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We prove that the quantum cohomology ring of any minuscule or cominuscule homogeneous space, once localized at the quantum parameter, has a non trivial involution mapping Schubert classes to multiples of Schubert classes. This can be stated as a strange duality property for the Gromov-Witten invariants, which turn out to be very symmetric.

Introduction

This paper is a sequel to [CMP], where we began a unified study of the quantum cohomology QA * (G/P ) of (co)minuscule homogeneous manifolds. One intriguing feature of quantum cohomology is that it is more symmetric than ordinary cohomology. In this paper we explore two different kind of symmetries of the quantum cohomology. The first symmetry, that we call strange duality, is a ring isomorphism which maps a class of degree d to a class of degree -d; such symmetries appeared first, to our knowledge, in an article of Postnikov [P1] which deals with Grassmannians. Then, we consider a class of symmetries which appear as special cases of a very general construction of Seidel [Se] in the context of symplectic varieties. These are symmetries of QA * (G/P ) as a module over itself, and are graded of some positive degree. As the article [McD-T] shows, in general it is quite difficult to compute Seidel's representation; in our particular case we compute it explicitly and show that the corresponding symmetries are in correspondence with the set of Schubert classes representing smooth Schubert varieties and whose Poincaré dual have the same property.

Recall that a Z-basis for the ordinary cohomology ring H * (X) (or for the Chow ring A * (X)) of X is given by the Schubert classes σ(w), where w ∈ W X belongs to the set of minimal lengths representatives of W/W P , the quotient of the Weyl group W of G by the Weyl group W P of P . To be precise, we let σ(w) be the class of the Schubert variety X(w X w), where w X denotes the longest element in W X . So σ(w) has degree ℓ(w) in the Chow ring (and twice this degree in cohomology). Note that the map w → p(w) = w 0 w, for w ∈ W/W P ≃ W X , defines Poincaré duality on X. The map w → ι(w) = w P 0 w, where w P 0 denotes the longest element of W P , will play a crucial role in the sequel. For w = s α 1 • • • s α ℓ(w) a reduced decomposition of w ∈ W X , we let

y(w) = ℓ(w) i=1 n α i (α 0 ) ǫ(α i ) .
Here α 0 denotes the highest root of G, and n α i (α 0 ) is the coefficient of α i when α 0 is written in the basis of simple roots. Moreover, we have let ǫ(α) = 1 if α is a long root, ǫ(α) = -1 if α is short (in the simply-laced case, all roots are considered long). The rational number y(w) is well defined since in the (co)minuscule case, reduced decompositions are uniquely defined up to commutation relations. Finally, we let δ(w) be the number of occurrences, in a reduced decomposition of w, of the simple root β that defines P .

The Schubert classes are still a basis over Z[q] of the (small) quantum Chow ring QA * (X), whose associative product is defined in terms of 3-points Gromov-Witten invariants. Denote by QA * (X) loc its localization at q, that is, QA * (X) loc = QA * (X) ⊗ Z[q] Z[q, q -1 ].

Strange duality can be stated in a uniform way as follows.

Theorem 1.1 (Strange Duality) Let X be a minuscule or cominuscule homogeneous space. The endomorphism ι of QA * (X) loc , defined by ι(q) = y(s α 0 )q -1 and ι(σ(w)) = q -δ(w) y(w)σ(ι(w)), is a ring involution.

This can be stated as a symmetry property of the Gromov-Witten invariants, see Corollary 5.4, which unexpectedly relates certain numbers of small degree rational curves with numbers of high degree rational curves. In fact we will deduce a whole set of very general symmetry relations, by putting together strange duality, and the observation that the quantum product with the class of a point maps any Schubert class to another Schubert class, multiplied by some power of q, see Theorem 3.3.

For Grassmannians these results were first proved by Postnikov [P1]; in this case y(w) = 1 for any w. For classical Grassmannians our strange duality statement will be deduced from the quantum Pieri formulas of [START_REF] Kresch | Quantum cohomology of the Lagrangian Grassmannian[END_REF] and [START_REF] Kresch | Quantum cohomology of orthogonal Grassmannians[END_REF]. In fact these papers already contain symmetry relations for the Gromov-Witten invariants, but the existence of an involution for the quantum cohomology ring is missing. For the two exceptional minuscule spaces, we have used the presentations of the quantum Chow rings obtained in [CMP]. The case of the Cayley plane has been checked by hand, but that of the Freudenthal variety required the help of a computer.

As a consequence of our symmetries, we deduce from the formula for the smallest power of q appearing in the quantum product of two Schubert classes, (see [FW] or [CMP]), a formula for the highest power of q in such a product (Corollary 5.5). For u and v in W X , let us denote, following W. Fulton and C. Woodward [FW], by δ(u, v) the minimal degree of a rational curve meeting two general translates of X(u * ) and X(v * ) (see also [CMP] page 20 and corollary 4.12 for a combinatorial description).

Theorem 1.2 For u, v ∈ W X , the maximal power of q that appears in the quantum product of Schubert classes σ(u) * σ(v), is

d max (u, v) = δ(u) -δ(ι(u), p(v)) = δ(v) -δ(ι(v), p(u)).
Finally we observe that more symmetry relations for the Gromov-Witten invariants can be deduced from the existence of certain invertible Schubert classes in the localized quantum algebra. We show that the Schubert classes that we call totally smooth have this property, and prove that their classes mod 2 are the images of Seidel's representation (proposition 5.11; recall that Seidel's construction has coefficients in Z/2Z), thus explaining the relation between this group of invertible elements and the fundamental group of the automorphism group of our homogeneous space (see proposition 5.9). Such Schubert varieties do not always exist, apart from the whole space and its base point. But their existence on Grassmannians allows to recover the whole set of symmetry relations found in [P1].

A partition of the Hasse diagram

Let X = G/P be a (co)minuscule homogeneous variety. In [CMP] we defined the perimeter d max of X. For any non negative integer d ≤ d max , we introduced certain Schubert subvarieties T d and Y d of X, with T d ⊂ Y * d . These varieties allowed us to define a quantum Poincaré duality as follows: for any Schubert subvarieties X(u), X(v) ⊂ X, the Gromov-Witten invariant I d (Y * d , X(u), X(v)) is non zero if and only if X(u), X(v) are contained in the (smooth) variety T d , and define Poincaré dual classes in T d -in which case the invariant equals one. In particular

I d (Y * d , {pt}, T d ) = 1.
One of the main themes of this paper is to investigate another quantum Poincaré type duality, defined by the non vanishing of the Gromov-Witten invariants

I d ({pt}, X(u), X(v)). Let δ(u) denote the maximal integer d such that X(u) ⊂ Y * d .
The following facts are taken from [CMP] page 20:

1. There exists a degree d rational curve in X joining the base point e(1) = P/P of X = G/P with the base point e(u) = uP/P ∈ X(u), if and only if d ≥ δ(u).

2. If β is the simple root defining P , δ(u) is the number of occurrences of s β in a reduced decomposition of u.

3. δ(u) = δ(w X , u), the minimal length of a Bruhat chain from u to w X , as defined in [FW].

We add to this list the following essential property.

