section 2: EDC-EDML methane synchronisation, and ∆age and ∆depth10

at the location of the
10

Be peak.

4.1 Scenario 1: EDC3 and EDML1 temperature and accumulation histories

With the EDC3 chronology (Parrenin et al., 2007), the surface temperature history is

deduced from the isotopic content of the ice without correction for source temperature

variations. The β coefficient in Eq. (2) has then been determined so that the resulting15

chronology agrees with the absolute age of the
10

Be peak at 41 kyr BP. The inferred

value is 0.0157. The accumulation rate has been further slightly modified in order to

synchronize the EDC3 age scale onto GICC05 at several tie points (Parrenin et al.,

2007
1
). For EDML, source temperature variations were not considered either and β

has been set to 0.015 (EPICA community members, 2006).20

The α coefficient in Eq. (1) representing the spatial slope of the present-day isotopic

thermometer is estimated empirically at EDC as 1/6.04‰/
◦
K from the present day-

surface measurements between Dumont d’Urville and Dome C (Lorius and Merlivat,

1977). For EDML, the value is estimated empirically as 0.82‰/
◦
C from the relationship

between δ
18

O and surface temperature in Dronning Maud Land (EPICA community25

members, 2006).

Overall, the EDC3 and EDML1 climatic inputs to the densification model provide a
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poor agreement with the empirical constraints (Table 3 and Fig. 4). The EDML gas

time scale is always older than the EDC gas time scale (see Fig. 4), with an aver-

age difference of 850 yr. The difference ranges from 300 yr (Younger Dryas/ Holocene

transition) to 1150 yr (onset of DO #6). This implies that either the EDC ∆age is over-

estimated or the EDML one is underestimated. The discrepancy being smaller during5

the last deglaciation than during the last glacial period, the modelling error appears to

get worse during cold conditions (Fig. 4).

At the time of the two
10

Be sub-peaks, the EDC (EDML) modelled ∆age amounts to

5050 yr and 5010 yr (1370 and 1320 yr), i.e. ∼40% (50%) larger than the empirically

derived values and well outside their confidence interval. The comparison is more10

favorable for the ∆depth constraints. The EDC (EDML) modelled estimates amounts

to 55.3 m and 55.0 m (22.9 and 22.9 m) and are only slightly larger (smaller) than the

empirical values, and within or at the limit of their confidence interval.

4.2 Scenario 2: EDC3 and EDML1 accumulation rate histories, reduced amplitude of

glacial-interglacial temperature change15

In scenario 1, the modelled ∆age at both EDML and EDC is too large during the
10

Be

peak. One way to resolve this discrepancy is to reduce the amplitude of the glacial-

interglacial temperature change. Relatively warmer temperatures lead to a faster den-

sification process, a shallower close-off depth and a reduced ∆age. In scenario 2 we

keep the EDC3 and EDML1 accumulation rates unchanged (Sect. 3.1) and we reduce20

the glacial-interglacial temperature amplitude with a factor 1/α=7.13‰/K. Note that this

provides a better accordance between the measured and modelled borehole tempera-

ture.

This scenario generally gives a slightly better agreement than scenario 1 with the

empirical constraints derived in Sect. 2 (Table 3 and Fig. 4). The difference between the25

EDC and EDML gas age scales is slightly reduced, with an average of 660 yr. During

the
10

Be sub-peaks ∆age at EDC (EDML) is 4820 yr and 4800 yr (1330 and 1280 yr),

around 35% (45%) higher than the empirical values. ∆depth at EDC (53.2 and 52.6 m)
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is now in excellent agreement with the empirical estimates. The agreement however

slightly decreases for EDML ∆depth (22.2 and 22.8 m).

