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Statement of the main result

Let g be a complex simple Lie algebra. Vogel derived a universal decomposition of S 2 g into (possibly virtual) Casimir eigenspaces,

2 which turns out to be a decomposition into irreducible modules. If we let 2t denote the Casimir eigenvalue of the adjoint representation (with respect to some invariant quadratic form), these modules respectively have Casimir eigenvalues 4t -2α, 4t -2β, 4t -2γ, which we may take as the definitions of α, β, γ. Vogel showed that t = α + β + γ. He then went on to find Casimir eigenspaces Y 3 , Y ′ 3 , Y ′′ 3 ⊂ S 3 g with eigenvalues 6t -6α, 6t -6β, 6t -6γ (which again turn out to be irreducible), and computed their dimensions through difficult diagrammatic computations and the help of Maple [17]:

and the formulas for Y ′ 2 , Y ′′ 2 and Y ′ 3 , Y ′′ 3 are obtained by permuting α, β, γ. These formulas suggest a completely different perspective from the usual description of the simple Lie algebras by their root systems and the Weyl dimension formula that can be deduced for each particular simple Lie algebra.

The work of Vogel raises many questions. In particular, what remains of these formulas when we go to higher symmetric powers? If such formulas do exist in general, do we need to go to higher and higher algebraic extensions to state them, as Vogel suggests? Vogel describes modules in the third tensor power of the adjoint representation that require an algebraic extension for their dimension formulas.

 for proofs of such types of formulas). In both the work of Vogel and Deligne et. al., problems arise when there are different irreducible modules appearing in a Schur component with the same Casimir eigenvalue.

In this paper we show that some of the phenomena observed by Vogel and Deligne do persist in all degrees. Let α 0 denote the highest root of g, once we have fixed a Cartan subalgebra and a set of positive roots. Let Y k be the k-th Cartan power g (k) of g (the module with highest weight kα 0 ). We discuss the other modules below, but we may already state our main result:

1

Theorem 1.1. Use Vogel's parameters α, β, γ as above. The k-th symmetric power of g contains three (virtual) 

modules Y k , Y ′ k , Y ′′ k with Casimir eigenvalues 2kt -(k 2 -k)α, 2kt -(k 2 -k)β, 2kt - (k 2 -k)γ.
Using binomial coefficients defined by y+x y = (1 + x) • • • (y + x)/y!, we have: where

dim Y k = t -(k -1 2 )α t + α 2 -2t α -2+k k β-2t α -1+k k γ-2t α -1+k k -β α -1+k k -γ α -
F (β, γ, k, l) = (β + γ -3 + 2k + 2l)(γ -3 + 2l)(β/2 + γ -3 + k + 2l)(β/2 + k) (β + γ -3)(γ -3)(β/2 + γ -3)β/2 , A(β, γ, k) = β+γ/2-3+k k γ+β/2-4+k k γ-3+k k β/2+k k -1+β+k k -1+γ/2+k k , B(β, γ, k) = γ-β/2-3+k k γ/2+β/2-3+k k γ-4+k k β/2-1+k k γ/2-β/2-1+k k , C(β, γ, k) = β+γ-4+k k γ-3+k k .
In the exceptional series a = -1, -2/3, 0, 1, 2, 4, 8. Here F 3G denotes the two-parameter series of Lie algebras in the generalized third row of Freudenthal's magic chart, g r (H, A) with a = 1, 2, 4, 8 and r ≥ 3, which contains sp 2r , sl 2r , so 4r , and e 7 when r = 3 [START_REF] Landsberg | Triality, exceptional Lie algebras, and Deligne dimension formulas[END_REF]. Note that through each classical simple Lie algebra there are an infinite number of lines with at least three points. Distinguished among these are the lines providing the classical series (the vertical lines) (with the osp-line split into two lines because of our normalizations), the exceptional line, the subexceptional line and the lines of the generalized third row in Freudenthal's chart. For each of these, there are natural inclusions of the Lie algebras as one travels north-east along the line.

In §2-4 we give the proof of the main result, which is based on a careful analysis of the five step grading of a simple Lie algebra defined by a highest root. In §5 we show how this relates to other remarkable Z and Z 2 -gradings. In §6 we describe the modules Y ′ k , Y ′′ k explicitly. We show that the highest weight of Y ′ k is the sum of k orthogonal long roots, and give geometric interpretations of them related to Scorza varieties. We conclude with an infinite series of dimension formulas for the Cartan powers of Y ′ k . These formulas show that the modules Y k and Y ′ k should be considered as universal in a very strong sense. Further questions and comments.

Remarkably, the numbers β and γ also appear in [START_REF] Kostant | The McKay correspondence, the Coxeter element and representation theory, in The mathematical heritage of Elie Cartan[END_REF] in connection with the McKay correspondence. The numbers h, h ′ are exponents of g. For g simply laced, they coincide with the intermediate exponents of the functions z(t) in [START_REF] Kostant | The McKay correspondence, the Coxeter element and representation theory, in The mathematical heritage of Elie Cartan[END_REF] having a linear factor. Why?

The formulas above, in addition to having zeros and poles, have indeterminacy loci. For dimg there is a unique such point in P 2 /S 3 and it does not correspond to an actual Lie algebra, but the point corresponding to so 8 is in the indeterminacy locus of dimY ′ 2 . For so 8 , we must have that

Y ′ 2 ⊕ Y ′′ 2
is the sum of the three isomorphic 35 dimensional representations 2ω 1 , 2ω 3 , 2ω 4 . We obtain dimY ′ 2 = 105 (and dimY ′′ 2 = 0) when considering so 8 as a member of the exceptional series and dimY ′ 2 = 70 (and dimY ′′ 2 = 35) when considering it as an element of the orthogonal series. The same phenomenon occurs for sl 2 which is also in the indeterminacy loci of dimY ′ 2 , dimY ′′ 2 . While these remarks apply already to Vogel's results (although we are unaware of them being pointed out before) with the increasing number of points in the indeterminacy loci as k becomes large, it might be interesting to address this issue in more detail.

Viewing the same equations with a different perspective, we mention the work of Cvitanovic [START_REF] Cvitanović | Group theory for Feynman diagrams in non-Abelian gauge theories[END_REF][START_REF] Cvitanović | Group theory[END_REF], El Houari [START_REF] Houari | Immediate applications of a new classification of finite dimensional simple Lie algebras[END_REF][START_REF] Houari | Tensor invariants associated with classical Lie algebras: a new classification of simple Lie algebras[END_REF] and Angelopolous [START_REF] Angelopoulos | Classification of simple Lie algebras[END_REF] which preceeded the work of Vogel and Deligne. Their works contain calculations similar to Vogel's, but with a different goal: they use that fact that dimensions of vector spaces are integers to classify complex simple Lie algebras, and to organize them into series, using Casimirs and invariants of the symmetric algebra to obtain diophantine equations. For this reason, the horizontal line, sp 4 , sl 4 , so 8 , which might otherwise just be considered as an artifact, may be interesting as restriction to it yields dimY ′ 2 = 35, dimY ′′ 2 = 70 for so 8 .