Lemma 2.1 We have T d ⊂ X(w) ⊂ Y * d if and only if d = δ(w X , w).
Proof. We proved in [START_REF] Chaput | Quantum cohomology of minuscule homogeneous spaces[END_REF]corollary 4.12] a combinatorial characterization of the smallest power appearing in a quantum product. This gives δ(w X , w) = min{d / T d ⊂ X(w)}. The lemma will follow from the fact that for all d ≤ d max , we have T d-1 ⊂ Y * d and the equivalence

T d-1 ⊂ X(w) ⇔ X(w) ⊂ Y * d .
These two results come from the following facts on the quivers Q Y * d and Q T d (cf. [CMP] for definitions and results on quivers):

• the quiver Q Y * d is obtained from the quiver Q X by removing all the vertexes above the vertex (θ(β), d) where β is the simple root defining X and θ is the Weyl involution

• The vertexes of Q T d-1 are those under the vertex (θ(β), d). The vertex (θ(β), d) ∈ Q X is in the quiver Q T d-1 but not in the quiver Q Y * d proving that T d-1 ⊂ Y * d . Furthermore, the condition T d-1 ⊂ X(w) is equivalent to the fact that the vertex (θ(β), d) is not in the quiver of X(w) which is also equivalent to the inclusion X(w) ⊂ Y * d . A nice consequence is that we get a partition of W X in d max + 1 Bruhat intervals, W X = dmax d=0 [T d , Y * d ].
We will denote by

W d ⊂ W X the interval [T d , Y * d ].
For example, W 1 is the image in W/W P ≃ W X of the set of reflections s α , α a root of G. In particular T 1 is represented by s α 0 .

Recall that in [CMP], we proved that Gromov-Witten invariants of degreed d on X can be interpreted as classical intersection numbers on an auxiliary variety F d . This variety F d is homogeneous under the same group G as X, and there is an incidence diagram

I d p d / / q d X F d
Then Z d ⊂ F d is the (image by q d of the) fiber of p d , and Y d ⊂ X is the (image by p d of the) fiber of q d . These varieties are given by the following table. 

X d T d Y d Z d G(p, n) ≤ min(p, n -p) G(p -d, n -2d) G(d, 2d) G(p -d, p) × G(n -p -d, n -p) G ω (n, 2n) ≤ n G ω (n -d, 2n -2d) G ω (d, 2d) G(n -d, n) G Q (n, 2n) ≤ [n/2] G Q (n -2d, 2n -4d) G Q (2d, 4d) G(n -2d, n) OP 2 1 P 5 P 1 G Q (5, 10) 2 pt Q 8 Q 8 E 7 /P 7 1 Q 10 P 1 OP 2 2 P 1 Q 10 OP 2 3 pt E 7 /P 7 pt Lemma 2.2 For any d ≤ d max , the Bruhat interval [T d , Y * d ] in W X can
I d (Y * d , {pt}, T d ) = 1 implies that for any u ∈ W X , codim(X(u)) + codim(X(ι(u))) = δ(u)c 1 (X).
3 The quantum product by the class of a point

In this section we want to compare the intersection in F d of two cells in [Z * d , F d ] with an intersection in Z d . Our first result will hold for arbitrary homogeneous spaces.

Let X be a homogeneous space and Y ⊂ X a Schubert subvariety. Suppose that Y is smooth, and even homogeneous. The cell decomposition of X defined by the Schubert cells, gives a cell decomposition of Y if we consider only those Schubert cells that are contained in Y . In particular this yields a natural inclusion W Y ֒→ W X . We denote p X : W X → W X the Poincaré duality on X and 

p Y : W Y → W Y the Poincaré duality on Y . Consider the submodule Z[Y * , X] of H * (X) generated by the Schubert classes in [Y * , X]. This module has a natural algebra structure: if [X(u)] ∪ [X(v)] = w∈W X c w u,v [X(w)] in X, set [X(u)] • [X(v)] = w∈[Y * ,X] c w u,v [X(w)].
• j -1 * • p X .
Proof. The first assertion is an immediate consequence of [START_REF] Chaput | Quantum cohomology of minuscule homogeneous spaces[END_REF]lemma 3.12]. To prove the second one, let C ∈ Z[pt, Y ] ⊂ H * (X), and let D ∈ H * (X). Since j * and j * are adjoint, we have:

(j * p Y j * p X (C), D) X = (p Y j * p X (C), j * D) Y = δ j * p X (C),j * D = δ p X (C),D = (C, D) X
The second and the third equality follow from the fact that j * maps bijectively Schubert classes to Schubert classes. We therefore have proved that

C = j * p Y j * p X (C) for all C in Z[pt, Y ] or, equivalently, that j * D = p Y j -1 * p X (D) for all D in Z[Y * , X].
Corollary 3.2 Let Y ⊂ X be a homogeneous Schubert subvariety of some rational homogeneous manifold. Let Z be any other Schubert subvariety of X. Then

[Y ] ∪ [Z] = p X p Y [Z] if Z ⊃ Y * , 0 otherwise.
We come back to the (co)minuscule setting. Our main examples of homogeneous Schubert subvarieties are our varieties T d and Y d in X and Z d in F d . Applying the previous result to the latter varieties, we get the following statement.

Theorem 3.3 For any u ∈ W X , we have

σ(pt) * σ(u) = q δ(u) σ(pι(u)). Proof. Let u, v ∈ W X . If I d (pt, X(u), X(v)) = 0, then, by corollary 3.21 in [CMP], we have u ≤ w Y * d and v ≤ w Y * d . Since I d (pt, X(u), X(v)) = I 0 (Z d , F d ( u), F d ( v))
, by [START_REF] Chaput | Quantum cohomology of minuscule homogeneous spaces[END_REF]lemma 3.12], we also have

u, v ≥ Z * d , which is equivalent to u, v ≥ T d by the proof of Lemma 2.2. We conclude that I d (pt, X(u), X(v)) = 0 implies that X(u), X(v) ∈ [T d , Y * d ],which is equivalent to d = δ(u) = δ(v). Denote by j d : Z d ֒→ F d the inclusion map. We have I 0 (Z d , F d ( v), F d ( u)) = Z d j * d [F d ( v)] ∪ j * d [F d ( u)].
According to proposition 3.1,

Z d j * d [F d ( v)] ∪ j * d [F d ( u)] equals one if v = ι(u)
and equals zero otherwise. The theorem follows.

Strange duality

In this section we prove the strange duality property of the quantum Chow ring stated in Theorem 1.1. For convenience we will in fact prove a slightly different (but equivalent) statement, asserting the existence of a duality mapping q to q -1 . With the notable exception of Grassmannians, this is only possible if we extend scalars a little bit.

We will need a case by case analysis to fix the coefficients ζ(w) in the next statement.

Theorem 4.1 For any (co)minuscule homogeneous variety X, one can find an algebraic number κ, and a map ζ :

W X → Z[κ], such that the correspondence q → q -1 , σ(w) → ζ(w)q -δ(w) σ(ι(w))
defines a ring involution of QA * (X) loc [κ].