4.3 Scenario 3: EDC3 and EDML1 accumulation rate histories, EDC temperature

corrected for source effects

The EDC3 temperature history is corrected for variations in the mean ocean isotopic5

composition, but not for source temperature variations. Vimeux et al. (2002) showed

at Vostok that taking into account the latter reduces the amplitude of glacial-interglacial

surface temperature change by up to 2
◦
C. In scenario 3, we apply such correction us-

ing the deuterium excess record (Stenni et al., 2003 and new data, B. Stenni personal

communication). In general, temperatures are warmer during the glacial period com-10

pared to scenario 1. The EDC accumulation rate history is kept identical to scenario 1,

as well as the EDML temperature and accumulation rate histories.

Overall, this scenario gives results very close to scenario 2 (Table 3 and Fig. 4).

The agreement between the EDC and EDML gas age scales is slightly improved, with

an average shift of 630 yr. During the
10

Be sub-peaks, the EDC ∆age is 4820 yr and15

4810 yr, around 35% higher than the empirical values. The EDC ∆depth (54.1 m and

53.5 m) is in excellent agreement with the empirical estimates.

4.4 Scenario 4: EDC3 and EDML1 temperature histories, reduced amplitude of

glacial-interglacial accumulation rate changes

Another way to reduce ∆age is to increase the past accumulation rate. In scenario 4,20

we choose β to be 0.0094 for EDC and 0.0120 for EDML, the temperature histories

remaining identical to scenario 1.

Overall this scenario provides an excellent agreement between modelled and em-

pirical ∆ages, with an average shift of only –30 yr (Table 3, Fig. 4, 5a). There are two

notable exceptions : during the last deglaciation, the EDML gas chronology is older25

than the EDC one by a few centuries, and vice versa during DO #9.
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During the
10

Be sub-peaks, EDC (EDML) ∆age is 3970 yr and 4020 yr (1270 and

1220 yr), around 10–15% (35%) higher than the empirical values but almost within

their confidence intervals.

∆depth at EDC (44.5 m and 44.3 m) and EDML (21.7 m and 21.7 m) are now signifi-

cantly smaller than the empirical estimates. Indeed, ∆depth is equal to the product of5

the close-off depth in ice equivalent (CODIE) by the thinning function. In this scenario,

we increased the glacial accumulation rate while keeping the same ice chronology, and

thus implicitly decreased this thinning function, thus leading to smaller ∆depths.

In Fig. 5b, the EPICA gas chronologies are compared to the NorthGRIP one. The

Antarctic ice age scales being fitted to NorthGRIP only during the
10

Be peak. Apart10

from this time period, a disagreement between the GICC05 age scale and the EDC

or EDML gas age scale could result either from a wrong Antarctica-Greenland ice

synchronisation, or/and from an error in the ∆age estimates at the Antarctic sites. As

expected, EDC and NorthGRIP chronologies agree well at the time of DO #8 (EDC

gas trapped at the depth of the
10

Be peak) and in a lesser margin between EDML and15

NorthGRIP at the time of DO #9.

5 Discussion

The comparison between our empirical constraints on EDC and EDML ∆age and

∆depth and different firn densification modelling scenarios indicate that the official

EDC3 and EDML1 ice chronology, temperature and accumulation rate histories are20

clearly inconsistent with the EDML-EDC methane synchronization constraint. Either

the EDC glacial ∆age is greatly overestimated or the EDML glacial ∆age is greatly

underestimated. The shift between the two gas chronologies roughly resembles the

isotopic signal (being inversely correlated, Fig. 4), in contrast with Vostok and Byrd

(Bender et al., 2006), where it covers a large range between +1500 yr and –2000 yr.25

The origin of the inconsistency between model outputs and the observation thus prob-

ably lies either in the parameterization of the climatic input to the model based on
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water isotopes or in the physical link in the model between climate conditions and the

densification process, under colder and drier conditions than today.