Given that difficulties arise when a Casimir eigenspace is not irreducible, it might be natural to look for universal decompositions and dimension formulas for Casimir eigenspaces rather than irreducible components. Would such a modification help to overcome some of the difficulties with Vogel's universal Lie algebra (see [START_REF] Vogel | The universal Lie algebra[END_REF])? For example Vogel has shown that the universal Lie algebra that inspired his results mentioned above does not have the nice algebraic properties that he first expected. In particular, the closely related ring denoted Λ by Vogel contains zero divisors. The dimension and decomposition formulas Vogel obtained for the universal Lie algebra assumed properties incorrectly conjectured for the universal Lie algebra. However when applied to actual Lie algebras the formulas are correct and can be derived purely in the context of Lie algebras.

If one restricts to the exceptional line, Cohen and deMan have observed that (just using a finite number of dimension fomulas), the only value nontrivially yielding integers is, with our parametrization, a = 6. We account for this in [START_REF] Landsberg | Sextonions and the dimension formulas of Cvitanovic, Deligne and Vogel[END_REF] with a Lie algebra which is intermediate between e 7 and e 8 , and appears to be an exceptional analogue of the odd symplectic groups. In fact the odd symplectic groups appear to satisfy the formulas above when one allows γ to be a half-integer in the symplectic line. What other parameter values yield integers in all the formulas? Do the intermediate Lie algebras considered in [START_REF] Landsberg | Sextonions and the dimension formulas of Cvitanovic, Deligne and Vogel[END_REF] belong in Vogel's plane?

2. The role of the principal sl 2 .

2.1. How to use the Weyl dimension formula. A vector X α 0 ∈ g α 0 belongs to the minimal (nontrivial) nilpotent orbit in g. We can choose X -α 0 ⊂ g -α 0 such that (X α 0 , X -α 0 , H α 0 = [X α 0 , X -α 0 ]) is a sl 2 -triple in g, generating a subalgebra of g that we denote by sl * 2 . This is the principal sl 2 . The semi-simple element H α 0 defines a grading on g according to the eigenvalues of ad(H α 0 ):

g = g -2 ⊕ g -1 ⊕ g 0 ⊕ g 1 ⊕ g 2 .
The line g 2 (resp. g -2 ) is generated by X α 0 (resp. X -α 0 ). The subalgebra g 0 is reductive, and splits into the sum of the line generated by H α 0 and the centralizer h of the sl 2 -triple. The h-module g 1 is the sum of the root spaces g β , where β belongs to the set Φ 1 of positive roots such that β(H α 0 ) = 1. Its dimension is twice the dual Coxeter number of g, minus four [START_REF] Knop | Ein neuer Zusammenhang zwischen einfachen Gruppen und einfachen Singularitäten[END_REF]. Let ρ denote the half-sum of the positive roots. By the Weyl dimension formula,

dim g (k) = (ρ + kα 0 , α 0 ) (ρ, α 0 ) β∈Φ 1 (ρ + kα 0 , β) (ρ, β) .
We thus need to analyze the repartition of the values of (ρ, β) for β ∈ Φ 1 .

2.2. The Z 2 -grading. To do this, we slightly modify our grading of g. Let V = g 1 considered as an irreducible h × Γ-module, where Γ is the automorphism group of the Dynkin diagram of g.

As an h-module, V is irreducible except in the case g = sl n where h = gl n-2 and

V = V ω 1 ⊕ V ω n-3 as an h-module.
The space V is endowed with a natural symplectic form ω defined, up to scale, by the Lie bracket

g 1 × g 1 → g 2 . Thus for each root β ∈ Φ 1 , α 0 -β is again a root in Φ 1 . Consider U = g β-α 0 ⊕ g β ⊂ g -1 ⊕ g 1 .
U is stable under the adjoint action of sl * 2 , and is a copy of the natural two-dimensional sl 2 -module. As a sl * 2 × h-module, we thus get a Z 2 -grading of g as

g = g even ⊕ g odd = sl * 2 × h ⊕ U ⊗ V.
The Lie bracket defines an equivariant map

∧ 2 (U ⊗ V ) = S 2 U ⊗ ∧ 2 V ⊕ ∧ 2 U ⊗ S 2 V ↓ id ⊗ ω ↓ θ sl * 2 ⊕
h.

Here we use the natural identifications sl * 2 = S 2 U , and ∧ 2 U = C. Moreover, the fact that h preserves the symplectic form ω on V implies that the image of h in End(V ) ≃ V ⊗ V must be contained in S 2 V ≃ S 2 V * . The map θ, up to scale, is dual to that inclusion. Note that sl * 2 × h is a reductive subalgebra of maximal rank of g. We choose a Cartan subalgebra of g, by taking the direct sum of CH α 0 , and a Cartan subalgebra of h. The roots of g will then be the root α 0 = 2ω 0 of sl * 2 , the roots of h and the weights of U ⊗ V , i.e., the sums ±ω 0 + µ with µ a weight of V . We can choose a set of positive roots of h, and if we choose the direction of α 0 to be very positive, the positive roots of g will be α 0 , the positive roots of h, and the weights ω 0 + µ for µ any weight of V . Note that since V is symplectic, the sum of these weights must be zero. Write 2v = dimV , we have

Series g h V v SL sl n gl n-2 C n-2 ⊕ (C n-2 ) * n -2 SO so n sl 2 × so n-4 C 2 ⊗ C n-4 n -4 SP sp 2n sp 2n-2 C 2n-2 n -1 EX g 2 sl 2 S 3 C 2 2 so 8 sl 2 × sl 2 × sl 2 C 2 ⊗ C 2 ⊗ C 2 4 f 4 sp 6 ∧ 3 C
2ρ = 2ρ h + (1 + v)α 0 . and Φ 1 = {ω 0 + µ | µ a weight of V }
The set of simple roots of g is easily described. If g is not of type A, denote the highest weight of the irreducible h-module V by χ so that its lowest weight is -χ. For type A denote the highest weights by χ 1 , χ 2 , The simple roots of g are the simple roots of h union ω 0 -χ (ω 0 -χ 1 , ω 0 -χ 2 for type A). In particular the Dynkin diagram of g is the diagram of h with a vertex attached to the simple roots β of g such that (χ, β) = 0, with the obvious analog attaching two verticies for type A.

Remark. If we had chosen the directions of h to be much more positive than that of sl * 2 , we would have obtained a different set of positive roots and, except for g = g 2 , the highest root α of h would have been the highest root of g (here we suppose that h itself is simple; otherwise we can take the highest root of any simple factor of h). We suppose in the sequel that we are not in type g 2 : then α 0 and α, considered as roots of g, are both long.

For type C, the root ω 0 + χ is short and it is long in all other cases. This is because, except in type A which can be checked seperately, α 0 = kω i for some fundamental weight ω i , and ω 0 + χ, being the second highest root, must equal kω i -α i . But then,

(kω i -α i , kω i -α i ) = (kω i , kω i ) + (1 -k)(α i , α i ).
We conclude that ω 0 + χ is long iff the adjoint representation is fundamental, i.e., iff we are not in type C. Then

(ω 0 + χ, ω 0 + χ) = (α 0 , α 0 ) = (α, α) = 4 3 (χ, χ).
Another interesting relation can be deduced from the fact that for any simple root α of g, we have (2ρ, α) = (α, α), since ρ is the sum of the fundamental weights. Applying this to α = ω 0 -χ, we get

(χ + 2ρ h , χ) = 2v + 1 4 (α 0 , α 0 ).
Note that the scalar form here is the Killing form of g, more precisely the dual of its restriction to the Cartan subalgebra. Restricted to the duals of the Cartan subalgebras of sl * 2 or h, we can compare it to their Killing forms. Suppose that h

= h 1 × • • • × h m , and V = V 1 ⊗ • • • ⊗ V m for some h i -modules V i .
To simplify notation in the calculations that follow we use the normalization that the Casimir eigenvalue of every simple Lie algebra is 1, i.e., we use for invariant quadratic form the Killing form K(X, Y ) = trace(ad(X) • ad(Y )).