Clearly, such an involution changes the degree into its opposite, and the fact that it is an involution is tantamount to the simple relation ζ •ι = ζ -1 . The hard part of the statement is that it is compatible with the quantum product.

To get rid of κ, there remains to compose the previous involution with a degree automorphism (that multiplies a degree d class by t d for some t). It is then a routine but again case by case check that we obtain Theorem 1.1. That is, we check that

ζ(w) = y(w)y(s α 0 ) - ℓ(w) c 1 (X) .
But we have no convincing explanation of why such a formula should hold true.

Before going into the proof of strange duality, we deduce a "dual quantum Chevalley formula", which is simply the dual statement to the quantum Chevalley formula as stated in [CMP]. Remember that α 0 denotes the highest root, and that σ(

s α 0 ) = [T 1 ]. The Bruhat interval [1, T 1 ] has a Poincaré involution p T 1 .
Finally, recall that we denoted by β the simple root that defines P . Proposition 4.2 For any u ∈ W X , we have

σ(u) * σ(s α 0 ) = δ p(u)≤α 0 σ(p T 1 p(u)) + q sαu→u, α =β n α (α 0 )σ(s α u) + qδ ι(u)≤α 0 y(p(s α 0 ))σ(s β u).
The classical intersection product δ p(u)≤α 0 σ(p T 1 p(u)) is in agreement with Proposition 3.2. It would be interesting to extend this formula to more general products.

Quadrics

We begin with the easy example of quadrics. We will see that already in that case fixing the coefficients involves some subtleties.

Even dimensions

Let Q 2m be a quadric of dimension 2m, acted on by SO 2m+2 . The simple root that defines the corresponding maximal parabolic subgroup is α 1 . The Hasse diagram is the following:

• • • • • • • • • • • • σ - m σ + m H 1 1 1 1 1 2 2 2 2 2 2 1
Indeed, as is well known, there is one Schubert class σ k in each degree k = m, and two Schubert classes σ ± m in middle degree, defined by the two families of maximal linear spaces in Q 2m . Of course σ 1 = H is the hyperplane class. For the classical intersection product, we have 

H k = σ k for k < m, H m = σ + m + σ - m , and H k = 2σ k for k > m. Since c 1 (Q 2m ) = 2m,
σ + m * σ - m = q, σ + m * σ + m = σ - m * σ - m = [pt] f or m even, σ + m * σ - m = [pt], σ + m * σ + m = σ - m * σ - m = q f or m odd.
Note that these relations always imply that H 2m = 2[pt] + 2q and H 2m+1 = 4qH. Now it is easy to check that QA * (Q 2m ) loc has a ring involution given by

q → 1/16q, H k → H 2m-k /4q, [pt] → [pt]/16q 2 ,
(where the central formula holds for 1 ≤ k ≤ 2m -1), and in middle degree by σ ± m → σ ∓ m /4q. Multiplying each degree d class by 2 d , we get a slightly different involution given by

q → 2 2m-4 /q, σ k → 2 k-1 σ 2m-k /q for 0 < k < m, σ ± m → 2 m-2 σ ∓ m , σ k → 2 k-3 σ 2m-k /q for m < k < 2m, [pt] → 2 2m-4 [pt]/q 2 .
This is precisely the statement of Theorem 1.1 for Q 2m , as one can readily check from the Hasse diagram above. Indeed, we have labeled the edges by the coefficients whose products, taken from the rightmost end of the diagram, give the coefficients y(w). The corresponding coefficients for Theorem 4.1 are the following, where ζ(m) accounts for the two mid-dimensional classes:

ζ(k) = 4 k-m m for 0 < k < 2m, ζ(0) = ζ(2m) = 1,

Odd dimensions

An odd dimensional quadric Q 2m-1 is cominuscule but not minuscule. It has exactly one Schubert class σ k in each dimension k < 2m. Again σ 1 = H is the hyperplane class. The Hasse diagram is the simplest possible one; as in the even dimensional case we have labeled the edges by the coefficients whose products, taken from the rightmost end, give the y(w) of Theorem 1.1.

• • • • • • • • • • H 1 2 2 2 1 2 2 2 2 1
For the classical intersection product, we have

H k = σ k for k < m, H k = 2σ k for k ≥ m. Since c 1 (Q 2m-1 ) = 2m -1,
these formulas hold in the quantum Chow ring, except in maximal degree. In fact the quantum Chevalley formula gives the two identities

σ 2m-2 * H = σ 2m-1 + q, σ 2m-1 * H = qH.
This is enough to determine the quantum product. The class σ 2m-2 is that of a line and coincides with

[T 1 ]. Also σ 2m-1 is the class [pt] of a point.
Again it is easy to check that QA * (Q 2m-1 ) loc has a ring involution given by almost the same formulas that in even dimensions,

q → 1/16q, H k → H 2m-k-1 /4q, [pt] → [pt]/16q 2 ,
(where the central formula holds for 1 ≤ k ≤ 2m -2). Multiplying each degree d class by 2 d , we get the slightly different involution given by

q → 2 2m-5 /q, σ k → 2 k-1 σ 2m-k-1 /q for 0 < k < m, σ k → 2 k-3 σ 2m-k-1 /q for m ≤ k < 2m -1, [pt] → 2 2m-5 [pt]/q 2 .
This is in perfect agreement with Theorem 1.1.

Grassmannians

Now suppose X = G(p, n) is a Grassmannian. Then W X identifies with the set of partitions inscribed in the rectangle p × (n -p), and We deduce that for any partition λ ∈ W X , the degree d = δ(λ) is the size of the biggest square contained in λ.

d max = min(p, n -p). For any d ⊂ d max , Y d is a Grassmannian G(d,
Clearly the interval [T d , Y * d ] in W X identifies with the Hasse diagram of the product G(d, p -d) × G(d, n -p -d).
The partition ι(λ) is deduced from λ by taking the complementary partitions in the SW and NE rectangles.

In this case Theorem 4.1 appears in [P1], Theorem 7.5. See also [H] where the involution is interpreted in terms of complex conjugation.

Lagrangian Grassmannians

Let X = G ω (n, 2n) be a Lagrangian Grassmannian. Recall that W X identifies with the set of strict partitions λ ⊂ ρ n . In order to simplify notations we let σ λ denote the class of the Schubert subvariety Poincaré dual to X(λ). Its degree is the sum |λ| of the parts of λ. Moreover, d = δ(λ) is simply the number of (non zero) parts of λ, usually called the length and denoted ℓ(λ). In particular d max = n.

Mapping λ to (λ 1 -d, . . . , λ d -1) we get a partition inscribed in the rectangle d × (n -d). This identifies the interval W d of W X with the Hasse diagram of the Grassmannian G(d, n). Applying Poincaré duality for that Grassmannian we deduce that the involution ι is given by ι(λ 1 , . . . , λ ℓ(λ) ) = (n + 1 -λ ℓ(λ) , . . . , n + 1 -λ 1 ).

