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Disse
tions, orientations, and trees,with appli
ations to optimal mesh en
odingand to random samplingÉRIC FUSY and GILLES SCHAEFFERLIX, É
ole polyte
hnique, Fran
eandDOMINIQUE POULALHONLIAFA, Université Paris 7, Fran
eWe present a bije
tion between some quadrangular disse
tions of an hexagon and unrooted binarytrees, with interesting 
onsequen
es for enumeration, mesh 
ompression and graph sampling.Our bije
tion yields an e�
ient uniform random sampler for 3-
onne
ted planar graphs, whi
hturns out to be determinant for the quadrati
 
omplexity of the 
urrent best known uniformrandom sampler for labelled planar graphs [Fusy, Analysis of Algorithms 2005℄.It also provides an en
oding for the set P(n) of n-edge 3-
onne
ted planar graphs that mat
hesthe entropy bound 1
n

log2 |P(n)| = 2 + o(1) bits per edge (bpe). This solves a theoreti
al problemre
ently raised in mesh 
ompression, as these graphs abstra
t the 
ombinatorial part of meshes withspheri
al topology. We also a
hieve the optimal parametri
 rate 1
n

log2 |P(n, i, j)| bpe for graphsof P(n) with i verti
es and j fa
es, mat
hing in parti
ular the optimal rate for triangulations.Our en
oding relies on a linear time algorithm to 
ompute an orientation asso
iated to theminimal S
hnyder wood of a 3-
onne
ted planar map. This algorithm is of independent interest,and it is for instan
e a key ingredient in a re
ent straight line drawing algorithm for 3-
onne
tedplanar graphs [Boni
hon et al., Graph Drawing 2005℄.Categories and Subje
t Des
riptors: G.2.1 [Dis
rete Mathemati
s℄: Combinatorial algorithmsGeneral Terms: AlgorithmsAdditional Key Words and Phrases: Bije
tion, Counting, Coding, Random generation1. INTRODUCTIONOne origin of this work 
an be tra
ed ba
k to an arti
le of Ed Bender in the Amer-i
an Mathemati
al Monthly [Bender 1987℄, where he asked for a simple explanationof the remarkable asymptoti
 formula
|P(n, i, j)| ∼

1

3524ijn

(
2i − 2

j + 2

)(
2j − 2

i + 2

) (1)for the 
ardinality of the set of 3-
onne
ted (unlabelled) planar graphs with i ver-ti
es, j fa
es and n = i + j − 2 edges, n going to in�nity. By a theorem of Whitney[1933℄, these graphs have essentially a unique embedding on the sphere up to home-omorphisms, so that their study amounts to that of rooted 3-
onne
ted maps, wherea map is a graph embedded in the plane and rooted means with a marked orientededge. ACM Journal Name, Vol. V, No. N, Month 20YY, Pages 1�0??.



2 · Éri
 Fusy et al.1.1 Graphs, disse
tions and treesAnother known property of 3-
onne
ted planar graphs with n edges is the fa
t thatthey are in dire
t one-to-one 
orresponden
e with disse
tions of the sphere into nquadrangles that have no non-fa
ial 4-
y
le. The heart of our paper lies in a furtherone-to-one 
orresponden
e.Theorem 1.1. There is a one-to-one 
orresponden
e between unrooted binarytrees with n nodes and unrooted quadrangular disse
tions of an hexagon with ninterior verti
es and no non-fa
ial 4-
y
le.The mapping from binary trees to disse
tions, whi
h we 
all the 
losure, is easilydes
ribed and resembles 
onstru
tions that were re
ently proposed for simpler kindsof maps [S
hae�er 1997; Bouttier et al. 2002; Poulalhon and S
hae�er 2006℄. Theproof that the mapping is a bije
tion is instead rather sophisti
ated, relying onnew properties of 
onstrained orientations [Ossona de Mendez 1994℄, related toS
hnyder woods of triangulations and 3-
onne
ted planar maps [S
hnyder 1990;di Battista et al. 1999; Felsner 2001℄ .Conversely, the re
onstru
tion of the tree from the disse
tion relies on a lineartime algorithm to 
ompute the minimal S
hnyder woods of a 3-
onne
ted map(or equivalently, the minimal α0-orientation of the asso
iated derived map, seeSe
tion 9). This problem is of independant interest and our algorithm has forexample appli
ations in the graph drawing 
ontext [Boni
hon et al. 2007℄. It isakin to Kant's 
anoni
al ordering [Kant 1996; Chuang et al. 1998; Boni
hon etal. 2003; Castelli-Aleardi and Devillers 2004℄, but again the proof of 
orre
tness isquite involved.Theorem 1.1 leads dire
tly to the impli
it representation of the numbers |P ′
n|�
ounting rooted 3-
onne
ted maps with n edges� due to Tutte [1963℄), and itsre�nement as dis
ussed in Se
tion 5 yields that of |P ′

ij | the number of rooted 3-
onne
ted maps with i verti
es and j fa
es (due to Mullin and S
hellenberg [1968℄)from whi
h Formula (1) follows. It partially explains the 
ombinatori
s of the o
-
urren
e of the 
ross produ
t of binomials, sin
e these are typi
al of binary treeenumerations. Let us mention that the one-to-one 
orresponden
e spe
ializes par-ti
ularly ni
ely to 
ount plane triangulations (i.e., 3-
onne
ted maps with all fa
esof degree 3), leading to the �rst bije
tive derivation of the 
ounting formula for un-rooted plane triangulations with i verti
es, originally found by Brown [1964℄ usingalgebrai
 methods.1.2 Random samplingA se
ond byprodu
t of Theorem 1.1 is an e�
ient uniform random sampler forrooted 3-
onne
ted maps, i.e., an algorithm that, given n, outputs a random elementin the set P ′
n of rooted 3-
onne
ted maps with n edges with equal 
han
es for allelements. The same prin
iples yield a uniform sampler for P ′

ij .The uniform random generation of 
lasses of maps like triangulations or 3-
onne
ted graphs was �rst 
onsidered in mathemati
al physi
s (see referen
es in[Ambjørn et al. 1994; Poulalhon and S
hae�er 2006℄), and various types of ran-dom planar graphs are 
ommonly used for testing graph drawing algorithms (see[de Fraysseix et al.℄).ACM Journal Name, Vol. V, No. N, Month 20YY.



Disse
tions and trees · 3The best previously known algorithm [S
hae�er 1999℄ had expe
ted 
omplexity
O(n5/3) for P ′

n, and was mu
h less e�
ient for P ′
ij , having even exponential 
om-plexity for i/j or j/i tending to 2 (due to Euler's formula these ratio are boundedabove by 2 for 3-
onne
ted maps). In Se
tion 6, we show that our generator for P ′

nor P ′
ij performs in linear time ex
ept if i/j or j/i tends to 2 where it be
omes atmost 
ubi
.From the theoreti
al point of view, it is also desirable to work with the uniformdistribution on planar graphs. However, random (labelled) planar graphs appear tobe 
hallenging mathemati
al obje
ts [Osthus et al. 2003; M
Diarmid et al. 2005℄.A Markov 
hain 
onverging to the uniform distribution on planar graphs with iverti
es was given by Denise et al. [1996℄, but it resists known approa
hes for per-fe
t sampling [Wilson 2004℄, and has unknown mixing time. As opposed to this, are
ursive s
heme to sample planar graphs was proposed by Bodirsky et al. [2003℄,with amortized 
omplexity O(n6.5). This result is based on a re
ursive de
ompo-sition of planar graphs: a planar graph 
an be de
omposed into a tree-stru
turewhose nodes are o

upied by rooted 3-
onne
ted maps. Generating a planar graphredu
es to 
omputing bran
hing probabilities so as to generate the de
ompositiontree with suitable probability; then a random rooted 3-
onne
ted map is generatedfor ea
h node of the de
omposition tree. Bodirsky et al. [2003℄ use the so-
alledre
ursive method [Nijenhuis and Wilf 1978; Flajolet et al. 1994; Wilson 1997℄ totake advantage of the re
ursive de
omposition of planar graphs. Our new randomgenerator for rooted 3-
onne
ted maps redu
es their amortized 
ost to O(n3). Fi-nally a new uniform random generator for planar graphs was re
ently developpedby one of the authors [Fusy 2005℄, that avoids the expensive prepro
essing 
ompu-tations of [Bodirsky et al. 2003℄. The re
ursive s
heme is similar to the one usedin [Bodirsky et al. 2003℄, but the method to translate it to a random generatorrelies on Boltzmann samplers, a new general framework for the random generationre
ently developed in [Du
hon et al. 2004℄. Thanks to our random generator forrooted 3-
onne
ted maps, the algorithm of [Fusy 2005℄ has a time-
omplexity of

O(n2) for exa
t size uniform sampling and even performs in linear time for approx-imate size uniform sampling.1.3 Su

in
t en
odingA third byprodu
t of Theorem 1.1 is the possibility to en
ode in linear time a 3-
onne
ted planar graph with n edges by a binary tree with n nodes. In turn thetree 
an be en
oded by a balan
ed parenthesis word of 2n bits. This 
ode is optimalin the information theoreti
 sense: the entropy per edge of this 
lass of graphs, i.e.,the quantity 1
n log2 |P(n)|, tends to 2 when n goes to in�nity, so that a 
ode for

P(n) 
annot give a better guarantee on the 
ompression rate.Appli
ations 
alling for 
ompa
t storage and fast transmission of 3D geometri
almeshes have re
ently motivated a huge literature on 
ompression, in parti
ular forthe 
ombinatorial part of the meshes. The �rst 
ompression algorithms dealt onlywith triangular fa
es [Rossigna
 1999; Touma and Gotsman 1998℄, but many meshesin
lude larger fa
es, so that polygonal meshes have be
ome prominent (see [Alliezand Gotsman 2003℄ for a re
ent survey).The question of optimality of 
oders was raised in relation with ex
eption 
odesprodu
ed by several heuristi
s when dealing with meshes with spheri
al topologyACM Journal Name, Vol. V, No. N, Month 20YY.



4 · Éri
 Fusy et al.[Gotsman 2003; Khodakovsky et al. 2002℄. Sin
e these meshes are exa
tly triangu-lations (for triangular meshes) and 3-
onne
ted planar graphs (for polyhedral ones),the 
oders in [Poulalhon and S
hae�er 2006℄ and in the present paper respe
tivelyprove that traversal based algorithms 
an a
hieve optimality.On the other hand, in the 
ontext of su

in
t data stru
tures, almost optimalalgorithms have been proposed [He et al. 2000; Lu 2002℄, that are based on separatortheorems. However these algorithms are not truly optimal (they get ε 
lose to theentropy but at the 
ost of an un
ontrolled in
rease of the 
onstants in the linear
omplexity). Moreover, although they rely on a sophisti
ated re
ursive stru
ture,they do not support e�
ient adja
en
y requests.As opposed to that, our algorithm shares with [He et al. 1999; Boni
hon et al.2003℄ the property that it produ
es essentially the 
ode of a spanning tree. Morepre
isely it is just the balan
ed parenthesis 
ode of a binary tree, and adja
en
ies ofthe initial disse
tion that are not present in the tree 
an be re
overed from the 
odeby a simple variation on the interpretation of the symbols. Adja
en
y queries 
anthus be dealt with in time proportional to the degree of verti
es [Castelli-Aleardiet al. 2006℄ using the approa
h of [Munro and Raman 1997; He et al. 1999℄.Finally we show that the 
ode 
an be modi�ed to be optimal on the 
lassP(n, i, j).Sin
e the entropy of this 
lass is stri
tly smaller than that of P(n) as soon as
|i − n/2| ≫ n1/2, the resulting parametri
 
oder is more e�
ient in this range. Inparti
ular in the 
ase j = 2i− 4 our new algorithm spe
ializes to an optimal 
oderfor triangulations.1.4 Outline of the paperThe paper starts with two se
tions of preliminaries: de�nitions of the maps and treesinvolved (Se
tion 2), and some basi
 
orresponden
es between them (Se
tion 3).Then 
omes our main result (Se
tion 4), the mapping between binary trees andsome disse
tions of the hexagon by quadrangular fa
es. The fa
t that this mappingis a bije
tion follows from the existen
e and uniqueness of a 
ertain tri-orientation ofour disse
tions. The proof of this auxiliary theorem, whi
h requires the introdu
tionof the so-
alled derived maps and their α0-orientations, is delayed to Se
tion 8, thatis, after the three se
tions dedi
ated to appli
ations of our main result: in thesese
tions we su

essively dis
uss 
ounting (Se
tion 5), sampling (Se
tion 6) and
oding (Se
tion 7) rooted 3-
onne
ted maps. The third appli
ation leads us toour se
ond important result: in Se
tion 9 we present a linear time algorithm to
ompute the minimal α0-orientation of the derived map of a 3-
onne
ted planarmap (whi
h also 
orresponds to the minimal S
hnyder woods alluded to above).Finally, Se
tion 10 is dedi
ated to the 
orre
tness proof of this orientation algorithm.Figure 1 summarizes the 
onne
tions between the di�erent families of obje
ts we
onsider.2. DEFINITIONS2.1 Planar mapsA planar map is a proper embedding of an unlabelled 
onne
ted graph in the plane,where proper means that edges are smooth simple ar
s that do not meet but attheir endpoints. A planar map is said to be rooted if one edge of the outer fa
e,ACM Journal Name, Vol. V, No. N, Month 20YY.



Disse
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3-
onne
ted planar graphs3-
onne
ted maps derived mapsirredu
iblequadrangulations derived mapswith orientationdisse
tionsof the hexagon disse
tions of the hexagonwith orientationbinary treesparenthesis 
ode
iterativealgorithmtranspositionoperationsopening
losurereje
tion

Whitney
folklore

Fig. 1. Relations between involved obje
ts.
alled the root-edge, is marked and oriented su
h that the outer fa
e lays on itsright. The origin of the root-edge is 
alled root-vertex. Verti
es and edges are saidto be outer or inner depending on whether they are in
ident to the outer fa
e ornot.A planar map is 3-
onne
ted if it has at least 4 edges and 
an not be dis
onne
tedby the removal of two verti
es. The �rst 3-
onne
ted planar map is the tetrahedron,whi
h has 6 edges. We denote by P ′
n (respe
tively P ′

ij) the set of rooted 3-
onne
tedplanar maps with n edges (resp. i verti
es and j fa
es). A 3-
onne
ted planar mapis outer-triangular if its outer fa
e is triangular.2.2 Plane trees, and half-edgesPlane trees are planar maps with a single fa
e �the outer one. A vertex is 
alleda leaf if it has degree 1, and node otherwise. Edges in
ident to a leaf are 
alledstems, and the other are 
alled entire edges. Observe that plane trees are unrootedtrees.Binary trees are plane trees whose nodes have degree 3. By 
onvention we shallrequire that a rooted binary tree has a root-edge that is a stem. The root-edge ofa rooted binary tree thus 
onne
ts a node, 
alled the root-node, to a leaf, 
alledthe root-leaf. With this de�nition of rooted binary tree, upon drawing the tree in atop down manner starting with the root-leaf, every node (in
luding the root-node)has a father, a left son and a right son. This (very minor) variation on the usualde�nition of rooted binary trees will be 
onvenient later on. For n ≥ 1, we denoterespe
tively by Bn and B′
n the sets of binary and rooted binary trees with n nodes(they have n + 2 leaves, as proved by indu
tion on n). These rooted trees are wellknown to be 
ounted by the Catalan numbers: |B′

n| = 1
n+1

(
2n
n

).The verti
es of a binary tree 
an be greedily bi
olored �say in bla
k or white�so that adja
ent verti
es have distin
t 
olors. The bi
oloration is unique up to the
hoi
e of the 
olor of the �rst node. As a 
onsequen
e, rooted bi
olored binarytrees are either bla
k-rooted or white-rooted, depending on the 
olor of the rootACM Journal Name, Vol. V, No. N, Month 20YY.
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 Fusy et al.node. The sets of bla
k-rooted (resp. white-rooted) binary trees with i bla
k nodesand j white nodes is denoted by B•
ij (resp. by B◦

ij); and the total set of rootedbi
olored binary trees with i bla
k nodes and j white nodes is denoted by B′
ij .It will be 
onvenient to view ea
h entire edge of a tree as a pair of opposite half-edges �ea
h one in
ident to one extremity of the edge� and to view ea
h stem asa single half-edge �in
ident to the node holding the stem. More generally we shall
onsider maps that have entire edges (made of two half-edges) and stems (made ofonly one half-edge). It is then also natural to asso
iate one fa
e to ea
h half-edge,say, the fa
e on its right. In the 
ase of trees, there is only the outer fa
e, so thatall half-edges get the same asso
iated fa
e.2.3 Quadrangulations and disse
tionsA quadrangulation is a planar map whose fa
es (in
luding the outer one) havedegree 4. A disse
tion of the hexagon by quadrangular fa
es is a planar map whoseouter fa
e has degree 6 and inner fa
es have degree 4.Cy
les that do not delimit a fa
e are said to be separating. A quadrangulation ora disse
tion of the hexagon by quadrangular fa
es is said to be irredu
ible if it has atleast 4 fa
es and has no separating 4-
y
le. The �rst irredu
ible quadrangulationis the 
ube, whi
h has 6 fa
es. We denote by Q′

n the set of rooted irredu
iblequadrangulations with n fa
es, in
luding the outer one. Euler's relation ensuresthat these quadrangulations have n + 2 verti
es. We denote by Dn (D′
n) the set of(rooted, respe
tively) irredu
ible disse
tions of the hexagon with n inner verti
es.These have n + 2 quadrangular fa
es, a

ording to Euler's relation. From nowon, irredu
ible disse
tions of the hexagon by quadrangular fa
es will simply be
alled irredu
ible disse
tions. The 
lasses of rooted irredu
ible quadrangulationsand of rooted irredu
ible disse
tions are respe
tively denoted by Q′ = ∪nQ