Then for

X ∈ sl * 2 and Y ∈ h i , we have trace g ad(X) 2 = trace sl * 2 ad(X) 2 + 2vtrace U X 2 = (1 + v 2 )trace sl * 2 ad(X) 2 , trace g ad(Y ) 2 = trace h i ad(Y ) 2 + 2 dim V dim V i trace V i Y 2 = (1 + 4ve V i )trace h ad(Y ) 2 , where e V i is related to the Casimir eigenvalue c V i of V i by the identity e V i = c V i dim h i . Taking duals, we deduce that (α 0 , α 0 ) = 2 v+2 (α 0 , α 0 ) sl * 2 = 1 v+2 , (α, α) h = 4 3 (χ, χ) h = 1+4ve V v+2 .
Note that the dual Coxeter number of a simple Lie algebra is the Casimir eigenvalue of the Lie algebra divided by the length of the longest root. We conclude that the dual Coxeter number ȟ of g is ȟ = v + 2, while the dual Coxeter number of h, which we denote by h, is equal to 1+4ve V v+2 . Remember that the normalization of the Killing form is such that

(α + 2ρ h , α) h = 1, so that (2ρ h , α) h = (h -1)(α, α) h , thus (2ρ h , α) = (h -1)(α, α) as well.
3. The Casimir eigenvalues of S 2 g 3.1. A nontrivial component in the symmetric square of g. Vogel proved that S 2 g can contain at most four Casimir eigenspaces (allowing the possibility of zero, or even virtual eigenspaces). Two irreducible components are obvious: the Cartan square, whose highest, weight is 2α 0 , and the trivial line generated by the Killing form. We identify, for g not of type A 1 (i.e., h = 0), another component.

Proposition 3.1. The symmetric square S 2 g has a component Y ′ 2 of highest weight α 0 + α. Proof. From our Z 2 -grading g = sl 2 × h ⊕ U ⊗ V , we deduce that S 2 g = S 2 sl 2 ⊕ S 2 h ⊕ (S 2 U ⊗ S 2 V ) ⊕ (∧ 2 U ⊗ ∧ 2 V ) ⊕ (sl 2 ⊗ h) ⊕ (sl 2 ⊗ U ⊗ V ) ⊕ (U ⊗ h ⊗ V ).
All the weights here are of the form kω 0 + µ for µ in the weight lattice of h, and we will call the integer k the level of the weight. The maximal level is four, and the unique weight of level four is 2α 0 , the highest weight of S 2 sl 2 . The corresponding weight space, of dimension one, generates the Cartan square of g.

We will check that once we have suppressed the weights of the Cartan square with their multiplicities, the highest remaining weight is α 0 + α, which has level two.

At level three, we only get weights coming from sl 2 ⊗ U ⊗ V . More precisely, let e, f be a basis of U diagonalizing our Cartan subalgebra, in such a way that the semi-simple element H of our sl 2 -triple has eigenvalues 1 on e, -1 on f , while X = f * ⊗ e and Y = e * ⊗ f . Then a weight vector of level three in sl 2 ⊗ U ⊗ V is of the form X ⊗ e ⊗ v, for some weight vector v ∈ V , and such a weight vector is contained in g.X 2 ⊂ S 2 g, hence in the Cartan square of g. Indeed, it is equal, up to a nonzero constant, to (f ⊗ v).X 2 . We conclude that all weight vectors of level three belong to the Cartan square of g.

We turn to level two. First observe that α 0 + α has multiplicity two inside S 2 g. Indeed, it is the highest weight of sl 2 ⊗ h, which appears twice in the decomposition of S 2 g above: once as such, and once in a slightly more hidden way, as a component of S 2 U ⊗ S 2 V . Indeed, remember that S 2 U and sl 2 are equal, and that we defined a nontrivial map θ : S 2 V → h. We check that α 0 + α has only multiplicity one inside the Cartan square of g, and our claim will follow.

Note that this Cartan square is U (n -)X 2 , where n -⊂ g is the subalgebra generated by the negative root spaces and U (n -) its universal envelopping algebra. As a vector space, this algebra is generated by monomials on vectors of negative weight, hence of nonpositive level. How can we go from X 2 , which is of level four, to some vector of level two? We have to apply a vector of level -2, or twice a vector of level -1. For the first case, the only possible vector is Y , which maps X 2 to XH ∈ S 2 sl 2 . For the second case, we first apply some vector f ⊗ v, with v ∈ V : this takes X 2 to X ⊗ (e ⊗ v), up to some constant. Then we apply another vector f ⊗ v ′ , and obtain, again up to some fixed constants,

(e ⊗ v ′ )(e ⊗ v) + X ⊗ θ(vv ′ ) + ω(v, v ′ )XH.
The first component belongs to S 2 (U ⊗ V ), the second one to sl 2 ⊗ h, the third one to S 2 sl 2 . The contribution of the first component to

sl 2 ⊗ h ⊂ S 2 (U ⊗ V ) is e 2 ⊗ θ(vv ′ ) = X ⊗ θ(vv ′ ). We conclude that the Cartan square of g does not contain sl 2 ⊗ h ⊕ sl 2 ⊗ h ⊕ ⊂ S 2 U ⊗ S 2 V ⊕ sl 2 ⊗ h,
but meets it along some diagonal copy of sl 2 ⊗ h. This implies our claim.

Interpretation of Vogel's parameters.

It is now easy to compute the Casimir eigenvalues of our two nontrivial components of S 2 g:

C Y 2 = (2α 0 + 2ρ, 2α 0 ) = 2 v+3 v+2 , C Y ′ 2 = (α 0 + α + 2ρ, α 0 + α) = v+h+2 v+2 . Corollary 3.2. Let h ′ = v -h. Normalize Vogel's parameters for g = g 2 , such that α = -2. Then β = h ′ + 2, γ = h + 2, t = v + 2 = ȟ.
Proof. Vogel's parameters are defined by the fact that, form some invariant quadratic form on g, the Casimir eigenvalue of g is 2t, while the nonzero Casimir eigenvalues of S 2 g are 2(2tα), 2(2t -β), 2(2t -γ). Recall that t = α + β + γ. We have been working with the Killing form, for which the Casimir eigenvalue of g is 1. Rescaling t to be v + 2 and plugging into the formulas for C Y 2 , C Y ′ 2 we obtain the result. Remark. Note that this does not depend on the fact that h is simple. If it is not simple, we can choose a highest root for any simple factor and get a corresponding component of S 2 g, whose Casimir eigenvalue is given as before in terms of the dual Coxeter number of the chosen factor. This implies that we cannot have more than two simple factors, and that when we have two, with dual Coxeter numbers h 1 and h 2 , then v = h 1 + h 2 . This actually happens in type B or D. (Beware that this should be understood up to the symmetry of the Dynkin diagram: in type D 4 we get three different components in S 2 g, but they are permuted by the triality automorphisms and their sum must be considered as simple.)