Example 4.4 For n = 5 we have drawn below the Hasse diagram of G ω (5, 10) and its partition into six disjoint intervals. More precisely we have drawn in black the arrows between different intervals, and in the same color the arrows inside a given interval. Those are the Hasse diagrams of a point, of P 4 and of the Grassmannian G(2, 5), all appearing twice and symmetrically. Proof. We just need to prove that our involution is compatible with the quantum Pieri formula for σ λ * σ k , for each k. We have ι(σ k ) = q -1 σ n+1-k , so we need to compare σ λ * σ k with σ ι(λ) * σ n+1-k . We use the quantum version of Pieri's rule as stated in [START_REF] Kresch | Quantum cohomology of the Lagrangian Grassmannian[END_REF], Proposition 8:

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • Proposition 4.5 For λ ⊂ ρ n a strict partition, let z(λ) := ℓ(λ)-2|λ| n+1 . Then z(ι(λ)) = z(λ * ) = -z(λ
σ λ * σ k = µ 2 N (λ,µ) σ µ + q ν 2 N ′ (ν,λ) σ ν ,
where the first sum is over all strict partitions µ ⊃ λ with |µ| = |λ| + k, such that the complement µ/λ is a horizontal strip, and the second sum is over all strict partitions ν ⊂ λ with |ν| = |λ| -(n + 1 -k), such that the λ/ν is a horizontal strip. Moreover N (λ, µ) denotes the number of connected components of µ/λ which do no meet the first column, and N ′ (ν, λ) is one less than the total number of connected components of λ/ν. (By definition, two boxes are connected if they share an edge or a vertex.) Applying our involution, we get

ι(σ λ * σ k ) = q -ℓ(λ) ℓ(µ)=ℓ(λ) 2 z(µ)+N (λ,µ) σ ι(µ) + q -ℓ(λ)-1 ℓ(µ)=ℓ(λ)+1 2 z(µ)+N (λ,µ) σ ι(µ) +q -ℓ(λ)-1 ℓ(ν)=ℓ(λ) 2 z(ν)+N ′ (ν,λ) σ ι(ν) + q -ℓ(λ) ℓ(ν)=ℓ(λ)-1 2 z(ν)+N ′ (ν,λ) σ ι(ν) . (1) 
Similarly, we deduce again from Pieri's rule that

ι(σ λ ) * ι(σ k ) = 2 z(λ)+z(k) q -ℓ(λ)-1 ℓ(α)=ℓ(λ) 2 N (ι(λ),α) σ α + q -ℓ(λ)-1 ℓ(α)=ℓ(λ)+1 2 N (ι(λ),α) σ α +q -ℓ(λ) ℓ(β)=ℓ(λ) 2 N ′ (β,ι(λ)) σ β + q -ℓ(λ) ℓ(β)=ℓ(λ)-1 2 N ′ (β,ι(λ)) σ β . (2) 
We claim that the four partial sums on the right hand sides of the two identities above correspond pairwise.

Consider the first term on the right hand side of (2). Here α is a strict partition containing ι(λ), of size |α| = |ι(λ)| + n + 1 -k, such that α/ι(λ) is a horizontal strip. If we let ν = ι(α), we get that ν is contained in λ, ℓ(ν) = ℓ(α) and |ν| = |λ| -(n + 1 -k), and λ/ν ≃ α/ι(λ) is a horizontal strip. Moreover, the fact that ℓ(α) = ℓ(λ) means that α/ι(λ) does not meet the first column, so N (ι(λ), α) = N ′ (ν, λ) + 1. On the other hand,

z(ν) = ℓ(λ) - 2 n + 1 (|λ| -(n + 1 -k)) = z(λ) + z(k) + 1,
and therefore z(ν)

+ N ′ (ν, λ) = z(λ) + z(k) + N (ι(λ), α).
We conclude that the first partial sum of (2) coincides exactly with the third partial sum of (1).

For the second term on the right hand side of (2), the difference with the first term is that ℓ(α) = ℓ(λ) + 1, which means that α/ι(λ) does meet the first column. Thus N (ι(λ), α) = N ′ (ν, λ). On the other hand,

z(ν) = ℓ(λ) + 1 - 2 n + 1 (|λ| + (n + 1) -(n + 1 -k)) = z(λ) + z(k),
and therefore we get again z(ν) + N ′ (ν, λ) = z(λ) + z(k) + N (ι(λ), α). We conclude that the second partial sum of (2) coincides exactly with the second partial sum of (1). Now consider the third term on the right hand side of (2). Here β is a strict partition contained in ι(λ), with ℓ(β) = ℓ(λ) and |β| = |ι(λ)| -k, such that ι(λ)/β is a horizontal strip. If we let β = ι(µ), we get ι(λ)/β ≃ µ/λ, so |µ| = |λ| + k and N ′ (β, ι(λ)) = N ′ (λ, µ) = N (λ, µ) -1. Again we deduce that z(λ) + z(k) + N ′ (β, ι(λ)) = z(µ) + N (λ, µ), so that the third partial sum of (2) coincides exactly with the first partial sum of (1).

Finally, consider the third term on the right hand side of (2). Here β is as before except that ℓ(β) = ℓ(λ) -1, so that if we let ν = ι(β), then N ′ (β, ι(λ)) = N ′ (ν, λ). Again we conclude that the fourth partial sum of (2) coincides exactly with the fourth partial sum of (1).

This concludes the proof.

As we have already mentioned, it is possible to get rid of the root of two by composing with a degree automorphism. We get:

Theorem 4.6 The correspondence q → 4 q , σ λ → 2 q ℓ(λ) σ ι(λ) f or λ ⊂ ρ n ,
defines a ring involution of QA * (G ω (n, 2n)) loc .

Orthogonal Grassmannians

Let X = G Q (n + 1, 2n + 2) be a Lagrangian Grassmannian. Recall that W X identifies again with the set of strict partitions λ ⊂ ρ n . Again we denote by σ λ the Schubert class Poincaré dual to [X(λ)]. Its degree is |λ|, and δ(λ) = d if the number of (non zero) parts of λ is 2d or 2d -1. In particular

d max = [n/2].
Mapping λ to (λ 1 -2d + 1, . . . , λ 2d ) (where we let λ 2d = 0 if ℓ(λ) = 2d -1), we get a partition inscribed in the rectangle 2d × (n -2d + 1). This identifies the interval W d of W X with the Hasse diagram of the Grassmannian G(2d, n + 1). Applying Poincaré duality for that Grassmannian we deduce that the involution ι is given by ι(λ 1 , . . . , λ 2δ(λ) ) = (n -λ 2δ(λ) , . . . , n -λ 1 ).

