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PFAFFIAN LINES AND VECTOR BUNDLES
ON FANO THREEFOLDS OF GENUS 8

A. ILIEV AND L. MANIVEL

Abstract. Let X be a general complex Fano threefold of genus 8. We prove that the
moduli space of rank two semistable sheaves on X with Chern numbers c1 = 1, c2 = 6 and
c3 = 0 is isomorphic to the Fano surface F (X) of conics on X . This surface is smooth and
isomorphic to the Fano surface of lines in the orthogonal to X cubic threefold. Inside
F (X), the non-locally free sheaves are parameterized by a smooth curve of genus 26
isomorphic to the base of the family of lines on X.

1. Introduction

A vector bundle E on a smooth complex projective n-fold X is without intermediate
cohomology if hi(X, E(k)) = 0 for any i 6= 0, n and k ∈ Z. By a well known criterion of
Horrocks, such a bundle must split if X = Pn. If X = Qn is a smooth quadric and E
is indecomposable, it must be a twist of a spinor bundle, see [Kn, Ot]. In addition, as
seen by Buchweitz, Greuel and Schreyer, these are the only smooth n-folds with a finite
number, up to twist, of indecomposable vector bundles without intermediate cohomology.

Until now more or less complete descriptions of these bundles have been obtained for
only some restricted classes of varieties, see [IM4] for a more comprehensive account of
the known results. In particular, arithmetically Cohen-Macaulay (aCM) vector bundles
(that is, indecomposable rank two bundles with no intermediate cohomology) on prime
Fano threefolds have attracted considerable attention; we refer to [IP] for general facts
about Fano varieties.

Prime Fano threefolds Yd of index two and degree d exist for 1 ≤ d ≤ 5. The classifica-
tion of aCM bundles on Yd is known for d ≥ 3 [AC]. Although the classification of aCM
bundles on Y1 (the double Veronese cone) and Y2 (the quartic double solid) can easily be
derived by similar methods, it still remains unwritten. The degree d = −K3

X = 2g − 2 of
a prime Fano threefold X = Xd of index one is always even – the integer g is called the
genus of X. Such Fano’s exist for 2 ≤ g ≤ 12, g 6= 11, see e.g. [Mu4]. The classification
of all possible aCM bundles on these threefolds (but not the existence of all of them) is
given by C. Madonna in [Ma] (see also [AC]). There are finitely many possible Chern
numbers for a normalized aCM bundle on a prime Fano threefold X, and then a finite
number of families for each possible choice, whose general member is a stable vector bun-
dle obtained by Serre’s construction from a subcanonical curve on X. Madonna deduces
a list of 91 possible pairs (c1, c2), with −1 ≤ c1 ≤ 3, corresponding to lines, conics and
certain elliptic, canonical or half-canonical curves (provided such curves on Xd exist).

For a pair (c1, c2) from the lists of Arrondo-Costa and Madonna, denote by MX(2; c1, c2)
the Maruyama moduli space of semistable rank two coherent sheaves on the Fano threefold
X with these Chern classes, and c3 = 0. In some cases this moduli space happens to consist
of a single point, corresponding to a unique bundle E. Such is the moduli space MX(2; 1, 5)
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for the Fano threefold X = X14, and the bundle E defines a unique embedding of X14

in the Grassmannian G(2, 6) parameterizing planes in a six dimensional complex vector
space. The study of rigid bundles on the Fano threefolds, K3 surfaces and canonical curves
of genus 6, 7, 8, 9, 10 is the base of Mukai’s classifications by embeddings into homogeneous
varieties.

The next step is the study of moduli spaces MX(2; c1, c2) of non-rigid aCM bundles on
prime Fano threefolds. The first attempts in this direction have been made in [MT1] and
[IM1], with the study of the moduli space MY (2; 0, 2) on a cubic threefold Y = Y3 based
on a parallel study of the family of subcanonical curves – elliptic quintics – that appear
as zero-loci of sections of the general E ∈ MY (2; 0, 2). The Abel-Jacobi map sends the
family of elliptic quintics on Y onto the 5-dimensional intermediate Jacobian J(Y ), and
one can deduce that MY (2; 0, 2) is birational to J(Y ). This statement was made more
precise by S. Druel [D], who proved that MY (2; 0, 2) is isomorphic to the blow-up of J(Y )
along a copy of the Fano surface of lines in Y ; see [B1] for a joint presentation on both
approaches.

From some other point of view the same moduli space MY (2; 0, 2) compactifies the
set of Pfaffian representations of the 3-fold Y , an idea due originally to Adler, see [AR].
As shown in [IM2], a similar question can be stated and answered similarly also for the
quartic threefold X = X4 ⊂ P4, which by itself is a prime Fano 3-fold of index 1: the set
of Pfaffian representations of the 3-fold quartic X is compactified by the 7-dimensional
moduli space of aCM bundles MX(2; 3, 14) on X. We refer to the paper [B2] of Beauville
for a modern and more general view on determinantal and Pfaffian representations of
homogeneous forms.

The ideas from [MT1, IM2] have been used in [IM3] and [IM4] in the study of the
moduli spaces MX(2; 1, 5) and MX(2; 1, 6) coming correspondingly from elliptic quintics
and elliptic sextics on the prime Fano 3-fold X = X12 of index 1 and genus seven. To
this circle of works one can include the new parameterization given by Tikhomirov (see
[Tih]) of the theta divisor Θ for the quartic double solid Y = Y2 by elliptic quintics,
that in particular yields a birationality between Θ and a component of the moduli space
MY (2; 0, 3), see also [MT2]. More recent, and from a different point of view, is the study
by Arrondo and Faenzi of the aCM bundles on the prime Fano 3-folds Y5 and X12 in terms
of monads, see [AF] and [F].

Note the common weak point in all these descriptions: they only consider the open
subset of stable vector bundles in the moduli space.

In this paper we give a full description of the moduli space MX(2; 1, 6) on the general
Fano threefold X = X14 of index one and genus eight. We combine the geometric approach
used in [IM1]-[IM4] for other Fano threefolds with the ideas of S. Druel [D] to get not
only all the vector bundles but also all the non locally free sheaves parameterized by this
moduli space. Our main result (Theorem 7.2) is that MX(2; 1, 6) is isomorphic to the
smooth surface F (X) parameterizing the conics contained in X. Inside F (X), the non
locally free sheaves are parameterized by a smooth curve of genus 26 isomorphic to the
family Γ(X) of lines in X.

Our proof is rather indirect, and we use the orthogonal cubic threefold Y of X as an
essential tool. Remember that X is a generic linear section of the Grassmannian G(2, 6) ⊂
P14. The orthogonal cubic threefold Y is then obtained as the section of the cubic Pfaffian
hypersurface by the orthogonal linear subspace of the dual projective space. We prove
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that the surface F (X) of conics in X is isomorphic to the Fano surface F (Y ) of lines in Y .
Given a vector bundle in MX(2; 1, 6), we prove that it is generated by global sections, and
next we show how to construct a line ℓ ⊂ Y from an elliptic sextic obtained as the zero
locus of a general section. Conversely, a given line ℓ ⊂ Y defines uniquely a codimension
two singular linear section of G(2, 6), a special rational projection of which turns out
to be isomorphic, somewhat unexpectedly, to the Grassmannian G(2, 5). Pulling-back
the tautological rank two bundle on G(2, 5), we get a vector bundle Eℓ ∈ MX(2; 1, 6).
Moreover, these two processes are inverse to each other.

The Abel-Jacobi map allows to conclude the proof: MX(2; 1, 6) is mapped bijectively
onto F (X), which by itself is embedded in the intermediate Jacobian J(X) of X. Since
both MX(2; 1, 6) and F (X) are smooth surfaces, they are isomorphic.

Acknowledgements: We thank Claire Voisin and Stéphane Druel for their help.

2. Preliminaries I : Some Grassmannian geometry

2.1. The Grassmannian G(2, 6). Lots of important geometric properties of the Fano
threefold X14 come from the geometry of the Grassmannian G(2, 6). Here we state some
of them that will be used later.

We denote by V a six-dimensional complex vector space, and by G(2, 6) = G(2, V ) →֒
P(∧2V ) = P14 the Grassmannian of planes in V , in its Plücker embedding. This is a
smooth Fano manifold of dimension 8, degree 14 and index 6.

The secant variety of G(2, 6) in P14 is the cubic hypersurface of skew-symmetric tensors
of rank at most four. Its equation is given by the Pfaffian. The action of PGL6 in
P14 has only three orbits, defined by the rank: G(2, 6), its complement in the Pfaffian
hypersurface, and the complement of this hypersurface.

2.2. Lines and conics in G(2, 6). A line in G(2, 6) is of the form P(ℓ∧L) for some line ℓ
in V and some three dimensional subspace L of V containing ℓ. The Fano variety of lines
in G(2, 6) can thus be identified with the flag variety F (1, 3; 6), with obvious notations.

Similarly, the family of planes in G(2, 6) has two connected components, both homoge-
neous under the action of PGL6. Of course these planes contain lots of conics of G(2, 6).
Apart from these, smooth conics are defined by two points of G(2, 6) plus two concurring
tangents. We deduce that we can find independent vectors e0, e1, e2, e3 ∈ V such that the
span of our conic is generated by e0 ∧ e1, e2∧ e3, e0∧ e2 + e1 ∧ e3. Similarly, a singular but
reduced conic whose linear span is not contained in the Grassmannian will be a union of
two lines 〈e0 ∧ e1, e0 ∧ e2〉 and 〈e0 ∧ e1, e1 ∧ e3〉. The case of double lines is settled by the
following lemma:

Lemma 2.1. Let L be a projective plane, meeting G(2, 6) along a double line. Then we
can find four independent vectors e0, e1, e2, e3 in V such that L is generated by e0∧e1, e0∧
e2, e0 ∧ e3 + e1 ∧ e2.

Proof. Our hypothesis is that we have a line ℓ = 〈e0 ∧ e1, e0 ∧ e2〉, contained in the plane
L ⊂ P14, such that the scheme intersection of L with G(2, 6) is a double structure on ℓ.

