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AN EXTENSION OF THE CAYLEY-SYLVESTER FORMULA

L. MANIVEL

Abstract. We extend the Cayley-Sylvester formula for symmetric powers of SL2(C)-
modules, to plethysms defined by rectangle partitions. Ordinary partitions are replaced
by plane partitions, and an extension of the Hermite reciprocity law follows.

1. Let Sd denote the irreducible SL2(C)-module of dimension d + 1, which can be
identified with the space of homogeneous polynomials of degree d in two variables. It is
a classical result in invariant theory that the decomposition of symmetric powers of Sd

into irreducible SL2(C)-modules can be computed in terms of partitions. Let P (d, n; m)
denote the number of partitions of size m inside the rectangle d×n. Such a partition µ is
a non-increasing sequence µ1 ≥ · · · ≥ µd of non-negative integers, bounded by n, and the
size of µ is just the sum of these integers. The Cayley-Sylvester formula (see [6]) states
that the multiplicity of Se inside SnSd is

[SnSd, Se] = P (n, d;
nd − e

2
) − P (n, d;

nd − e

2
− 1).

An easy consequence is:

The Hermite reciprocity law.
For all integers n and d, SnSd = SdSn as SL2(C)-modules.

Indeed, represent a partition µ by its Ferrer diagram [2]. A symmetry with respect to the
diagonal gives the Ferrer diagram of a partition µ∗ of the same size in the rectangle d×n.

2. We will extend the Hermite reciprocity to more general plethysms involving rectangle
partitions. Recall that for any partition λ, we can define the plethysm SλSd and try to
decompose it into irreducible SL2(C)-modules. Michel Brion noticed that the proof of the
Cayley-Sylvester formula can be adapted mutatis mutandis to that situation. To state the
resulting formula, let P (λ, d; m) denote the number of semistandard tableaux of shape λ
and weight (j0, . . . , jd), with j1 + 2j2 + · · ·+ djd = m. Then ([1], Proposition 5.2):

[SλSd, Se] = P (λ, d;
nd − e

2
) − P (λ, d;

nd − e

2
− 1).

Such numbers of tableaux are not very easy to compute in general, but for rectangle
partitions we notice they encode more pleasant objets. Let λ = r(k, n), the partition with
k non zero parts, all equal to n, and let T be some semi-standard tableau of shape r(n, k)
and weight (j0, . . . , jd).

Consider the first line of T : this is a non-decreasing sequence of length n, of non-
negative integers not greater than d − k + 1 (since the last column is strictly increasing
from top to bottom, and bounded by d). We may see the numbers in that sequence as the
parts of some partition µ(1) contained in the rectangle n× (d− k + 1). Now consider the
second line of T , which is again a non-decreasing sequence of length n, of integers now
between 1 and d−k +1. Substract 1 to each of these, and consider the resulting sequence
as encoding a partition µ(2), which as µ(1) is contained in the rectangle n × (d − k + 1).
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We observe that the first two lines of T form a semi-standard tableau if and only if
µ(1) ⊂ µ(2) (which means that the i-th part of µ(1) is bounded by the i-th part of µ(2),
or that the diagram of µ(2) contains that of µ(1)). Indeed, to check the required property
we just need to verify that for each number k in the second line of T , there is no more
integers greater than or equal to k in the first line, than integers strictly greater than k in
the second line. But this means that µ(1) does not have more parts greater than k than
µ(2), and asking that for all k is the same as requiring that µ(1) ⊂ µ(2).

We can reiterate this observation for each line of T : the i-th line is made of integers
comprised between i− 1 and d− k + i. Substracting i− 1 we get a partition µ(i), and the
tableau T is semi-standard if and only if

µ(1) ⊂ µ(2) ⊂ · · · ⊂ µ(k) ⊂ r(n, d − k + 1).

But such a sequence of partitions can be considered as a plane partition ∆T contained in
a box n × (d − k + 1) × k, such that µ(i) is just the slice of ∆T of height k − i + 1. We
will denote by PP (n, d− k + 1, k; m) the number of plane partitions of size m inside the
box n × (d − k + 1) × k.

Note that the tableau T has weight (j0, . . . , jd), which means that it contains each
integer s exactly js times. In particular, the sum j1 + 2j2 + · · ·+ djd is just the sum of all
the integers in T . But, by definition of µ(i), the sum of the integers in the i-th line of T
is just |µ(i)| + (i − 1)n, so that

j1 + 2j2 + · · · + djd = |µ(1)|+ · · · + |µ(k)| +
k(k − 1)

2
n.