If h is simple, the formula (χ + 2ρ h , χ) = 2v+1 4 (α, α) gives c V = 2v+1 4h , and we get

dim h = c V e V = v(2v + 1) h ′ + 2 .
In general, Vogel's dimension formula is

dim g = d(h, h ′ ) = (h + h ′ + 3)(2h + h ′ + 2)(h + 2h ′ + 2) (h + 2)(h ′ + 2) .
We have the following curious consequence. Parametrize g by h and h ′ . We ask: What values of h and h ′ can give rise to a g such that h is simple and V is irreducible? In this case h is parametrized by h ′ and h -h ′ . Thus d(h, h ′ ) = d(h ′ , h -h ′ ) + 3 + 4(h + h ′ ), which is equivalent to the identity (h + 1)(h -2h ′ + 2) = 0. Thus such g must be in the symplectic series h = -1, or the exceptional series h = 2h ′ -2! 3.3. Interpretation of h ′ . Suppose that we are not in type A, so that the adjoint representation is supported on a fundamental weight ω. Let α ad = ω 0 -χ denote the corresponding simple root dual to ω. Since the highest root α of h is not the highest root of g, one can find a simple root α such that α + α is again a root, and the only possibility is α = α ad . Thus α + α ad , and by symmetry ψ = α 0 -α -α ad , both belong to Φ 1 . Suppose that V = V χ is fundamental, and let α χ be the corresponding simple root. Proposition 3.1. φ = ψ -α ad -α χ is the highest root of g orthogonal to α 0 and α.

Proof. We first prove that φ is a root. First note that

(ψ, α χ ) = (χ -α, α χ ) = (α χ , α χ )/2 -(α, α χ ).
If we are not in type C, then (α, α χ ) = 0. Indeed, α is a fundamental weight and α χ is a simple root, so if this were non-zero we would get α = χ, which cannot be since we know that χ is minuscule. Thus (ψ, α χ ) > 0 and

ψ ′ = ψ -α χ is a root. Moreover, (ψ, α ad ) = (α 0 , α 0 )/4 -(χ, χ) + (χ, α) = -(α 0 , α 0 )/2 + (α, α)χ(H α)/2,
where χ(H α) is a positive integer (in fact equal to one, since we know that V is minuscule!). Thus (ψ, α ad ) ≥ 0 and (ψ ′ , α ad ) ≥ -(α χ , α ad ) = (α χ , χ) > 0. We conclude that ψ ′ -α ad = φ is a root.

Since φ = 2χ -α -α χ , it is clearly orthogonal to α 0 . Moreover, using again that (α, α χ ) = 0 if we are not in type C, we have (φ, α) = (2χ -α, α) = 0, since we have just computed that (χ, α) = (α, α)/2. To conclude that φ is the highest root orthogonal to both α 0 and α, we use the following characterization of the highest root of a root system: Lemma 3.2. The highest root of an irreducible root system is the only long root γ such that (γ, α) ≥ 0 for any simple root α.

We apply this lemma to φ = 2χ -α -α χ = -αα =αχ c α,αχ ω α , where α belongs to the set of simple roots and c α,αχ is the corresponding Cartan integer. Since α = α χ , we know that c α,αχ ≤ 0, hence (φ, α) ≥ 0 for every simple root α = α ad .

It remains to check that φ is long. Remember that (χ, χ) = 3 4 (α, α), that (α, α χ ) = 0 and (α, χ) = (α, α)/2. We compute that (φ, φ) = 2(α, α) -(α χ , α χ ) ≥ (α, α). Therefore φ is long (and we must have equality, so that α χ is also long).

Note that, say in the simply laced case,

(2ρ, φ) = (2ρ, α 0 ) -(2ρ, α) -3(α 0 , α 0 ) = (v + 1 -h + 1 -3)(α 0 , α 0 ) = (h ′ -1)(α 0 , α 0 ).
We have therefore isolated three roots α 0 , α, φ of heights v + 1, h -1, h ′ -1 respectively. 4. Proof of the main result 4.1. The weights of V and their heights. Our next observation concerns the repartition of the rational numbers (ρ h , µ), when µ describes the set of weights of V . A natural scale for these numbers is the length (α, α) of the long roots. We denote by S p the string of numbers (p/2 -x)(α, α)/2, for x = 0, 1, . . . , p.

Proposition 4.1. The values (ρ h , µ), for µ a weight of V , can be arranged into the union of the three strings S v-1

2 , S h-1 2 , S h ′ -1 2 .
Our main theorem easily follows from this fact: a set of weights µ in V contributing to a string S p of values of (ρ h , µ), gives a set of roots

β = ω 0 + µ in Φ 1 , with (α, β) = (α 0 , α 0 )/2, (ρ, β) = 1+v 2 (α 0 , α 0 )/2 + (ρ h , µ) = ( 1+v 2 + p/2 -x)(α 0 , α 0 )/2, 0 ≤ x ≤ p.
The contribution of this subset of Φ 1 to the Weyl dimension formula is therefore

C p = β (ρ + k α, β) (ρ, β) = p x=0 1+v+p 2 -x + k 1+v+p 2 -x = v+p+1 2 +k k v-p-1 2 +k k .
Our proof of the Proposition is a case by case check. One has to be careful about the case where h ′ ≤ 0, since the string S h ′ -1 2 is no longer defined. Since for p > 0, we have C -p = C -1 p+1 , we should interpret S -p as suppressing a string S p+1 . We then easily check the rather surprising fact that, interpreted that way, the Proposition also holds for h ′ < 0.

4.2.

Relation with Knop's construction of simple singularities. F. Holweck observed that the fact that we can arrange the values of (ρ, β), for β ∈ Φ 1 , in no more than three strings, has a curious relation with the work of F. Knop on simple singularities. Knop proved [START_REF] Knop | Ein neuer Zusammenhang zwischen einfachen Gruppen und einfachen Singularitäten[END_REF] that if Y ⊥ ⊂ Pg is a hyperplane Killing orthogonal to a regular nilpotent element Y ∈ g, the intersection of this hyperplane with the adjoint variety X ad ⊂ Pg (the projectivization of the minimal nontrivial nilpotent orbit), has an isolated singularity which is simple, of type given by the subdiagram of the Dynkin diagram of g obtained from the long simple roots.

We can choose Y = α∈∆ X α , where ∆ denotes the set of simple roots and X α is a generator of the root space g α . The orthogonal hyperplane contains the lowest root space g -α ∈ X ad . Let P denote the parabolic subgroup of the adjoint group of g, which stabilizes g α, and let U denote its unipotent radical. Being unipotent, U can be identified, through the exponential map, with its algebra u, a basis of which is given by the roots spaces g β with β ∈ Φ 1 ∪ {α 0 }. The scalar product with Y defines on the Lie algebra u the function f (X) = K(Y, exp(X)X α). The quadratic part of this function is

q(X, X ′ ) = 1 2 K(Y, ad(X ′ )ad(X)X α ) = 1 2 K(ad(X)Y, ad(X ′ )X α).
The kernel of this quadratic form thus contains the kernel of the map X → [Y, X], X ∈ u. Suppose for simplicity that g is simply laced. Let

g l = γ∈Φ 1 ∪{α 0 }, (ρ,γ)=l g γ .
Then ad(Y ) maps g l to g l+(α, α)/2 . In particular, the kernel of ad(Y ) |g l has dimension at least dim g l -dim g l+(α, α)/2 . Since g v = g α 0 is one-dimensional, we deduce that for all l,

dim g l ≤ 1 + corank(q).
The maximal dimension of g l is the minimal number of string we need to arrange the values of (ρ, β) for β ∈ Φ 1 . This number is bounded by three because, since f defines a simple singularity, the corank of its quadratic part must be at most two. Note that in Knop's work there is no direct proof of this fact: it follows from a numerical criterion and a trick attributed to K. Saito ( [START_REF] Knop | Ein neuer Zusammenhang zwischen einfachen Gruppen und einfachen Singularitäten[END_REF], Lemma 1.5).