A test of different temperature scenarios (scenarios 2 and 3) only removes a fraction

of the disagreement with empirical constraints. These scenarios reduce the glacial-

interglacial amplitude of temperature change by about 15%, which seems to be a max-5

imum bound according to different evidences presently available for the East Antarc-

tic plateau (Jouzel et al., 2003; Blunier et al., 2004). Salamatin et al. (1998) and

Tsyganova and Salamatin (2004) suggest on the other hand a large underestimate of

the temperature change, which would make even worse the disagreement between

modelled and observed ∆age and ∆depth. To our knowledge, there is no other study10

proposing a smaller amplitude of glacial-interglacial temperature change than the one

deduced from the standard isotope/temperature relationship in Antarctica. In summary,

only a small fraction of the disagreement can thus originate from the temperature sce-

nario.

Using larger glacial accumulation rates at both EDC and EMDL (scenario 4) than15

those classically deduced from water isotopes, we are able to get a much better agree-

ment between firn densification model outputs and ∆age empirical constraints. But

at EDC, it represents an average accumulation rate of 63% of the present-day value

during the last glacial maximum, corresponding to an increase of more than 30% with

respect to the EDC3 official scenario. However, changing the accumulation rate sce-20

nario implies a modification of the ice chronology. The EDC3 chronology is the product

of the initial annual layer thickness (the initial accumulation rate) and the thinning func-

tion (evaluated with a mechanical ice-flow model, Parrenin et al., 2007
1
). Larger glacial

accumulation rates (scenario 4) associated with the EDC3 thinning function leads to a

younger chronology during the last glacial part. This is inconsistent with the fact that25

the EDC3 chronology is constrained within ∼1 kyr at the location of the
10

Be peak and

that it is synchronized onto the NorthGRIP annual layer-counted GICC05 age scale

(Andersen et al., 2006; Svensson et al., 2006).

Increased glacial accumulation rates as in scenario 4 are thus physically compatible
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with the ice core chronology only if they are compensated by a proportional decrease

in the thinning function. However, the latter varies between 1 at the surface and 0.75 at

850 m of depth (∼50 kyr BP) and it is considered very well constrained under ice-flow

conditions for the upper quarter of an ice dome (Parrenin et al., 2007
1
). A correction of

about 30% of the thinning function in this EDC depth range thus seems unrealistic.5

It could be argued that the EDML-EDC methane disagreement results from an un-

derestimated ∆age at EDML. However, EDML ∆age during the last glacial amounts to

1000–1500 yr, and an underestimate of 800 yr (50 to 80%) is unrealistic. We can thus

conclude that the firn densification model overestimates ∆age at EDC during the last

glacial period.10

Because of the larger ∆age at EDC, we can not assess the accuracy of the EDML

firn modelling for the EDC-EDML CH4 synchronisation. Only the
10

Be peak shows that

during this particular time period, EDML ∆age is overestimated by ∼400 yr. This is still

within the uncertainties estimated in the EPICA Community Members (2006) paper.

Such an inconsistency of EDC modelled gas ages has already been suggested by15

comparing them to the Byrd ice core constraints (Schwander et al., 2001), although

the uncertainty on the EDC ∆age was evaluated at ±10% by Schwander et al. (2001).

Consequently, we suggest that an important phenomenon is missing in the firn densi-

fication model applied to the very cold and low accumulation conditions of the glacial

Antarctic plateau, for which no present-day analogue exists so far. This leads to an20

overestimate of the close off depth, as already suggested by the δ
15

N data at Vostok

(Sowers, 1992). The model has been tested over a large range of accumulation rate

and temperature conditions and has proved to be realistic (Arnaud et al., 2000; Goujon

et al., 2003). But conditions with –65
◦
C mean annual temperature and ∼1 cm H2O/yr

accumulation rate apparently generate different snow surface structures and/or densi-25

fication processes (and thus density profiles) compared with present-day conditions on

the East Antarctic plateau, which are not yet represented in the physics of the model.