Example 4.7 For n = 5 we have drawn below the Hasse diagram of G Q (6, 12) and its partition into four disjoint intervals. Note that the diagram is the same as for G ω (5, 10) but the partition is different. Indeed we have only four intervals in that case, isomorphic with the Hasse diagrams of a point and of G(2, 6) appearing twice symmetrically. (Beware that this symmetry is specific to the case where n is odd.) Proof. The proof is notably different from that of Theorem 4.6, since we have

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • Proposition 4.8 For λ ⊂ ρ n a strict partition, let z(λ) := 2|λ| n -(ℓ(λ) + δ λ 1 ,n ). Then z(ι(λ)) = z(λ * ) = -z(λ),
ι(σ k ) = q -1 σ n,n-k = q -1 σ n * σ n-k .
Again we check that our formula is compatible with the quantum version of Pieri's rule as stated in [START_REF] Kresch | Quantum cohomology of orthogonal Grassmannians[END_REF], Corollary 5:

σ λ * σ k = µ 2 N ′ (λ,µ) σ µ + q ν 2 N ′ (λ,ν) σ ν ,
where the first sum is over all strict partitions µ ⊃ λ with |µ| = |λ| + k, such that µ/λ is a horizontal strip, and the second sum is over all partitions ν = (n, n, ν) ⊃ λ, with ν strict and |ν| = |λ| + k, such that ν/λ is a horizontal strip. Note that the quantum correction is non trivial zero when λ 1 = n.

We distinguish several cases.

First case: λ 1 < n. Then

σ λ * σ k = ℓ(µ)=ℓ(λ) 2 N ′ (λ,µ) σ µ + ℓ(µ)=ℓ(λ)+1 2 N ′ (λ,µ) σ µ (3)
has no quantum correction.

First sub-case: ι(λ) 1 < n. This means that ℓ(λ) = 2δ(λ), so that on the right hand side of (3) we have δ(µ) = δ(λ) in the first partial sum and δ(µ) = δ(λ) + 1 in the second one. Hence

ι(σ λ * σ k ) = q -δ(λ) ℓ(µ)=ℓ(λ) 2 z(µ)+N ′ (λ,µ) σ ι(µ) + q -δ(λ)-1 ℓ(µ)=ℓ(λ)+1 2 z(µ)+N ′ (λ,µ) σ ι(µ) . ( 4 
)
On the other hand σ ι(λ) * σ n = σ n,ι(λ) has no quantum correction, and the quantum Pieri rule gives

ι(σ λ ) * ι(σ k ) = 2 z(λ)+z(k) q -δ(λ)-1 α 2 N ′ (ι(λ),α) σ n,α + q -δ(λ) β 2 N ′ ((n,ι(λ)),β) σ β . (5) 
Consider some µ in the first sum on the right hand side of (4), and let β = ι(µ). We claim that

N ′ ((n, ι(λ)), β) = N ′ (λ, µ) + 1 -δ µ 1 ,n .
The following picture should help to see this. We have represented the partition λ in thick lines, so that ι(λ) is its complement (reversed) in the rectangle ℓ(λ) × n. We have added a line a the bottom of this rectangle to represent (n, ι(λ)) (again reversed). The •'s represent β/(n, ι(λ)) (reversed), a horizontal strip inside λ -except possibly if ℓ(β) = ℓ(λ) + 2, in which case there are some •'s on the line above the first line of λ. The •'s represent µ/λ, again a horizontal strip. On each line they complement the •'s of the line above. So we start with a connected component of •'s on the SW corner of the picture, and going NE we successively meet the connected components of •'s and •'s.

We have thus the same number of components, or one more for the •'s if we end by one of these at the NE corner. This is the case if and only if µ 1 < n, so our claim follows.

• • • • • • • • • • • • • • λ ι(λ) But z(λ) + z(k) -z(µ) = δ µ 1 ,n -1, so z(λ) + z(k) + N ′ ((n, ι(λ)), β) = z(µ) + N ′ (λ, µ).
We conclude that the first sum of (4) coincides with the second sum of ( 5). Now consider some µ in the second sum on the right hand side of (4). Since ℓ(µ) = 2δ(λ) + 1 is odd, we get ι(µ) = (n, α) for some strict partition α. We claim that

N ′ (ι(λ), α) = N ′ (λ, µ) -δ µ 1 ,n .
Again this implies that the second sum of (4) coincides with the first sum of ( 5), and we are done. Second sub-case: ι(λ) 1 = n. Then ℓ(λ) = 2δ(λ) -1, and in (3) we always have δ(µ) = δ(λ). Hence

ι(σ λ * σ k ) = q -δ(λ) µ 2 z(µ)+N ′ (λ,µ) σ ι(µ) . ( 6 
)
On the other hand, σ ι(λ) * σ n = qσ ι(λ)/n , where the first part of ι(λ)/n is smaller than n. In particular, the quantum Pieri rule for σ ι(λ)/n * σ n-k has no quantum correction. We get

ι(σ λ ) * ι(σ k ) = 2 z(λ)+z(k) q -δ(λ) α 2 N ′ (ι(λ)/n,α) σ α , (7) 
the sum being taken over all strict partitions α ⊃ ι(λ)/n,

with |α| = |ι(λ)/n| + n -k = |ι(λ)| -k, such that α/(ι(λ)/n) is a horizontal strip. Let µ = ι(α), and note that δ(µ) = δ(α) = δ(α) since ℓ(ι(λ)/n) = ℓ(λ) is odd. We claim that N ′ (ι(λ)/n, α) = N ′ (λ, µ) + δ ℓ(µ),ℓ(λ) -δ µ 1 ,n . Since we have z(µ) -z(λ) -z(k) = 1 + ℓ(λ) -ℓ(µ) -δ µ 1 ,n = δ ℓ(µ),ℓ(λ) -δ µ 1
,n , we conclude that the coefficients of σ µ in ( 3) and ( 6) are equal, which is what we wanted to prove.

Second case: λ 1 = n. Then we must take care of the quantum correction in Pieri's rule. We write

σ λ * σ k = ℓ(µ)=ℓ(λ) 2 N ′ (λ,µ) σ µ + ℓ(µ)=ℓ(λ)+1 2 N ′ (λ,µ) σ µ + q ℓ(ν)=ℓ(λ) 2 N ′ (λ,ν) σ ν + q ℓ(ν)=ℓ(λ)+1 2 N ′ (λ,ν) σ ν . (8)
First sub-case: ι(λ) 1 < n. Then δ(µ) = δ(λ) in the first sum of (8) but δ(µ) = δ(λ) + 1 in the second sum, while δ(ν) = δ(λ) -1 in the third sum and δ(ν) = δ(λ) in the last one. Thus

ι(σ λ * σ k ) = q -δ(λ) ℓ(µ)=ℓ(λ) 2 z(µ)+N ′ (λ,µ) σ ι(µ) + q -δ(λ)-1 ℓ(µ)=ℓ(λ)+1 2 z(µ)+N ′ (λ,µ) σ ι(µ) +q -δ(λ) ℓ(ν)=ℓ(λ) 2 z(ν)+N ′ (λ,ν) σ ι(ν) + q -δ(λ)-1 ℓ(ν)=ℓ(λ)+1 2 z(ν)+N ′ (λ,ν) σ ι(ν) . (9) 
On the other hand σ ι(λ) * σ n = σ n,ι(λ) and the quantum Pieri rule gives

ι(σ λ ) * ι(σ k ) = 2 z(λ)+z(k) q -δ(λ)-1 ℓ(α)=ℓ(λ) 2 N ′ (ι(λ),α) σ n,α + q -δ(λ)-1 ℓ(α)=ℓ(λ)+1 2 N ′ (ι(λ),α) σ n,α +q -δ(λ) ℓ(β)=ℓ(λ)+1 2 N ′ ((n,ι(λ)),β) σ β + q -δ(λ) ℓ(β)=ℓ(λ)+2 2 N ′ ((n,ι(λ)),β) σ β . ( 10 
)
As above we check that the first, second, third and fourth partial sums in (10) coincide respectively with the second, fourth, third and first partial sum in (9). Second sub-case: ι(λ) 1 = n. Same story!