Complete e0, e1, e2 with three other vectors e3, e4, e5 to get a basis of V . Then L contains
a unique tensor of the form ω = e0 ∧ u + φ where u ∈ 〈e3, e4, e5〉 and φ does not involve
e0. For Ω = x1e0 ∧ e1 + x2e0 ∧ e2 + yω, the vanishing of

Ω ∧ Ω = y(e0 ∧ (x1e1 + x2e2 + yu) ∧ φ) + y2φ ∧ φ
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defines our scheme-theoretic intersection. In order to get a double line, this equation must
reduce to y2 = 0, and we thus need that e1 ∧ φ = e2 ∧ φ = 0. Hence φ must be a multiple
of e1 ∧ e2. Finally, for L not to be contained in G(2, 6) we need u not to be contained in
〈e0, e1, e2〉. �

2.3. Lines in the Pfaffian hypersurface. We will be interested in pencils of skew-
symmetric tensors of constant rank four, i.e. lines in the Pfaffian hypersurface that do
not meet the Grassmannian G(2, 6).

We define an A-line to be a line generated by tensors of the form

e0 ∧ e2 + e1 ∧ e3,

e0 ∧ e4 + e1 ∧ e5,

for some basis e0, . . . , e5 of V .
Similarly, a B-line will be generated by tensors of the form

e0 ∧ e2 + e1 ∧ e3,

e0 ∧ e3 + e1 ∧ e4,

for some independent vectors e0, . . . , e4 of V .
Both types of lines are contained in the tangent space to the Grassmannian G(2, 6) at

the unique plane e0 ∧ e1. The main difference between the two types is that a B-line is
contained, contrary to an A-line, in the projective span of a copy of G(2, 5) inside G(2, 6).
As proved in [MMe], every line of skew-symmetric tensors of constant rank four is an
A-line or a B-line; moreover, the B-lines describe a hypersurface in the closure of the
22-dimensional family of A-lines.

For future use we note the following easy result, which can be obtained by an explicit
computation. If ℓ is an A-line or a B-line, a point on ℓ represents a skew-symmetric form
of rank four on V ∗, whose kernel defines a projective line. Denote by Qℓ ⊂ PV ∗ the union
of these lines.

Lemma 2.2. If ℓ is an A-line, then Qℓ is a smooth quadric surface in PV ∗. If ℓ is a
B-line, then Qℓ is a quadratic cone.

3. Preliminaries II : Prime Fano threefolds of genus 8

3.1. Prime Fano threefolds from G(2, 6). Since the Grassmannian G(2, 6) has dimen-
sion 8 and index 6, any smooth transverse linear section

X = X14 = G(2, 6) ∩ P9
X ⊂ P14

is a Fano threefold of index one and degree d = 14, hence of genus g = d/2 + 1 = 8, i.e.
the smooth codimension 2 linear sections of X are canonical curves of genus 8. As shown
independently by Gushel’ and Mukai, see [G], [Mu4]:

Any smooth prime Fano threefold X = X14 of index one and genus 8 is a transverse
section of G(2, 6) ⊂ P14 by a linear space P9

X ⊂ P14.

In Mukai’s notation, the embedding X →֒ G(2, 6) is given by the unique rank 2 stable
vector bundle Eo ∈MX(2; 1, 5). This bundle Eo is defined by the Serre construction from
any elliptic quintic on X, see [Mu4].

The even Betti numbers of X are b2 = b4 = 1, canonical generators being given by the
class of a hyperplane section and the class of a line in X, respectively. The odd Betti
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numbers are b1 = 0 and b3 = 10. In particular the intermediate Jacobian of X is a five
dimensional abelian variety J(X).

This can be seen as follows. Consider the normal exact sequence

0→ TX → TGX → OX(1)⊕5 → 0,

where TG is the tangent bundle of the Grassmannian and TGX is its restriction to X.
Note that TX(−1) = Ω2

X since KX = OX(−1). Twisting the previous sequence by
OX(−1) and taking cohomology, we deduce an exact sequence

H0(TGX(−1))→ H0(O⊕5
X )→ H1(Ω2

X)→ H1(TGX(−1)).

Since X is a linear section of the Grassmannian there is an associated Koszul complex
that we can use to deduce that H i(TGX(−1)) = 0 whenever H i+j(TG(−j − 1)) = 0 for
0 ≤ j ≤ 5. For i = 0 and i = 1 this easily follows from Bott’s theorem (see e.g. [Man],
Proposition 2). We conclude that h1,2(X) = 5, as claimed.

3.2. The orthogonal cubic threefold. For the Fano threefold X = G(2, 6) ∩ P9
X , con-

sider the orthogonal four dimensional space in the dual projective space P(∧2V ∗). This
four dimensional projective space meets the Pfaffian hypersurface in P(∧2V ∗) along a
cubic threefold Y ⊂ P4

Y , the orthogonal cubic threefold of the Fano threefold X.
For X general, P4

Y is a general subspace in P14, hence does not meet the Grassmannian
G(2, V ∗), whose codimension is 6. Therefore any point y ∈ Y represents a skew-symmetric
form of rank four on V , whose kernel is a well-defined projective line ny ⊂ P5.

Since the representation of X as a linear section of G(2, 6) is unique up to the action
of PGL6 on the codimension five spaces in P14, the dual cubic threefold Y is uniquely
defined up to the action of PGL6. Moreover, Y is smooth whenever X is smooth, see
[Pu].

3.3. The Palatini quartic. For x ∈ X, denote by ℓx ⊂ P5 the corresponding line. Let

W = ∪{ℓx : x ∈ X} ⊂ P5,

V = ∪{ny : y ∈ Y } ⊂ P5.

Both W and V are subvarieties of P5 swept out by lines, and in fact they coincide. More
precisely, the following takes place (see §50 in [AR] or [Pu]):

(i) W = V is an irreducible quartic hypersurface in P5, whose singular locus is a curve
Γ(W ) of degree 25;

(ii) through any point p ∈ W − Γ(W ) passes a unique line ℓx, x ∈ X and a unique
kernel line ny, y ∈ Y ; and any point v ∈ Γ(W ) is the vertex of exactly one line ℓ ⊂ X.

The quartic hypersurface W ⊂ P5 is known as the Palatini quartic of the prime Fano
threefold X of genus 8. The assertion (ii) above implies that a general hyperplane section
of W is a singular quartic threefold with 25 singular points which is birational to both X
and Y . In particular X and Y are birational (and both unirational but not rational).

This has an interesting consequence, observed by Puts, that will be of crucial use later.

Proposition 3.1. The intermediate Jacobians of X and Y are isomorphic.

Proof. We briefly recall the proof given in [Pu].
Let H be a general hyperplane in P5.
First, define the rational map uX : X 99K W ∩H by mapping x ∈ X to the intersection

point of the line ℓx with H . The map uX is well defined at x ∈ X ⊂ G(2, 6) if the line
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ℓx of x is not contained in H , that is outside the intersection C = X ∩G(2, H). Since H
is general this is a smooth elliptic quintic. By (i) - (ii), the hyperplane H intersects the
curve Γ(W ) = Sing(W ) at 25 points which are the vertices of 25 lines ℓ1, ..., ℓ25 on X;
these ℓi are the same as the 25 lines on X that intersect the elliptic quintic C.

Similarly, the rational map uY : Y 99K W ∩H sending y ∈ Y to the intersection point
of the kernel line ny with H is well defined outside the subset B of these y ∈ Y for which
the kernel line ny lies in H . This B is a smooth elliptic quintic on Y , which has exactly
25 bisecant lines m1, ..., m25 that lie on Y .

By (ii), both uX and uY are birational. Moreover, there exists a commutative diagram

X
uX→ W ∩H

uY← Y
↑ ↑
X ′ ← Z → Y ′

where the vertical maps X ′ → X and Y ′ → Y are the blow-ups of the elliptic quintics
C ⊂ X and B ⊂ Y . The map Z → X ′ blows up the proper preimages ℓ′i ⊂ X ′ of the 25
lines ℓi to 25 exceptional divisors Ei ⊂ Z all isomorphic to the smooth quadric surface
Q, with fibers of Ei → ℓ′i corresponding to one of the two families of lines Φ and Ψ (say
Φ) on Q. The map Z → Y ′ blows down the 25 divisors Ei

∼= Q to the proper preimages
m′

i ⊂ Y ′ of the 25 lines mi, with fibers of Ei → m′
i corresponding to the lines on Q from

the family Ψ, see [Pu].
Since X ′ → X and Y ′ → Y are blowups of the nonrational curves C and B, and

Z → X ′ and Z → Y ′ are compositions of blowps of rational curves, then

J(X) + J(C) ≃ J(X ′) ≃ J(Z) ≃ J(Y ′) ≃ J(Y ) + J(B)

as principally polarized abelian varieties, see [CG]. Since J(Y ) is not isomorphic to the
jacobian of a curve, neither to the sum of jacobians of curves (ibid.), then J(X) ≃ J(Y )
and J(C) ≃ J(B). In particular, the elliptic curves C and B are isomorphic (see also §1,
Ch.III in [Is]). �

4. Lines on X14 and its orthogonal cubic

4.1. Lines on the orthogonal cubic threefold. We recall some known facts about
the family of lines on the 3-dimensional cubic hypersurface. The basic reference about
cubic threefolds and intermediate Jacobians of threefolds is the paper [CG] of Clemens
and Griffiths.

Let Y ⊂ P4 be a general cubic 3-fold. Then

(i) The family F (Y ) of lines on Y is a smooth irreducible surface of general type, of
geometric genus pg = 10, of irregularity q = 5, and such that K2 = 45. The canonical
system |K| is very ample and defines the Plücker embedding F (Y ) ⊂ G(2, 5)→ P9.

(ii) The intermediate Jacobian J(Y ) = H2,1(Y )∗/H3(Y, Z) is an abelian variety of
dimension 5, and the Abel-Jacobi map Φ : F (Y )→ J(Y ) is an embedding. In particular,
F (Y ) contains no rational curve.