Apparently by chance, no such systematic bias between model and empirical ∆age

constraints was detected, using the methane synchronization, between the Vostok (low
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accumulation rate) and Byrd ice cores (high accumulation rate) (Blunier et al., 2004;

Bender et al. 2006), although gas age shifts of up to 1000 yr were observed for some

tie points. This could result from the different flow regime between Vostok, situated on

a flow line, and EDC situated on a dome. At EDC, if the dome location remained stable,

the total thinning is approximately linearly related to the depth of ice layers (Parrenin et5

al., 2007
1
). At Vostok, the thinning of ice is related to the thickness of the ice column

upstream from the drilling site, where the ice originates from. As shown by Parrenin et

al. (2004), differences of up to 20% in the thinning function at Vostok can be obtained

depending on the scenario on the ice flow. This makes Vostok a less suitable site than

EDC to constraint ∆age and ∆depth based on the ice and gas chronological tie points.10

The EDC ∆depth constraint provides another test of the modelled glacial Close Off

Depth in Ice Equivalent (CODIE corresponding to the firn-ice transition). At the depth

of the
10

Be peak, the latter is roughly consistent with the empirical constraint (larger by

only 3 to 4%) within its confidence interval. ∆depth is indeed the product of the CODIE

by the thinning function. Assuming the thinning function has been correctly estimated,15

the modelled CODIE thus seems confirmed for this particular time period. Although the

EDC ∆depth constraint is not very accurate (uncertainty of ∼8%), this suggests that

the mismatch between modelled and observed EDC ∆ages results from the density

profile between the surface and the close-off depth, more than from the close-off depth

itself.20

Our findings have potentially large consequences on one of the key questions re-

garding climate and carbon cycle dynamics: the relative timing between Antarctic cli-

mate and CO2 mixing ratio changes. Current estimates of the time relationship be-

tween the two signals at the start of the last deglaciation, based on detailed EDC

measurements, point to a CO2 lag of 800±600 yr compared to the δD increase (Mon-25

nin et al., 2001). This conclusion based on a ∆age calculation similar to scenario 1

may have to be revisited.

The correction factor on EDC ∆age that we have to apply in order to bring modelled

and observed ∆age into agreement at the time of the
10

Be peak implies a smaller
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∆age. If this correction is valid throughout the last glaciation the CO2 deglacial increase

may have started simultaneously or even with a lead of the CO2 rise over Antarctic

temperature. The consequences of such a suggestion are far beyond the scope of this

paper and should certainly wait for confirmation through other time markers in the ice

allowing a direct chronological fit between EDC and the Greenland ice. Furthermore5

CO2 measurements on the EDML core with a much smaller ∆age will allow estimating

the timing of CO2 and temperature rise with much more confidence. However, with the

information at hand through our study, it is likely that the EDC ∆age and therefore the

CO2 lag on East Antarctic temperature has also been overestimated around 18 kyr BP.

6 Conclusions10

An improved time resolution of CH4 measurements on the EDC and EDML ice cores,

notably over DO #9 and 10, allowed us to evaluate the compatibility of the EDC and

EDML gas chronologies. The combination of EDC-EDML gas synchronisation through

CH4 and ice synchronisation through volcanic horizons provides a constraint on the

gas age-ice age difference at both sites. At the location of the 41 kyr
10

Be event, the15

ice synchronisation of EDC with NorthGRIP allows us to empirically evaluate this ∆age

(as well as the ∆depth) for EDC and EDML.