Thus the tableau T is such that j1 + 2j2 + · · · + djd = (nkd − e)/2 if and only if the
plane partition ∆T has size |µ(1)|+ · · ·+ |µ(k)| = (nk(d− k + 1)− e)/2. Changing d into
d + k − 1 we immediately deduce from these observations the main result of this note:

Theorem. The multiplicity of Se inside the plethysm Sr(k,n)Sd+k−1 is

[Sr(k,n)Sd+k−1, Se] = PP (n, d, k;
ndk − e

2
) − PP (n, d, k;

ndk − e

2
− 1).

This is the exact analogue of the Cayley-Sylvester formula, when we replace ordinary
partitions by plane partitions.

We deduce our extension of Hermite’s reciprocity law, but note that since we now deal
with three-dimensional objects the symmetry is richer:

Corollary. The plethysm Sr(k,n)Sd+k−1 is completely symmetric in n, d, k, that is,

Sr(k,n)Sd+k−1 = Sr(n,d)Sk+n−1 = Sr(d,k)Sn+d−1

|| || ||
Sr(d,n)Sd+k−1 = Sr(k,d)Sk+n−1 = Sr(n,k)Sn+d−1

We thank the referee for suggesting a more direct approach to this corollary, as follows.
The character of the GL2(C)-module Sr(k,n)Sd+k−1 is given by the plethysm sr(k,n)◦hd+k−1

of Schur functions, evaluated on two variables x1, x2 that we may suppose to be x1 = 1
and x2 = q. We get the specialization sr(k,n)(1, q, q

2, . . . , qd+k−1), which can be evaluated
by applying the formula given in Proposition 1.4.10 of [3]:

sr(k,n)(1, q, q
2, . . . , qd+k−1) = qn(k

2
)

∏

1≤i≤n
1≤j≤k

1 − qd+k+i−j

1 − qi+j−1
.
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Denote the product on the right hand side by P d
k,n(q). Since the factor qn(k

2
) only accounts

for the determinantal representation of GL2(C), we are reduced to prove that P d
k,n(q) is

completely symmetric in k, n, d. Because of the obvious symmetry with respect to k and
n, we just need to check that P d

k,n(q) = P k
d,n(q), which amounts to the identity

∏

1≤i≤n
1≤j≤k

(1 − qd+k+i−j)
∏

1≤ℓ≤n
1≤m≤d

(1 − qℓ+m−1) =
∏

1≤ℓ≤n
1≤m≤d

(1 − qd+k+ℓ−m)
∏

1≤i≤n
1≤j≤k

(1 − qi+j−1).

Supposing that k ≤ d, this simplifies to
∏

1≤ℓ≤n
k+1≤m≤d

(1 − qℓ+m−1) =
∏

1≤ℓ≤n
k+1≤m≤d

(1 − qd+k+ℓ−m)

which immediately follows from letting m = d+k+1−m′ in either one of these products.

Remarks.
1. Even for k = 1 we get more than Hermite’s reciprocity, namely SnSd = ΛnSd+n−1.

This was first observed by Murnaghan [5].

2. For k = 2, the identity Sn,nSd+1 = Sd,dSn+1 was obtained by Matthias Meulien as
a consequence of the very interesting fact that a certain algebra related to the geometry
of pencils of binary forms of degree d, is a Gorenstein algebra ([4], Proposition 1.1.5). It
would be nice to have a similar interpretation of our more general reciprocity.

3. The identity Sr(k,n)Sd+k−1 = Sr(d,n)Sd+k−1 is actually obvious, since Sd+k−1 has
dimension d + k, and r(d, n) is the complement of r(k, n) inside r(d + k, n). In the
statement of the corollary the three obvious identities are the vertical ones.

4. Our correspondance between plane partitions and semistandard tableaux of rectan-
gular shape gives an immediate proof of the following fact: the number of plane partitions
contained in the box n × d × k is equal to

PP (n, d, k) =
(n + d + k − 1)!!(n − 1)!!(d − 1)!!(k − 1)!!

(n + d − 1)!!(d + k − 1)!!(k + n − 1)!!
.

Indeed, we just need to apply the classical formula ([3], Corollary 1.4.11) that computes
the number of semistandard tableaux of shape r(n, k) numbered by integers between 1
and d + k.

Here k!! := k!(k − 1)! · · ·2!1! is the usual double factorial. This result, originally due
to MacMahon, is a generalization of the well-known fact that the number of ordinary
partitions inscribed in a rectangle n × d is given by a binomial coefficient.
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