After normalizing, we get the following statement:

Theorem 4.9 The correspondence

q → 4 q , σ λ → 2 q δ(λ) 2 δ ι(λ) 1 ,n -δ λ 1 ,n σ ι(λ) f or λ ⊂ ρ n , defines a ring involution of QA * (G Q (n + 1, 2n + 2)) loc .

The Cayley plane

For the Cayley plane OP 2 = E 6 /P 1 , we have d max = 2, and the partition of the Hasse diagram is as follows. The two non trivial intervals are isomorphic with the Hasse diagrams of an orthogonal Grassmannian G Q (5, 10), and a quadric Q 8 .

• • • • • • • • • • • • • • • • • • • • • • • • • • • σ 16 σ 8 H σ ′′ 11
To each Schubert class σ w of OP 2 we associate a coefficient ζ(w) as follows, where y = 2x 2 and 3y 2 = 1.

1 1 x 1 y 2x 1 y 1 1 y 1 1 1 y 1 y 1 1 2x 2x 1 2x 2x 1 2x 1 x x x 1 x 1 y x 1 1 Observe that ζ(ι(w)) = ζ(w * ) = ζ(w) -1 .
Proposition 4.10 Theorem 4.1 holds for the Cayley plane with κ = 12 -1 4 and ζ(w) as above.

Proof. A presentation for the quantum Chow ring QA * (OP 2 ) has been given in [CMP], Theorem 5.1, with generators H and σ ′ 4 . What we have to check is that the same relations are verified by their images ι

(H) = q -1 σ ′′ 11 and ι(σ ′ 4 ) = q -1 σ ′′ 8 .
This is a lengthy but direct computation.

The Freudenthal variety

In this case d max = 3. The partition of the Hasse diagram is symmetric, with two intervals that reduce to a point, and two that are isomorphic with the Hasse diagram of the Cayley plane.

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • σ ′ 5 σ 9
σ 17

H

In this case we needed a computer to check that Theorem 1.1 does hold. We know from [CMP] that the quantum cohomology ring is generated over Z[q] by the classes H, σ ′ 5 and σ 9 , and we know the relations explicitely. With the notations of [CMP], our involution is given by

q → 11943936q -1 , H → q -1 σ 17 , σ ′ 5 → 48q -1 σ ′ 13 , σ 9 → 3456q -1 σ 9 .
We first checked that this map preserves the relations and is involutive. Then we computed the image of each Schubert class and checked that it is given by the explicit form of Theorem 1.1.

Symmetries of Gromov-Witten invariants

In this section, we first interprete our previous results as general symmetry relations for the Gromov-Witten invariants. Then we observe that more symmetry relations follow from the existence in X, of some very particular Schubert varieties.

General symmetries

For convenience, denote by p the symmetry of W X given by Poincaré duality. We deduce from Theorem 4.1 the following identity for the quantum product:

Theorem 5.1 For any u, v ∈ W X , we have

σ(ι(u)) * σ(p(v)) = q δ(u)+δ(p(u))-δ(v)-δ(pι(v)) σ(pιp(u)) * σ(ιpι(v)).
Proof. Theorem 4.1 is equivalent to the following identity for Gromov-Witten invariants: Combining these two relations, we get

I k (u, v, w) = ζ(u)ζ(v)ζ(w)I δ(u)+δ(v)-δ(p(w))-k (ι(u), ι(v), pιp(w)). (11 
I k (u, v, w) = I k+δ(p(w))+δ(pιp(w))-δ(pι(v))-δ(v) (u, pιpι(v), ιpιp(w)),
which is equivalent to the identity for the quantum product σ(pιpι(v)) * σ(ιpιp(w)) = q δ(p(w))+δ(pιp(w))-δ(pι(v))-δ(v) σ(v) * σ(w).

Replacing v by ι(u) and w by p(v) yields our claim.

Note that Theorem 5.1 is non trivial only when p and ι don't commute. Now we observe that Theorem 3.3 can be used to generate more symmetries for the Gromov-Witten invariants. The following statement is a generalization of Proposition 4.10 in [CMP]. For Lagrangian Grassmannians it already appears as Corollary 8 in [START_REF] Kresch | Quantum cohomology of the Lagrangian Grassmannian[END_REF], and for orthogonal Grassmannians it is Corollary 7 in [START_REF] Kresch | Quantum cohomology of orthogonal Grassmannians[END_REF].

Corollary 5.2 For any u ∈ W X , we have

[Y dmax ] * σ(u) = q δ(u)+δ(pι(u))-dmax σ(pιpι(u)), [Y * dmax ] * σ(u) = q dmax-δ(p(u)) σ(ιp(u)).
Proof. To prove the first identity, multiply the identity of Theorem 3.3 by σ(pt) and use the fact that σ(pt) * σ(pt) = q dmax [Y dmax ]. For the second identity, observe that Theorem 3.3 implies that σ(pt) is invertible in QA * (X) loc , and its inverse verifies the formula σ(pt) -1 * σ(u) = q -δ(p(u)) σ(ιp(u)).

Applying this to the fundamental class σ(1) = 1 yields σ(pt) -1 = q -dmax [Y * dmax ], which we just need to substitute in the previous identity.

Corollary 5.3 For any u, v ∈ W X , we have

q δ(u) σ(p(u)) * σ(ι(v)) = q δ(v) σ(ι(u)) * σ(p(v)).
Proof. Multiply the identity of Theorem 3.3 for ι(u) by the Schubert class σ(ι(v)), and use the associativity of the quantum product.

Together with Theorem 4.1, we get a series of symmetry relations for the Gromov-Witten invariants, which are generated by the following simple ones:

Corollary 5.4 For any u, v, w ∈ W X , we have the relation

I k (u, v, w) = ζ(u)ζ(v)ζ(w)I δ(w)-k (p(u), p(v), ι(w)).
Proof. In terms of Gromov-Witten invariants, Corollary 5.3 writes

I k-δ(u) (p(u), ι(v), w) = I k-δ(v) (ι(u), p(v), w).
Combining with the identity (11), we deduce that

I k (u, v, w) = I k+δ(p(u))-δ(v) (ιp(u), pι(v), w) = I k+δ(p(u))-δ(v) (ιp(u), w, pι(v)) = ζ(ιp(u))ζ(w)ζ(pι(v))I δ(p(u))+δ(w)-δ(v))-(k+δ(p(u))-δ(v)) (p(u), ι(w), p(v)) = ζ(u)ζ(w)ζ(v)I δ(w)-k (p(u), p(v), ι(w)).
This is what we wanted to prove.