The EDC ∆age produced by the firn densification model can match our new empirical

constraints only through larger accumulation rate at EDC and EDML during the last

glacial period, compared with current estimates. However, it requires modification of20

the EDC chronology, which would change either the age of the 41 kyr
10

Be event, or the

modelled EDC thinning function, both of them being robust estimates. This suggests

a systematic overestimate of the simulated EDC ∆age during glacial periods. As a

consequence, the suggested lag of CO2 on Antarctic temperature at the start of the

last deglaciation can be questioned and could well become a lead.25

Independent estimates of paleo-accumulation rates via chemical tracers would re-

move the current doubt on the accumulation rate scenario. In addition, the precision
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of our method could be improved through direct synchronisation of a future detailed

CH4 record from NorthGRIP with its Antarctic counterparts. Finally, a similar study of

the Japanese Dome Fuji ice core, also situated on a dome and characterized by a

slightly larger accumulation rate relative to EDC, would help to better understand the

physics behind the densification process on the East Antarctic plateau during glacial5

conditions.
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Table 1. ∆age and ∆depth estimates at EDC and EDML at the location of the
10

Be sub-

peaks. Definitions of depths d1 and d2, and ages a1 and a2 at NorthGRIP are given in the

legend of Fig. 2. For EDML-d1, the error bar represents the uncertainty in the EDC-EDML

synchronisation. Ages a1 and a2 are on the GICC05 chronology, and the error bar on a1−a2 is

estimated as the number of uncertain layers at NorthGRIP in this time interval.

(EDC or EDML)-d1 (EDC or EDML)-d2 GRIP-d1 (m) NGRIP-d1 (m) NGRIP-d2 (m) a1 (yr BP) a2 (yr BP) a1 − a2 uncer. (yr) ∆age (yr) ∆depth (m)

EDC
Peak 1 735.5±1.1 788.9±2 2231.9±1.1 2110.1±1.1 2045.9±3 40820 37410 190 3410±240 53.5±4.2

Peak 2 744.8±1.1 797.9±2 2246.2±1.1 2127.5±1.1 2063.3±6 41700 38010 210 3690±320 53.1±4.2

EDML
Peak 1 1368.4±0.3 1393.1±1.2 2231.9±1.1 2110.1±1.1 2094.8±7 40820 39910 45 910±290 24.7±1.7

Peak 2 1383.3±0.4 1408.5±0.5 2246.2±1.1 2127.5±1.1 2109.8±7 41700 40810 35 890±360 25.1±1.3
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Table 2. Depth of the methane tie points for the EDML-EDC gas synchronisation. Tie points

are located at the middle of each sharp transition. The specified uncertainty (2σ) on the match

has been determined as a function of depth, and then translated to ages using the EDC3 and

EDML1 chronologies.

Events EDML depth (m) CH4 (ppbv) EDC depth (m) CH4 (ppbv) Uncertainties on the

synchronisation

EDML-EDC (yrs)

1st transition (PB YD) 717.6 583.6 418.2 583.0 124.6

2nd transiton (YD BO) 766.4 556.3 442.7 552.2 172.7

3th transition (BO LGM) 830.2 532.3 476.1 532.6 122.3

DO2 onset 1032.9 369.7 579.9 373.9 98.4

DO2 end 1072.9 375.7 599.9 380.,9 321.3

DO3 onset 1148.0 405.0 635.4 404.0 141.1

DO3 end 1155.1 390.9 639.1 401.0 127.3

DO4 onset 1162.7 396.7 645.9 411.0 170.1

DO4 end 1174.2 405.7 651.9 403.7 56.7

DO5 onset 1224.0 434.5 681.6 429.8 196.7

DO5 en 1233.7 437.7 688.1 438.4 199.7

DO6 onset 1248.6 454.3 697.5 447.5 343.2

DO6 end 1261.1 454.5 702.1 450.7 170.,5

DO7 onset 1272.9 476.8 712.5 473.1 268.0

DO7end 1286,4 471.7 719.,7 472.2 98.0

DO8 onset 1308.5 484.9 732.0 488.4 146.4

DO8 end 1338.6 484.3 751.3 490.7 271.0

DO9 peak 1374.6 424.5 774.7 446.7 117.6

DO10 onset 1391.4 442.9 784.1 443.4 183.6

DO10 end 1404.6 440.5 790.6 439.8 183.6

DO11 onset 1416.0 438.1 801.5 456.9 75.4

DO11 end 1435.8 447.1 810.1 445.2 223.0

DO12 onset 1452.9 448.9 820.4 453.5 223.0

DO12 end 1491.3 458.5 848.1 465.9 330.0
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Table 3. Comparison between the outputs of firn densification modelling scenarios and empir-

ical constraints as derived in Sect. 3. Cf Sect. 4 for a description of the scenarios.