′
n and

D′ = ∪nD
′
n.As fa
es of disse
tions and quadrangulations have even degree, the verti
es ofthese maps 
an be greedily bi
olored, say, in bla
k and white, so that ea
h edge
onne
ts a bla
k vertex to a white one. Su
h a bi
oloration is unique up to the
hoi
e of the 
olors. We denote by Q′

ij the set of rooted bi
olored irredu
iblequadrangulations with i bla
k verti
es and j white verti
es and su
h that the root-vertex is bla
k; and by D′
ij the set of rooted bi
olored irredu
ible disse
tions with

i bla
k inner verti
es and j white inner verti
es and su
h that the root-vertex isbla
k.A bi
olored irredu
ible disse
tion is 
omplete if the three outer white verti
es ofthe hexagon have degree exa
tly 2. Hen
e, these three verti
es are in
ident to twoadja
ent edges on the hexagon.3. CORRESPONDENCES BETWEEN FAMILIES OF PLANAR MAPSThis se
tion re
alls a folklore bije
tion between irredu
ible quadrangulations and3-
onne
ted maps, hereafter 
alled angular mapping, see [Mullin and S
hellenberg1968℄, and its adaptation to outer-triangular 3-
onne
ted maps.3.1 3-
onne
ted maps and irredu
ible quadrangulationsLet us �rst re
all how the angular mapping works. Given a rooted quadrangulation
Q ∈ Q′

n endowed with its vertex bi
oloration, let M be the rooted map obtainedACM Journal Name, Vol. V, No. N, Month 20YY.
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(a) A quadrangulation (b) with its bla
k diagonals (
) gives a planar map.Fig. 2. The angular mapping: from a rooted irredu
ible quadrangulation to a rooted 3-
onne
tedplanar map.by linking, for ea
h fa
e f of Q (even the outer fa
e), the two diagonally opposedbla
k verti
es of f ; the root of M is 
hosen to be the edge 
orresponding to theouter fa
e of Q, oriented so that M and Q have same root-vertex, see Figure 2. Themap M is often 
alled the primal map of Q. A similar 
onstru
tion using whiteverti
es instead of bla
k ones would give its dual map (i.e., the map with a vertexin ea
h fa
e of M and edge-set 
orresponding to the adja
en
ies between verti
esand fa
es of M).The 
onstru
tion of the primal map is easily invertible. Given any rooted map

M , the inverse 
onstru
tion 
onsists in adding a vertex 
alled a fa
e-vertex in ea
hfa
e (even the outer one) of M and linking a vertex v and a fa
e-vertex vf by anedge if v is in
ident to the fa
e f 
orresponding to vf . Keeping only these fa
e-vertex in
iden
e edges yields a quadrangulation. The root is 
hosen as the edgethat follows the root of M in 
ounter-
lo
kwise order around its origin.The following theorem is a 
lassi
al result in the theory of maps.Theorem 3.1 (Angular mapping). The angular mapping is a bije
tion be-tween P ′
n and Q′

n and more pre
isely a bije
tion between P ′
ij and Q′

ij .3.2 Outer-triangular 3-
onne
ted maps and bi
olored 
omplete irredu
ible disse
tionsThe same prin
iple yields a bije
tion, also 
alled angular mapping, between outer-triangular 3-
onne
ted maps and bi
olored 
omplete irredu
ible disse
tions, whi
hwill prove very useful in Se
tions 7 and 8. This mapping is very similar to theangular mapping: given a 
omplete disse
tion D, asso
iate to D the map M ob-tained by linking the two bla
k verti
es of ea
h inner fa
e of D by a new edge, seeFigure 3. The map M is 
alled the primal map of D.Theorem 3.2 (Angular mapping with border). The angular mapping, for-mulated for 
omplete disse
tions, is a bije
tion between bi
olored 
omplete irre-du
ible disse
tions with i bla
k verti
es and j white verti
es and outer-triangular3-
onne
ted maps with i verti
es and j − 3 inner fa
es.Proof. The proof follows similar lines as that of Theorem 3.1, see [Mullin andS
hellenberg 1968℄. ACM Journal Name, Vol. V, No. N, Month 20YY.
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 Fusy et al.
(a) A disse
tion, (b) bla
k diago-nals, (
) the 3-
onne
tedmap, (d) the derivedmap.Fig. 3. The angular mapping with border: from a bi
olored 
omplete irredu
ible disse
tion (a) toan outer-triangular 3-
onne
ted map (
). The 
ommon derived map is shown in (d).3.3 Derived mapsIn its version for 
omplete disse
tions, the angular mapping 
an also be formulatedusing the 
on
ept of derived map, whi
h will be very useful throughout this arti
le(in parti
ular when dealing with orientations).Let M be an outer-triangular 3-
onne
ted map, and let M∗ be the map obtainedfrom the dual of M by removing the dual vertex 
orresponding to the outer fa
e of

M . Then the derived map M ′ of M is the superimposition of M and M∗, whereea
h outer vertex re
eives an additional half-edge dire
ted toward the outer fa
e.For example, Figure 3(d) shows the derived map of the map given in Figure 3(
).The map M is 
alled the primal map of M ′ and the map M∗ is 
alled the dual mapof M ′. Observe that the superimposition of M and M∗ 
reates a vertex of degree 4for ea
h edge e of M , due to the interse
tion of e with its dual edge. These verti
esof M ′ are 
alled edge-verti
es. An edge of M ′ either 
orresponds to an half-edge of
M when it 
onne
ts an edge-vertex and a primal vertex, or to an half-edge of M∗when it 
onne
ts an edge-vertex and a dual vertex.Similarly, one de�nes derived maps of 
omplete irredu
ible disse
tions. Given abi
olored 
omplete irredu
ible disse
tion D, the derived map M ′ of D is 
onstru
tedas follows; for ea
h inner fa
e f of D, link the two bla
k verti
es in
ident to f bya primal edge, and the two white ones by a dual edge. These two edges, whi
hare the two diagonals of f , interse
t at a new vertex 
alled an edge-vertex. Thederived map is then obtained by keeping the primal and dual edges and all verti
esex
ept the three outer white ones and their in
ident edges. Finally, for the sakeof regularity, ea
h of the six outer verti
es of M ′ re
eives an additional half-edgedire
ted toward the outer fa
e. For example, the derived map of the disse
tion ofFigure 3(a) is shown in Figure 3(d). Bla
k verti
es are 
alled primal verti
es andwhite verti
es are 
alled dual verti
es of the derived map M ′. The submap M (M∗)of M ′ 
onsisting of the primal verti
es and primal edges (resp. the dual verti
esand dual edges) is 
alled the primal map (resp. the dual map) of the derived map.Clearly, M has a triangular outer fa
e; and, by 
onstru
tion, a bi
olored 
ompleteirredu
ible disse
tion and its primal map have the same derived map.ACM Journal Name, Vol. V, No. N, Month 20YY.
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(a) A binary tree, (b) a lo
al 
losure, (
) and the partial 
losure.Fig. 4. The partial 
losure.4. BIJECTION BETWEEN BINARY TREES AND IRREDUCIBLE DISSECTIONS4.1 Closure mapping: from trees to disse
tionsLo
al and partial 
losure. Given a map with entire edges and stems (for instan
ea tree), we de�ne a lo
al 
losure operation, whi
h is based on a 
ounter-
lo
kwisewalk around the map: this walk alongside the boundary of the outer map visitsa su

ession of stems and entire edges, or more pre
isely, a sequen
e of half-edgeshaving the outer fa
e on their right-hand side. When a stem is immediately followedin this walk by three entire edges, its lo
al 
losure 
onsists in the 
reation of anopposite half-edge for this stem, whi
h is atta
hed to farthest endpoint of the thirdentire edge: this amounts to 
ompleting the stem into an entire edge, so as to 
reate�or 
lose� a quadrangular fa
e. This operation is illustrated in Figure 4(b).Given a binary tree T , the lo
al 
losure 
an be performed greedily until no morelo
al 
losure is possible. Ea
h lo
al 
losure 
reates a new entire edge, maybe makinga new lo
al 
losure possible. It is easy to see that the �nal map, 
alled the partial
losure of T , does not depend on the order of the lo
al 
losures. Indeed, a 
y
li
parenthesis word is asso
iated to the 
ounter-
lo
kwise boundary of the tree, withan opening parenthesis of weight 3 for a stem and a 
losing parenthesis for a side ofentire edge; then the future lo
al 
losures 
orrespond to mat
hings of the parenthesisword. An example of partial 
losure is shown in Figure 4(
).Complete 
losure. Let us now 
omplete the partial 
losure operation to obtain adisse
tion of the hexagon with quadrangular fa
es. An outer entire half-edge is anhalf-edge belonging to an entire edge and in
ident to the outer fa
e. Observe thata binary tree T with n nodes has n + 2 stems and 2n − 2 outer entire half-edges.Ea
h lo
al 
losure de
reases by 1 the number of stems and by 2 the number ofouter entire half-edges. Hen
e, if k denotes the number of (unmat
hed) stems inthe partial 
losure of T , there are 2k − 6 outer entire half-edges. Moreover, stemsdelimit intervals of inner half-edges on the 
ontour of the outer fa
e; these intervalshave length at most 2, otherwise a lo
al 
losure would be possible. Let r be thenumber of su
h intervals of length 1 and s be the number of su
h intervals of length 0(that is, the number of nodes in
ident to two unmat
hed stems). Then r and s are
learly related by the relation r + 2s = 6.The 
omplete 
losure 
onsists in 
ompleting all unmat
hed stems with half-edgesin
ident to verti
es of the hexagon in the unique way (up to rotation of the hexagon)ACM Journal Name, Vol. V, No. N, Month 20YY.
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(a) Generi
 
ase when r = 2 and s = 2. (b) Case of the binary tree of Figure 4(a).Fig. 5. The 
omplete 
losure.that 
reates only quadrangular bounded fa
es. Figure 5(a) illustrates the 
omplete
losure for the 
ase (r = 2, s = 2), and a parti
ular example is given in Figure 5(b).Lemma 4.1. The 
losure of a binary tree is an irredu
ible disse
tion of thehexagon.Proof. Assume that there exists a separating 4-
y
le C in the 
losure of T . Let
m ≥ 1 be the number of verti
es in the interior of C. Then there are 2m edges inthe interior of C a

ording to Euler's relation. Let v be a vertex of T that belongs tothe interior of C after the 
losure. Consider the orientation of edges of T away from
v (only for the sake of this proof). Then nodes of T have outdegree 2, ex
ept v,whi
h has outdegree 3. This orientation naturally indu
es an orientation of edges ofthe 
losure-disse
tion with the same property (ex
ept that verti
es of the hexagonhave outdegree 0). Hen
e there are at least 2m + 1 edges in the interior of C, a
ontradi
tion.4.2 Tri-orientations and openingTri-orientations. In order to de�ne the mapping inverse to the 
losure, we need abetter des
ription of the stru
ture indu
ed on the 
losure map by the original tree.Let us 
onsider orientations of the half-edges of a map (in 
ontrast to the usualnotion of orientation, where edges are oriented). An half-edge is said to be inwardif it is oriented toward its origin and outward if it is oriented out of its origin. Ifa map is endowed with an orientation of its half-edges, the outdegree of a vertex
v is naturally de�ned as the number of its in
ident half-edges oriented outward.The (unique) tri-orientation of a binary tree is de�ned as the orientation of itshalf-edges su
h that any node has outdegree 3, see Figure 6(a) for an example. Atri-orientation of a disse
tion is an orientation of its inner half-edges (i.e., half-edges belonging to inner edges) su
h that outer and inner verti
es have respe
tivelyoutdegree 0 and 3, and su
h that two half-edges of a same inner edge 
an not bothbe oriented inward, see Figure 6(b). An edge is said to be simply oriented if its twohalf-edges have same dire
tion (that is, one is oriented inward and the other oneoutward), and bi-oriented if they are both oriented outward.ACM Journal Name, Vol. V, No. N, Month 20YY.
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(a) A tri-oriented binary tree, (b) and its tri-oriented 
losure.Fig. 6. Examples of tri-orientations.Let D be an irredu
ible disse
tion endowed with a tri-orientation. A 
lo
kwise
ir
uit of D is a simple 
y
le C 
onsisting of edges that are either bi-oriented orsimply oriented with the interior of C on their right.Lemma 4.2. Let D be an irredu
ible disse
tion with n inner verti
es. Then atri-orientation of D has n − 1 bi-oriented edges and n + 2 simply oriented edges.If a tri-orientation of a disse
tion has no 
lo
kwise 
ir
uit, then its bi-orientededges form a tree spanning the inner verti
es of the disse
tion.Proof. Let s and r denote the numbers of simply and bi-oriented edges of D.A

ording to Euler's relation (using the degrees of the fa
es), D has 2n + 1 inneredges, i.e., 2n + 1 = r + s. Moreover, as all inner verti
es have outdegree 3,
3n = 2r + s. Hen
e r = n − 1 and s = n + 2.If the tri-orientation has no 
lo
kwise 
ir
uit, the subgraph H indu
ed by the bi-oriented edges has r = n−1 edges, no 
y
le (otherwise the 
y
le 
ould be traversed
lo
kwise, as all its edges are bi-oriented), and is in
ident to at most n verti
es,whi
h are the inner verti
es of D. A

ording to a 
lassi
al result of graph theory,
H is a tree spanning the n inner verti
es of D.Closure-tri-orientation of a disse
tion. Let D be a disse
tion obtained as the 
losureof a binary tree T . The tri-orientation of T 
learly indu
es via the 
losure a tri-orientation of D, 
alled 
losure-tri-orientation. On this tri-orientation, bi-orientededges 
orrespond to inner edges of the original binary tree, see Figure 6(b).Lemma 4.3. A 
losure-tri-orientation has no 
lo
kwise 
ir
uit.Proof. Sin
e verti
es of the hexagon have outdegree 0, they 
an not belong toany 
ir
uit. Hen
e 
lo
kwise 
ir
uits may only be 
reated during a lo
al 
losure.However 
losure edges are simply oriented with the outer fa
e on their right, hen
emay only 
reate 
ounter
lo
kwise 
ir
uits.This property is indeed quite strong: the following theorem ensures that theproperty of having no 
lo
kwise 
ir
uit 
hara
terizes the 
losure-tri-orientation andACM Journal Name, Vol. V, No. N, Month 20YY.
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 Fusy et al.that a tri-orientation without 
lo
kwise 
ir
uit exists for any irredu
ible disse
tion.The proof of this theorem is delayed to Se
tion 8.Theorem 4.4. Any irredu
ible disse
tion has a unique tri-orientation without
lo
kwise 
ir
uit.Re
overing the tree: the opening mapping. Lemma 4.2 and the present se
tion giveall ne
essary elements to des
ribe the inverse mapping of the 
losure, whi
h is
alled the opening : let D be an irredu
ible disse
tion endowed with its (unique byTheorem 4.4) tri-orientation without 
lo
kwise 
ir
uit. The opening of D is thebinary tree obtained from D by deleting outer verti
es, outer edges, and all inwardhalf-edges.4.3 The 
losure is a bije
tionIn this se
tion, we show that the opening is inverse to the 
losure. By 
onstru
tionof the opening, the following lemma is straightforward:Lemma 4.5. Let D be an irredu
ible disse
tion obtained as the 
losure of a binarytree T . Then the opening of D is T .Conversely, the following also holds:Lemma 4.6. Let T be a binary tree obtained as the opening of an irredu
ibledisse
tion D. Then the 
losure of T is D.Proof. The proof relies on the de�nition of an order for removing inward half-edges. Start with the half-edges in
ident to outer verti
es (that are all orientedinward): this 
learly inverses the 
ompletion step of the 
losure. Ea
h furtherremoval must 
orrespond to a lo
al 
losure, that is, the removed half-edge musthave the outer fa
e on its right.Let Mk be the submap of the disse
tion indu
ed by remaining half-edges after
k removals. Then Mk 
overs the n inner verti
es, and, as long as some inwardhalf-edge remains, it has at least n entire edges (see Lemma 4.2). Hen
e, there isat least one 
y
le, and a simple one C 
an be extra
ted from the boundary of theouter fa
e of Mk. Sin
e there is no 
lo
kwise 
ir
uit, at least one edge of C is simplyoriented with the interior of C on its left; the 
orresponding inward half-edge 
anbe sele
ted for the next removal.Assuming Theorem 4.4, the bije
tive result follows from Lemmas 4.5 and 4.6:Theorem 4.7. For ea
h n ≥ 1, the 
losure mapping is a bije
tion between theset Bn of binary trees with n nodes and the set Dn of irredu
ible disse
tions with ninner verti
es.For ea
h integer pair (i, j) with i + j ≥ 1, the 
losure mapping is a bije
tionbetween the set Bij of bi
olored binary trees with i bla
k nodes and j white nodes,and the set Dij of bi
olored irredu
ible disse
tions with i bla
k inner verti
es and jwhite inner verti
es.The inverse mapping of the 
losure is the opening.We 
an state three analogous versions of Theorem 4.7 for rooted obje
ts:ACM Journal Name, Vol. V, No. N, Month 20YY.
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losure mapping indu
es the following 
orresponden
es be-tween sets of rooted obje
ts:
B′