When Y is the orthogonal cubic threefold to a Fano threefold X of genus 8, a line in
Y is a pencil of skew-symmetric forms on V ∗, all of rank four. Since the B-lines form a
codimension one family of lines of skew-symmetric forms of constant rank four, we get:

(iii) The family of B-lines in the orthogonal cubic threefold Y to a general Fano threefold
X of genus 8 is a smooth curve Γ(Y ) ⊂ F (Y ).
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For the smoothness of Γ(Y ), see [AR], Corollary (49.8) and Lemmas (51.3) and (51.15).
Notice that the curve Γ(Y ) is not invariantly defined by the cubic threefold Y ; as a subset
of F (Y ) it depends on the choice of X in the 5-dimensional family of Fano threefolds
whose orthogonal cubic is Y .

Other characterizations of B-lines are given in [AR]. They are the lines ℓ ⊂ Y such
that the kernel lines ny, y ∈ ℓ have a common point (see Definition (49.1) in [AR]).
Equivalently, they are the jumping lines of the restriction to Y of the tautological rank
two bundle (see Lemma (49.2) in [AR]).

4.2. Lines in the general Fano threefold X14. It is well known that the scheme Γ(X)
of lines on the general Fano threefold X of genus 8 is a smooth irreducible curve of genus
26, see e.g. Prop. 4.2.2 and Th. 4.2.7 in [IP]; in particular the normal bundle to any line
ℓ ⊂ X is Nℓ/X = Oℓ ⊕Oℓ(−1), ibid. This implies that h0(Nℓ/X) = ext1(Oℓ,Oℓ) = 1 and
h1(Nℓ/X) = ext2(Oℓ,Oℓ) = 0.

Let ℓ be a line in X, and let H(ℓ) ⊂ V ∗ be the hyperplane orthogonal to the vertex v(ℓ).
Then P(∧2H(ℓ)) ≃ P9 has codimension three in ℓ⊥, which also contains P4

Y . Therefore
these two subspaces of ℓ⊥ have to meet along some projective space of dimension at least
one. Moreover this space is contained in Y since H(ℓ) has dimension five, and in dimension
five a skew-symmetric form has rank at most four. But Y does not contain any plane, so
P(∧2H(ℓ)) ∩ P4

Y is a projective line ℓ′ in Y , which is obviously a B-line.
Conversely, let ℓ′ ⊂ Y be a B-line, hence contained in the span P(∧2H) of G(2, H), a

copy of G(2, 5), for some hyperplane H of V ∗. The orthogonal to H is point v ∈ P5, and
the Schubert cycle of lines passing through v is a P4

v contained in G(2, 6). Both P4
v and P9

X

are contained in the 12-space (ℓ′)⊥, so they must meet each other along a linear space ℓ
of dimension at least one. Since ℓ is contained in X = G(2, 6)∩P9

X , and since X contains
no planes, then ℓ must be a line. Together with the preceding, this yields the following:

Proposition 4.1. The curve Γ(X) of lines in X is isomorphic to the curve Γ(Y ) ⊂ F (Y )
of B-lines in the orthogonal cubic Y of X.

Notice that if ℓ is a line in X, its vertex v(ℓ) is a singular point of the Palatini quartic
W , see Lemma (51.5) in App.V of [AR]. Moreover the map Γ(X) → Γ(W ) sending a
line to its vertex is injective, since two lines with the same vertex would generate a plane
contained in X. This implies:

Proposition 4.2. The curve Γ(X) of lines in X is isomorphic to the singular locus Γ(W )
of the Palatini quartic of X.

The fact that for X general, Γ(W ) is a smooth curve of genus 26 was already observed
by Puts [Pu].

4.3. Conics on X14. We denote by F (X) the Hilbert scheme of conics on X, that is,
the Hilbert scheme of closed subschemes of X with Hilbert polynomial P (n) = 2n + 1.
It is known that F (X) is reduced of pure dimension two: it is called traditionally the
Fano surface of X. Any general point of F (X) parametrizes a smooth conic q ⊂ X with
normal bundle Nq|X = Oq ⊕ Oq. Moreover the closed subset of singular conics (pairs of
intersecting lines, or double lines) is of pure dimension 1. See §4.2 in [IP].

Of course any conic on X is a conic on G(2, 6), and the different types of conics in
G(2, 6) can easily be described. We can distinguish three types:
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(1) Conics whose linear span is a plane contained in G(2, 6);
(2) Reduced plane sections of a copy of G(2, 4) in G(2, 6);
(3) Double lines.

Clearly conics of the first type cannot be contained in a general Fano threefold X, which
contains no planes. Double lines are handled as follows:

Lemma 4.3. The general Fano threefold X14 contains no double lines.

Proof. Double lines on G(2, 6) were described in Lemma 2.1. An immediate consequence
is that there is a P3 of projective planes whose scheme intersection with G(2, 6) is a
double line supported on a given line in G(2, 6). Since the Fano variety of lines on the
Grassmannian is 11-dimensional, we get a family of planes of dimension 14, and the family
of P9’s containing a plane in this family has dimension 14 + 7× 5 = 49. This is one less
than the dimension of the Grassmann variety of P9’s in P14, so our claim follows. �

Proposition 4.4. The Fano surface F (X) of conics on the general X is smooth.

Proof. Let q ⊂ X be a reduced conic. To prove that the F (X) is smooth and two-
dimensional at q, we will check that h1(Nq/X) = 0 and h0(Nq/X) = 2, where Nq/X denotes
the rank two normal bundle of q in X (note that q can be singular but is always a locally
complete intersection).

First case : q is smooth. We know that q = G(q) ∩X, where G(q), the Grassmannian
of lines in P3

q, is a four dimensional quadric in G = G(2, 6). We have an exact sequence

0→ Nq/G(q) → Nq/G → NG(q)/G|q → 0.

Since q is a transverse linear section of G(q), we have Nq/G(q) = O(2)3. The restriction
of the tautological bundle T ∗ to q is globally generated and has degree two, thus it must
decompose into O ⊕ O(2) or O(1) ⊕ O(1). In the first case, the lines parametrized by
q would have a common point, and the linear span of q would be contained in G, hence
in X, which is impossible. So we must be in the second case, and since G(q) is the zero
locus of a section of T ∗ ⊕ T ∗ on G, we deduce that NG(q)/G|q = O(1)4.

Now, consider the commutative diagram:

0 0
↓ ↓

0 → Tq → TG(q)|q → Nq/G(q) → 0
↓ ↓ ↓

0 → TX|q → TG|q → NX/G|q → 0
↓ ↓

Nq/X → NG(q)/G|q

↓ ↓
0 0

Suppose that the image z̄ ∈ Nq/X of some z ∈ TX|q, is mapped to zero in NG(q)/G|q. From
the diagram, we deduce that z ∈ TG(q)|q, hence z ∈ Tq = TX|q ∩ TG(q)|q. But this
means that z̄ = 0. We conclude that the map Nq/X → NG(q)/G|q = O(1)4 is injective.
Since Nq/X has degree zero, this implies that Nq/X = O ⊕ O or Nq/X = O(1) ⊕ O(−1),
hence our claim.

Second case: q is singular. So q is the union of two coplanar but distinct lines ℓ
and m, meeting at a point p. We prove that Ext2(Iq, Iq) = 0 and Ext1(Iq, Iq) is two
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dimensional. We begin with the short exact sequence 0 → Iq → Iℓ → Om(−p) → 0.
Applying Hom(Iq, .), we get the long exact sequence

0→ Hom(Iq, Iq)→ Hom(Iq, Iℓ)→ Hom(Iq,Om(−p))→

→ Ext1(Iq, Iq)→ Ext1(Iq, Iℓ)→ Ext1(Iq,Om(−p))→(1)

→ Ext2(Iq, Iq)→ Ext2(Iq, Iℓ)→ Ext2(Iq,Om(−p)).

Applying Hom(.,Om(−p)), we obtain

0→ Hom(Om,Om)→ Hom(Iℓ,Om(−p))→ Hom(Iq,Om(−p))→

→ Ext1(Om,Om)→ Ext1(Iℓ,Om(−p))→ Ext1(Iq,Om(−p))→(2)

→ Ext2(Om,Om)→ Ext2(Iℓ,Om(−p))→ Ext2(Iq,Om(−p)).

Note that Hom(Om,Om) = Hom(Iℓ,Om(−p)) = C, while Hom(Iq,Om(−p)) = 0.
To compute Extk(Om(−p),Om(−p)) = Extk(Om,Om), we use the short exact sequence

0 → Im → OX → Om → 0. Since Extk(OX , Im) = Hk(Im) = 0 for k ≥ 0 we deduce
that Extk(Om, Im) = Extk−1(Im, Im). Using 4.2, we get that this group is equal to C for
k = 1, 2 and to zero for k = 0, 3.

Then we apply Hom(Om, .) to the previous short sequence:

0→ Hom(Om, Im)→ Hom(Om,OX)→ Hom(Om,Om)→

→ Ext1(Om, Im)→ Ext1(Om,OX)→ Ext1(Om,Om)→(3)

→ Ext2(Om, Im)→ Ext2(Om,OX)→ Ext2(Om,Om).

We deduce that Extk(Om,Om) = C for k = 0, 1, and zero for k = 2.
Now we apply the functor Hom(.,Om(−p)) to the sequence 0→ Iℓ → OX → Oℓ → 0.

Since Extk(OX ,Om(−p)) = Hk(P1,O(−1)) = 0 for all k, we deduce that Extk(Iℓ,Om(−p)) =
Extk+1(Oℓ,Om(−p)). To compute the latter, we use the existence of a spectral sequence

H i(X, Extj(Oℓ,Om(−p)))⇒ Exti+j(Oℓ,Om(−p)).

Since the sheaf Extj(Oℓ,Om(−p)) is supported at p, we deduce that

Extk+1(Oℓ,Om(−p)) = H0(X, Extk+1(Oℓ,Om(−p))).