Gradings

The highest roots α 0 and α both induce 5-gradings on g. Being orthogonal, they induce a double grading

g ij = {X ∈ g, [H α 0 , X] = iX, [H α, X] = jX}.
Proposition 5.1. With the normalization t = ȟ, for g of rank at least three, the dimensions of the components of this double grading are given by the following diamond:

1 β 2γ -8 β 1 2γ -8 * 2γ -8 1 β 2γ -8 β 1
Proof. Let g ij denote the dimension of g ij . Since the dual Coxeter number of g is t, the dimension of the positive part of the 5-grading of g is 2g 11 + g 01 + 1 = 2t -3 = 2β + 2γ -7. Since the dual Coxeter number of h is h, the dimension of the positive part of the 5-grading of h is g 01 + 1 = 2h -3 = 2γ -7. Hence the claim.

Corollary 5.2. With the normalization t = ȟ, the integer β is the number of roots θ in Φ 1 such that α + θ is still a root.

Proof. Let θ ∈ Φ 1 be such that g θ ⊂ g 11 . This means that θ(H α) = 1. Then θ * = α 0 -θ is also a root, and

θ * (H α) = -1, thus s α(θ * ) = α + θ * is a root. Conversely, if α + θ * is a root, (α + θ * )(H α) = 2 + θ * (H α), as well as θ * (H α), belongs to {-2, -1, 0, 1, 2}, hence θ * (H α) = -1
and we can recover θ ∈ Φ 1 . The g 2 case may be verified directly.

Let g * 00 ⊂ g 00 denote the common centralizer of X α 0 and X α. We have

g 00 = g * 00 ⊕ CH α 0 ⊕ CH α. Proposition 5.3. g 11 is endowed with a g * 00 -invariant non-degenerate quadratic form. Proof. For Y, Z ∈ g 11 , let Q(Y, Z) = K([X α, Y ], [X -α 0 , Z]).
This bilinear form is obviously g * 00 -invariant. We check it is symmetric:

Q(Y, Z) = K(X α, [Y, [X -α 0 , Z]]) = K(X α, [Z, [X -α 0 , Y ]]) + K(X α, [X -α 0 , [Y, Z]]) = Q(Z, Y ) + Ω(Y, Z)K(X α, H α 0 ) = Q(Z, Y ).
Recall that K(g β , g γ ) = 0 if and only if β + γ = 0. To prove that Q is non-degenerate, we must therefore check that for each root space g θ in g 11 , α + θ is a root -this follows from the corollary above -and α 0 -(α + θ) is also a root -this follows from the fact that α + θ is in Φ 1 .

We thus get an invariant map g * 00 → so β , which turns out to be surjective. We can thus write g 00 = C 2 × so β × k for some reductive subalgebra k of g. Our double grading of g takes the form:

C C β U 2γ-8 C β C U 2γ-8 C 2 × so β × k U 2γ-8 C C β U 2γ-8 C β C
Note that U is a symplectic k-module. Now, consider the 5-step simple grading that we obtain by taking diagonals. Since so β ⊕ C β ⊕ C β ⊕ C = so β+2 , we get

g = C β+2 ⊕ V 4γ-16 ⊕ (C × so β+2 × k) ⊕ V 4γ-16 ⊕ C β+2 .
Remarkably, this induces a very simple Z 2 -grading

g = (so β+4 × k) ⊕ W 8γ-32 .
The subalgebra k and the module W 8γ-32 are given by the following table: For each simple Lie algebra g we have obtained a general formula for its k-th Cartan power as a rational function of α, β, γ, symmetric with respect to β and γ. Following Vogel, the three numbers should play a completely symmetric role, and by permutation we should get the dimensions of (virtual) g-modules Y ′ k and Y ′′ k . We first check that this is indeed the case. The formula predicts that these modules must be zero when k becomes large, but a very interesting pattern shows up in the classical cases.

β g k so β+4 W 1 sp 2n sp 2n-4 so 5 = sp 4 A 4 ⊗ B 2n-4 2 sl n gl n-4 so 6 = sl 4 A * 4 ⊗ B n-4 ⊕ A 4 ⊗ B * n-4

Identification. The formula for the dimension of

Y ′ k is dim Y ′ k = 2γ -(2k -3)β -4 2γ -(k -3)β -4 k i=1 (2γ -(i -3)β -2)(2γ -(i -3)β -4)((γ -(i -3)β -4) iβ((i -1)β + 2)(γ -(i -1)β) .
When k is small enough, Y ′ k is an irreducible module whose highest weight is given by Proposition 6.1 below. But the formula above may give a nonzero integer when k is too big for the hypothesis of this Proposition to hold. We check case by case that, nevertheless, this integer is still the dimension of an irreducible module, or possibly the opposite of the dimension of an irreducible module. This means that Y ′ k should be interpreted as a virtual module, which is a true module for small k, possibly the opposite of a module for intermediate values of k, and zero for k sufficiently large. In the second situation, we put a minus sign before the highest weight of the corresponding module in the lists below. a. Y ′ k for sp 2l (note that we have the fold of sl 2l+2 ):

k 0 1 2 . . . l l+1,l+2 l+3 . . . 2l+2 2l+3 ≥2l+4 Y ′ k C 2ω 1 2ω 2 • • • 2ω l 0 -2ω l • • • -2ω 1 C 0 b. Y ′ k for sl l+1
, for l = 2m -1 odd and l = 2m even, respectively:

k 0 1 • • • m-1 m Y ′ k C ω 1 + ω 2m-1 • • • ω m-1 + ω m+1 2ω m m+1 m+2 • • • 2m+1 2m+2 ≥2m+3 -2ω m -(ω m-1 + ω m+1 ) • • • -(ω 1 + ω m ) -C 0 k 0 1 . . . m m+1 Y ′ k C ω 1 + ω 2m • • • ω m + ω m+1 0 m+2 . . . 2m+1 2m+2 ≥2m+3 -(ω m + ω m+1 ) • • • -(ω 1 + ω 2m ) -C 0 c. Y ′ k for so 2l+1
, for l = 2m -1 odd and l = 2m even, respectively:

k 0 1 • • • m-1 m m+1 • • • 2m-1 ≥2m Y ′ k C ω 2 • • • ω 2m-2 2ω 2m-1 ω 2m-3 • • • ω 1 0 k 0 1 • • • m-1 m m+1 • • • 2m ≥2m+1 Y ′ k C ω 2 • • • ω 2m-1 2ω 2m ω 2m-1 • • • ω 1 0 d. Y ′ k for so 2l , l ≥ 4
, for l = 2m -1 odd and l = 2m even, respectively:

k 0 1 • • • m-2 m-1,m m+1 • • • 2m-1 ≥2m Y ′ k C ω 2 • • • ω 2m-4 ω 2m-2 + ω 2m-1 ω 2m-3 • • • ω 1 0 k 0 1 • • • m-1 m m+1 • • • 2m ≥2m+1 Y ′ k C ω 2 • • • ω 2m-2 0 ω 2m-2 • • • C 0 e. Y ′
k for the exceptional Lie algebras:

k 0 1 2 3 4 5 6 ≥7 g 2 Y ′ k C ω 2 2ω 1 ω 1 0 0 0 0 f 4 Y ′ k C ω 1 2ω 4 ω 3 ω 4 0 0 0 e 6 Y ′ k C ω 2 ω 1 + ω 6 ω 1 + ω 6 ω 2 C 0 0 e 7 Y ′ k C ω 1 ω 6 2ω 7 0 0 0 0 e 8 Y ′ k C ω 8 ω 1 0 -ω 1 -ω 8 -C 0 f. Y ′′ k : k 2 3 4 ≥5 sp 2l Y ′′ k ω 2 0 0 0 sl l Y ′′ k ω 1 + ω l-1 C 0 0 so m Y ′′ k 2ω 1 0 0 0 e, f, g Y ′′ k 0 -g -C 0
Note that the Y ′ k 's travel nicely along the Dynkin diagram in a wave (that gets reflected when it hits the end of a diagram or collides with something else in the diagram, becoming negative if there is no arrow).