As we already mentioned in the introduction, this statement was first obtained, in [START_REF] Kresch | Quantum cohomology of the Lagrangian Grassmannian[END_REF], Theorem 7, for the Lagrangian Grassmannian, and in [START_REF] Kresch | Quantum cohomology of orthogonal Grassmannians[END_REF], Proposition 6, for the orthogonal Grassmannian. For the ordinary Grassmannian it is contained in the results of [P1].

Totally smooth Schubert classes

When ι and p do not commute we get even more identities, and lots of Gromov-Witten invariants can be identified with classical intersection numbers on the same variety.

For example, for the Grassmannian G(p, n), we get a Z η -symmetry, in particular a Z n -symmetry when (p, n) = 1. In fact this Z n -symmetry always exists by [P1].

It turns out, although we have no satisfactory explanation for that, that we can get more symmetries for the Gromov-Witten invariants (in particular the full Z n -symmetry for G(p, n)) by considering smooth Schubert varieties whose Poincaré duals are also smooth. The point and the whole variety are obvious examples, and there are a few more whose classes σ are listed in the following table.

X σ G(p, n) σ p k , σ ℓ n-p G ω (n, 2n) σ pt , σ X Q 2m σ pt , σ + , σ -, σ X Q 2m+1 σ pt , σ X G Q (n + 1, 2n + 2) σ pt , σ n , σ n-1,...,1 , σ X OP 2 σ pt , σ 8 , σ X E 7 /P 7 σ pt , σ X
We call these classes totally smooth Schubert classes.

Proposition 5.7 Let σ be a totally smooth Schubert class on X. Then:

1. There exist integers a, b such that σ a = q b .

2. There exist a map δ σ : W X → Z + and a permutation ι σ of W X such that for all u ∈ W X , σ * σ(u) = q δσ(u) σ(ι σ (u)).

Note that Corollary 5.2 is a more precise version of a special case of this statement.

Proof. The first statement is a case by case check. The second statement follows, once one remembers that the quantum product of two Schubert classes is a positive combination of monomials (a monomial being a Schubert class multiplied by some power of q). Indeed, since σ a-1 * (σ * σ(u)) = σ a * σ(u) = q b σ(u) is a monomial, then a fortiori σ * σ(u) must be a monomial.

Corollary 5.8 For any u, v, w ∈ W X and k ∈ Z + , we have

I k (u, v, w) = I k+δσ(w)-δσ(v) (u, ι σ (v), pι σ p(w)).
Observe that if σ and τ are two totally smooth Schubert classes, then the commutativity of the quantum product forces the permutations ι σ and ι τ of W X , to commute. Considering all the totally smooth Schubert classes together, we thus get an abelian group Γ X of permutations of W X , each element of which gives rise to a symmetry relation for the quantum product. We observe: Proposition 5.9 For any (co)minuscule homogeneous space,

Γ X ≃ P (R ∨ )/Q(R ∨ ).
Here we used the notation of [Bou]: R ∨ is the dual root system to that of G, with root lattice Q(R ∨ ) and weight lattice P (R ∨ ). Recall that the non zero elements in the abelian group P (R ∨ )/Q(R ∨ ) are represented by the minuscule weights of G. Also they can be seen as automorphisms of the affine Dynkin diagram of G (see [Bou], VI.2).

Proof. The idea for the correspondence is the following. If σ is a totally smooth Schubert class of positive degree, the Schubert varieties of class σ are parametrized by a minuscule homogeneous space G/P σ . This allows to associate to σ a minuscule weight ω σ , and the upshot turns out to be a group isomorphism Γ X ≃ P (R ∨ )/Q(R ∨ ).

For example, let us treat the case of X = G Q (n + 1, 2n + 2) in some detail. This is one of the two families of maximal linear spaces L in a projective quadric Q 2n , and the closed orbit in the projectivization of the half-spin representation of highest weight ω n+1 . Apart from the class of a point, there are two totally smooth Schubert classes. First, the class σ = σ n is the class of the Schubert varieties X ℓ of linear spaces L passing through a given point ℓ of Q 2n ; in particular ℓ ≃ G Q (n, 2n); the corresponding minuscule weight is ω 1 . Second, the Poincaré dual class τ = σ n-1,...,1 is the class of the Schubert varieties X L opp of linear spaces L cutting L opp in codimension one, where L opp belongs to the other family of maximal linear spaces in Q 2n ; in particular X L opp is the projective space of hyperplanes in L opp ; the corresponding minuscule weight is ω n .

The formulas for the quantum products of these special classes are the following. For n odd:

σ 2 pt = q n+1 2 , σ 2 = q, τ 2 = q n-1 2 , σ * τ = σ pt ,
from which we easily deduce that Γ X = Z 2 × Z 2 . For n even,

σ 2 pt = q n 2 σ, σ 3 pt = q n+2 2 τ, σ 4 pt = q n+1 ,
and we conclude that Γ X = Z 4 , as announced.

A consequence of this statement is that the quantum product of two totally smooth Schubert classes is again (up to a power of q) a totally smooth Schubert class. In particular, for any such class σ, the permutation ι σ of W X preserves the set of totally smooth Schubert classes. We have identified those of positive degree with minuscule weights. It is natural to identify the remaining fundamental class with the highest root. Then we get an action of Γ X on a subset of the affine Dynkin diagram, which can be checked to be the restriction of the natural action of P (R ∨ )/Q(R ∨ ). Even more, this action is completely determined by the restriction to this subset.

Invertibles in the quantum ring and Seidel's representation

In [Se], P. Seidel gives a very general construction to produce invertible elements in the quantum ring of a symplectic manifold. In this subsection, we compute these invertible elements in the case when the symplectic manifold is a minuscule homogeneous space. They will happen to be most of those that we found in subsection 5.2.

To this end, we need some combinatorial data involving root systems. Let R be a root system with basis (α i ). The dual root of α i will be denoted α ∨ i and the corresponding fundamental weight ω i . The dual basis of (α i ) will be denoted (ω ∨ i ); elements in the dual lattice of the root lattice will be called coweights (they are weights of the dual root system). In the following, we assume that R is a root system, ω i a fundamental weight and ω ∨ j a minuscule fundamental coweight. We denote G the simply-connected group with root lattice R, P ⊂ G the parabolic subgroup corresponding to α i and n the index of G/P (that is, the integer such that the anticanonical bundle of G/P is n times the ample generator of P ic(G/P ) ≃ Z). Moreover, we denote R(u(p)) the set of roots in R of the form n k α k with n i > 0. We make the following assumptions :

1. ω ∨ j , ω i = 0.

2. k := #{α ∈ R(u(p)) : ω ∨ j , α > 0} < n.

Example 5.10 The following array gives possible integers for i, j, the corresponding values of k and n, and the totally smooth Schubert variety obtained by proposition 5.11 : type i j k n σ A l p j : p(l + 1 -j) < l and i > j i(l + 1 -j) l σ p l+1-j A l p j : j(l + 1 -p) < l and i < j j(l + 1 -i) l σ j l+1-p D l l 1 l -2 2(l -1) σ l-1 D l 1 l l -2 2(l -1) σ + D l 1 l -1 l -2 2(l -1) σ - E 6 1 6 8 12 σ 8

These are not all the possible such weights, but are enough for our purpose.