So we just need to compute the rank of the fiber of this local Ext-sheaf at the point
p = ℓ ∩m. Locally around that point, ℓ and m are given by some equations x = y = 0
and x = z = 0 respectively, and Oℓ has a free resolution given by the Koszul complex
defined by x = z = 0. Applying Hom(.,Om(−p))) we get a complex whose cohomology
is readily computed. We deduce that the rank of Extk+1(Oℓ,Om(−p))) at p is one for
k = 1, 2, and zero for k = 3. Thus Extk(Iℓ,Om(−p)) = C for k = 0, 1 and zero for k = 2.

From the long exact sequence (2), we deduce that Extk(Iq,Om(−p)) = 0 for k = 1, 2,
and consequently from (1) that Extk(Iq, Iq) = Extk(Iq, Iℓ) again for k = 1, 2. To compute
this group, we apply the functor Hom(., Iℓ) to the short sequence 0 → Iq → Iℓ →
Om(−p)→ 0. This gives

0→ Hom(Om(−p), Iℓ)→ Hom(Iℓ, Iℓ)→ Hom(Iq, Iℓ)→

→ Ext1(Om(−p), Iℓ)→ Ext1(Iℓ, Iℓ)→ Ext1(Iq, Iℓ)→(4)

→ Ext2(Om(−p), Iℓ)→ Ext2(Iℓ, Iℓ)→ Ext2(Iq, Iℓ)→ 0.

The last arrow is surjective because Ext3(Om(−p), Iℓ), since m is a locally complete
intersection of codimension two. Since ℓ is supposed to define a smooth point of the
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family of lines on X, we know that Ext2(Iℓ, Iℓ) = 0 and Ext1(Iℓ, Iℓ) = C. Finally, we
apply Hom(Om(−p), .) to 0→ Iℓ → OX → Oℓ → 0 to obtain

0→ Hom(Om(−p), Iℓ)→ Hom(Om(−p),OX)→ Hom(Om(−p),Oℓ)→

→ Ext1(Om(−p), Iℓ)→ Ext1(Om(−p),OX)→ Ext1(Om(−p),Oℓ)→(5)

→ Ext2(Om(−p), Iℓ)→ Ext2(Om(−p),OX)→ Ext2(Om(−p),Oℓ)→ 0.

By Serre duality, Extk(Om(−p),OX) = Extk(Om(−2p), ωX) is dual to the cohomology
group H3−k(X,Om(−2p)) = H3−k(P1,O(−2)), hence equal to C for k = 2 and zero
otherwise. We deduce that Ext1(Om(−p), Iℓ) = 0 and Ext2(Om(−p), Iℓ) = C. Using
(4) we get that Ext2(Iq, Iℓ) = Ext2(Iq, Iq) = 0, while Ext1(Iq, Iℓ) = Ext1(Iq, Iq) is two-
dimensional. This concludes the proof that F (X) is smooth at q. �

Let q ∈ F (X) be a conic in X, possibly singular. There is a unique codimension
two subspace L of V such that q is a linear section of G(2, L), and the linear space
P(∧2L) ≃ P5 meets P9

X along the span P2
q of the conic. Dually, this implies that the

orthogonal to P(∧2L), which is the linear space P(L⊥ ∧ V ∗) ≃ P8, meets P4
Y along a line

ℓ. But a skew-symmetric form in L⊥ ∧ V ∗ has rank at most four, so the line ℓ is in fact
contained in Y .

Conversely, a line ℓ in Y , of type A or B, is contained in the tangent space P(M ∧ V ∗)
of the Grassmannian at a unique line m = PM . Dually, the orthogonal P(∧2M⊥) to this
tangent space is contained in ℓ⊥. The linear span P9

X of X, which has codimension three in
ℓ⊥, has to cut the four dimensional quadric G(2, M⊥) ⊂ P(∧2M⊥) at least along a conic.
But since X contains no surfaces of degree two, the intersection G(2, M⊥) ∩ P9

X = q is
nothing more than a conic. We have proved:

Proposition 4.5. The Fano surface F (X) of conics in X is isomorphic with the Fano
surface F (Y ) of lines in the orthogonal cubic Y .

Recall that the Albanese variety of F (Y ) is isomorphic to the intermediate Jacobian
J(Y ) of Y [CG]. Moreover, by Proposition 3.1, J(Y ) is isomorphic to the intermediate
Jacobian J(X) of X. Since F (X) is smooth, the Abel-Jacobi map F (X) → J(X) is
algebraic.

How is the Abel-Jacobi image of F (X) related with F (Y ) in J(X) ≃ J(Y )?
Let ℓ be a line on Y . We have seen in Lemma 2.2 that the union of the kernels ny of

the points y ∈ ℓ is a two-dimensional quadric Qℓ of rank at least three, contained in the
Palatini quartic W . The linear span of Qℓ is a codimension two linear space P3

ℓ ⊂ P5.
On the side of X, we have a conic qℓ parametrizing lines in P5 whose union is again a

quadric Qℓ, also contained in W ∩P3
ℓ . Note that when the conic qℓ is a union of two lines,

Qℓ is a union of two planes. In particular Qℓ 6= Qℓ, and this must remain true for any
general ℓ.

Note moreover that W cannot contain P3
ℓ , since otherwise Sing(W )∩P3

ℓ would contain
a surface or a curve of degree nine, in contradiction with the fact that Γ(W ) = Sing(W )
is a smooth curve of degree 25.

Since W has degree four, we deduce that

W ∩ P3
ℓ = Qℓ + Qℓ

for all ℓ ∈ F (Y ). Let H ⊂ P5 be the general hyperplane that we used in Proposition 3.1
to define a birationality between X and Y , and then an isomorphism between J(X) and
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J(Y ). The image of ℓ by uY is the plane conic Qℓ ∩ H . The image of qℓ by uX is the
plane conic Qℓ ∩H . Since the sum of these two cycles is a linear section of W ∩H , the
Abel-Jacobi image of ℓ in J(Y ) is equal to minus the Abel-Jacobi image of qℓ in J(X),
once we have identified the two intermediate Jacobians via Proposition 3.1.

Since the Abel-Jacobi map embeds F (Y ) in J(Y ), and since F (X) and F (Y ) are
isomorphic by Proposition 4.5, we deduce:

Proposition 4.6. The Abel-Jacobi map from F (X) to J(X) is an embedding. Moreover,
the images of F (X) in J(X) and F (Y ) in J(Y ) are the same up to multiplication by −1.

5. The moduli space MX(2; 1, 6)

In this section X = X14 = G(2, 6)∩P9
X is again a general smooth prime Fano threefold

of genus 8, and we study the moduli space MX(2; 1, 6) of semistable rank two torsion free
sheaves E on X with Chern numbers c1 = 1, c2 = 6 and c3 = 0. In particular c1(E) = h
is the hyperplane class of X, and since h is not divisible in Pic(X) = Zh, any such sheaf
E is in fact stable, and the stability of E is equivalent to its slope stability.

5.1. Vector bundles in MX(2; 1, 6). First we study the locally free sheaves E from
the moduli space MX(2; 1, 6). Note that by the stability assumption the bundle E∗ =
E(−1) = Hom(OX(1), E) has no sections. Moreover, the Riemann-Roch formula for
vector bundles on threefolds gives χ(E) = 5, see Ch.15.2: Example 15.2.5 in [Fu].

Lemma 5.1. h2(E) = 0 and h0(E) > 0.

Proof. Since E(−2) = E∗(−1) has no sections, h3(E) = 0 by Serre duality. Suppose that
h2(E) = h1(E∗(−1)) 6= 0. Then we would have a non trivial extension

0→ OX(−1)→ F → E → 0,

where the rank three vector bundle F has c1(F ) = 0, c2(F ) = −8 and c3(F ) = 6. Thus
∆(F ) = deg(2c1(F )2 − 6c2(F )) = 48 > 0, so by Bogomolov’s inequality [Bo], F cannot
be semistable. So either OX(1) maps non trivially to F , hence to E – a contradiction!,
or F maps non trivially to OX(−1) and the extension splits, again a contradiction. Thus
h2(E) = 0 and h0(E) = 5 + h1(E) > 0. �

Now we choose a general hyperplane section S of X, and denote by ES the restriction of
E to S. The Picard group of this K3 surface is generated by OS(1), and by Maruyama’s
restriction theorem ES remains semistable, hence stable, with Chern classes c1(ES) = hS,
the hyperplane class of S, and c2(ES) = 6, see [Mar].

Proposition 5.2.

(1) h0(ES) = 5, and hi(ES) = 0 for i > 0.
(2) h0(E) = 5 and h1(E) = h1(E(−1)) = 0.

Proof. (1) By Riemann-Roch for vector bundles on surfaces χ(ES) = 5 (see Example
15.2.2 in [Fu]); and since H2(ES) and H0(ES(−1)) vanish by the stability of ES then
h0(ES) = 5 + h1(ES) ≥ 5.

In particular ES has non-trivial sections; let s be one of them, and let Z = Z(s) be the
zero-scheme of s. The stability of ES implies that Z is either of codimension 2 in S or
empty. But in the latter case ES would be an extension of OS by OS(1), so this extension
would split, thus contradicting the stability.
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Therefore the Koszul complex of s determines ES as an extension

0→ OS → ES → IZ(1)→ 0,

where IZ is the ideal sheaf of Z, a zero dimensional scheme of length six. Since ES

is locally free, Theorem 3.13 in [L] implies that Z has the following property: every
hyperplane containing a colength one subscheme of Z contains Z. This means that Z is
of type Zk

6 , i.e. deg(Z) = 6, h0(IZ(1)) = 3 + k and h1(IZ(1)) = k for some k ≥ 1.

Lemma 5.3. Let S be a smooth K3 surface in G(2, 6), with Pic(S) = ZOS(1). Then
(i) S contains no subscheme of type Z1

3 or Z1
4 ;

(ii) S contains no subscheme of type Zk
6 for k > 1.