Gradings and the Y ′

k 's. Let β 1 = α 0 denote the highest root, let β 2 = α denote a highest long root orthogonal to α 0 , β 3 a highest long root orthogonal to α 0 and β 2 , etc...

Proposition 6.1. If σ i = β 1 + β 2 + β 3 + • • • + β i is dominant for i ≤ k, then σ k is the highest weight of an irreducible component of S k g.
This module turns out to be Y ′ k , the module that we identified from its dimension. Of course this does not explain what happens when Y ′ k is only a virtual module, and in fact there are also cases for which Y ′ k is an actual module whose presence is not accounted for by the Proposition. To be precise, this happens when k ≥ m for so 4m-3 , so 4m-2 , so 4m-1 or so 4m , when k ≥ 2 for g 2 , when k ≥ 3 for f 4 and e 6 .

Note that the dominance condition in the hypothesis of Proposition 6.1 is not automatic, and will be essential in the following construction. We associate to the k roots β 1 , . . . , β k a Z k -grading of g,

g l 1 •••l k = {X ∈ g, [H β i , X] = l i X, i = 1...k}. Lemma 6.2. Suppose that l 1 , . . . , l k ≥ 0 and g l 1 •••l k = 0. Then l 1 + • • • + l k ≤ 2.
Note that for a given g which is not so n for some n ≥ 5, there is no ambiguity in defining the integer β. This implies that for any k as above, the components g 0..1..1..0 of our k-dimensional grading have the same dimension, β by Proposition 5.1, in particular they are nonzero.

If g = so n for some n ≥ 5, the Lie subalgebra we denoted h is the product of sl 2 and so n-4 , and we can choose for β 2 the highest root of either algebra. If we choose that of sl 2 , we cannot go further: β 1 + β 2 + β 3 will not be dominant. If we choose the highest root of so n-4 , we can go further, but there is no more choice, we can only take β i = ε 2i-1 + ε 2i and again the components g 0..1..1..0 of the grading have the same dimension, four.

Example. For g = e 7 , the highest root is α 0 = β 1 = ω 1 . The highest root orthogonal to α 0 is the highest root of a subsystem of type D 6 . We get β 2 = ω 6 -ω 1 and β 1 + β 2 = ω 6 is dominant. For the next step, the roots orthogonal both to β 1 and β 2 , i.e., both to ω 1 and ω 6 , form a reducible subsystem of type D 4 × A 1 , and we have two candidates for the next highest root. If we choose, β 3 = ω 4 -ω 1 -ω 6 , the highest root of the D 4 part, then β 1 + β 2 + β 3 is not dominant. The only possible choice is therefore β 3 = α 7 = 2ω 7 -ω 6 , for which β 1 + β 2 + β 3 = 2ω 7 is dominant. Then the process stops.

We obtain a three-dimensional grading of e 7 with three types of nonzero components: the six components g ±200 , g 0±20 , g 00±2 are one dimensional; the twelve components g ±1±10 , g ±10±1 , g 0±1±1 have dimension eight and must be interpreted as copies of the (complexified) octonions; the central component g 000 = C 3 ⊕ so 8 . This is very close to the triality construction of e 7 as g(O, H) [START_REF] Landsberg | Triality, exceptional Lie algebras, and Deligne dimension formulas[END_REF].

Corollary 6.3. For each 1 ≤ i < k, we have (2ρ, β i -β i+1 ) = β(α 0 , α 0 ).
Proof. Recall that 2ρ is the sum of the positive roots. If γ is such a positive root, then g γ is contained in one of the g l 1 ...l k , and the fact that β 1 + • • • + β j is dominant for all j implies that l 1 + • • • + l j ≥ 0 for all j. Conversely, such a component g l 1 ...l k is a sum of positive root spaces, except of course the central component g 0...0 .

The integer γ(H β i ) is equal to 2 if g γ = g 0...2...0 with the 2 in position i, 1 if g γ ⊂ g 0..1..1..0 or g 0..1..-1..0 , both of dimension β, 1 again for g 0..1..0 , of dimension with the 1 in position i, and zero otherwise. Since g 0..1..0 has dimension 2γ -8 -2(k -2)β, we conclude that 2ρ(H

β i ) = (k -1 + k -i)β + 2γ -8 -2(k -2)β + 2 = 2γ + (3 -i)β -6,
and the claim follows.

Corollary 6.4. The Casimir eigenvalue of Y ′ k is 2kt -k(k -1)β. Proof of the Lemma. Let θ be some root such that g θ ⊂ g l 1 •••l k . If some l i equals 2, then θ must equal β i and the other coefficients vanish. So we suppose that l i 1 = • • • = l ip = 1, and the other coefficients are zero. Using the orthogonality of the β i 's, we can write

θ = 1 2 (β i 1 + β i 2 + • • • + β ip + γ),
where γ is orthogonal to the β i 's. Suppose that i 1 is smaller than the other i q 's and apply the symmetry

s = s i 2 • • • s ip . We conclude that s(θ) = 1 2 (β i 1 -β i 2 -• • • -β ip + γ)
is again a root. Since (s(θ), det(e p • e q ) 1≤p,q≤k , so n Pf(e p ∧ e q ) 1≤p,q≤k .

β 1 + • • • + β i 1 ) > 0, it must be a positive root. But (β 1 + • • • + β k , s(θ)) = 1 -(p -1) = 2 -p. Since β 1 + • • • + β k is
So we focus on the case k = 3. We have a Z 3 -grading of g with 6 terms of dimension one, 12 of dimension β, 6 of dimension 2γ -2β -8, and the central term g 000 . The six terms of type g 200 can be represented as the vertices of a square pyramid; then the twelve terms of type g 110 are the middle points of the edges. We have chosen vectors X ±β i generating three commuting sl 2 -triples. We next choose generators X α for the roots α ∈ Φ 110 such that the corresponding root space g α ⊂ g 110 . We then take bases of g -110 , g 1-10 and g -1-10 by letting

• g 002 g 200 g 101 • • • • • • $ $ $ $ $ d d d d d $ $ $ $ ¤ ¤ ¤ ¤ ¤ ¤ ¤ ¤ D D D D D D e e e e e • • • • • • $ $ $ $ $ $ $ $ $ $ d d d d d d d d d d $ $ $ $ $ $ $ $ ¤ ¤ ¤ ¤ ¤ ¤ ¤ ¤ ¤ ¤ ¤ ¤ ¤ ¤ D D
X α-β 1 = [X -β 1 , X α ], X α-β 2 = [X -β 1 , X α ], X α-β 1 -β 2 = [X -β 1 , X α-β 2 ].
An easy consequence of the Jacobi identity is that