To this data, we associate as in [Se] a locally trivial fibration E → P 1 with fibers homogeneous spaces. Let T ⊂ P ⊂ G be a maximal torus. Since G is simply-connected, the coweight lattice parametrize 1-parameter subgroups of T ; let C * ⊂ T correspond to ω ∨ j . The image of S 1 ⊂ C * ⊂ T ⊂ G → G ad , where G ad denotes the adjoint quotient of G, is an element of π 1 (G ad ) which will be denoted π 1 (ω ∨ j ). Moreover we denote O = C 2 -{(0, 0)}, with the natural action of C * on it. We now set E = O × C * G/P . There is a natural map E → O/C * ≃ P 1 , that we denote π; the fibers of π are isomorphic with G/P . As in [Se], we denote T E v the vertical tangent space, that is the kernel of dπ in T E. We choose a point z ∈ P 1 , and if S is a space of sections of π, we denote ev : S → π -1 (z) ≃ G/P the evaluation at z. Proof. The proof adapts the idea of [Se, section 11] which was only for Grassmannians. The key point is that c 1 (T E v ) + kπ * O(1) is ample on E and we use [Se,proposition 7.11].

We also use the fact that since we are dealing with (co)minuscule homogeneous spaces, the pullback of the vertical tangent bundle to the rational curves parametrized by S have no cohomology. For other homogeneous spaces, it seems more difficult to compute Seidel's representation. In view of the above examples, taking all products of elements given by this proposition, we compute the image of π 1 (G ad ) under Seidel's representation for minuscule homogeneous varieties and recover all the invertible elements corresponding to totally smooth Schubert subvarieties except sometimes the point class. Since we hope to compute in later work other invertible elements given by Seidel's representation, we don't give the detailed proof here.

  be identified with the Hasse diagram of a minuscule homogeneous variety Z d .Proof. For any Schubert subvariety X(w) of X, we denoted byF d ( w) = q d (p -1 d (X(w)) the corresponding Schubert subvariety of F d . The map w → w identifies the Bruhat interval [T d , Y * d ] in W X with the Bruhat interval [Z * d , F d ] in W F d .By Poincaré duality on F d and Z d , this interval is canonically identified with [pt, Z d ], which coincides with the Hasse diagram of Z d . Moreover, each interval W d , being isomorphic with the Hasse diagram of the smooth homogeneous variety Z d , is endowed with a natural involution induced by Poincaré duality on the latter. We get a global involution of W X which we denote by ι. In particular ι(T d ) = Y * d , and the fact that

  2d), and T d is another Grassmannian G(p -d, n -2d). In particular the partition w Y * d is just a square of size d, while the partition w T d is the complement of a rectangle of size (p -d) × (n -p -d).

  and Theorem 4.1 holds with κ = 2 -2 n and ζ(λ) = 2 z(λ) .

)

  Using the fact that ζ(ι(u)) = ζ(p(u)) = ζ(u) -1 , the same identity gives I ℓ (pιp(w), ι(u), ι(v)) = (ζ(u)ζ(v)ζ(w)) -1 I δ(pιp(w))+δ(u)-δ(pι(v))-ℓ (ιpιp(w), u, pιpι(v)).

  Proposition 5.11 Let s be a section ofπ such that c 1 (T E v )(s) ≤ 0. Then c 1 (T E v )(s) = -k. Let S denotethe space of such sections : S is a homogeneous variety of dimension dim G/P -k and ev * [S] ∈ H * (G/P ) is the image by Seidel's representation of [π 1 (ω ∨ j )].

  Let j denote the inclusion Y → X; the morphism of modules j * : H * (Y ) → H * (X) is injective and the dual morphism of algebras j * : H * (X) → H * (Y ) is surjective. The image of j * is Z[pt, Y ]; we denote by j -1 * the inverse map Z[pt, Y ] → H * (Y ). The restriction of j * to Z[Y * , X] is an algebra isomorphism with H * (Y ). Explicitly, it equals p Y

	Proposition 3.1

  these formulas remain valid in the quantum Chow ring, except in maximal degree. In fact the quantum Chevalley formula gives the two identities σ 2m-1 * H = σ 2m + q, σ 2m * H = qH.Note that σ 2m-1 is the class of a line and coincides with [T 1 ]. Also σ 2m is the class [pt] of a point. The quantum Chow ring QA * (Q 2m ) is determined by the formulas

	Proposition 4.3

Corollary 5.5 For u, v ∈ W X , the maximal power of q that appears in the quantum product of the Schubert classes σ(u) * σ(v) is d max (u, v) = δ(u) -δ(ι(u), p(v)) = δ(v) -δ(ι(v), p(u)).

Corollary 5.4 suggests to study the group Γ 0 X of permutations of W 3 X generated by (p, p, ι), (p, ι, p), (ι, p, p). Clearly the size of this group is governed by the order η of the permutation pι of W X .

Proposition 5.6 The order of Γ 0 X is 2η 2 , and η is given by the following table:

Note that η always divides the order of the symmetry group of the affine Dynkin diagram of G.

Proof. Let Γ 0 denote the group of permutations of W X generated by the two involutions p and ι. The order of Γ 0 is 2η. Moreover, the projection on the first factor yields a morphism Γ → Γ 0 which is obviously surjective. Its kernel consists in the permutations of type (1, (pi) k , (ip) k ), with k ∈ Z, so its order is η. Thus the order of Γ is 2η 2 .

For the explicit values of η, first consider the case of X = G(p, n). A partition λ ∈ W X can be identified with a 01-sequence ω with p ones and n -p zeroes encoding vertical and horizontal steps along the boundary of λ, starting from the SW corner. Then the size of the biggest square contained in λ is the number of zeroes among the first p terms of the sequence. Moreover, reading the sequence backward we get the sequence ω * of the Poincaré dual partition p(λ). So to get the sequence ω ′ of ι(λ), we write ω = ω 0 ω 1 where ω 0 has length p and ω 1 has length n -p, and let ω ′ = ω * 0 ω * 1 . To deduce the sequence ω ′′ of pι(λ) we simply reverse ω ′ , so ω ′′ = ω 1 ω 0 . The claim easily follows.

Now suppose X = G Q (n, 2n). We identify a strict partition λ ∈ W X with a 01-sequence ω of length n as follows. First we consider it as a usual partition in a square of size (n + 1) × (n + 1) and we let ω ′ be the associated 01-sequence, of length 2n + 2. It begins with a 1 and ends with a 0. We suppress the initial 1...10 sequence. Moreover, since λ is strict every 1 is followed by a 0, which we suppress. The resulting sequence has length n and is our ω = ω 1 • • • ω n . Note that the length of λ is the number of 1's.

We check that p and ι are easily expressed in terms of 01-sequences:

where n, 2n), and also that of E 7 /P 7 are trivial, since p commutes with ι. Finally the case of OP 2 follows from an explicit computation.

Example. The cases for which η = 2 are the most symmetric: the involution ι commutes with Poincaré duality. In particular we get the relation

The Gromov-Witten invariants are identified by groups of eight according to the following identities: In particular all Gromov-Witten invariants can be directly computed from those of degree k ≤ d max /4.