Proof. (i) Since S is an intersection of quadrics, if it contains a subscheme of type Z1
3

then it contains the line spanned by this finite scheme. Next, suppose that S contains
a subscheme Z of type Z1

4 . Then Z is the complete intersection of two quadrics in
P2

Z = Span(Z), and P2
Z ∩ S = Z (otherwise S would contain a conic or a line). But since

P2
Z ∩ G(2, 6) = P2

Z ∩ S = Z, then P2
Z will be a purely 4-secant plane to G(2, 6) which is

impossible – any 4-secant plane to G(2, 6) must either lie in G(2, 6) or intersect G(2, 6)
along a 1-cycle of degree 2.

(ii) Since on S there are no subschemes of type Z1
4 , then S contains no subschemes of

type Z2
5 or Z3

6 . Next, suppose that on S there exists a 0-scheme Z of type Z2
6 . Then

P3
Z = Span(Z) will be a 3-space in P8

S = Span(S) such that P3
Z ∩ S ⊃ Z.

Consider a subscheme Y ⊂ Z of length 5. It must be of type Z1
5 . Consider the sheaf

EY obtained from Y by the Serre construction, that is by the non trivial extension

0→ OS → EY → IY (1)→ 0.

This extension is unique since Ext1(IY (1),OS) = H1(IY (1)) = C. Since Y contains no
subschemes of type Z1

4 , EY is a vector bundle [L]. We check that it must be stable. If
L is a line bundle on S with a non trivial sheaf homomorphism L → EY , either the
composition L → IY (1) is non trivial or L maps to OS ⊂ EY ; Since Pic(S) = ZOS(1),
in both cases we conclude that L = OS(ℓ) for some ℓ ≤ 0, which implies the stability.
Using the argument of [Mu4], Theorem 4.5 (ii), we conclude that EY is isomorphic to
the restriction T ∗

S of the tautological vector bundle on the ambient Grassmannian. In
particular EY is generated by global sections. But then IY (1) is also generated by global
sections, which means that S ∩ P3

Z = Y , a contradiction. �

Applying this result to our punctual scheme Z, which is contained in a general K3 sur-
face in G(2, 6), we conclude that it must be of type Z1

6 , that is h0(IZ(1)) = 4, h1(IZ(1)) = 1
and Z spans a P4 in P8

S = Span(S). From the exact sequence

0→ H1(ES)→ H1(IZ(1))→ H2(OS)→ 0

we deduce that h1(ES) = 0, hence h0(ES) = 5.
Now (2) follows from the exact sequence

0→ E(−1)→ E → ES → 0,

since by 5.1 we get 5 ≤ h0(E) ≤ h0(ES) = 5. This implies that h1(E) = 0, hence also
h1(E(−1)) = 0. �

Proposition 5.4. Any vector bundle in MX(2; 1, 6) is globally generated.



PFAFFIAN LINES AND VECTOR BUNDLES ON FANO THREEFOLDS OF GENUS 8 13

Proof. Let x ∈ X be any point. A crucial fact will be the following:

Lemma 5.5. In the linear system |Ix(1)| of hyperplane sections of X passing through x,
the set of smooth sections S such that Pic(S) = ZOS(1) is a non empty open subset for
the countable Zariski topology.

Proof. A Lefschetz pencil of hyperplane sections of X is defined by a line in the dual
projective space, cutting the dual variety X∗ transversely at smooth points (see [V],
Proposition 14.9). Fix a point x ∈ X, and denote by Hx the family of hyperplane sections
of X containing x. The singular locus of X∗ cannot coincide with its intersection with the
hyperplane Hx, so there exists a Lefschetz pencil of hyperplane sections of X all passing
through x. Then the proof of the Noether-Lefschetz theorem by monodromy applies
verbatim (see [V], Corollaire 15.28 and Théorème 15.33). �

Let S ⊂ X be such a hyperplane section through x. Since h1(ES(−1)) = 0 then
h0(E) ≃ h0(ES). Thus to prove that E is generated by global sections at x, we just need
to show that ES is generated by global sections. Consider once again the Koszul complex

0→ OS → ES → IZ(1)→ 0,

defined by some non trivial section of ES. The bundle ES will be generated if and only if
IZ(1) is generated. So we need to prove that Z is cut out on X, scheme-theoretically, by
its linear span – in other words, that Z cannot be contained in a Z ′ of type Z2

7 .
Suppose the contrary. Then h1(IZ′(1)) = 2, and by [Mo](page 22), Z ′ defines a rank

three sheaf F over S as the universal extension

0→ OS ⊗H1(IZ′(1))→ F → IZ′(1)→ 0.

Since by Lemma 5.3 S does not contain any subscheme of type Z2
6 , then any proper

subscheme Z ′′ ⊂ Z ′ has h1(IZ′′(1)) ≤ 1, and by [Mo](the Lemma on page 23) the sheaf F
will be locally free, i.e. a vector bundle.

Next, consider the induced cohomology sequence

0→ H1(F )→ H1(IZ′(1))→ H1(IZ′(1))→ H2(F )→ 0.

Since F has been defined as a universal extension, the middle map must be an isomor-
phism, hence h1(F ) = h2(F ) = 0, and h0(F ) = 6; in particular χ(F ) = 6.

We shall see that F is stable. Suppose it is not. Since c1(F ) is the hyperplane class of
S and Pic(S) = ZOS(1), then either there exists a non trivial map OS(1)→ F , or there
exists a non trivial map F → OS.

But in the first case the induced map to IZ′(1) vanishes and the map factors through
OS ⊗H1(IZ′(1)), a contradiction. Therefore there exists a non trivial map F → OS, and
denote this map by f . But then the restriction of f to OS ⊗H1(IZ′(1)) cannot be zero,
since otherwise f would descend to IZ′(1), which is impossible. Therefore f is surjective,
and since h2(OS) = 1 then h2(F ) > 0, again a contradiction.

Thus F is a stable vector bundle of rank three with Chern numbers c1 = 1 and c2 = 7,
on the smooth K3 surface S = S14 with Pic(S) = OS(1). In other words, the stable
bundle F belongs to the Mukai’s moduli space MS(r, L, s) = MS(3,OS(1), 3) of simple
sheaves E on S, with rank(E) = r = 3 and s = χ(E)−r = 3 (see above); in particular this
moduli space must be non-empty. But by Theorem 0.1 in Mukai [Mu1], MS(3,O(1), 3)
should have dimension = deg S − 2.r.s = 14− 2.3.3 + 2 = −2, contradiction. �

Corollary 5.6. Any vector bundle in MX(2; 1, 6) is arithmetically Cohen-Macaulay.
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Proof. We first check that E(2) is Castelnuovo-Mumford regular, that is, h1(E(1)) =
h2(E) = h3(E(−1)) = 0. By Serre duality, h3(E(−1)) = h0(E∗) = h0(E(−1)) = 0. The
vanishing of h2(E) has already been checked in 5.1, and

H1(E(1)) = H1(KX ⊗ E ⊗ det E ⊗OX(1)),

so the vanishing of H1(E(1)) follows from Griffiths’ vanishing theorem, see e.g. [Dem].
The Castelnuovo-Mumford regularity of E(2) ensures that

H1(E(k + 1)) = H2(E(k)) = H1(E(−k − 2)) = 0 ∀k ≥ 0.

Since H1(E) = H1(E(−1)) = 0 by Proposition 5.2, then H1(E(k)) = 0 for all k ∈ Z.
Together with the Serre duality, the last yields H2(E(k)) = 0 for all k ∈ Z. �

Note that E itself is not Castelnuovo-Mumford regular, even E(1) is not since h3(E(−2)) =
h0(E∗(1)) = h0(E) 6= 0. That’s what makes the proof of Proposition 5.4 rather intricate.

5.2. Elliptic sextics. Since a vector bundle E in MX(2; 1, 6) is globally generated, a
general section of E will vanish along a smooth curve C, an elliptic sextic in G(2, 6). The
associated Koszul complex is

0→ OX → E → IC(1)→ 0,

and since h2(OX) = 0 and h1(E) = 0 by Proposition 5.2, we deduce that h1(IC(1)) = 0.
This means that C is projectively normal.

Consider the tautological rank two vector bundle T ∗ on G(2, 6), and restrict it to C.
By the Atiyah classification of rank two bundles on elliptic curves (see [A]), and the fact
that T ∗ is generated by global sections, one of the following two possibilities must take
place:

(1) T ∗
C = L⊕M is a direct sum of two line bundles of degrees (3, 3), (2, 4) or (0, 6);

(2) T ∗
C = F ⊗ N is a direct product of a degree three line bundle N with the unique

vector bundle F on C obtained as a non trivial self-extension of OC .

We say correspondingly that C is split of type (a, b), or unsplit.
If C is split, in fact it cannot be of type (0, 6). Indeed, this would imply that the restric-

tion of T to C has a constant factor. This would mean that the lines in P5 parameterized
by C contain some fixed vector. But such lines are parameterized by a P4 in G(2, 6), and
we would conclude that C is not projectively normal, a contradiction.

So the space of global sections

H0(C, T ∗
C) = H0(C, L)⊕H0(C, M)

has dimension 6, which is the same as the dimension of H0(G(2, 6), T ∗) = V ∗. Note that
the non-injectivity of the restriction map

H0(G(2, 6), T ∗)→ H0(C, T ∗
C)

implies that C is contained in a copy of G(2, 5). If this is not the case, H0(C, L) and
H0(C, M) can be identified with the orthogonal spaces A⊥ and B⊥ to two supplementary
spaces A and B in V , and then the curve C must be contained in the intersection of
G(2, V ) with the Segre variety

ΣC = PA× PB ⊂ P(A⊗B) ⊂ P(∧2V ).

Lemma 5.7. Let C be a smooth projectively normal elliptic sextic in X. Then C is split
of type (3, 3), or unsplit.
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Proof. First we notice that C cannot be contained in a copy G(2, H) of G(2, 5). This is
simply because G(2, 5) has degree 5, while C has degree 6. So the intersection of G(2, H)
with P9

X cannot be proper. But then X contains a surface of degree 5, contradicting the
fact that its Picard group is generated by the hyperplane class – or X is contained in
G(2, H), which is clearly impossible for X general.