[X β 1 , X α-β 1 ] = X α . Note that α -β 1 -β 2 = s β 1 s β 2 ( 
α) is a root, and that its opposite

α ′ = β 1 + β 2 -α
corresponds to another root space in g 110 . (We will use the notation θ

′ = β 1 + β 2 -θ repeatedly in what follows.) Then [X α , X α ′ -β 2 ], which is equal to [X α ′ , X α-β 2
] by the Jacobi identity, is a nonzero multiple of X β 1 . We normalize our root vectors from g 110 so that this multiple is in fact X β 1 itself. This means that for all α ∈ Φ 110 ,

K(X β 1 , X -β 1 ) = K([X α , X α ′ -β 2 ], X -β 1 ) = K(X α , [X α ′ -β 2 , X -β 1 ]) = -K(X α , X -α ).
We use the same normalization for g 101 and g 011 . Note that 2K(X β 1 , X -β 1 ) = K(H β 1 , H β 1 ) = 2/(β 1 , β 1 ), twice the inverse of the square length of a long root. In particular, K(X α , X -α ) does not depend on α ∈ Φ ±1±10 , Φ ±10±1 or Φ 0±1±1 . Now we introduce the symmetric tensor

S 12 = α∈Φ 110 X α X α ′ .
Here and in what follows, if X, Y ∈ g or a symmetric power of g, XY will denote the symmetric product X • Y .

Here the first bracket of the last term is in g -11-1 , hence equal to zero and we deduce the second identity. Finally, the invariance of the Killing form gives

N µ,ν K(X µ+ν , X -µ-ν ) = K([X µ , X ν ], X -µ-ν ) = K(X µ , [X ν , X -µ-ν ]) = N ν,-µ-ν K(X µ , X µ ).
But in the normalization we use, we have seen that K(X µ+ν , X -µ-ν ) = K(X µ , X µ ), and the third identity follows. Proposition 6.8. The tensor Θ ∈ S 3 g defined as

Θ = X β 1 X β 2 X β 3 -X β 1 S 23 -X β 2 S 13 -X β 3 S 12 + T, is a highest weight vector of weight β 1 + β 2 + β 3 .
Proof. We must check that Θ is annihilated by any positive root vector X µ . If µ(H β i ) ≥ 0 for i = 1, 2, 3, and at least one is positive, this is clear since X µ annihilates every space of type g 200 or g 110 . If these three integers vanish, that is, X µ ∈ g 000 , this follows from the fact that for

X ∈ g 0-1-1 , Y ∈ g -10-1 and Z ∈ g -1-10 , α∈Φ 011 ,β∈Φ 101 ,γ∈Φ 110 α+β+γ=β 1 +β 2 +β 3 N α-β 3 ,β-β 1 K(X α , X)K(X β , Y )K(X γ , Z) = K([[X β 1 , Y ], [X β 2 , Z]], [X β 3 , X]),
which shows that T must be annihilated by any vector commuting with X β 1 , X β 2 and X β 3 -and X µ has this property. Now, since µ is positive, we know that µ(H β 1 ), µ(H β 1 )+µ(H β 2 ) and µ(H β 1 )+µ(H β 2 )+µ(H β 3 ) are nonnegative, so if one of the µ(H β i )'s is negative, X µ must belong to g 1-10 , g 10-1 or g 01-1 . Since [g 1-10 , g 01-1 ] = g 10-1 , what remains to check is that Θ is annihilated by any Z ∈ g 1-10 or Y ∈ g 01-1 . This is equivalent to the four identities

[Z 3 , T ] = (ad(Z)S 23 ) • X β 1 , (5) 
[Y 1 , T ] = (ad(Y )S 13 ) • X β 2 , (6) [Z 1 , T ] = S 13 • ad(Z)X β 2 , (7) [Y 2 , T ] = S 12 • ad(Y )X β 3 , (8) 
where [Z 3 , T ], for example, means that we take the bracket of Z only with the terms in T coming from g 110 .

Proof of (5). To prove the first identity, we can let Z = X δ-β 2 for some δ ∈ Φ 110 . Then

[Z 3 , T ] = α∈Φ 011 ,β∈Φ 101 , α+β=δ+β 3 N β 3 -α,β 1 -β X β 1 X α X α ′ +δ-β 2 . But N β 3 -α,β 1 -β = -N -α,β 3 +β 1 -β (2) = N β 2 -α,β 3 -β (3) twice = N β 2 -α,α-δ = N β 2 -α,δ-β 2 (4) = N α ′ ,δ-β 2
(3) This allows us to write [Z 3 , T ] as

α∈Φ 011 N α ′ ,δ-β 2 X β 1 X α X α ′ +δ-β 2 = 1 2 (ad(Z)( α∈Φ 011 X α X α ′ ))X β 1 = (ad(Z)S 23 ) • X β 1 .
This proves [START_REF] Cvitanović | Group theory[END_REF]. The proof of ( 6) is similar and will be left to the reader.

Proof of [START_REF] Deligne | On the exceptional series and its descendants[END_REF]. The proofs of ( 7) and ( 8) involve the same type of arguments and we will focus on [START_REF] Deligne | On the exceptional series and its descendants[END_REF]. We use the invariance of S 12 from Lemma 6.5. Let Y = X θ-β 3 , with θ ∈ Φ 011 . We have ad(X θ )S 12 = 0 since g 121 = 0. Thus for α ∈ Φ 011 , ad(X θ )ad(X -α )S 12 = ad([X θ , X -α ])S 12 .

If α = θ, [X -θ , X α ] is either zero, or a root vector in g 000 , thus annihilating S 12 . Hence X θ ad([X θ , X -θ ])S 12 = α∈Φ 011 X α ad(X θ )ad(X -α )S 12 = α∈Φ 011 ,γ∈Φ 110 N -α,γ ′ N γ ′ -α,θ X α X γ ′ -α+θ X γ = α∈Φ 011 ,β∈Φ 101 ,γ∈Φ 110 α+β+γ=β 1 +β 2 +β 3 N -α,γ ′ N γ ′ -α,θ X α X β+θ-β 3 X γ .

But N γ ′ -α,θ = N β-β 3 ,θ = -N β,θ-β 3 by ( 2 

N β 3 -α,β 1 -β X α [X β , X θ-β 3 ]X γ = -[Y 2 , T ].
There remains to compute ad([X θ , X -θ ])S 12 . We have [X θ , X -θ ] = t θ H θ , where t θ can be computed as follows:

t θ K(H θ , H θ ) = K([X θ , X -θ ], H θ ) = K(X θ , [X -θ , H θ ]) = 2K(X θ , X -θ ).
And since we know that 2K(X θ , X -θ ) = -2K(X β 2 , X -β 2 ) = -K(H β 2 , H β 2 ), we get that

t θ = - K(H β 2 , H β 2 ) K(H θ , H θ ) = - (θ, θ) (β 2 , β 2 ) = - (θ, θ) (β 1 , β 1 )
.