n × {1, . . . , 6} ≡ D′
n × {1, . . . , n + 2},

B′
ij × {1, 2, 3} ≡ D′

ij × {1, . . . , i + j + 2},

B•
ij × {1, 2, 3} ≡ D′

ij × {1, . . . , 2i − j + 1}.Proof. We de�ne a bi-rooted irredu
ible disse
tion as a rooted irredu
ible disse
-tion endowed with its tri-orientation without 
lo
kwise 
ir
uit and where a simplyoriented edge is marked. We write D′′
n for the set of bi-rooted irredu
ible disse
-tions with n inner verti
es. Opening and rerooting on the stem 
orresponding tothe marked edge de�nes a surje
tion from D′′

n onto B′
n, for whi
h ea
h element of B′

nhas 
learly six preimages, sin
e the disse
tion 
ould have been rooted at any edgeof the hexagon. Moreover, erasing the mark 
learly de�nes a surje
tion from D′′
nto D′

n, for whi
h ea
h element of D′
n has n + 2 preimages a

ording to Lemma 4.2.Hen
e, the 
losure de�nes a (n + 2)-to-6 mapping between B′

n and D′
n. The proofof the (i + j + 2)-to-3 
orresponden
e between B′

ij and D′
ij is the same.The (2i− j +1)-to-3 
orresponden
e between B•

ij and D′
ij indu
ed by the 
losure
an be proved similarly, with the di�eren
e that the marked simply oriented edgehas to have a bla
k vertex as origin. Then the result follows from the fa
t thatan obje
t of D′

ij endowed with its tri-orientation without 
lo
kwise 
ir
uit has
(2i − j + 1) simply oriented edges whose origin is a bla
k vertex.Let us mention that the (i + j + 2)-to-3 
orresponden
e between B′

ij and D′
ij is akey ingredient to the planar graph generators presented in [Fusy 2005℄.The 
oe�
ient |B′

n| is well-known to be the n-th Catalan number 1
n+1

(
2n
n

), andre�nements of the standard proofs yield |B•
ij | = 1

2j+1

(
2j+1

i

)(
2i
j

), as detailed belowin Se
tion 4.5. Theorem 4.8 thus implies the following enumerative results:Corollary 4.9. The 
oe�
ients 
ounting rooted irredu
ible disse
tions have thefollowing expressions,
|D′

n| =
6

n + 2
|B′

n| =
6

(n + 2)(n + 1)

(
2n

n

)
, (2)

|D′
ij | =

3

2i − j + 1
|B•

ij | =
3

(2i + 1)(2j + 1)

(
2j + 1

i

)(
2i + 1

j

)
. (3)These enumerative results have already been obtained by Mullin and S
hellenberg[1968℄ using algebrai
 methods. Our method provides a dire
t bije
tive proof.Noti
e that the 
ardinality of D′

n is 1
2S(n, 2) where S(n, m) = (2n)!(2m)!

n!m!(n+m)! is the
n-th super-Catalan number of order m. (These numbers are dis
ussed by Gessel[1992℄.) Our bije
tion gives an interpretation of these numbers for m = 2.4.4 Spe
ialization to triangulationsA ni
e feature of the 
losure mapping is that it spe
ializes to a bije
tion betweenplane triangulations and a simple subfamily of binary trees. In this way, we get the�rst bije
tive proof for the formula giving the number of unrooted plane triangu-lations with n verti
es, found by Brown [1964℄, and re
over the 
ounting formulaACM Journal Name, Vol. V, No. N, Month 20YY.
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 Fusy et al.for rooted triangulations, already obtained by Tutte [1962℄ and by Poulalhon andS
hae�er [2006℄ using a di�erent bije
tion.Theorem 4.10. The 
losure mapping is a bije
tion between the set Tn of (un-rooted) plane triangulations with n inner verti
es and the set Sn of bi
olored binarytrees with n bla
k nodes and no stem (i.e., leaf) in
ident to a bla
k node.The 
losure mapping indu
es the following 
orresponden
e between the set T ′
n ofrooted triangulations with n inner verti
es and the set S′

n of trees in Sn rooted at astem:
S′

n × {1, 2, 3} ≡ T ′
n × {1, . . . , 3n + 3}.Proof. Plane triangulations are exa
tly 3-
onne
ted planar maps where all fa
eshave degree 3. Hen
e, the angular mapping with border (Theorem 3.2) indu
es abije
tion between Tn and the set of 
omplete bi
olored irredu
ible disse
tions with

n inner bla
k verti
es and all inner white verti
es of degree 3. In a tri-orientation,the indegree of ea
h inner white vertex v is deg(v) − 3 and the indegree of ea
houter white vertex v is deg(v) − 2, hen
e the disse
tions 
onsidered here have noingoing half-edge in
ident to a white vertex. Hen
e the opening of the disse
tion(by removing ingoing half-edges) is a binary tree with no stem in
ident to a bla
knode. Conversely, starting from su
h a binary tree, the half-edges 
reated duringthe 
losure mapping are opposite to a stem. As all stems are in
ident to whiteverti
es, the half-edges 
reated are in
ident to bla
k verti
es. Hen
e the degree ofea
h white vertex does not in
rease during the 
losure mapping, i.e., remains equalto 3 for inner white verti
es and equal to 2 for outer white verti
es. This 
on
ludesthe proof of the bije
tion Sn ≡ Tn.The bije
tion S′
n × {1, 2, 3} ≡ T ′

n × {1, . . . , 3n + 3} follows easily (see the proofof Theorem 4.8), using the fa
t that a tree of Sn has 3n + 3 leaves.This bije
tion, illustrated in Figure 7, makes it possible to 
ount plane unrootedand rooted triangulations, as the subfamily of binary trees involved is easily enu-merated.Corollary 4.11. For n ≥ 0, the number of rooted triangulations with n innerverti
es is
|T ′

n| = 2
(4n + 1)!

(n + 1)!(3n + 2)!
.The number of unrooted plane triangulations with n inner verti
es is

|Tn| =
2

3

(4n + 1)!

(n + 1)!(3n + 2)!
if n ≡ 2 mod 3,

|Tn| =
2

3

(4n + 1)!

(n + 1)!(3n + 2)!
+

4

3

(4k + 1)!

k!(3k + 2)!
if n ≡ 1 mod 3 [n = 3k + 1],

|Tn| =
2

3

(4n + 1)!

(n + 1)!(3n + 2)!
+

2

3

(4k)!

k!(3k + 1)!
if n ≡ 0 mod 3 [n = 3k].Proof. Let S′ = ∪nS

′
n be the 
lass of rooted binary trees with no leaf in
identto a bla
k node and let R′ = ∪nR

′
n be the 
lass of rooted binary trees whereACM Journal Name, Vol. V, No. N, Month 20YY.
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(a) (b)

(
) (d)Fig. 7. The bije
tion between triangulations and bi
olored binary trees with no leaf in
ident to abla
k node.the root leaf is in
ident to a bla
k node and all other leaves are in
ident to whitenodes. Let S(x) and R(x) be the generating fun
tions of S′ and R′ with respe
tto the number of bla
k nodes. Clearly the two subtrees pending from the (white)root node of a tree of S′ are either empty or in R′. Hen
e S(x) = (1 + R(x))2.Similarly, a tree in R′ de
omposes at the root node into two trees in S′, so that
R(x) = xS(x)2. Hen
e, R(x) = x(1 + R(x))4 is equal to the generating fun
tionof quaternary trees, and S(x) = (1 + R(x))2 is equal to the generating fun
tionof pairs of quaternary trees (the empty tree being allowed). Using a Luka
iewi
zen
oding and the 
y
li
 lemma, the number of pairs of quaternary trees with atotal of n nodes is easily shown to be 2

4n+2
(4n+2)!

n!(3n+2)! . This expression of |S′
n| andthe (3n + 3)-to-3 
orresponden
e between S′

n and T ′
n yield the expression of |T ′

n|.ACM Journal Name, Vol. V, No. N, Month 20YY.
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δ = 1 δ = 1 δ = −1 δ = −1δ = 3 (a) A•◦, (b) A•, (
) A◦.Fig. 8. The three alphabets for words asso
iated to bi
olored binary trees.Let us now prove the formula for |Tn| = |Sn|. Clearly, the only possible symmetryfor a bi
olored binary tree is a rotation of order 3. Let Ssym

n be the set of trees of Snwith a rotation symmetry and let Sasy
n be the set of trees of Sn with no symmetry.Let S ′asy

n and S
′sym
n be the sets of trees of Sasy

n and Ssym
n that are rooted at a leaf.It is easily shown that a tree of Sn has 3n + 3 leaves. Clearly the tree gives riseto 3n + 3 rooted trees if it is asymmetri
 and gives rise to n + 1 rooted trees if itis symmetri
. Hen
e |Sasy

n | = |S
′asy
n |/(3n + 3) and |Ssym

n | = |S
′sym
n |/(n + 1). Using

|Sn| = |Sasy
n | + |Ssym

n | and |S′
n| = |S

′asy
n | + |S

′sym
n |, we obtain

|Sn| =
1

3n + 3
|S′

n| +
2

3
|Ssym

n |.The 
entre of rotation of a tree in Ssym
n is either a bla
k node, in whi
h 
ase

n = 3k + 1 for some integer k ≥ 0, or is a white node, in whi
h 
ase n = 3k forsome integer k ≥ 0. In the �rst 
ase, a tree τ ∈ Ssym
n is obtained by atta
hing toa bla
k node 3 
opies of a tree in S′

k. Hen
e |Ssym
3k+1| = |S′

k| = 2 (4k+1)!
k!(3k+2)! . In these
ond 
ase, a tree τ ∈ Ssym

n is obtained by atta
hing to a white node 3 
opies of atree in R′
k. Hen
e |Ssym

3k | = |R′
k| = (4k)!

k!(3k+1)! . The result follows.4.5 Counting, 
oding and sampling rooted bi
olored binary trees4.5.1 From a bi
olored tree to a pair of words. There exist general methods toen
ode a family of trees spe
i�ed by several parameters. This se
tion makes su
hmethods expli
it for the family of bi
olored binary trees. Let T be a bla
k-rootedbi
olored binary tree with i bla
k nodes and j white nodes. Doing a depth-�rsttraversal of T from left to right, we obtain a word w•◦ of length (2j + 1) on thealphabet A•◦ represented in Figure 8(a), see Figure 9 for an example, the mappingbeing denoted by Ψ. Classi
ally, the sum of the weights of the letters of any stri
tpre�x of w•◦ is nonnegative and the sum of the weights of the letters of w•◦ is equalto -1. In addition, w•◦ is the unique word in its 
y
li
 equivalen
e-
lass that hasthese two properties.The se
ond step is to map w•◦ to a pair (w•, w◦) := Φ(w•◦) of words su
h that:� w• is a word of length (2j +1) on the alphabet A• shown in Figure 8(b) with
i bla
k-node-letters.� w◦ is a word of length 2i on the alphabet A◦ shown in Figure 8(
) with jwhite-node-letters.Figure 9 illustrates the mapping Φ on an example.ACM Journal Name, Vol. V, No. N, Month 20YY.
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Φ

Ψ w•◦ =

w• =

w◦ =Fig. 9. A bi
olored rooted binary tree, and the 
orresponding words w•◦, w•, and w◦.4.5.2 Inverse mapping: from a pair of words to a tree. Conversely, let (w•, w◦) bea pair of words su
h that w• is of length (2j + 1) on A• and has i bla
k-node-letters, and w◦ is of length 2i on A◦ and has j white-node-letters. First, to the pair
(w•, w◦) we asso
iate a word w̃•◦ of length (2j + 1) on A•◦ by doing the inverse ofthe mapping Φ shown in the right part of Figure 9. The word w̃•◦ has the propertythat the sum of the weights of its letters is equal to -1. There is a unique word
w•◦ in the 
y
li
 equivalen
e-
lass of w̃•◦ su
h that the sum of the weights of theletters of any stri
t pre�x is nonnegative. We asso
iate to w•◦ the binary tree of
B•

ij obtained by doing the inverse of the mapping Ψ shown in Figure 9.This method allows us to sample uniformly obje
ts of B•
ij in linear time andensures that

|B•
ij | =

1

2j + 1

(
2j + 1

i

)(
2i

j

)
. (4)5. APPLICATION: COUNTING ROOTED 3-CONNECTED MAPS5.1 Generating fun
tions of rooted disse
tionsEven if the 
ounting formulas obtained in Corollary 4.9 are simple, it proves use-ful to have an expression of the 
orresponding generating fun
tions. Indeed, thede
omposition-method we develop is suitably handled by generating fun
tions.Let r1(x•, x◦) :=

∑
|B•

ij |x
i
•x

j
◦ and r2(x•, x◦) :=

∑
|B◦

ij |x
i
•x

j
◦ be the series ofbla
k-rooted and white-rooted bi
olored binary trees. By de
omposition at theroot, r1(x•, x◦) and r2(x•, x◦) are the solutions of the system:

{
r1(x•, x◦) = x• (1 + r2(x•, x◦))

2 ,

r2(x•, x◦) = x◦ (1 + r1(x•, x◦))
2 .

(5)De�ne an edge-marked bi
olored binary tree as a bi
olored binary tree with amarked inner edge. Let B̄ij be the set of edge-marked bi
olored binary trees with
i bla
k nodes and j white nodes. Cutting the marked edge of su
h a tree yieldsa pair made of a bla
k-rooted and a white-rooted binary tree. As a 
onsequen
e,the generating fun
tion 
ounting edge-marked bi
olored binary trees is r1 · r2, i.e.,
r1 · r2 =

∑
ij |B̄ij |x

i
•x

j
◦.Let us 
onsider bi-rooted obje
ts as in the proof of Theorem 4.8; sin
e any obje
tof Bij has (2i − j + 1) white leaves (
onne
ted to a bla
k node) and (2j − i + 1)ACM Journal Name, Vol. V, No. N, Month 20YY.
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k leaves (
onne
ted to a white node),
|B◦

ij | =
2j − i + 1

2i − j + 1
|B•

ij |.Similarly, 
ounting in two ways the obje
ts of B•
ij having a marked edge yields

|B̄ij | =
i + j − 1

2i − j + 1
|B•

ij |.Thus, we have |B•
ij | + |B◦

ij | − |B̄ij | = 3
2i−j+1 |B

•
ij | = |D′

ij | (using (3)), so that
∑

i,j

|D′
ij |x

i
•x

j
◦ = r1(x•, x◦) + r2(x•, x◦) − r1(x•, x◦)r2(x•, x◦). (6)Substituting x• and x◦ by x, we obtain:

∑

n

|D′
n|x

n = 2r(x) − r(x)2, (7)where r(x) = x (1 + r(x))
2 is the generating fun
tion of binary trees a

ording tothe number of inner nodes.5.2 Generating fun
tion of rooted 3-
onne
ted mapsInje
tion from Q′ to D′. Let us 
onsider the mapping ι de�ned on rooted quad-rangulations by the removal of the root-edge and rerooting on the next edge in
ounter
lo
kwise order around the root-vertex; ι is 
learly inje
tive, and for anyquadrangulation Q, ι(Q) has only quadrangular fa
es but the outer one, whi
h ishexagonal. In addition, ι(Q) 
an not have more separating 4-
y
les than Q. Hen
ethe restri
tion of ι to Q′ is an inje
tion from Q′ to D′, more pre
isely from Q′

n to
D′

n−4 and from Q′
ij to D′

i−3,j−3.It is however not a bije
tion, sin
e the inverse edge-adding operation π, per-formed on an irredu
ible disse
tion, 
an 
reate a separating 4-
y
le on the obtainedquadrangulation. Pre
isely, given D a rooted irredu
ible disse
tion �with s theroot-vertex and t the vertex of the hexagon opposite to s� a path of length 3 be-tween s and t is 
alled a de
omposition path. The two paths of edges of the hexagon
onne
ting s to t are 
alled outer de
omposition paths, and the other ones, if any,are 
alled inner de
omposition paths of D.Observe that inner de
omposition paths of D are in one-to-one 
orresponden
ewith separating 4-
y
les of the quadrangulation π(D) (i.e., the quadrangulationobtained from D by adding a root-edge between s and t oriented out of s).A rooted irredu
ible disse
tion without inner de
omposition path is said to beunde
omposable. The 
orresponding 
lass is denoted by U ′. The dis
ussion onde
omposition paths yields the following result.Lemma 5.1. Denote by U ′
n the set of rooted unde
omposable disse
tions with ninner verti
es and by U ′

ij the set of rooted unde
omposable disse
tions with i innerbla
k verti
es and j inner white verti
es. Then U ′
n−4 is in bije
tion with P ′

n and
U ′

i−3,j−3 is in bije
tion with P ′
ij .Proof. A rooted irredu
ible quadrangulation is mapped by ι to a rooted dis-se
tion su
h that the inverse edge-adding operation π does not 
reate a separatingACM Journal Name, Vol. V, No. N, Month 20YY.
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y
le, i.e., an unde
omposable disse
tion. Moreover, Euler's relation ensures thatthe image of a quadrangulation with n fa
es has n−4 inner verti
es. By inje
tivity,
ι is bije
tive to its image, i.e., ι is a bije
tion between Q′

n and U ′
n−4; and a bije
tionbetween Q′

ij and U ′
i−3,j−3. The result follows, as Q′

n and Q′
ij are respe
tively inbije
tion with P ′

n and P ′
ij via the angular mapping (Theorem 3.1).Thanks to Lemma 5.1, enumerating rooted 3-
onne
ted maps redu
es to enumer-ating rooted unde
omposable disse
tions.De
omposition of rooted irredu
ible disse
tions. Sin
e irredu
ible disse
tions do nothave multiple edges nor 
y
les of odd length, de
omposition paths satisfy the fol-lowing properties:Lemma 5.2. Let D be a rooted irredu
ible disse
tion, and let P1 and P2 be twodi�erent de
omposition paths of D. Then:� either P1 ∩ P2 = {s, t}, in whi
h 
ase P1 and P2 are said to be internallydisjoint;� or there exists one inner vertex v su
h that P1 ∩ P2 = {s} ∪ {t} ∪ {v}, inwhi
h 
ase P1 and P2 are said to be upper or lower joint whether v is adja
ent to

s or t.Lemma 5.2 implies in parti
ular that two de
omposition paths 
an not 
ross ea
hother. Hen
e the de
omposition paths of an irredu
ible disse
tion D follow a left-to-right order, from the outer de
omposition path 
ontaining the root �
alled leftouter path� to the other outer de
omposition path �
alled right outer path.Lemma 5.3. Let D be a rooted irredu
ible disse
tion, and let P1 and P2 be twoupper joint (resp. lower joint) de
omposition paths of D. Then the interior of thearea delimited by P1 and P2 
onsists of a unique fa
e in
ident to t (resp. to s).Proof. Follows from the fa
t that the interior of ea
h 4-
y
le of D is a fa
e.De
omposition word of an irredu
ible disse
tion. Let D ∈ D′ and let {P0, . . . ,Pℓ}be the sequen
e of de
omposition paths of D ordered from left to right. Let us
onsider the alphabet A = {s}∪ {t}∪ U ′; the de
omposition word of D is the word
w = w1 . . . wℓ of length ℓ on A su
h that, for any 1 ≤ i ≤ ℓ: if Pi−1 and Pi areupper joint, then wi = s; if Pi−1 and Pi are lower joint, then wi = t; if Pi−1 and
Pi are internally disjoint, then wi = U , where U is the unde
omposable disse
tiondelimited by Pi−1 and Pi, rooted at the �rst edge of Pi−1 and with s as root-vertex,see Figure 10. This en
oding is inje
tive, an easy 
onsequen
e of Lemma 5.3.Chara
terization of de
omposition words of elements of D′. The fa
t that D has noseparating 4-
y
le easily implies that its de
omposition word has no fa
tor ss nor
tt, and these are the only forbidden fa
tors. Moreover, as a disse
tion has at leastone inner vertex, a de
omposition word 
an neither be the empty word, nor theone-letter words s and t, nor the two-letter words st and ts. It is easily seen thatall other words en
ode irredu
ible disse
tions of the hexagon.This leads to the following equation linking the generating fun
tions D(x) and
U(x) 
ounting D′ and U ′ a

ording to the number of inner verti
es,ACM Journal Name, Vol. V, No. N, Month 20YY.
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t

s

=⇒ w = tsUsts, where U =Fig. 10. Example of de
omposition of a rooted irredu
ible disse
tion and of its asso
iated de
om-position word.
x2D(x) + 2x2 + 2x + 1 =

(
1 +

2x

1 − x

)
·

1

1 − x2U(x)
(
1 + 2x

1−x

) . (8)Similarly, let D(x•, x◦) :=
∑

|D′
ij |x

i
•x

j
◦ and U(x•, x◦) :=

∑
|U ′

ij |x
i
•x

j
◦. Then the
hara
terization of the 
oding words gives

x•x◦D(x•, x◦) + 2x•x◦ + x• + x◦ + 1

= (1 + x•) ·
1

1 − x◦x•
· (1 + x◦) ·

1

1 − x•x◦U(x•, x◦)(1 + x•)
1

1−x◦x•

(1 + x◦)
. (9)Theorem 5.4. Let P ′

n be the number of rooted 3-
onne
ted maps with n edgesand P ′
ij the number of rooted 3-
onne
ted maps with i verti
es and j fa
es. Then

∑

n

|P ′
n+2|x

n =
1 − x

1 + x
−

1

1 + 2x + 2x2 + x2(2r(x) − r(x)2)
,where r(x) = x (1 + r(x))

2, and
∑

i,j

|P ′
i+2,j+2|x

i
•x

j
◦

=
1 − x•x◦

(1 + x•)(1 + x◦)
−

1

1 + x• + x◦ + 2x•x◦ + x•x◦(r1 + r2 − r1r2)
, (10)where {

r1(x•, x◦) = x• (1 + r2(x•, x◦))
2

r2(x•, x◦) = x◦ (1 + r1(x•, x◦))
2 .Proof. Lemma 5.1 ensures that ∑

n |P ′
n+2|x

n = x2U(x) and, more pre
isely,∑
i,j |P

′
i+2,j+2|x

i
•x

j
◦ = x•x◦U(x•, x◦). Moreover, Equations (8) and Equation (9)yield expressions of x2U(x) and x•x◦U(x•, x◦) respe
tively in terms of D(x) and

D(x•, x◦). In these expressions, repla
e D(x) and D(x•, x◦) by their respe
tiveexpression in terms of r and of r1 and r2, as given by Equations (6) and (7).6. APPLICATION: SAMPLING ROOTED 3-CONNECTED MAPS6.1 Sampling rooted 3-
onne
ted maps with n edgesTheorem 4.8 (�rst identity) ensures that the following algorithm samples rooted3-
onne
ted maps with n edges uniformly at random:ACM Journal Name, Vol. V, No. N, Month 20YY.



Disse
tions and trees · 21(1) Sample an obje
t T ∈ B′
n−4 uniformly (e.g. using parenthesis words).(2) Perform the 
losure of T to obtain an irredu
ible disse
tion D with (n − 4)verti
es. Choose randomly one of the six edges of the hexagon of D to 
arrythe root. If D is not unde
omposable, then reje
t and restart.(3) Conne
t by a new edge e the root-vertex of D to the opposite outer vertex.Take e as root edge, with the same root-vertex as in D. This gives a rootedirredu
ible quadrangulation Q with n fa
es.(4) Return the rooted 3-
onne
ted map in P ′

n asso
iated to Q by the angularmapping.Proposition 6.1. The su

ess probability of the sampler at ea
h trial is equalto |P ′
n|/|D

′
n−4|, whi
h satis�es

|P ′
n|

|D′
n−4|

→
n→∞

28

36
.Hen
e, the number of reje
tions follows a geometri
 law whose mean is asymptoti-
ally c = 36/28. As the 
losure mapping has linear-time 
omplexity, the samplingalgorithm has expe
ted linear-time 
omplexity.Proof. A

ording to Se
tion 4.3, |D′

n| = 6
n+2 |B

′
n| = 6(2n)!

(n+2)!n! . Stirling formulayields |D′
n−4| ∼

3
128

√
π

4n

n5/2 . Moreover, a

ording to [Tutte 1963℄, |P ′
n| ∼

2
35

√
π

4n

n5/2 .This yields the limit of |P ′
n|/|D

′
n−4|.6.2 Sampling rooted 3-
onne
ted maps with i verti
es and j fa
esSimilarly, Theorem 4.8 (third identity), ensures that the following algorithm sam-ples rooted 3-
onne
ted maps with i verti
es and j fa
es uniformly at random:(1) Sample an obje
t T ∈ B•

i−3,j−3 uniformly at random. A simple method isdes
ribed in Se
tion 4.5.2.(2) Perform the 
losure of T to obtain an irredu
ible disse
tion D with (i − 3)inner bla
k verti
es and (j − 3) inner white verti
es. Choose randomly theroot-vertex among the three bla
k verti
es of the hexagon. If the disse
tion isnot unde
omposable, then reje
t and restart.(3) Conne
t by a new edge e the root-vertex of D to the opposite outer vertex.Take e as root edge, with the same root-vertex as in D. This gives a rootedirredu
ible quadrangulation Q with i bla
k verti
es and j white verti
es.(4) Return the rooted 3-
onne
ted map in P ′
ij asso
iated to Q by the angularmapping.Proposition 6.2. The su

ess probability of the sampler at ea
h trial is equalto |P ′

ij |/|D
′
i−3,j−3|. Let α ∈]1/2, 2[; if i and j are 
orrelated by i

j → α as i → ∞,then
|P ′

ij |

|D′
i−3,j−3|

∼
28

36

(2 − α)2(2α − 1)2

α2
=:

1

cα
.Hen
e, when i

j → α, the number of reje
tions follows a geometri
 law whose mean isasymptoti
ally cα. Under these 
onditions, the sampling algorithm has an expe
tedlinear-time 
omplexity, the linearity fa
tor being asymptoti
ally proportional to cα.ACM Journal Name, Vol. V, No. N, Month 20YY.
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ase of triangulations where j = 2i− 4, the mean numberof reje
tions is quadrati
, so that the sampling 
omplexity is 
ubi
.Proof. These asymptoti
 results are easy 
onsequen
es of the expression of |D′
ij |obtained in Corollary 4.9 and of the asymptoti
 result |P ′

ij | ∼
1

3522ij

(
2i−2
j+2

)(
2j−2
i+2

)given in [Bender 1987℄.7. APPLICATION: CODING 3-CONNECTED MAPSThis se
tion introdu
es an algorithm, derived from the inverse of the 
losure map-ping, to en
ode a 3-
onne
ted map. Pre
isely, the algorithm en
odes an outer-triangular 3-
onne
ted map, but it is then easily extended to en
ode any 3-
onne
tedmap. Indeed, if the outer fa
e of G is not triangular, �x three 
onse
utive verti
es
v, v′ and v′′ in
ident to the outer fa
e of G and link v and v′′ by an edge to obtainan outer-triangular 3-
onne
ted planar map G̃; the 
oding of G is obtained as the
oding of G̃ plus one bit indi
ating if an edge-addition has been done.7.1 Des
ription of the 
oding algorithmLet G be an outer-triangular 3-
onne
ted map and let G′ be its derived map, asde�ned in Se
tion 3.2. The 
oding algorithm relies on the following steps, illustratedin Figure 11.7.1.1 Compute a parti
ular orientation of the derived map G′ (Fig. 11(b)-(
)). The�rst step of the algorithm is to 
ompute a spe
i�
 orientation X0 of the edges ofthe derived map G′, su
h that X0 has no 
lo
kwise 
ir
uit, ea
h primal or dualvertex has outdegree 3 and ea
h edge-vertex has outdegree 1. Su
h an orientationof G′ exists and is unique, as we will see in Theorem 8.1. A linear time algorithmto 
ompute X0 is given in Se
tion 9.7.1.2 Compute the irredu
ible disse
tion D asso
iated to G (Fig. 11(d)). Considerthe bi
olored 
omplete irredu
ible disse
tion D asso
iated to G by the bije
tionpresented in Se
tion 3.2 (and reformulated in Se
tion 3.3), i.e., the disse
tion havingthe same derived map as G. Noti
e that D has n inner fa
es if G has n edges. Hen
e,a

ording to Euler's relation, D has n−2 inner verti
es. Similarly, if G has i verti
esand j inner fa
es, then D has i bla
k verti
es and j + 3 white verti
es.7.1.3 Compute the tri-orientation of D without 
lo
kwise 
ir
uit (Fig. 11(d)). Weorient ea
h half-edge h of D belonging to an inner edge as follows: h is dire
tedinward if its in
ident vertex belongs to the hexagon; otherwise, h re
eives the ori-entation of the 
w-following edge of G′. As shown in Se
tion 8 (more pre
isely inLemma 8.13, 
omposed with the 
orresponden
e of Figure 13), this pro
ess yieldsthe unique tri-orientation of D without 
lo
kwise 
ir
uit.7.1.4 Open the disse
tionD into a binary tree T (Fig. 11(f)). On
e the tri-orientationwithout 
lo
kwise 
ir
uit is 
omputed, D is opened into a binary tree T , by deletingouter verti
es, outer edges, and all ingoing half-edges (see Se
tion 4.2).7.1.5 En
ode the tree T . First, 
hoose an arbitrary leaf of T , root T at this leaf,and en
ode the obtained rooted binary tree using a parenthesis word (also 
alledDy
k word). The opening of a 3-
onne
ted map with n edges is a binary tree withACM Journal Name, Vol. V, No. N, Month 20YY.
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a3 a2

a1

(a) a3 a2

a1

(b)
a3 a2

a1

(
) a3 a2

a1

(d)

(e) (f)Fig. 11. Exe
ution of the en
oding algorithm on an example.ACM Journal Name, Vol. V, No. N, Month 20YY.
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n − 2 inner nodes, yielding an en
oding Dy
k word of length 2(n − 2).Similarly, the opening of a 3-
onne
ted map with i verti
es and j inner fa
es isa bla
k-rooted bi
olored binary tree with i − 3 bla
k nodes and j white nodes. Abla
k-rooted bi
olored binary trees with a given number of bla
k and white nodesis en
oded by a pair of words, as explained in Se
tion 4.5.1. Then the two words
an be asymptoti
ally optimally en
oded in linear time, a

ording to [Boni
hon etal. 2003, Lem.7℄.Theorem 7.1. The 
oding algorithm has linear-time 
omplexity and is asymp-toti
ally optimal: the number of bits per edge of the 
ode of a map in P ′

n (resp. in
P ′

ij) is asymptoti
ally equal to the binary entropy per edge, de�ned as 1
n log2(|P

′
n|)(resp. 1

i+j−2 log2(|P
′
ij |)).Proof. It is 
lear that the en
oding algorithm has linear-time 
omplexity, pro-vided the algorithm 
omputing the 
onstrained orientation without 
lo
kwise 
ir
uitof the derived map has linear-time 
omplexity (whi
h will be proved in Se
tion 9and Se
tion 10).A

ording to Corollary 4.9, Proposition 6.1 and 6.2, |B′

n|/|P
′
n| and |B•

ij |/|P
′
ij |are bounded by �xed polynomials. Hen
e, the entropy per edge of B′

n and P ′
n areasymptoti
ally equal, and the binary entropy per edge of B•

ij and P ′
ij are asymp-toti
ally equal. As the en
oding of obje
ts of B′

n (B•
ij) using parenthesis words isasymptoti
ally optimal, the en
oding of obje
ts of P ′

n (P ′
ij , respe
tively) is alsoasymptoti
ally optimal.8. PROOF OF THEOREM 4.4This se
tion is devoted to the proof of Theorem 4.4, whi
h states that ea
h irre-du
ible disse
tion has a unique tri-orientation without 
lo
kwise 
ir
uit.8.1 α-orientations and outline of the proofDe�nition. Let G = (V, E) be a planar map. Consider a fun
tion α : V → N. An