We must exclude the possibility that C be of type (2, 4). Suppose it is. Then all the
lines ℓx, for x ∈ C, intersect a fixed line D in P5, identified with the image of C by a
complete linear system of type g1

2. In particular, through a general point of D pass two
lines ℓx and ℓx′ . But then the line D must be contained in the singular locus Γ(W ) of the
Palatani quartic (see 3.3), in contradiction with the fact that Γ(W ) is a smooth curve of
genus 26. �

A split elliptic sextic C of type (3, 3) has two unisecant planes, that is, two planes
meeting all the lines parameterized by C: with the notations above, they are the planes
PA and PB. In the unsplit case there is a unique such plane.

We denote by S(X) the family of smooth projectively normal elliptic sextic curves
C ⊂ X, an open subset of the Hilbert scheme of X. Let S(X)un be the subfamily of these
C ∈ S(X) that have only one unisecant plane.

Lemma 5.8. For X general, the subfamily S(X)un ⊂ S(X) has dimension at most 5.

Proof. Let C ⊂ G(2, 6) be a smooth projectively normal elliptic sextic curve with only
one unisecant plane. Then the restriction T ∗

C of the tautological rank two bundle fits into
an unsplit extension 0 → L → T ∗

C → L → 0 for some degree three line bundle L on C.
This line bundle maps C isomorphically to a plane cubic E inside PH0(L)∗.

Taking global sections, we get 0→ H0(L) → H0(T ∗
C)→ H0(L)→ 0. If the restriction

map H0(T ∗) = V ∗ → H0(T ∗
C) is not injective, then C is contained in a G(2, 5). Otherwise

H0(T ∗
C) = V ∗, and we deduce a projection map µ : V −→ H0(L)∗ →֒ V . Let Λ ⊂ V be

transverse to M := H0(L)∗, so that the restriction of µ to Λ, that we denote by ν, is an
isomorphism. From the commutative diagram

L∗ → TC → L∗

↓ ↓ ↓
M ⊗OC → V ⊗OC → M ⊗OC ,

whose vertical maps are injective, we deduce that over a point [e] ∈ E ≃ C, where
e ∈M , the two-dimensional subspace TC of V is generated by e and a vector f mapping
to e by µ. So f must be of the form ν−1(e) + θ(e) for some θ(e) ∈ M , defined up to
translation by some multiple of e. Thus θ has to be interpreted as a global section of the
vector bundle Hom(L∗, M ⊗ OC/L∗). From the exact sequence 0 → OC → M ⊗ L →
Hom(L∗, M ⊗OC/L∗)→ 0 we deduce the sequence

0→ C→ End(M)→ Hom(L∗, M ⊗OC/L∗)→ C→ 0.

In particular Hom(L∗, M ⊗OC/L∗) has dimension 9.
We can now count the number of parameters for C: we have 9 parameters for the

three-space H0(L)∗ ⊂ V , 9 parameters for the cubic curve E ⊂ PH0(L)∗, then 9 again for
µ and 9 for θ, minus one since multiplying µ−1 and θ by a same scalar does not change the
resulting curve: this makes 35 parameters. Each of our curves C spans a P5, and there is
a 20-dimensional family of P9’s containing this P5. Since the Grassmannian of P9’s in P14

has dimension 50, our claim follows. �



16 A. ILIEV AND L. MANIVEL

Corollary 5.9. Any smooth projectively normal elliptic sextic in X with only one unise-
cant plane can be deformed into an elliptic sextic with two unisecant planes.

Proof. Let C ∈ S(X)un. The dimension at C of the family S(X) is at least χ(NC/X) (see
e.g. [S], Corollary 8.5), which by Riemann-Roch is equal to deg(C) = 6. So by Lemma
5.8, the curve C can be deformed outside S(X)un. �

Definition. Let MX(2; 1, 6)0 denote the open subset of vector bundles in MX(2; 1, 6)
having a section whose zero locus is a split elliptic sextic.

By the previous statement any vector bundle in MX(2; 1, 6) is in the closure of the open
set MX(2; 1, 6)0. In fact we will finally conclude that any vector bundle in MX(2; 1, 6)
belongs to MX(2; 1, 6)0, see Theorem 7.2.

Let C ∈ S(X) be a split elliptic sextic, with two unisecant planes PA and PB. The
linear span of the Segre variety ΣC = PA×PB is P(A⊗B) ⊂ P(∧2V ), whose orthogonal
in the dual space is

P(∧2A⊥ ⊕ ∧2B⊥) ⊂ P(∧2V ∗).

Since the span of X meets P(A ⊗ B) along the five dimensional linear span of C, their
orthogonal spaces meet each other along a line ℓ ⊂ Y = X⊥. Note that ℓ only depends on
the vector bundle E defined by C, since the zero-loci of the sections of E are parameterized
by the projective space of its global sections, while F (Y ), being embedded in the abelian
variety F (Y ), contains no rational curve. We thus get a map MX(2; 1, 6)0 → F (Y ). An
inverse of this map will be constructed in the next section.

We now use what we learned on elliptic sextics to prove that MX(2; 1, 6)0 is a smooth
open subset of the moduli space.

Proposition 5.10. Let E ∈MX(2; 1, 6)0 be a vector bundle. Then

h0(End(E)) = 1, h1(End(E)) = 2, h2(End(E)) = h3(End(E)) = 0.

In particular MX(2; 1, 6) is smooth at E.

Proof. By Serre duality h2(End(E)) = h1(End(E)(−1)) = h1(E ⊗E(−2)). Consider the
Koszul complex

0→ OX → E → IC(1)→ 0

of a section of E vanishing along a smooth elliptic sextic C with two unisecant planes.
Twisting this sequence by E(−2) and using 5.6, we are reduced to prove that h1(E ⊗
IC(−1)) = 0, thus that h0(EC(−1)) = h0(E∗

C) = 0.
Suppose the contrary. Since E, hence EC , is globally generated, we deduce that EC

splits. Since it is isomorphic to the normal bundle of C in X, we get that NC/X =
OC ⊕ OC(1). Now C is a linear section of a Segre variety ΣC = Σ ≃ PA × PB by the
linear span of X, meeting the linear span of Σ along the span of C. Let G denote the
intersection of the Grassmannian with the linear span of X and Σ, a codimension two
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linear space. We have the following diagram of normal bundles on C:

0
↑

NX/G|C = OC(1)⊕3

↑
0→ NC/Σ = OC(1)⊕3 → NC/G → NΣ/G|C → 0

↑
NC/X

↑
0

The induced map from NC/Σ to NX/G|C is an isomorphism, hence also the induced map
from NC/X to NΣ/G|C , and we get an injective map from NC/X to NΣ/G(2,6) restricted to C.
Remember that T ∗

C = L⊕M for some line bundles L and M of degree three, whose spaces
of global sections are H0(L) = A⊥ and H0(M) = B⊥. In particular OC(1) = L⊗M . We
compute that the normal bundle of Σ inside G(2, 6) is

NΣ/G(2,6) = (L⊗ B/L∗)⊕ (M ⊗ A/M∗).

Suppose we have a non trivial morphism from OC(1), which we supposed to be a fac-
tor of NC/X , to one of these direct factors, say the first one. Then we deduce that
Hom(M, B/L∗) 6= 0. But the rank two vector bundle B/L∗ on C is globally generated
and has degree three, and from the Atiyah classification we deduce that B/L∗ = M⊕OC .
Then the restriction to C of the tautological quotient bundle QC , which is isomorphic to
B/L∗⊕A/M∗, has a trivial factor. This implies that the linear span of C is contained in
a copy of G(2, 5), a contradiction.

That the vanishing of h2(End(E)) implies the smoothness of MX(2; 1, 6) at E is well-
known, see e.g. [HL], Theorem 4.5.4. �

5.3. Non locally free sheaves in MX(2; 1, 6). In this section we give a complete de-
scription of the non locally free sheaves in our moduli space MX(2; 1, 6). A similar study
has been made by Druel on the cubic threefold. Our discussion follows closely that of [D],
but Mukai’s theorems on Fano threefolds and K3 surfaces of genus 8 will play a crucial
role.

Proposition 5.11. If E ∈ MX(2; 1, 6) is not locally free, there exists a unique line ℓ ⊂ X
such that E fits into an exact sequence

0→ E → T ∗
X → Oℓ → 0.

Note that T ∗ restricted to ℓ is isomorphic to Oℓ ⊕Oℓ(1), so that the rightmost arrow
is uniquely defined up to scalar. Thus the line ℓ defines E uniquely.

Proof. Let F = E∗∗ denote the bidual of E, and let R = F/E. Since F is reflexive,
the singular locus S(F ) has codimension at least three, see Lemma 1.1.10 in Ch.2 of
[OSS]. Therefore the restriction FS of F to the general hyperplane section S of X is
locally free, and the restriction RS of R has finite support. We have c1(FS) = 1 and
c2(FS) = 6− length(RS), so by Riemann-Roch χ(FS) = 2χ(OS)+(c1(FS)2−2c2(FS))/2 =
length(RS) + 5.
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This rank two vector bundle FS is semistable by Maruyama’s restriction theorem. By
Mukai ([Mu1], Theorem 0.1), the moduli space of simple sheaves on S with these invariants
is smooth at FS and has dimension c1(FS)2−4χ(FS)+10 = 4−4length(RS). In particular

length(RS) ≤ 1.

First, we shall see that length(RS) cannot be zero. Suppose the contrary. Then R has
finite support and c2(F ) = 6. Moreover, by Riemann-Roch length(R) = χ(F (−1)) =
c3(F )/2. Since χ(FS) = 5 and h2(FS) = h0(F ∗

S) = 0 by stability, the vector bundle FS

has a non trivial section. The corresponding Koszul complex gives

0→ OS → FS → IZ(1)→ 0,

where the finite scheme Z has type Z1
6 . The associated long exact sequence

0→ H1(FS)→ H1(IZ(1))→ H2(OS)→ 0

gives H1(FS) = 0. Moreover, H1(FS(k)) = H1(IZ(k + 1)) for k > 0. But this is zero,
since the fact that Z has type Z1

6 easily implies that the restriction map H0(OS(k+1))→
H0(OZ(k + 1)) is surjective. Now the exact sequence

0→ F (−1)→ F → FS → 0

twisted by OX(k), together with the vanishing of H1(FS(k)) for all k ≥ 0, imply that
H2(F (k − 1)) embeds inside H2(F (k)), hence it is always zero since it certainly vanishes
for k large enough. In particular h2(F (−1)) = 0, and since h0(F (−1)) = 0 by stability,
we conclude that χ(F (−1)) ≤ 0. Hence c3(F ) = 0, so that F is locally free by [H2], and
length(R) = 0; so that E is isomorphic to F . But then E is locally free – contradiction.