Then ad([X θ , X -θ ])S 12 = t θ ad(H θ )S 12 is equal to

t θ γ∈Φ 110 (γ(H θ ) + γ ′ (H θ ))X γ X γ ′ = t θ (β 1 (H θ ) + β 2 (H θ ))S 12 .
But since θ ∈ Φ 011 , β 1 (H θ ) = θ(H β 1 ) = 0, while

β 2 (H θ ) = (β 2 , β 2 ) (θ, θ) θ(H β 2 ) = -t -1 θ .
We thus get that [Y 2 , T ] = S 12 [Y, X β 2 ], as required. This concludes the proof of the identity (8), hence of Proposition 6.1.

6.3.

Geometric interpretation of the Y ′ k 's. Zak defines the Scorza varieties to be the smooth nondegenerate varieties extremal for higher secant defects in the sense the the defect of the i-th secant variety of X n ⊂ P N is i times the defect δ of the first and that the [ n δ ]-th secant variety fills the ambient space. He then goes on to classify the Scorza varieties, all of which turn out to be homogeneous [START_REF] Zak | Tangents and secants of algebraic varieties[END_REF].

More precisely, the Scorza varieties are given by the projectivization of the rank one elements in the Jordan algebras J r (A), where A is the complexification of the reals, complex numbers or quaternions, or, when r = 3, the octonions [START_REF] Chaput | Scorza varieties and Jordan algebras[END_REF].

Recall that for a simple Lie algebra, the adjoint group has a unique closed orbit in Pg, the projectivization X ad of the minimal nilpotent orbit. This adjoint variety parametrizes the highest root spaces in g. Proposition 6.9. Let Z ′ k ⊂ X ad denote the shadow of a point of the closed orbit X ′ k ⊂ PY ′ k . Then the Z ′ k 's are Scorza varieties on the adjoint variety. The shadow of a point is defined as follows: let G denote the adjoint algebraic group associated to the Lie algebra g. We have maps

X ′ k = G/Q q ←-G p -→ G/P = X ad ,
and the shadow of x ∈ X ′ k is the subvariety p(q -1 (x)) of X ad . Tits [START_REF] Tits | Groupes semi-simples complexes et géométrie projective[END_REF] showed how to read what these shadows are directly using Dynkin diagrams, and Proposition 6.9 follows from a straightforward case by case check.

  = F (β, γ, k, l)A(β, γ, k + l)B(β, γ, l)C(β, γ, k + 2l)C(β, γ, k -γ + 3),

Remark 1 . 3 .

 13 Giving a precise meaning to that last sentence is an interesting open problem. The reason SP and SO are split into two different series is that we have broken Vogel's symmetry and to get the Cartan powers of the adjoint representation we must permute α and β. The formula above does work for the OSP series, but for sp 2n it gives the representations Y ′′ k in the notation of Vogel.

+β 2 +β 3 N β 3

 33 ), andN -α,γ ′ = N -α,α+β-β 3 = N β 3 -α,α+β-β 3 = -N β 3 -α,-β = -N β 3 -α,β 1 -β, where we used successively (3), (4) and (3) again. ThusX θ ad([X θ , X -θ ])S 12 = α∈Φ 011 ,β∈Φ 101 ,γ∈Φ 110 α+β+γ=β 1 -α,β 1 -β N β,θ-β 3 X α X β+θ-β 3 X γ , = α∈Φ 011 ,β∈Φ 101 ,γ∈Φ 110 α+β+γ=β 1 +β 2 +β 3

  ′′ k are obtained by exchanging the role of α with β, γ respectively. The modules Y ′ k , Y ′′ k are described in §6. We may restate the result in the following way: Theorem 1.2. Parametrize the complex simple Lie algebras as follows:

				1+k k	,
	and dim Y ′ k , dim Y Series Lie algebra α β	γ
	SP	sp 2n	-2 1	n + 2
	SL	sl n	-2 2	n
	SO	so n	-2 4	n -4
	EX		-2 a + 4 2a + 4
		sl 3	-2 3	2
		g 2	-2 10/3 8/3
		so 8	-2 4	4
		f 4	-2 5	6
		e 6	-2 6	8
		e 7	-2 8	12
		e 8	-2 12	20
	F 3G			

  supposed to be dominant, this must be a nonnegative integer. Hence p ≥ 2, which is what we wanted to prove.Proof of Proposition 6.1. The case k > 3 only happens for the classical Lie algebras, for which we can exhibit a highest weight vector of weight σ k as a determinant, or a Pfaffian, in terms of the basis of the natural representation preserved by the maximal torus:

	sl n	det(e p ⊗ e * n+1-q ) 1≤p,q≤k ,
	sp 2n	
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 Lemma 6.5. For Y, Z ∈ g -1-10 , the bilinear forms

are multiples of one another.

In particular, S 12 is invariant under the common centralizer of β 1 and β 2 .

Proof. Let Y = X -β ′ and Z = X -γ ′ for some roots β, γ

We deduce a different proof of Proposition 3.1. We must prove that S 2 g contains a tensor of weight α 0 + α = β 1 + β 2 which is a highest weight vector, i.e., which is annihilated by any positive root vector.

g is a highest weight vector of weight

Proof. We must prove that Σ is annihilated by any positive root vector. Since β 1 and β 1 + β 2 are both dominant, a positive root must belong either to Φ 00 , Φ 1-1 or Φ pq with p, q ≥ 0 and p + q > 0. Since g 1+p,1+q = 0, our assertion is clear for the latter case. For the first case, it follows from the previous lemma.

There remains to prove that ad(X θ-β 2 )Σ = 0 for θ ∈ Φ 11 . We use the structure constants

On the other hand,

But α+θ-β 2 belongs to Φ 200 , hence must be equal to

This concludes the proof. Now we define a tensor T ∈ g 110 ⊗ g 101 ⊗ g 011 ⊂ S 3 g, with the help of which we will construct a highest weight vector of weight β 1 + β 2 + β 3 :

We will need the following properties of the structure constants.

Of course, we have similar identities when we permute the indices, e.g.,

the first bracket of the second term is in g 12-1 , hence equal to zero. Since [X ν , X -β 2 ] = -X ν-β 2 , the first identity follows. To prove the second one, we use the Jacobi identity

Example. Let g be sl l+1 or so 2l . On the Dynkin diagram of g, we let the * 's encode the highest weight of the fundamental representation, and the •'s encode that of Y ′ k . When we suppress the •'s, we get weighted diagrams encoding homogeneous varieties, respectively P k-1 × P k-1 and a Grassmannian G(2, 2k) which are two examples of Scorza varieties.

It is natural that the Scorza varieties arrive as subsets of polynomials of degree k on g because the determinant on J k (A) is a polynomial of degree k. If we take the linear span of Z ′ k and then take the cone over the degree k hypersurface in Z ′ k with vertex a Killing-complement to Z ′ k , we obtain a hypersurface of degree k in g. X ′ k parametrizes this space of hypersurfaces and its span gives the space Y ′ k .

6.4. Universal dimension formulas. We finally extend our formula for the dimension of the Cartan powers of g to obtain a universal formula for the Cartan powers of the Y ′ l 's. Again, our approach is based on Weyl's dimension formula: we check that the relevant integers can be organized into strings whose extremities depend only on Vogel's parameters β and γ. In fact, this really makes sense only in type A, B, D, and in the exceptional cases (excluding f 4 ) when l = 2. In type C and F 4 , there are some strange compensations involving half integers, but the final formula holds in all cases.

We will just give the main statements leading to Theorem 6.10 below. Let
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+ l, #Φ l,i = 0 for i > 2. Facts.

( .