α-orientation of G is an orientation of the edges of G su
h that the outdegree ofea
h vertex v of G is α(v). If an α-orientation exists, then the fun
tion α is said tobe feasible for G.Existen
e and uniqueness of α-orientations. The following results are proved in [Fel-sner 2004℄ (the �rst point had already been proved in [Ossona de Mendez 1994℄):Theorem 8.1 ([Felsner 2004℄). Given a planar map G and a feasible fun
-tion α, there exists a unique α-orientation of G without 
lo
kwise 
ir
uit. This
α-orientation is 
alled the minimal 1 α-orientation of G.Given the derived map of an outer-triangular 3-
onne
ted planar map, the fun
-tion α0 su
h that α0(v) = 3 for all primal and dual verti
es and α0(v) = 1 for alledge-verti
es is a feasible fun
tion.Theorem 8.1 ensures uniqueness of the orientation without 
lo
kwise 
ir
uit of agraph with pres
ribed outdegree for ea
h vertex. However, this property does not
1The term minimal refers to the fa
t that the set of all α-orientations of G forms a distributivelatti
e, the ��ip� operation being a 
ir
uit reversion.ACM Journal Name, Vol. V, No. N, Month 20YY.
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tly imply uniqueness in Theorem 4.4, be
ause a tri-orientation has bi-orientededges.To use Theorem 8.1, we work with the derived map G′ of an irredu
ible disse
-tion D, as de�ned in Se
tion 3.3. We have de�ned derived maps only for a subset ofirredu
ible disse
tions, namely for bi
olored 
omplete irredu
ible disse
tions (re
allthat these are bi
olored disse
tions su
h that the 3 outer white verti
es have de-gree 2). As a 
onsequen
e, a �rst step toward proving Theorem 4.4 is to redu
e itsproof to the proof of existen
e and uniqueness of a so-
alled 
omplete-tri-orientation(a slight adaptation of the de�nition of tri-orientation) without 
lo
kwise 
ir
uit forany bi
olored 
omplete irredu
ible disse
tion.We prove that a 
omplete-tri-orientation without 
lo
kwise 
ir
uit of a bi
olored
omplete irredu
ible disse
tion D is transposed inje
tively into an α0-orientationwithout 
lo
kwise 
ir
uit of its derived map G′. By inje
tivity and by uniquenessof the α0-orientation without 
lo
kwise 
ir
uit of G′, this implies uniqueness of atri-orientation without 
lo
kwise 
ir
uit for D.The �nal step will be to prove that an α0-orientation without 
lo
kwise 
ir
uit of
G′ is transposed into a 
omplete-tri-orientation without 
lo
kwise 
ir
uit of D. Byexisten
e of an α0-orientation without 
lo
kwise 
ir
uit for G′ (Theorem 8.1), thisimplies the existen
e of a 
omplete-tri-orientation without 
lo
kwise 
ir
uit of D.8.2 Redu
tion to the 
ase of bi
olored 
omplete disse
tionsIntrodu
tion. The aim of this se
tion is to redu
e the proof of Theorem 4.4 to the
lass of 
omplete bi
olored irredu
ible disse
tions. We state the following propo-sition where the term �
omplete-tri-orientation�, to be de�ned later, is a slightadaptation of the notion of tri-orientation.Proposition 8.2. The existen
e and uniqueness of a 
omplete-tri-orientationwithout 
lo
kwise 
ir
uit for any bi
olored 
omplete irredu
ible disse
tion impliesthe existen
e and uniqueness of a tri-orientation without 
lo
kwise 
ir
uit for anyirredu
ible disse
tion, i.e., implies Theorem 4.4.The rest of this subse
tion is devoted to the proof of Proposition 8.2. The proofis done in two steps. First, redu
e the proof of Theorem 4.4 to the existen
e anduniqueness of a tri-orientation without 
lo
kwise 
ir
uit for any bi
olored 
ompleteirredu
ible disse
tion. Then, prove that this redu
es to the existen
e and uniquenessof a 
omplete-tri-orientation without 
lo
kwise 
ir
uit for any bi
olored 
ompleteirredu
ible disse
tion.Completion of a bi
olored irredu
ible disse
tion. For any bi
olored irredu
ible dis-se
tion D, we de�ne its 
ompleted disse
tion Dc as follows . For ea
h white vertex
v of the hexagon, we denote by el(v) (er(v)) the outer edge starting from v withthe interior of the hexagon on the left (right, respe
tively) and denote by l(v) and
r(v) the neighbours of v in
ident to el(v) and to er(v). We perform the followingoperation: if v has degree at least 3, a new white vertex v′ is 
reated outside of thehexagon and is linked to l(v) and to r(v) by two new edges el(v

′) and er(v
′), seeFigure 12. The vertex v′ is said to 
over the vertex v.The disse
tion obtained is a bi
olored disse
tion of the hexagon su
h that thethree white verti
es of the hexagon have two in
ident edges, see the transitionACM Journal Name, Vol. V, No. N, Month 20YY.
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 Fusy et al.between Figure 13(a) and Figure 13(b) (ignore here the orientation of edges).Lemma 8.3. The 
ompletion Dc of a bi
olored irredu
ible disse
tion D is a bi-
olored 
omplete irredu
ible disse
tion.Proof. The outer white verti
es of Dc have degree 2 by 
onstru
tion. Hen
e,we just have to prove that Dc is irredu
ible. As D is irredu
ible, if a separating4-
y
le C appears in Dc when the 
ompletion is performed, then it must 
ontain awhite vertex v′ of the hexagon of Dc added during the 
ompletion, so as to 
overan outer white vertex v of degree greater than 2. Two edges of C are the edges
el(v

′) and er(v
′) in
ident to v′ in Dc. The two other edges ǫ1 and ǫ2 of C form apath of length 2 
onne
ting the verti
es l(v) and r(v) and passing by the interiorof D (otherwise, C would en
lose a fa
e). As D is irredu
ible, the 4-
y
le C′ of

D 
onsisting of the edges el(v), er(v), ǫ1 and ǫ2 delimits a fa
e. Hen
e el(v) and
er(v) are in
ident to the same inner fa
e of D, whi
h implies that v has degree 2, a
ontradi
tion.Tri-orientations. Let D be a bi
olored irredu
ible disse
tion and let Dc be its 
om-pleted bi
olored disse
tion. We de�ne a mapping Φ from the tri-orientations of Dcto the tri-orientations of D. Given a tri-orientation Y of Dc, we remove the edgesthat have been added to obtain Dc from D, erase the orientation of the edges ofthe hexagon of D, and orient inward all inner half-edges in
ident to an outer ver-tex of D. We obtain thus a tri-orientation Φ(Y ) of D, see the transition betweenFigure 13(b) and Figure 13(a).Lemma 8.4. Let Y be a tri-orientation of Dc without 
lo
kwise 
ir
uit. Thenthe tri-orientation Φ(Y ) of D has no 
lo
kwise 
ir
uit.For ea
h tri-orientation X of D without 
lo
kwise 
ir
uit, there exists a tri-orientation Y of Dc without 
lo
kwise 
ir
uit su
h that Φ(Y ) = X.Proof. The �rst point is trivial, as the tri-orientation Φ(Y ) is just obtained byremoving some edges and some orientations of half-edges.For the se
ond point, the preimage Y is 
onstru
ted as follows. Consider ea
hwhite vertex v of the hexagon of D whi
h has degree at least 3. Let (h1, . . . , hm)(m ≥ 3) be the series of half-edges in
ident to v in D in 
ounter-
lo
kwise orderaround v, with h1 and h2 belonging respe
tively to the edges er(v) and el(v). As
m ≥ 3, the vertex v gives rise to a 
overing vertex v′ with two in
ident edges el(v

′)and er(v
′) su
h that the edges el(v), er(v), el(v

′) and er(v
′) form a new fa
e f . Theedges el(v) and er(v) be
ome inner edges of Dc when v′ is added, and have thus tobe dire
ted.We orient the two half-edges of el(v) and er(v) respe
tively toward l(v) andtoward r(v), see Figure 12. The vertex v re
eives thus two outgoing half-edges, andwe have to give to v a third outgoing half-edge. The suitable 
hoi
e to avoid theappearan
e of a 
lo
kwise 
ir
uit is to orient h3 outward, see Figure 12. Indeed,assume a 
ontrario that a simple 
lo
kwise 
ir
uit C is 
reated. Then the 
ir
uitmust pass by v. It goes into v using one of the half-edges hi dire
ted toward v, i.e.,

i ≥ 4. Moreover, it must go out of v using the half-edge h3 (indeed, if the 
ir
uituses h1 or h2 to go out of v, then it rea
hes an outer vertex, whi
h has outdegree0). Hen
e, the interior of the 
lo
kwise 
ir
uit C must 
ontain all fa
es in
identACM Journal Name, Vol. V, No. N, Month 20YY.
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el(v) er(v)v

l(v) r(v)

h3 h4 h5

h1
h2

el(v) er(v)v

l(v) r(v)

h3 h4 h5

h1
h2

el(v
′) er(v

′)
v′

f

Fig. 12. From a tri-orientation X of D without 
lo
kwise 
ir
uit, 
onstru
tion of a tri-orientation
Y of Dc without 
lo
kwise 
ir
uit su
h that Φ(Y ) = X.

(a) (b) (
)Fig. 13. A bi
olored irredu
ible disse
tion D endowed with a tri-orientation X without 
lo
kwise
ir
uit (Figure a). The asso
iated 
ompleted disse
tion Dc (the two added white verti
es aresurrounded) endowed with the tri-orientation Y su
h that Φ(Y ) = X (Figure b). The disse
tion
Dc endowed with the 
omplete-tri-orientation Z su
h that Ψ(Z) = Y (Figure 
).to v that are on the right of v when we traverse v from hi and go out using h3.Hen
e, the interior of C must 
ontain the new fa
e f of Dc, see Figure 12. But fis in
ident to outer edges of Dc, hen
e the 
lo
kwise 
ir
uit C must pass by outeredges of Dc, whi
h are not oriented, a 
ontradi
tion. Thus, we have 
onstru
teda tri-orientation Y of Dc without 
lo
kwise 
ir
uit and su
h that Φ(Y ) = X . Anexample of this 
onstru
tion 
an be seen as the transition between Figure 13(a)and Figure 13(b).Lemma 8.5. The existen
e and uniqueness of a tri-orientation without 
lo
k-wise 
ir
uit for any bi
olored 
omplete irredu
ible disse
tion implies the existen
eand uniqueness of a tri-orientation without 
lo
kwise 
ir
uit for any irredu
ibledisse
tion, i.e., implies Theorem 4.4.Proof. This is a 
lear 
onsequen
e of Lemma 8.3 and Lemma 8.4.Complete-tri-orientations. A 
omplete-tri-orientation of a bi
olored 
omplete irre-du
ible disse
tion D is an orientation of the half-edges of D that satis�es the fol-lowing 
onditions (very similar to the 
onditions of a tri-orientation): all bla
kverti
es and all inner white verti
es of D have outdegree 3, the three white verti
esof the hexagon have outdegree 0, and the two half-edges of an edge of D 
an notboth be oriented inward. The di�eren
e with the de�nition of tri-orientation isthat the half-edges of the hexagon are oriented, with pres
ribed outdegree for theACM Journal Name, Vol. V, No. N, Month 20YY.
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es. Similarly as in a tri-orientation, edges of D are distinguished intosimply-oriented edges and bi-oriented edges.Lemma 8.6. Let D ∈ Dn be a bi
olored 
omplete irredu
ible disse
tion endowedwith a 
omplete-tri-orientation without 
lo
kwise 
ir
uit. Then the subgraph T of
D 
onsisting of the bi-oriented edges of D is a tree in
ident to all verti
es of Dex
ept the three outer white verti
es.Proof. We reason similarly as in Lemma 4.2. Let r and s be the numbers of bi-oriented and simply oriented edges of D. From Euler's relation (using the degreesof the fa
es of D), D has 2n + 7 edges, i.e., r + s = 2n + 7. In addition, the ninner verti
es and the three bla
k (resp. white) verti
es of the hexagon of D haveoutdegree 3 (resp. 0). Hen
e, 2r + s = 3(n + 3). Thus, r = n + 2 and s = n + 5.Hen
e, the subgraph T has n+2 edges, has no 
y
le (otherwise, a 
lo
kwise 
ir
uitof D would exist), and is in
ident to at most (n + 3) verti
es, whi
h are the innerverti
es and the three outer bla
k verti
es of D. A 
lassi
al result of graph theoryensures that T is a tree spanning these (n + 3) verti
es.Lemma 8.7. Let D ∈ Dn be a bi
olored 
omplete irredu
ible disse
tion endowedwith a 
omplete-tri-orientation Z without 
lo
kwise 
ir
uit. Then, for ea
h outerbla
k vertex v of D, the unique outgoing inner half-edge in
ident to v belongs to abi-oriented edge.Proof. The subgraph T 
onsisting of the bi-oriented edges of D is a tree span-ning all verti
es of D ex
ept the three outer white verti
es. Hen
e, there is abi-oriented edge e in
ident to ea
h bla
k vertex v of the hexagon and this edge
onsitutes the third outgoing edge of v.Let D be a bi
olored 
omplete irredu
ible disse
tion and Z be a 
omplete-tri-orientation of D without 
lo
kwise 
ir
uit. We asso
iate to Z a tri-orientation Ψ(Z)as follows: erase the orientation of the edges of the hexagon of D; for ea
h bla
kvertex v of the hexagon, 
hange the orientation of the unique outgoing inner half-edge h of v. A

ording to Lemma 8.7, h belongs to a bi-oriented edge e, so thatthe 
hange of orientation of h turns e into an edge simply oriented toward v. Thus,the obtained orientation Ψ(Z) is a tri-orientation.Lemma 8.8. Let D be a bi
olored 
omplete irredu
ible disse
tion. Let Z be a
omplete-tri-orientation of D without 
lo
kwise 
ir
uit. Then the tri-orientation
Ψ(Z) of D has no 
lo
kwise 
ir
uit.For ea
h tri-orientation Y of D without 
lo
kwise 
ir
uit, there exists a 
omplete-tri-orientation Z of D without 
lo
kwise 
ir
uit su
h that Ψ(Z) = Y .Proof. The �rst point is trivial. For the se
ond point, we reason similarly as inLemma 8.4. For ea
h bla
k vertex v of the hexagon of D, let (h1, . . . , hm) (m ≥ 3)be the sequen
e of half-edges of D in
ident to v in 
ounter-
lo
kwise order around
v, with h1 and h2 belonging to the two outer edges er(v) and el(v) of D that arein
ident to v. To 
onstru
t the preimage Z of Y , we make the edges el(v) and er(v)simply oriented toward their in
ident white vertex. The third outgoing half-edge is
hosen to be h3, whi
h is the �leftmost� inner half-edge of v. An argument similar asin the proof of the se
ond point of Lemma 8.4 ensures that this 
hoi
e is judi
ious toACM Journal Name, Vol. V, No. N, Month 20YY.
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(a) (b) (
)Fig. 14. The 
onstru
tion of the derived map of a bi
olored 
omplete irredu
ible disse
tion. Thedisse
tion is endowed with a 
omplete-tri-orientation without 
lo
kwise 
ir
uit, and the derivedmap is endowed with the orientation obtained using the transposition rules for orientations.avoid the 
reation of a 
lo
kwise 
ir
uit. An example of this 
onstru
tion is shownin Figure 13(b)-(
).Finally, Proposition 8.2 follows dire
tly from Lemma 8.5 and Lemma 8.8.Proposition 8.5 redu
es the proof of Theorem 4.4 to proving the existen
e anduniqueness of a 
omplete-tri-orientation without 
w 
ir
uit for any bi
olored 
om-plete irredu
ible disse
tion. From now on, we will work with these disse
tions.8.3 Transposition rules for orientationsLet D be a bi
olored 
omplete irredu
ible disse
tion and let G′ be the derived mapof D. We asso
iate to a 
omplete-tri-orientation of D an orientation of the edgesof G′ of D as follows, see Figure 14: ea
h edge e = (v, v′) �with v the primal/dualvertex and v′ the edge-vertex� re
eives the dire
tion of the half-edge of D following
e in 

w order around v.Lemma 8.9. Let D be a bi
olored 
omplete irredu
ible disse
tion endowed witha 
omplete-tri-orientation without 
lo
kwise 
ir
uit. Then the orientation of thederived map G′ of D obtained using the transposition rules has the following prop-erties:�ea
h primal or dual vertex of G′ has outdegree 3.�ea
h edge-vertex of G′ has outdegree 1.In other words, the orientation of G′ obtained by applying the transposition rules isan α0-orientation.Proof. The �rst point is trivial. For the se
ond point, let f be an inner fa
eof D and vf the asso
iated edge-vertex of G′ (we re
all that vf is the interse
tionof the two diagonals of f). The transposition rules for orientation ensures thatthe outdegree of vf in G′ is the number nf of inward half-edges of D in
ident to
f . Hen
e, to prove that ea
h edge-vertex of G′ has outdegree 1, we have to provethat nf = 1 for ea
h inner fa
e f of D. Observe that nf is a positive number,ACM Journal Name, Vol. V, No. N, Month 20YY.
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ev e v

v1

v′C eev v′ v 7−→Fig. 15. An oriented path of edges of the disse
tion 
an be asso
iated to ea
h pair (e, e) of
onse
utive edges of C sharing an edge-vertex.otherwise the 
ontour of f would be a 
lo
kwise 
ir
uit. Let n be the number ofinner verti
es of D. Euler's relation implies that D has (n + 2) inner fa
es and
(4n+14) half-edges. By de�nition of a 
omplete-tri-orientation, 3(n+3) half-edgesare outgoing. Hen
e, (n + 5) half-edges are ingoing. Among these (n + 5) ingoinghalf-edges, exa
tly three are in
ident to the outer fa
e (see Figure 13(
)). Hen
e, Dhas (n + 2) half-edges in
ident to an inner fa
e, so that ∑

f nf = n + 2. As ∑
f nfis a sum of (n + 2) positive numbers adding to (n + 2), the pigeonhole's prin
ipleensures that nf = 1 for ea
h inner fa
e f of D.8.4 Uniqueness of a tri-orientation without 
lo
kwise 
ir
uitThe following lemma is the 
ompanion of Lemma 8.9 and is 
ru
ial to establishthe uniqueness of a tri-orientation without 
lo
kwise 
ir
uit for any irredu
ibledisse
tion.Lemma 8.10. Let D be a bi
olored 
omplete irredu
ible disse
tion endowed witha 
omplete-tri-orientation Z without 
lo
kwise 
ir
uit. Let G′ be the derived mapof D. Then the α0-orientation X of G′ obtained from Z by the transposition ruleshas no 
lo
kwise 
ir
uit.Proof. Assume that X has a 
lo
kwise 
ir
uit C. Ea
h edge of G′ 
onne
ts anedge-vertex and a vertex of the original disse
tion D. Hen
e, the 
ir
uit C 
onsistsof a sequen
e of pairs (e, e) of 
onse
utive edges of G′ su
h that e goes from a vertex

v of the disse
tion toward an edge-vertex v′ of G′ and e goes from v′ toward a vertex
v of the disse
tion. Let (e′1, . . . , e