Therefore the only possibility left is length(RS) = 1, so RS = Op for some point p ∈ S.
In this case, R must be supported on the union of a line ℓ with a finite set, and must

have multiplicity one on that line. By Riemann-Roch χ(R(−1)) = χ(F (−1)) = c3(F )/2.
The restriction FS has Chern classes c1(FS) = h and c2(FS) = 5. Therefore by [Mu4], FS

is the same as the restriction T ∗
S to S ⊂ G(2, 6) of the tautological bundle T ∗ on G(2, 6).

Since S is a linear section of G(2, 6), we have a Koszul complex

0→ T ∗(−6)→ · · · → T ∗(−1)⊕6 → T ∗ → FS → 0.

Thus h1(FS(k)) = 0 as soon as hq+1(T ∗(k−q)) = 0 for any q = 0, . . . , 6. By Bott’s theorem
this holds true for any k ∈ Z. As in the previous case we conclude that h2(F (−1)) = 0,
hence χ(F (−1)) ≤ 0, hence c3(F ) = 0 and F is locally free.

Since c1(F ) = h and c2(F ) = 5, then again by [Mu4] (see e.g. Theorem 1.10), the
bundle F must be the same as T ∗

X , the restriction to X of the tautological bundle T ∗ on
G(2, 6).

On the other hand, from the exact sequence

0→ ES → T ∗
S → Op → 0,

we deduce that h1(ES(k)) = 0 for k ≥ 0, hence h2(E(−1)) = 0, and then h1(E(−1)) = 0
since χ(E(−1)) = 0, h0(E(−1)) = 0 by stability and h3(E(−1)) = h0(E∗) = 0 by Serre
duality for sheaves. Thus h0(R(−1)) = 0. Since Riemann-Roch gives χ(R(n)) = n + 1,
we conclude by [D], Lemme 3.2, that R = Oℓ. �



PFAFFIAN LINES AND VECTOR BUNDLES ON FANO THREEFOLDS OF GENUS 8 19

Proposition 5.12. Let E ∈MX(2; 1, 6) be a non locally free sheaf. Then

hom(E, E) = 1, ext1(E, E) = 2, ext2(E, E) = ext3(E, E) = 0.

In particular the moduli space MX(2; 1, 6) is smooth at E.

Proof. Since E is stable, hom(E, E) = 1. By Serre duality we deduce that ext3(E, E) =
hom(E, E(−1)) must vanish, since otherwise we would clearly get hom(E, E) > 1. By
Riemann-Roch hom(E, E)− ext1(E, E) + ext2(E, E)− ext3(E, E) = −1, so we just need
to check that ext1(E, E) = 2.

By 5.11 there is a line ℓ on X such that E fits into an exact sequence

0→ E → T ∗
X → Oℓ → 0.

We have exti(T ∗
X , T ∗

X) = 0 for i > 0: use the Koszul complex of X and Bott’s theorem as
in 3.1 (this means that the moduli space MX(2; 1, 5), which by Mukai’s theorem reduces
to one point, is smooth). Tensoring the previous short exact sequence by TX and taking
cohomology, we deduce that hi(TX ⊗ E) = 0 for i > 0. Applying the functor Hom(., E)
to the same short sequence, we deduce that

Ext1(E, E) ≃ Ext2(Oℓ, E).

Now we apply Hom(Oℓ, .) and obtain

Ext1(Oℓ, T
∗
X)→ Ext1(Oℓ,Oℓ)→

→ Ext2(Oℓ, E)→ Ext2(Oℓ, T
∗
X)→ Ext2(Oℓ,Oℓ)

To compute Exti(Oℓ, T
∗
X), recall that is can be obtained as the abutment of the spectral

sequence with order two terms

Ej,i−j
2 = Hj(Exti−j(Oℓ, T

∗
X)) = Hj(Exti−j(Oℓ, ωX)⊗ T ∗

X(1))).

Since ℓ is smooth of codimension two, the sheaf Extk(Oℓ, ωX) = 0 for k < 2, and
Ext2(Oℓ, ωX) = ωℓ. We deduce that Ext1(Oℓ, T

∗
X) = 0 and

Ext2(Oℓ, T
∗
X) = H0(Ext2(Oℓ, ωX)⊗ T ∗

X(1)) = H0(T ∗
ℓ (−1)) = C.

Now recall that Γ(X), the family of lines on X is a smooth irreducible curve, see 4.2, and
that ext1(Oℓ,Oℓ) = 1 and ext2(Oℓ,Oℓ) = 0 for any line ℓ. Putting all this in the long
exact sequence above, we finally get that

ext1(E, E) = ext2(Oℓ, E) = ext1(Oℓ,Oℓ) + ext2(Oℓ, T
∗
X) = 1 + 1 = 2,

which concludes the proof. �

6. Vector bundles and projections

Every vector bundle in MX(2; 1, 6) can be obtained by the Serre construction from a
smooth elliptic sextic in X. In this section we give an alternative construction.

6.1. Projections associated to lines. Let e0, . . . , e5 be a basis of V = C6, and let
f0, . . . , f5 be the dual basis. Consider the A-line ℓ in P(Λ2V ∗) generated by

f0 ∧ f2 + f1 ∧ f3,

f0 ∧ f4 + f1 ∧ f5.

Its orthogonal ℓ⊥ is a special codimension two subspace in P14 = P(Λ2V ).
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Lemma 6.1. The singular locus of the linear section G(2, 6)∩ ℓ⊥ is a smooth plane conic
qℓ, parameterizing the singular points of the sections of G(2, 6) by a hyperplane in the
pencil ℓ. The projective span of qℓ is a plane πℓ which is not contained in G(2, 6).

Proof. This singular locus is the set of points x ∧ y on G(2, 6) ∩ ℓ⊥ at which the tangent
space to G(2, 6) is not transverse to ℓ⊥. This means that one of the linear forms f0 ∧ f +
f1 ∧ f ′ of ℓ vanishes on the affine tangent space, which is x ∧ V + y ∧ V . This is possible
only if the plane 〈x, y〉 is orthogonal to the linear forms f0, f1, f, f ′. Note that this defines
uniquely the corresponding point of G(2, 6), as the singular point of the intersection of
G(2, 6) with the hyperplane orthogonal to f0∧f +f1∧f ′. Explicitly, letting f = sf2 + tf4

and f ′ = sf3 + tf5, this singular point is given by x = te2− se4 and y = te3− se5, so that
x∧y = t2e2∧e3−st(e2∧e5−e3∧e4)+s2e4∧e5 describes a smooth conic, as claimed. �

Now we project G(2, 6) ∩ ℓ⊥ ⊂ ℓ⊥ linearly from the projective plane πℓ. The image of
this projection is a six-dimensional variety Gℓ ⊂ P9.

Proposition 6.2. The variety Gℓ ⊂ P9 is projectively equivalent to the Grassmannian
G(2, 5) in the Plücker embedding.

Proof. Keeping the previous notations, the projective plane πℓ is generated by e2∧e3, e2∧
e5 − e3 ∧ e4 and e4 ∧ e5. To describe the variety Gℓ, we first parameterize an open subset
of G(2, 6) as follows: any plane transverse to 〈e0, e1, e3, e5〉 has a unique basis of the form

e2 + α0e0 + α1e1 + α3e3 + α5e5,

e4 + β0e0 + β1e1 + β3e3 + β5e5.

This gives affine coordinates on G(2, 6). Let δij = αiβj−αjβi. The linear section G(2, 6)∩
ℓ⊥ is defined by the conditions

β0 − δ13 = α0 + δ15 = 0.

The image Gℓ of the projection of this section along πℓ is, in suitable coordinates, the
closure of the set of points in P9 of the form

[1, α1, β1, α3 + β5, δ01, δ03, δ05, δ13, δ15, δ35].

We can already say that this is a unirational variety, locally parameterized by α1, α3, α5,
β1, β3, β5. Indeed, α0 and β0 are functions of these parameters, hence also δ01, δ03, δ05.

Let us denote by X, Y, Z, T, U01, U03, U05, U13, U15, U35 our homogeneous coordinates on
P9.

Lemma 6.3. Gℓ has five quadratic equations, explicitly given by

XU01 + Y U13 + ZU15 = 0,(6)

XU03 + ZU35 + TU13 = 0,(7)

XU05 + Y U35 − TU15 = 0,(8)

Y U03 + ZU05 − TU01 = 0,(9)

U01U35 − U01U15 + U05U13 = 0.(10)

Proof of the lemma. We first note that δ01 = α0β1 − β0α1 = −δ15β1 − δ13α1, which gives
(1). We also have

δ03 + δ15β3 + δ13α3 = 0,

δ05 + δ15β5 + δ13α5 = 0.
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Combining these identities to the Plücker relations

δ13β5 − δ15β3 + δ35β1 = 0,

δ13α5 − δ15α3 + δ35α1 = 0,

we get the two equations

δ03 + (α3 + β5)δ13 + β1δ35 = 0,

δ05 + (α3 + β5)δ15 + α1δ35 = 0,

which are (2) and (3). Two other Plücker relations are

δ15β0 + δ01β5 − δ05β1 = 0,

δ01α3 − δ03α1 + δ13α0 = 0.

Adding them, we get (4). Finally (5) is itself a Plücker relation. �

To conclude the proof of the Proposition, we need to check that these quadrics are
the Plücker equations of G(2, 5) in a slightly disguised form. This will imply that the
6-dimensional variety Gℓ is contained in, hence equal to, a copy of G(2, 5).