Scenarios Scenario 1 Scenario 2 Scenario 3 Scenario 4 Empirical values

Drilling sites EDC EDML EDC EDML EDC EDML EDC EDML EDC EDML

∆age for both sub-peaks [yr] 5050 1370 4820 1330 4820 1370 3970 1270 3408±240 909±286

5010 1320 4800 1280 4810 1320 4020 1220 3692±315 892±364

Differences between modelled

and empirical ∆age [yr]

1650 460 1410 420 1410 460 560 360

1320 430 1110 390 1110 430 330 330

∆depth for both sub-peaks [m] 55.3 22.9 53.2 22.2 54.1 22.9 44.5 21.2 53.5±4.2 24.7±1.7

55.0 22.9 52.6 22.8 53.5 22.9 44.3 21.7 53.1±4.2 25.1±1.3

Differences between modelled

and empirical ∆depth [m]

1.8 1.8 0.4 2.6 0.5 1.8 9.0 3.6

1.9 2.3 0.5 2.4 0.4 2.3 8.8 3.4

Mean differences between two

chronologies (EDML-EDC) [m]

850 660 630 30
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Fig. 1. Methane concentrations at EDML (in red) and EDC (in black) during the last 55 kyr

BP. The EDC methane record consists of results published by Spahni et al. (2005) (Bern data,

blue cross), new data doubling the time resolution (LGGE data, red dots) and additional new

data specifically improving the time resolution between the DO #8 and #11 events (LGGE data,

brown stars). The EDML methane data, already published in EPICA Community Members

(2006), have been measured at LGGE and Bern. Black stars and their error bars correspond

to the CH4 tie points. Gas ages have been computed with the Goujon/Arnaud model (Goujon

et al., 2003) according to scenario 1.
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Fig. 2. Sketch of the ∆age and ∆depth determination methods for EDC (DC). Top panel: ∆age

method. The green arrow represents the
10

Be-
10

Be tie point and the blue arrow corresponds

to the methane/NorthGRIP (NG)-isotope stratigraphic link, assuming that these two records

are synchronous during the rapid DO transitions (Huber et al., 2006). Bottom panel: ∆depth

method. The green arrow represents the
10

Be-
10

Be tie point and the red arrow corresponds

to the methane/NorthGRIP-isotope stratigraphic link, assuming that these two records are syn-

chronous during the rapid DO transitions (Huber et al., 2006).
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Fig. 3.
10

Be-
10

Be and methane/isotope stratigraphic links between EDC and NorthGRIP. The

same method is applied for the second sub-peak. EDC deuterium data (Jouzel et al., 2007
3
)

are in black. EDC methane data (this study) are in blue. NorthGRIP δ
18

O (NorthGRIP com-
munity members, 2004) is in red. Same for EDML. EDML deuterium data (EPICA Community

Members, 2006) are in black. EDML methane data (this study) are in blue. NorthGRIP δ
18

O
(NorthGRIP community members, 2004) is in red.
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Fig. 4. Differences between the EDML and EDC gas chronologies for each methane tie point.

The uncertainty (discontinuous line) on the methane synchronisation tie points is shown with

the grey area. For a description of the scenarios, refer to Sect. 4.
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Fig. 5. Comparison between EDC methane (blue curve), EDML methane (pink curve) and

NorthGRIP isotope (green curve). NorthGRIP age scale is GICC05. EDC and EDML gas age

scales are from scenario 4 (see Sect. 4.4).
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