′
m) be the sequen
e of edges of G′ between e and

e in 
lo
kwise order around v′, so that e′1 = e; and e′m = e and let (v1, . . . , vm) betheir respe
tive extremities, so that v1 = v and vm = v. Noti
e that 2 ≤ m ≤ 4.As ea
h edge-vertex has outdegree 1 in X and as e′m is going out of v′, the edges
e′1, . . . , e

′
m−1 are dire
ted toward v′. Hen
e, the transposition rules for orientationsensure that the edges (vi, vi+1), for 1 ≤ i ≤ m − 1, are all bi-oriented or orientedfrom vi to vi+1 in the 
omplete-tri-orientation Z of D. Hen
e, we 
an go from vto v passing by the exterior of C and using only edges of D, see Figure 15 for anexample, where m = 3.Con
atenating the paths of edges ofD asso
iated to ea
h pair (e, e) of C, we obtaina 
losed oriented path of edges of D en
losing the interior of C on its right. Clearly,a simple 
lo
kwise 
ir
uit 
an be extra
ted from this 
losed path, see Figure 16. Asthe 
omplete-tri-orientation Z has no 
lo
kwise 
ir
uit, this yields a 
ontradi
tion.Proposition 8.11. Ea
h irredu
ible disse
tion has at most one tri-orientationwithout 
lo
kwise 
ir
uit.ACM Journal Name, Vol. V, No. N, Month 20YY.
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7−→

Fig. 16. A simple 
lo
kwise 
ir
uit 
an be extra
ted from an oriented path en
losing a boundedsimply 
onne
ted region on its right.Proof. Let D be a bi
olored 
omplete irredu
ible disse
tion and G′ its derivedmap. A �rst important remark is that the transposition rules for orientations 
learlyde�ne an inje
tive mapping. In addition, Lemma 8.10 ensures that the image of a
omplete-tri-orientation of D without 
lo
kwise 
ir
uit is an α0-orientation of G′without 
lo
kwise 
ir
uit. Hen
e, inje
tivity of the mapping and uniqueness of an
α0-orientation without 
lo
kwise 
ir
uit of G′ (Theorem 8.1) ensure that D has atmost one 
omplete-tri-orientation without 
lo
kwise 
ir
uit. Hen
e, Proposition 8.2implies that ea
h irredu
ible disse
tion has at most one tri-orientation without
lo
kwise 
ir
uit.8.5 Existen
e of a tri-orientation without 
lo
kwise 
ir
uitInverse of the transposition rules. Let D be a bi
olored 
omplete irredu
ible disse
-tion and G′ its derived map. Given an α0-orientation of G′, we asso
iate to thisorientation an orientation of the half-edges of D by performing the inverse of thetransposition rules: ea
h half-edge h of D re
eives the orientation of the edge of G′that follows h in 
lo
kwise order around its in
ident vertex, see Figure 14(b).Lemma 8.12. Let D be an irredu
ible disse
tion and G′ the derived map of D,endowed with its minimal α0-orientation. Then the inverse of the transpositionrules for orientations yields a 
omplete-tri-orientation of D.Proof. The inverse of the transposition rules is 
learly su
h that a vertex has thesame outdegree in the orientation of D as in the α0-orientation of G′. Hen
e, ea
hvertex of D has outdegree 3 ex
ept the 3 outer white verti
es that have outdegree 0,see Figure 14(b).To prove that the orientation of D is a 
omplete-tri-orientation, it remains toshow that the two half-edges of an edge e of D 
an not both be oriented inward.Assume a 
ontrario that there exists su
h an edge e. The transposition rules fororientation and the fa
t that ea
h edge-vertex of G′ has outdegree 1 imply that theboundary of the fa
e fe of G′ asso
iated to e is a 
lo
kwise 
ir
uit, see Figure 17.This yields a 
ontradi
tion with the minimality of the α0-orientation.Lemma 8.13. Let D be a bi
olored 
omplete irredu
ible disse
tion and let G′ beits derived map. Then the 
omplete-tri-orientation of D asso
iated with the minimal
α0-orientation of G′ has no 
w 
ir
uit.Proof. Let X be the minimal α0-orientation of G′ and let Z be the asso
iatedACM Journal Name, Vol. V, No. N, Month 20YY.
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e e7−→Fig. 17. The 
ase where the two half-edges of e are oriented inward implies that the boundary ofthe asso
iated fa
e of G′ is a 
lo
kwise 
ir
uit.
omplete-tri-orientation of D. Assume that Z has a 
lo
kwise 
ir
uit C. For ea
hvertex v on C, we denote by hv the half-edge of C starting from v with the interiorof C on its right, and we denote by ev the edge of G′ that follows hv in 
lo
kwiseorder around v. As C is a 
lo
kwise 
ir
uit for Z, hv is going out of v. Hen
e,by de�nition of the transposition rules, ev is going out of v. Observe that, in theinterior of C, ev is the most 
ounter-
lo
kwise edge of G′ in
ident to v.We use this observation to build iteratively a 
lo
kwise 
ir
uit of X , yielding a
ontradi
tion. First we state the following result proved in [Felsner 2004℄: �for ea
hvertex v ∈ G′ there exists a simple oriented path Pv in G′, 
alled the straight pathof v, whi
h starts at v and ends at a vertex in
ident to the outer fa
e of G′". Let

v0 be a vertex on C, and Pv0 be the straight path starting at ev0 for the orientation
X . Then Pv0 has to rea
h C at a vertex v1 di�erent from v0. Denote by P1 thepart of Pv0 between v0 and v1, by Λ1 the part of the 
lo
kwise 
ir
uit C between v1and v0, and by C1 the 
y
le en
losed by the 
on
atenation of P1 and Λ1. Let Pv1be the straight path starting at ev1 . The fa
t that ev1 is the most 
ounter
lo
kwisein
ident edge of v1 in the interior of C ensures that Pv1 starts in the interior of C1.Then, the path Pv1 has to rea
h C1 at a vertex v2 6= v1. We denote by P2 the partof the path Pv1 between v1 and v2. If v2 belongs to P1, then the 
on
atenationof the part of P1 between v2 and v1 and of the part of P2 between v1 and v2 is a
lo
kwise 
ir
uit, a 
ontradi
tion. Hen
e, v2 is on Λ1 stri
tly between v1 and v0.We denote by P 2 the 
on
atenation of P1 and P2, and by Λ2 the part of C goingfrom v2 to v0. As v2 is stri
tly between v1 and v0, Λ2 is stri
tly in
luded in Λ1.Finally, we denote by C2 the 
y
le made of the 
on
atenation of P 2 and Λ2. Hen
e,similarly as for the path Pv1 , the straight path Pv2 starting at ev2 must start in theinterior of C2.Then we 
ontinue iteratively, see Figure 18. At ea
h step k, we 
onsider thestraight path Pvk

starting at evk
. This path starts in the interior of the 
y
le

Ck, and rea
hes Ck at another vertex vk+1. This vertex vk+1 
an not belong to
P k := P1 ∪ . . . ∪ Pk, otherwise a 
lo
kwise 
ir
uit of X would be 
reated. Hen
e,
vk+1 is on C stri
tly between vk and v0. In parti
ular the path Λk+1 going from
vk+1 to v0 on C, is stri
tly in
luded in the path Λk going from vk to v0 on C, i.e.,
Λk shrinks stri
tly at ea
h step. Thus, there must be a step k0 when Pvk0

rea
hes
Ck0 at a vertex on P k0 , 
reating a 
lo
kwise 
ir
uit of X , a 
ontradi
tion.Proposition 8.14. For ea
h irredu
ible disse
tion, there exists a tri-orientationwithout 
lo
kwise 
ir
uit.Proof. Lemma 8.13 ensures that ea
h bi
olored 
omplete irredu
ible disse
tion
D has a 
omplete-tri-orientation Z without 
lo
kwise 
ir
uit; and Proposition 8.2ACM Journal Name, Vol. V, No. N, Month 20YY.
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Fig. 18. The presen
e of a 
lo
kwise 
ir
uit in Z implies the presen
e of a 
lo
kwise 
ir
uit in X.ensures that the existen
e of a 
omplete-tri-orientation without 
lo
kwise 
ir
uitfor any bi
olored 
omplete irredu
ible disse
tion implies the existen
e of a tri-orientation without 
lo
kwise 
ir
uit for any irredu
ible disse
tion.Finally, Theorem 4.4 follows from Proposition 8.11 and Proposition 8.14.9. COMPUTING THE MINIMAL α0-ORIENTATION OF A DERIVED MAPWe des
ribe in this se
tion a linear-time algorithm to 
ompute the minimal α0-orientation of the derived map of an outer-triangular 3-
onne
ted plane graph.This result is 
ru
ial for the en
oding algorithm of Se
tion 7 to have linear time
omplexity (see the transition between Figure 11(b) and Figure 11(
)).As dis
ussed in [Felsner 2004℄, given a 3-
onne
ted map G and its derived map
G′, an α0-orientations of G′ 
orresponds to a so-
alled S
hnyder wood of G. TheseS
hnyder woods of 3-
onne
ted maps are the right generalisations of S
hnyderwoods of triangulations [S
hnyder 1990℄. Quite naturally, our algorithm is a gen-eralization of the algorithm to 
ompute the minimal S
hnyder wood of a trian-gulation [Brehm 2000℄. The ideas for the extension to 3-
onne
ted maps havealready been introdu
ed by [Kant 1996℄ and [di Battista et al. 1999℄. The algo-rithm of [di Battista et al. 1999℄ outputs a S
hnyder wood of a 3-
onne
ted map;whi
h 
an be subsequently made minimal by iterated 
ir
uit reversions with a linearoverall 
omplexity, as easily follows from ideas presented in [Khuller et al. 1993℄.Our algorithm relies on similar prin
iples, suitably modi�ed so as to ouput dire
tlythe minimal S
hnyder wood (i.e., the S
hnyder wood asso
iated with the minimal
α0-orientation), also in linear time. In itself our algorithm for 3-
onne
ted mapsis only slightly more involved than the algorithm for triangulations, as opposed tothe 
orre
tness proof, whi
h is mu
h harder (see the dis
ussion at the beginningof Se
tion 10). Be
ause of this we give a rather proof-oriented des
ription of thealgorithm.Our algorithm is also of independent interest in 
onne
tion with S
hnyder woods,and it has appli
ations in the 
ontext of graph drawing. Indeed, the minimalS
hnyder wood orientation is also a key ingredient for the straight-line drawingalgorithm presented in [Boni
hon et al. 2007℄. This algorithm relies on operations ofedge-deletion, embedding of the obtained graph, and then embedding of the deletededges. The grid size is guaranteed to be bounded by (n − 2) × (n − 2) �equallingACM Journal Name, Vol. V, No. N, Month 20YY.
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hnyder's algorithm [S
hnyder 1990℄� provided the S
hnyder wood usedis the one asso
iated to the minimal α0-orientation. An implementation of thisdrawing algorithm in
luding our orientation algorithm has been made available byBoni
hon in [de Fraysseix et al. ℄.9.1 Prin
iple of the algorithmLet G be an outer-triangular 3-
onne
ted planar graph and let G′ be its derivedmap and G∗ its dual map. We denote by a1, a2 and a3 the outer verti
es of G in
lo
kwise order. We des
ribe here a linear-time iterative algorithm to 
ompute theminimal α0-orientation of G′. The idea is to maintain a simple 
y
le of edges of G;at ea
h step k, the 
y
le, denoted by Ck, is shrinked by 
hoosing a so-
alled eligiblevertex v on Ck, and by removing from the interior of Ck all fa
es in
ident to v. Theeligible vertex is always di�erent from a2 and a3, so that the edge (a2, a3), 
alledbase-edge, is always on Ck. The edges of G′ 
easing to be on Ck or in the interior of
Ck are oriented so that the following invariants remain satis�ed.Orientation invariants:� For ea
h edge e of G outside Ck, the 4 edges of G′ in
ident to the edge-vertex
ve asso
iated to e have been oriented at a step j < k and ve has outdegree 1.� All other edges of G′ are not yet oriented.Moreover, the edges that 
orrespond to half-edges of G also re
eive a label in
{1, 2, 3}, so that the following invariants for labels remain satis�ed:Labelling invariants:� At ea
h step k, every vertex v of G outside of Ck has one outgoing half-edgefor ea
h label 1, 2 and 3 and these outgoing edges appear in 
lo
kwise order around
v. In addition, all edges between the outgoing edges with labels i and i + 1 arein
oming with label i − 1, see Figure 19(a).� Let v be a vertex of G on Ck having at least one in
ident edge of G′ outside of
Gk. Then exa
tly one of these edges, denoted by e′1, is going out of v. In additionit has label 1. The edges of G′ in
ident to v and between e′1 and its left neighbouron Ck are in
oming with label 2; and the edges in
ident to v in G′ between e′1 andits right neighbour on Ck are in
oming with label 3, see Figure 19(b).� For ea
h edge e of G outside of Gk, let e′ be the unique outgoing edge of itsasso
iated edge-vertex ve. Two 
ases 
an o

ur:� If e′ is an half-edge of G then the two edges of G′ in
ident to ve and formingthe edge e are identi
ally labelled. This 
orresponds to the 
ase where e is �simplyoriented�.� If e′ is an half-edge of G∗, we denote by 1 ≤ i ≤ 3 the label of the edgeof G′ following e′ in 
lo
kwise order around ve. Then the edge of G′ following
e′ in 
ounter-
lo
kwise order around ve is labelled i + 1, see Figure 19(
). This
orresponds to the 
ase where e is �bi-oriented�.A
tually, the labels are not needed to 
ompute the orientation, but they will bevery useful to prove that the algorithm outputs the minimal α0-orientation. Theselabels are in fa
t the ones of the S
hnyder woods of G, as dis
ussed in [Felsner2004℄.ACM Journal Name, Vol. V, No. N, Month 20YY.
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2 3(
)Fig. 19. The invariants for the labels of the half-edges of G maintained during the algorithm.In the following, we write Gk for the submap of G obtained by removing allverti
es and edges outside of Ck (at step k). In addition, we order the verti
es of
Ck from left to right a

ording to the order indu
ed by the path Ck\{a2, a3}, with
a3 as left extremity and a2 as right extremity. In other words, a vertex v ∈ Ck ison the left of a vertex v′ ∈ Ck if the path of Ck going from v to v′ without passingby the edge (a2, a3) has the interior of Ck on its right.9.2 Des
ription of the main iterationLet us now des
ribe the k-th step of the algorithm, during whi
h the 
y
le Ck isshrinked so that the invariants for orientation and labelling remain satis�ed. Thedes
ription requires some de�nitions.De�nitions. A vertex of Ck is said to be a
tive if it is in
ident to at least one edge of
G\Gk. Otherwise, the vertex is passive. By 
onvention, before the �rst step of thealgorithm, the vertex a1 is 
onsidered as a
tive and its in
ident half-edge dire
tedtoward the outer fa
e is labelled 1.For ea
h pair of verti
es (v1, v2) of Ck �with v1 is on the left of v2�, the path on
Ck going from v1 to v2 without passing by the edge (a2, a3) is denoted by [v1, v2].We also write ]v1, v2[ for [v1, v2] deprived from the endverti
es v1 and v2.A pair (v1, v2) of verti
es of Ck is separating if there exists an inner fa
e f of Gksu
h that v1 and v2 are in
ident to f but the edges of [v1, v2] are not all in
identto f . Su
h a fa
e is 
alled a separating fa
e and the triple (v1, v2, f) is 
alled aseparator. The (
losed) area delimited by the path [v1, v2] and by the path of edgesof f going from v1 to v2 with the interior of f on its right is 
alled the separatedarea of (v1, v2, f) and is denoted by Sep(v1, v2, f).A vertex v on Ck is said to be blo
ked if it belongs to a separating pair. It iseasily 
he
ked that a vertex is blo
ked i� it is in
ident to a separating fa
e of Gk. Inparti
ular, a non blo
ked vertex does not belong to any separating pair of verti
es.By 
onvention, the verti
es a2 and a3 are always 
onsidered as blo
ked. A vertex
v on Ck is eligible if it is a
tive and not blo
ked.Finally, for ea
h vertex v of Ck, we de�ne its left-
onne
tion vertex left(v) asthe leftmost vertex on Ck su
h that the verti
es of ]left(v), v[ all have degree 2 in
Gk. The path [left(v), v] is 
alled the left-
hain of v and the �rst edge of [left(v), v]is 
alled the left-
onne
tion edge of v. Similarly, we de�ne the right-
onne
tionvertex, the right-
hain, and the right-
onne
tion edge of v. Noti
e that all verti
esACM Journal Name, Vol. V, No. N, Month 20YY.
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v(k)1 1 1 12 1221 3 33 (a)

v(k)1 1 1 12 13223 3 3
(b)