We make the following substitution:

δ01 = ∆12 δ13 = ∆14 X = ∆45

δ03 = ∆13 δ15 = ∆24 Y = −∆25

δ05 = ∆23 δ35 = ∆34 Z = ∆15

T = −∆35.

The five quadrics of the Lemma become

∆12∆45 −∆14∆25 + ∆15∆24 = 0,

∆13∆45 + ∆15∆34 −∆14∆35 = 0,

∆23∆45 + ∆25∆34 −∆24∆35 = 0,

∆13∆25 + ∆15∆23 −∆12∆35 = 0,

∆12∆34 −∆13∆24 + ∆14∆23 = 0.

The proof is complete. �

6.2. Induced vector bundles. Let as above X be a general prime Fano threefold of
index one and of genus 8, and let Y be its orthogonal cubic threefold. For an A-line
ℓ ⊂ Y , consider the linear projection

fℓ : G(2, 6) ∩ ℓ⊥ 99K Gℓ ≃ G(2, 5).

It can be easily seen that fℓ is a birational map, which is regular outside the conic qℓ

swept out by the singular points of the hyperplane sections Hy ⊂ G(2, 6) defined by the
points y ∈ ℓ.

The Fano threefold X in G(2, 6) can’t meet the conic qℓ, otherwise X would be singular
at its intersection points with qℓ. Therefore the restriction

fℓ,X : X −→ Gℓ

of fℓ to X is regular (and a birational map to its image). In particular, the pull-back of
the tautological bundle T ∗ on G(2, 5) = Gℓ restricts to a rank two vector bundle Eℓ on
X.
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Lemma 6.4. We have c1(Eℓ) = h and c2(Eℓ) = 6.

Proof. Clearly c1(Eℓ) = h since c1(T
∗) is the hyperplane class of G(2, 5) and Eℓ is its

pull-back by a linear projection.
Let A, B denote complementary three-spaces in V such that the line ℓ ⊂ P(∧2A⊥ ⊕

∧2B⊥). Then ℓ⊥ contains the Segre variety Σ = PA × PB, which meets the plane πℓ

precisely along the conic qℓ. The image of Σ by the projection fℓ is thus a four dimensional
quadric Q ⊂ Gℓ. Such a quadric is a copy of G(2, 4) inside Gℓ ≃ G(2, 5). In particular,
it can be described as the zero locus of a general section of the tautological bundle T ∗ on
Gℓ. The induced section of Eℓ vanishes along Σ ∩X, and this intersection is generically
transverse; hence Σ ∩ X represents the second Chern class of Eℓ. Since Σ has degree 6,
we conclude that c2(Eℓ) = 6. �

Lemma 6.5. The vector bundle Eℓ is stable.

Proof. We just need to check that there is no embedding OX(1) →֒ Eℓ, or equivalently
that h0(Eℓ(−1)) = h0(E∗

ℓ ) = 0. But since Eℓ is globally generated, a non zero section of
E∗

ℓ cannot vanish, and we would deduce that Eℓ = OX ⊕ OX(1). Then the tautological
bundle restricted to fℓ(X) would have a trivial factor, which would mean that fℓ(X) is a
P3 inside Gℓ – a contradiction. �

Now let E in MX(2; 1, 6)0 be any vector bundle. A general section of E vanishes
along a smooth split elliptic sextic C with two unisecant planes. These two planes define
complementary three-spaces A, B in V , and P(∧2A⊥⊕∧2B⊥) cuts the cubic Y orthogonal
to X along an A-line ℓ.

But by the proof of Lemma 6.4, we know that the vector bundle Eℓ has a section whose
zero locus is precisely C. Since there is a unique vector bundle in MX(2; 1, 6) with a
section vanishing along C, we get Eℓ ≃ E and we deduce:

Proposition 6.6. The correspondence ℓ 7→ Eℓ defines a bijection between A-lines in the
orthogonal cubic Y , and vector bundles in MX(2; 1, 6)0.

Corollary 6.7. MX(2; 1, 6) is an irreducible surface.

Proof. Non locally free sheaves in MX(2; 1, 6) describe a curve contained, by 5.12, in the
smooth locus of a two-dimensional component of MX(2; 1, 6). In particular they belong to
the closure of the open subset of vector bundles, hence by 5.9 to the closure of MX(2; 1, 6)0.
Finally, Proposition 6.6 implies that MX(2; 1, 6)0 is irreducible, and by 5.10 it is a smooth
surface. �

7. The main result

Let again J(X) denote the intermediate Jacobian of X. As in [D], Theorem 4.8, once
we fix a base point E0 ∈ MX(2; 1, 6), the second Chern class defines a morphism

c2 : MX(2; 1, 6) −→ J(X),

which is uniquely defined up to a translation.
Consider a vector bundle Eℓ ∈ MX(2; 1, 6)0. A general section of Eℓ vanishes along

a smooth split elliptic sextic C, and c2(E) = [C]. Let PA be one of the two unisecant
planes to C – we can suppose that the line ℓ can be defined as at the beginning of 6.1,
where the dual basis e0, . . . , e5 of f0, . . . , f5 is such that A = 〈e0, e2, e4〉. Consider the
intersection with X of the Schubert cycle σ20(PA), the degree 9 cycle of lines meeting PA.
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This intersection is the union of C with a cubic curve D. A point in D but not in C is
defined by a tensor ω = α + β, where α ∈ ∧2A and β ∈ A ⊗ B. Since X ⊂ ℓ⊥, α must
be a non zero multiple of e2 ∧ e4. Then for ω to have rank two, β must not involve e0.
In particular, D is contained in G(2, H) ≃ G(2, 5), if H is the hyperplane generated by
e1, . . . , e5. More precisely, we can write ω = e2 ∧ e4 + e2 ∧ u2 + e4 ∧ u4, with u2, u4 ∈ B.
But then u2 and u4 must be collinear, which implies that the line 〈e2, e4〉 in P5 meets the
line defined by ω. We deduce:

Lemma 7.1. Let C be a projectively normal elliptic sextic in X, with a unisecant plane
PA. Let D be the residual cubic curve of C in the Schubert cycle σ20(PA) ∩X.

Then there is a line ax(D) and a hyperplane H in P5, with ax(D) ⊂ H, such that D is
contained in G(2, H) and ax(D) is a unisecant line of D.

Of course we have checked this only for a split elliptic sextic, but by continuity the
statement holds also in the unsplit case. We call the line ax(D) the axis of the cubic
curve D.

Now we notice that G(2, 5) has degree 5, and contains both the cubic D and the conic
qℓ. Thus the intersection G(2, H) ∩ X = D ∪ qℓ and, up to some fixed translations, we
have

c2(Eℓ) = [C] = −[D] = [qℓ] ∈ J(X).

Theorem 7.2. The map c2 defines an isomorphism between the moduli space MX(2; 1, 6)
and a translate in J(X) of the Fano surface F (X) of conics in X.

Proof. We have just seen that the map c2 sends MX(2; 1, 6)0 to (a translate of) the open
set of conics qℓ in F (X), which by 4.6 corresponds to the set of A-lines in F (Y ); and by
6.6 this is a bijection. Since MX(2; 1, 6) is irreducible by 6.7, we deduce that c2 maps
MX(2; 1, 6) to F (X) in J(X). Moreover, it follows from 5.11 that non locally free sheaves
in MX(2; 1, 6) are mapped bijectively to the image of the curve Γ(X) of lines in X, which
is in bijection with the curve of B-lines in F (Y ) by 4.6.

Let MX(2; 1, 6)1 denote the locally closed subset of vector bundles that do not belong
to MX(2; 1, 6)0. The complement of MX(2; 1, 6)1 in MX(2; 1, 6) is mapped bijectively by
c2 to the Fano surface F (X) ⊂ J(X).

Suppose that MX(2; 1, 6)1 is not empty. A fiber of c2 passing through a point of
MX(2; 1, 6)1 must contain another point, not in MX(2; 1, 6)1. Since the fibers are con-
nected we deduce that c2 contracts a curve in the moduli space to a same conic qℓ. We
thus have a five-dimensional family of elliptic sextics C mapping to qℓ, that is, with a
unisecant plane PA such that σ20(PA) = C ∪ D, D ⊂ G(2, H) for a hyperplane H , and
G(2, H) ∩X = D ∪ qℓ.

But remember from the proof of Proposition 4.6 that the Palatini quartic W meets the
linear space P3

ℓ along the union of two quadrics Qℓ and Qℓ. The axis of D is contained
in W ∩ P3

ℓ , so we have a one parameter family of such lines. The unisecant plane of C
contains the axis of D, so we have three more parameters for this plane and then the
curve C is determined. Hence a total of four parameters for the elliptic sextics mapping
to a given conic in X, and we deduce a contradiction.

Since MX(2; 1, 6)1 = ∅, by 5.10 and 5.12 the moduli space MX(2; 1, 6) is smooth.
Moreover c2 defines a bijection between the smooth surfaces MX(2; 1, 6) and F (X), so it
must be an isomorphism. �



24 A. ILIEV AND L. MANIVEL

References

[AR] A. Adler, S. Ramanan, Moduli of abelian varieties, L.N. in Math. 1644, Springer Verlag (1996)
[AC] E. Arrondo, L. Costa, Vector bundles on Fano 3-folds without intermediate cohomology, Commun.

Algebra 28, 3899-3911 (2000)
[AF] E. Arrondo, D. Faenzi, Vector bundles with no intermediate cohomology on Fano threefolds of type

V22, preprint (2004)
[A] M. Atiyah, Vector bundles over an elliptic curve, Proc. London Math. Soc. (3) 7, 414-452 (1957)
[B1] A. Beauville, Vector bundles on the cubic threefold, in Symposium in honor of C. H. Clemens, A.

Bertram (ed.) et al., Contemp. Math. 312, 71-86 (2002)
[B2] A. Beauville, Determinantal hypersurfaces, Mich. Math. J. 48, 39-64 (2000)
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