v(k)11 1 1 1 12 232323 (
)
v(k) 21 1 1 123223 3 3

(d)Fig. 20. The operations performed at step k of the algorithm, whether left(v(k)) and right(v(k))are passive-passive (Fig. a) or a
tive-passive (Fig. b) or passive-a
tive (Fig. 
) or a
tive-a
tive(Fig. d). A
tive verti
es are surrounded.of ]left(v), v[ and of ]v, right(v)[ are a
tive, as ea
h vertex of a 3-
onne
ted graphhas degree at least 3.Operations at step k. First, we 
hoose the rightmost eligible vertex of Ck and we 
all
v(k) this vertex. (We will prove in Lemma 9.2 that there always exists an eligiblevertex on Ck as long as Gk is not redu
ed to the edge (a2, a3).) Noti
e that thiseligible vertex 
an not be a2 nor a3 be
ause a2 and a3 are blo
ked.We denote by f1, . . . , fm the bounded fa
es of Gk in
ident to v(k) from right toleft, and by e1, . . . , em+1 the edges of Gk in
ident to v(k) from right to left. Hen
e,for ea
h 1 ≤ i ≤ m, fi 
orresponds to the se
tor between ei and ei+1.An important remark is that the right-
hain of v(k) is redu
ed to one edge.Indeed, if there exists a vertex v in ]v(k), right(v(k))[, then v is a
tive, as dis
ussedabove. In addition, v is in
ident to only one inner fa
e of Gk, namely f1. As f1is in
ident to v(k) and as v(k) is non blo
ked, f1 is not separating. Hen
e v is notblo
ked. Thus v is eligible and is on the right of v(k), in 
ontradi
tion with the fa
tthat v(k) is the rightmost eligible vertex on Ck.We label and orient the edges of G′ in
ident to the edge-verti
es on the left-
hainof v(k) and on the edges e1, . . . em, see Figure 20:� Inner edges: For ea
h edge ei with 2 ≤ i ≤ m, we denote by vei the
orresponding edge-vertex of G′. Orient the two edges of G′ forming ei toward v(k)and give label 1 to these two edges. Orient the two other in
ident edges of veitoward vei , so that vei has outdegree 1.� Left-
hain: For ea
h edge e of the left-
hain of v(k) �traversed from v(k)to left(v(k))� di�erent from the left-
onne
tion edge, bi-orient e and give label 3(resp. label 2) to the �rst (resp. se
ond) traversed half-edge. Choose the uniqueACM Journal Name, Vol. V, No. N, Month 20YY.
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tions and trees · 37outgoing edge of the edge-vertex ve asso
iated to e to be the edge going out of etoward the interior of Ck� Left-
onne
tion edge: If left(v(k)) is passive, bi-orient the left-
onne
tionedge e of v(k), give label 1 to the half-edge in
ident to left(v(k)) and label 3 to theother half-edge, and 
hoose the unique outgoing edge of the edge-vertex ve to bethe edge going out of ve toward the exterior of Ck. If left(v(k)) is a
tive, label 3and orient toward left(v(k)) the two edges of G′ forming e, and orient the two dualedges in
ident to ve toward ve.� Right-
onne
tion edge: The edge e1, whi
h is the right-
onne
tion edge of
v(k), is treated symmetri
ally as the left-
onne
tion edge. If right(v(k)) is passive,bi-orient e1, give label 1 to the half-edge in
ident to right(v(k)) and label 2 to theother half-edge, and 
hoose the unique outgoing edge of the edge-vertex ve1 to bethe edge going out of ve1 toward the exterior of Ck. If right(v(k)) is a
tive, label 2and orient toward right(v(k)) the two edges of G′ forming e1, and orient the twodual edges in
ident to ve1 toward ve1 .After these operations, all fa
es in
ident to v(k) are removed from the interiorof Ck, produ
ing a (shrinked) 
y
le Ck+1. As a2 and a3 are blo
ked on Ck, Ck+1still 
ontains the edge (a2, a3). In addition, if Ck+1 is not redu
ed to (a2, a3), theproperty of 3-
onne
tivity of G and the fa
t that the 
hosen vertex v(k) is notin
ident to any separating fa
e easily ensure that Ck+1 is a simple 
y
le, i.e., it doesnot 
ontain any separating vertex.It is also easy to get 
onvin
ed from Figure 19 and Figure 20 that the operationsperformed at step k maintain the invariants of orientation and labelling.The purpose of the next two lemmas is to prove that the algorithm terminates.Lemma 9.1. Let (v1, v2, f) be a separator on Ck. Then there exists an eligiblevertex in ]v1, v2[.Proof. Consider the (non empty) set of separators whose separated area isin
luded or equal to the separated area of (v1, v2, f), and let (v′1, v

′
2, f

′) be su
h aseparator minimal w.r.t. the in
lusion of the separated areas. Observe that v′1 and
v′2 are in [v1, v2].Assume that no vertex of ]v′1, v

′
2[ is a
tive. Then the removal of v′1 and v′2dis
onne
ts Sep(v′1, v

′
2, f) from G\Sep(v′1, v

′
2, f). This is in 
ontradi
tion with 3-
onne
tivity of G, be
ause these two sets are easily proved to 
ontain at least onevertex di�erent from v′1 and v′2.Hen
e, there exists an a
tive vertex v in ]v′1, v

′
2[, also in ]v1, v2[. If v was in
identto a separating fa
e, this fa
e would be in
luded in the separated area of (v′1, v

′
2, f

′),whi
h is impossible by minimality of (v′1, v
′
2, f

′). Hen
e, the a
tive vertex v is notblo
ked, i.e., is eligible.Lemma 9.2. As long as Ck is not redu
ed to (a2, a3), there exists an eligiblevertex on Ck.Proof. Assume that there exists no separating pair of verti
es on Ck. In this
ase, an a
tive vertex on Ck di�erent from a2 and a3 is eligible. Hen
e we justhave to prove the existen
e of su
h a vertex. At the �rst step of the algorithm,there exists an a
tive vertex on C1\{a2, a3} be
ause a1 is a
tive by 
onvention. AtACM Journal Name, Vol. V, No. N, Month 20YY.
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tive vertex on Ck\{a2, a3}, otherwise the removalof a2 and a3 would dis
onne
t Gk\{a2, a3} from G\Gk, in 
ontradi
tion with the3-
onne
tivity of G.If there exists at least one separator (v1, v2, f), Lemma 9.1 ensures that thereexists an eligible vertex v in ]v1, v2[.Last step of the algorithm. Lemma 9.2 implies that, at the end of the iterations,only the edge e = (a2, a3) remains. To 
omplete the orientation, bi-orient e andlabel 3 (resp. label 2) the half-edge of e whose origin is a2 (resp. a3); the outgoingedge of the edge-vertex ve (asso
iated to e) is 
hosen to be the edge going out of vetoward the outer fa
e. We also label respe
tively 2 and 3 the half-edges in
ident to
a2 and a3 and dire
ted toward the outer fa
e.Figure 21 illustrates the exe
ution of the algorithm on an example, where theedges of Ck are bla
k and bolder. In addition, the a
tive verti
es are surroundedand the rightmost eligible vertex v(k) is doubly surrounded.Theorem 9.3. The algorithm outputs the minimal α0-orientation of the derivedmap.Se
tion 10 is dedi
ated to the proof of this theorem.Remark. As stated in Theorem 9.3, our orientation algorithm outputs a parti
ular
α0-orientation, namely the minimal one. The absen
e of 
lo
kwise 
ir
uit is dueto the fa
t that among all eligible verti
es, the rightmost one is 
hosen at ea
hstep. The algorithm is easily adapted to other 
hoi
es of eligible verti
es: the onlydi�eren
e is that the right-
onne
tion 
hain of the 
hosen eligible vertex mightnot be redu
ed to an edge, in whi
h 
ase it must be dealt with in a symmetri
way as the left-
onne
tion 
hain (that is, 2 be
omes 3 and left be
omes right in thedes
ription of edge labelling and orientation). This yields a �generi
� algorithm that
an produ
e any α0-orientations of G′. Indeed, given a parti
ular α0-orientation Xof G′, it is easy to 
ompute a s
enario (i.e., a suitable 
hoi
e of the eligible vertexat ea
h step) that outputs X . Su
h a s
enario 
orresponds to a so-
alled 
anoni
alordering for treating the verti
es, see [Kant 1996℄.Implementation. Following [Kant 1996℄ (see also [Brehm 2000℄ for the 
ase of trian-gulations), an e�
ient implementation is obtained by maintaining, for ea
h vertex
v ∈ Ck, the number s(v) of separating fa
es in
ident to v. Thus, a vertex is blo
kedi� s(v) > 0. Noti
e that a fa
e f is separating i� the numbers v(f) and e(f) ofverti
es and edges (ex
ept (a2, a3)) of f belonging to Ck satisfy v(f) > e(f) + 1.Thus, it is easy to test if a fa
e is separating, so that the parameters s(f) are alsoeasily maintained. The data stru
ture we use is the half-edge stru
ture, whi
h al-lows us to navigate e�
iently on the graph. The pointer is initially on a1, whi
his the rightmost eligible vertex at the �rst step. During the exe
ution, on
e thevertex v(k) is treated, the pointer is moved to v the right neighbour of v(k) on Ck.The 
ru
ial point is that, if v is blo
ked, then no vertex on the right of v 
an beeligible (be
ause of the nested stru
ture of separating fa
es). Thus, in this 
ase,the pointer is moved to the left until an eligible vertex is en
ountered. Noti
e alsothat v is a
tive after v(k) is treated. Thus, if v is not blo
ked, then v is eligibleat step k + 1. In this 
ase, the nested stru
ture of separating fa
es ensures thatACM Journal Name, Vol. V, No. N, Month 20YY.
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Fig. 21. The exe
ution of the algorithm of orientation on an example.ACM Journal Name, Vol. V, No. N, Month 20YY.



40 · Éri
 Fusy et al.the rightmost eligible vertex at step k + 1, if not v, is either the right-
onne
tionvertex r(v) of v, or the left neighbour of r(v) on Ck+1 (in the 
ase where r(v) is noteligible). Noti
e that, in the 
ase where v is not blo
ked, the pointer is moved tothe right but the edges traversed will be immediately treated (i.e., removed from
Ck+1) at step k + 1. This ensures that an edge 
an be traversed at most twi
e bythe pointer: on
e from right to left and subsequently on
e from left to right. Thus,the 
omplexity is linear.10. PROOF OF THEOREM 9.3Let G be an outer-triangular 3-
onne
ted map, and let X0 be the orientation of thederived map G′ 
omputed by the orientation algorithm. This se
tion is dedi
atedto proving that X0 is the minimal α0-orientation of G′.Our proof is inspired by the proof by Brehm [2000℄ that ensures that, for a trian-gulation, the 
hoi
e of the rightmost eligible vertex at ea
h step yields the S
hnyderwoods without 
lo
kwise 
ir
uit. The argument is the following: the presen
e ofa 
lo
kwise 
ir
uit implies the presen
e of an �in
lusion-minimal� 
lo
kwise 
ir
uitwhi
h is, in the 
ase of a triangulation, a 3-
y
le (x, y, z). Then the 
lo
kwise ori-entation of (x, y, z) determines unambiguously (up to rotation) the labels of the 3edges of (x, y, z). These labels determine an order of treatment of the 3 verti
es x,
y and z that is not 
ompatible with the fa
t that the eligible vertex 
hosen at ea
hstep is the rightmost one.In the general 
ase of 3-
onne
ted maps, whi
h we 
onsider here, the proof ismore involved but follows the same lines. This time there is a �nite set of minimalpatterns (for a triangulation this set is restri
ted to the triangle), su
h that aminimal 
lo
kwise 
ir
uit C in the orientation X0 of the derived map G′ 
an only
orrespond to one of these patterns (the list is shown in Figure 26). A 
ommon
hara
teristi
 is that the presen
e of a 
lo
kwise 
ir
uit C for ea
h of these patternsimplies the presen
e of three paths P1, P2, P3 of edges of G whose 
on
atenationforms a simple 
y
le in G (in the 
ase of a triangulation, the three paths are redu
edto one edge). In addition, the fa
t that C is 
lo
kwise determines unambiguously thelabels and orientations of the edges of P1, P2 and P3. Writing v1, v2 and v3 for therespe
tive origins of these three paths, our proof (as in the 
ase of triangulations,but with quite an amount of te
hni
al details) relies on the fa
t that the labels of
P1, P2, P3 imply an order for pro
essing {v1, v2, v3} that is not 
ompatible withthe fa
t that the eligible vertex 
hosen at ea
h step is the rightmost one.10.1 The algorithm outputs an α0-orientationBy 
onstru
tion of the orientation, ea
h primal vertex of the derived map G′ has oneoutgoing edge in ea
h label 1, 2 and 3, hen
e it has outdegree 3. By 
onstru
tionalso, ea
h edge-vertex of G′ has outdegree 1. Hen
e, to prove that X0 is an α0-orientation, it just remains to prove that ea
h dual vertex of G′ has outdegree 3in X0.Let f be an inner fa
e of G and vf the 
orresponding dual vertex in G∗. Let k bethe step during whi
h f is merged with the outer fa
e of G. At this step, a sequen
eof 
onse
utive edges of f has been removed. This path of removed 
onse
utive edgesis 
alled the upper path of f . The path of edges of f that are not in the upper pathof f is 
alled the lower path of f . By 
onstru
tion of the orientation (see Figure 20),ACM Journal Name, Vol. V, No. N, Month 20YY.
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2−3 or 22 or 33

2 1 2 1 1 1 3 1 32Fig. 22. The dual vertex of a fa
e f has one outgoing edge 
onne
ted to the lower path of f .exa
tly two edges of G′ 
onne
ting vf to an edge-vertex of the upper path of f aregoing out of vf : these are the edge-verti
es 
orresponding to the two extremal edgesof the upper path.Hen
e it just remains to prove that exa
tly one edge of G′ 
onne
ting vf to anedge-vertex of the lower path of f is going out of vf . First, observe that the lowerpath P of f is a non empty path of edges on Ck+1, su
h that the two extremities
vl and vr of the path are a
tive and all verti
es of ]vl, vr[ are passive on Ck+1, seeFigure 20. The fa
t that exa
tly one edge of G′ 
onne
ting vf to an edge-vertex of
P is going out of vf is a dire
t 
onsequen
e of the following lemma, see Figure 22.Lemma 10.1. At a step k of the algorithm, let v1 and v2 be two a
tive verti
eson Ck su
h that all verti
es of ]v1, v2[ are passive. Then the path [v1, v2] on Ck ispartitioned into� a (possibly empty) path [v1, v] whose edges are bi-oriented in the �nally 
om-puted orientation X0, the left half-edge having label 2 and the right half-edge label 1,� an edge e = [v, v′] either simply oriented with label 2 from v to v′, or simplyoriented with label 3 from v′ to v, or bi-oriented, with label 2 on the half-edgein
ident to v and label 3 on the half-edge in
ident to v′,� a (possibly empty) path [v′, v2] su
h that, ea
h edge of [v′, v2] is bi-oriented,with label 1 on the left half-edge and label 3 on the right half-edge.Proof. The proof is by indu
tion on the length L of [v1, v2]. Assume that L = 1.Then [v1, v2] is redu
ed to an edge. If v1 is removed at an earlier step than v2, thenthe edge (v1, v2) is simply oriented with label 2 from v1 to v2. If v2 is removed atan earlier step than v1, then the edge (v1, v2) is simply oriented with label 3 from
v2 to v1. If v1 and v2 are removed at the same step, then (v1, v2) is bi-oriented,with label 2 on v1's side and label 3 on v2's side, see Figure 20.Assume that L > 1. Observe that the outer path [v1, v2] remains un
hanged aslong as none of v1 or v2 is removed. This remark follows from the fa
t that allverti
es of ]v1, v2[ are passive, so that no vertex of [v1, v2] 
an be treated as long asnone of v1 or v2 is treated.Then, two 
ases 
an arise: if v1 is removed before v2, the right neighbour v of v1be
omes a
tive and the edge (v1, v) is bi-oriented, with label 2 on v1's side and label1 on v's side, see Figure 20. Similarly if v2 is removed before v1, the left neighour
v of v2 be
omes a
tive and the edge (v, v2) is bi-oriented with label 3 on v2's sideand label 1 on v's side.The result follows by indu
tion on L, with a re
ursive 
all to the path [v, v2] inthe �rst 
ase and to the path [v1, v] in the se
ond 
ase.ACM Journal Name, Vol. V, No. N, Month 20YY.
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P

vprec

v′

v(k)

f
v(a) Pv′

v(k)

v
f

vprec(b)Fig. 23. The two possible 
on�gurations related to the next a
tive vertex on the right of v(k).10.2 The algorithm outputs the minimal α0-orientation of the derived map10.2.1 De�nitions and preliminary lemmas.Maximal bilabelled paths. Let v be a vertex of G. For 1 ≤ i ≤ 3, the i-path of v isthe unique path P i
v = (v0, . . . , vm) of edges of G starting at v and su
h that ea
hedge (vp, vp+1) is the outgoing edge of vp with label i (i.e., the edge of G 
ontainingthe outgoing half-edge of vp with label i). A
y
li
ity properties of S
hnyder woodsensure that P i

v ends at the outer vertex ai, see [Felsner 2004℄. For 1 ≤ i ≤ 3 and
1 ≤ j ≤ 3 with i 6= j, we de�ne the maximal i− j path starting at v as follows. Let
l ≤ m be the maximal index su
h that the subpath (v0, . . . , vl) of P i

v only 
onsistsof bi-oriented edges with labels i− j. Then the maximal i− j path starting at v isde�ned to be the path (v0, . . . , vl) and is denoted by P i−j
v .At a step k ≥ 2, let v(k) be the 
hosen vertex, i.e., the rightmost eligible vertexon Ck. First, observe that there exists an a
tive vertex on the right of v(k). Indeed,the rightmost vertex a2 is a
tive as soon as k ≥ 2. In addition a2 is non eligibleon Ck be
ause it is blo
ked, so that a2 is di�erent from v(k). Hen
e, a2 is an a
tivevertex on the right of v(k).We de�ne the next a
tive vertex on the right of v(k) as the unique vertex v onthe right of v(k) on Ck su
h that all verti
es of ]v(k), v[ are passive.Lemma 10.2. At a step k ≥ 2, let v(k) be the 
hosen vertex. Let v be the nexta
tive vertex on the right of v(k). Let vprec be the left neighbour of v on Ck. Then,in the orientation X0 �nally 
omputed, ea
h edge of [v(k), vprec] is bi-oriented, withlabel 2 on its left side and label 1 on its right side. The edge e = (vprec, v) is eithersimply oriented with label 2 from vprec to v or bi-oriented, with label 2 on vprec'sside and label 3 on v's side. In other words, P 2−1

v(k) = [v(k), vprec] and the outgoingedge of vprec with label 2 is (vprec, v).Proof. To prove this lemma, using the result of Lemma 10.1, we just have toprove that (vprec, v) is neither bi-oriented with label 1 on vprec's side and label 3 on
v's side, nor simply oriented with label 3 from v to vprec, see Figure 22.First, as the a
tive vertex v is on the right of v(k), it 
an not be eligible, so that
v is blo
ked. As a 
onsequen
e there exists a vertex v′ and a fa
e f su
h that
(v, v′, f) is a separator. Lemma 9.1 ensures that there exists an eligible vertex in
]v′, v[. Hen
e the vertex v′ is on the left of v(k) on Ck, otherwise v(k) would not bethe rightmost eligible vertex. Let P be the path on the boundary of f going from
v to v′ with f on its left. Two 
ases 
an arise:ACM Journal Name, Vol. V, No. N, Month 20YY.
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v(k0)

G̃k = Gk0Fig. 24. The path between v and v3−2 will 
onsist of bi-oriented edges bilabelled 3-2.(1) the �rst edge of P is di�erent from (v, vprec), so that vprec is above P , seeFigure 23(a). Clearly, v remains blo
ked as long as all verti
es above P have notbeen treated. Hen
e, vprec will be treated at an earlier step that v. As v is a
tive,it implies (see Figure 20) that (vprec, v) is simply oriented with label 2 from vprecto v.(2) the �rst edge of P is (v, vprec), see Figure 23(b). Observe that vprec 
an notbe equal to v′. Indeed v is on the right of v(k), so that vprec is on the right orequal to v(k), whereas v′ is on the left of v(k). Hen
e, P has length greater than 1.As a 
onsequen
e, when f will 
ease to be separating, vprec will only be in
identto f . Figure 20 ensures that, when su
h a vertex is treated, the edge 
onne
tingthis vertex to its right neighbour is always bi-oriented and bi-labelled 2-3, whi
h
on
ludes the proof.Lemma 10.3. At a step k ≥ 2, let v(k) be the rightmost eligible vertex and v thenext a
tive vertex on the right of v(k). Let v3−2 be the extremity of P 3−2
v in X0 and

e the outgoing edge of v3−2 with label 3. If e is bi-oriented, it is bi-labelled 3-1 andwe de�ne v1 = v3−2. Otherwise e is simply oriented, we de�ne v1 as the extremityof e.Then v1 belongs to Ck and is on the left of v(k).Proof. First, observe that ea
h vertex v′′ su
h that the pair {v′′, v} is separatingis on the left of v(k), otherwise, Lemma 9.1 ensures that there exists an eligiblevertex in ]v′′, v[, in 
ontradi
tion with the fa
t that v(k) is the rightmost eligiblevertex.Observe also that the set S of separators (v′′, v, f) involving v and endowed withthe in
lusion-relation for the separated areas is not only a partial order but a totalorder. In parti
ular, for two separators (v′′1 , v, f1) and (v′′2 , v, f2), if v′′1 is on the leftof v′′2 , then the separated area of (v′′2 , v, f1) is stri
tly in
luded in the separated areaof (v′′1 , v, f2). In addition, S is non empty be
ause v is the next a
tive vertex onthe right of v(k), hen
e v is blo
ked.Let (v′, v, f) be the maximal separator for the totally ordered set S. Then theseparated area of (v′, v, f) 
ontains all separating fa
es in
ident to v ex
ept f . Let
P be the path of edges on the boundary of f going from v to v′ with the interior of
f on its left, and let B be the separated area of (v′, v, f). Let G̃k be the submapof G obtained by removing B from Gk, and let C̃k be the boundary of G̃k.We 
laim that f is not separating in G̃k. Otherwise, there would exist a vertex v2on the right of v su
h that (v, v2, f) is a separator or there would exist a vertex v3on the left of v′ su
h that (v3, v

′, f) is a separator: the �rst 
ase is in 
ontradi
tionwith the fa
t that all separators {v, v2} involving v are su
h that v is on the right ofACM Journal Name, Vol. V, No. N, Month 20YY.
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v2. The se
ond 
ase is in 
ontradi
tion with the fa
t that (v′, v, f) is the maximalseparator involving v.We 
laim that only verti
es of B will be removed from step k on, until all verti
esof B are removed. Indeed, all separating fa
es in
ident to verti
es on the right of
v are fa
es of G̃k, hen
e they will remain separating as long as not all verti
es of
B are removed. As all verti
es on the right of v are either blo
ked or passive, itis easy to see indu
tively that all these verti
es will keep the same status until allverti
es of B are removed.Let k0 be the �rst step where all verti
es of B have been removed. Then Gk0 =

G̃k. Hen
e f is not separating anymore on Ck0 , but all other fa
es of G̃k that areseparating at step k are still separating at step k0. We have seen that the separatingfa
es in
ident to v at step k are the fa
e f and fa
es in B. In addition, all fa
es of
Gk0 , ex
ept f , have kept their separating-status between step k and step k0. Hen
e
v is eligible on Ck0 , and the rightmost eligible vertex v(k0) at step k0 is a vertexin
ident to f . It is either v or a vertex of f on the right of v (on Ck0) su
h that
[v, v(k0)] only 
onsists of edges in
ident to f (otherwise f would be separating), seeFigure 24, where v(k0) is the right neighbour of v.Moreover, the left-
onne
tion vertex of v(k0) is v′. Otherwise there would be avertex of f on C̃k and on the left of v′. This vertex would also be on Ck (be
auseonly verti
es of B are removed to obtain G̃k from Gk), in 
ontradi
tion with thefa
t that (v′, v, f) is the maximal separator of Ck involving v.Then two 
ases 
an arise whether v′ is passive or a
tive on Ck0 :(1) v′ is passive on Ck0 . Then v′ is not in
ident to any edge of G\Gk0 . Inparti
ular v′ is not in
ident to any edge of B\Gk0 . Hen
e the right neighbour of
v′ on Ck0 and on Ck are the same vertex, that is, the vertex v1 pre
eding v′ on P .Observe that v1 is on the left of v(k) on Ck, indeed, v1 
an not be equal to v(k) atstep k be
ause v1 is in
ident to f , whi
h is separating at this step. By de�nition of
v1 and by 
onstru
tion of the orientation (see Figure 20), P 3−2

v(k0) is equal to [v1, v
(k0)]taken from right to left, and (v1, v

′) is bi-oriented bi-labelled 3 − 1 from v1 to v′.As v ∈ [v1, v
(k0)] at step k0, [v, v(k0)] ⊆ [v1, v

(k0)], so that P 3−2
v is equal to [v, v(k0)]taken from right to left. As (v1, v

′) is bi-oriented bi-labelled 3 − 1 from v1 to v′,this 
on
ludes the proof for the �rst 
ase (i.e., v1 = v3−2).(2) v′ is a
tive on Ck0 . In this 
ase, upon taking v1 to be the vertex v′, a similarargument as for the previous paragraph applies: indeed v1 is a vertex on Ck on theleft of v(k), and P 3−2
v is the path on Ck0 going from v to the right neighbour of v1on Ck0 , and the edge 
onne
ting the right neighbour of v1 to v1 is simply orientedwith label 3 toward v1 (see Figure 20).Lemma 10.4. The verti
es a1, a2 and a3 
an not belong to any 
lo
kwise 
ir
uit.Proof. Let us 
onsider a1 (the 
ases of a2 and a3 
an be dealt with identi
ally).The outgoing edge of a1 with label 1 is dire
ted toward the outer fa
e. The outgoingedges of a1 with labels 2 and 3 
onne
t respe
tively a1 to two edge-verti
es whoseunique outgoing edge is dire
ted toward the outer fa
e. Hen
e ea
h dire
ted pathstarting at a1 �nishes immediately in the outer fa
e.10.2.2 Possible 
on�gurations for a minimal 
lo
kwise 
ir
uit of X0ACM Journal Name, Vol. V, No. N, Month 20YY.
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e′next

v′
= v(k)

e′
ve f12 33

v (a) f

v = v(k)

v′

2 21 3 v(b)Fig. 25. Con�guration of a fa
e f of G′ whose boundary is a 
lo
kwise 
ir
uit and su
h that theoutgoing edge of the unique primal vertex of f has label 1 (Fig. a) and label 3 (Fig. b).Lemma 10.5. Let f be an inner fa
e of G′. Then the boundary of f is not a
lo
kwise 
ir
uit in X0.Proof. Assume that the 
ontour of f is a 
lo
kwise 
ir
uit. We re
all that the
ontour of f has two edge-verti
es, one dual vertex, and one primal vertex v. Let
i be the label of the edge e′ of f going out of v. The edge e′ is the �rst half-edgeof an edge e of G. We denote by ve the edge-vertex of G′ asso
iated to e and by v′the vertex of G su
h that e = (v, v′). As the 
ontour of f is a 
lo
kwise 
ir
uit, theunique outgoing edge of ve follows the edge (ve, v) in 

w order around ve. Hen
e,a

ording to Figure 19(
), the edge e is bi-oriented and the se
ond half-edge of ehas label i + 1. We denote by enext the edge of G following e in 
lo
kwise orderaround v. The edge e′next of G′ following e′ in 
lo
kwise order around v is the edgeof f dire
ted toward v. Hen
e, the rules of labelling (Figure 19(a)) ensure that e′nexthas label i − 1. As e′next is the se
ond half-edge of enext, this ensures that enext issimply oriented with label i − 1 toward v.We now deal separately with the three possible 
ases i = 1, 2, 3:� Case i = 1: The edge e is bi-labelled 1-2 from v to v′ and enext is simplyoriented with label 3 toward v, see Figure 25(a). Let k be the step of the algorithmduring whi
h the vertex v′ is treated. Figure 20 ensures that, if v′ is not equalto the rightmost eligible vertex v(k), then the outgoing edge with label 2 of v′ isbi-oriented with label 3 on the other half-edge, whi
h is not the 
ase here. Hen
e
v′ = v(k).In addition, as (v′, v) is bi-labelled 2-1 from v′ to v, the vertex v is passive on Ck.Hen
e, writing ev→ for the edge of Ck whose left extremity is v, there is no edge of
G\Gk between e and ev→ in 
lo
kwise order around v, so that ev→ = enext.We 
laim that k ≥ 2. Otherwise v′ would be equal to a1. As e = (v, v′) is bi-labelled1-2 from v to v′, v would be equal to a2. But a

ording to Lemma 10.4, a2 
an notbelong to any 
lo
kwise 
ir
uit.Hen
e k ≥ 2 and we 
an use Lemma 10.2. In parti
ular, this lemma ensures that
ev→ is the outgoing edge of v with label 2. We obtain here a 
ontradi
tion withthe fa
t that enext is going toward v with label 3 and ev→ = enext.� Case i = 2: The edge e is bi-labelled 2-3 from v to v′ and enext is simplyoriented with label 1 toward v. Let k be the step during whi
h v is treated. By
onstru
tion of the orientation (see Figure 20), at step k the vertex v belongsACM Journal Name, Vol. V, No. N, Month 20YY.
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(a)
n
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e = 3
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e = 0

(b) n
(3)
e = 2

n
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e = 2

(
)
n

(3)
e = 1

n
(4)
e = 4

(d)
n

(3)
e = 0

n
(4)
e = 6Fig. 26. The possible 
on�gurations for a minimal 
lo
kwise 
ir
uit of X0.to ]left(v(k)), v(k)[ and enext is the outgoing edge of v with label 3. This is in
ontradi
tion with the fa
t that enext is simply oriented toward v with label 1.� Case i = 3: The edge e is bi-labelled 3-1 from v to v′ and enext is simplyoriented with label 2 toward v, see Figure 25(b). Let v be the origin of enext and let

k be the step during whi
h v is removed from Gk. As enext is simply oriented withlabel 2 from v to v, we have v = v(k) and v = right(v(k)). Lemma 10.2 ensures that
v is the next a
tive vertex on the right of v(k) on Ck. In addition, k ≥ 2, otherwise
v(k) = a1, in 
ontradi
tion with the fa
t that the outgoing edge of a1 with label2 is bi-oriented. Hen
e, we 
an use Lemma 10.3: here, the next a
tive vertex onthe right of v(k) is v and the path P 3−2

v is empty be
ause the outgoing edge withlabel 3 of v is bi-labelled 3-1. Hen
e the vertex denoted by v1 in the statement ofLemma 10.3 is here v. Lemma 10.3 ensures that v is a vertex of Ck on the left of
v(k), in 
ontradi
tion with the fa
t that v is the right neighbour of v(k) on Ck.Lemma 10.6 [Felsner 2004℄. The possible 
on�gurations of an essential 
ir-
uit of X0 are illustrated in Figure 26, where n

(3)
e (resp. n

(4)
e ) denotes the numbersof edge-verti
es on the 
ir
uit that have respe
tively 3 (resp. 4) in
ident edges onor inside the 
ir
uit.Proof. Felsner [2004, Lem.17℄ shows that an essential 
ir
uit C of an α0-orientationhas no edge in its interior whose origin is on C. In addition, if C is not the bound-ary of a fa
e, he shows that all edge-verti
es have either one in
ident edge or twoin
ident edges inside C, whi
h implies that the length of C is 6, 8, 10, or 12. Theonly possible 
on�gurations are those listed in Figure 26. As X0 has no 
lo
kwise
ir
uit of length 4 a

ording to Lemma 10.5, this 
on
ludes the proof.10.2.3 No 
on�guration of Figure 26 
an be a 
lo
kwise 
ir
uit in X0. We haverestri
ted the number of possible 
on�gurations for a 
lo
kwise 
ir
uit of X0 tothe list represented in Figure 26. In this se
tion, we des
ribe a method ensuringthat the presen
e of a 
lo
kwise 
ir
uit for ea
h 
on�guration of Figure 26 yields aACM Journal Name, Vol. V, No. N, Month 20YY.
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ontradi
tion. The method relies on Lemma 10.2, Lemma 10.3, and on the followinglemma:Lemma 10.7. At a step k, let v and v′ be two verti
es on Ck su
h that v is on theleft of v′. Assume that there exists a path P = (v0, . . . , vl) of edges of G su
h that
v0 = v, vl = v′, and for ea
h 0 ≤ i ≤ l − 1, the edge (vi, vi+1) is the outgoing edgeof vi with label 1 in X0. Then P = [v, v′] on Ck and all edges of P are bi-orientedbilabelled 1-3.Proof. Proving that P = [v, v′] 
omes down to proving that all edges of P areon Ck. By 
onstru
tion of the orientation (see Figure 20), for ea
h vertex w of G,the extremity w1 ∈ G of the outgoing edge of w with label 1 is removed at an earlierstep than w. Moreover, a vertex in G\Gk is removed at a step j < k. Hen
e, if wis in G\Gk, then w1 is also in G\Gk. Hen
e, if P passes by a vertex outside of Gk,it 
an not rea
h Ck again. By de�nition of an a
tive vertex of Ck, the extremityof its outgoing edge with label 1 is a vertex of G\Gk. Hen
e none of the verti
es
v0, . . . vl−1 
an be a
tive, otherwise P would pass by a vertex outside of Gk and
ould not rea
h Ck again.Hen
e, all verti
es of Ck en
ountered by P before rea
hing v′ are passive. It justremains to prove that the outgoing edge with label 1 of ea
h passive vertex of Ck isan edge of Ck and will be bi-oriented and bilabelled 1-3 in X0.Let w be a passive vertex of Ck and let wl and wr be respe
tively the left and theright neighbour of w on Ck. We 
laim that the outgoing edge of w with label 1 isthe edge (w, wl) if wl will be removed before wr and is the edge (w, wr) if wr willbe removed before wl. Indeed, as long as none of wl or wr is removed, w remainspassive and keeps wl and wr as left and right neighbour. Let k0 be the �rst stepwhere wl or wr is removed. By 
onstru
tion of the orientation, two verti
es v1 and
v2 on the boundary of Ck0 su
h that ]v1, v2[ 
ontains a passive vertex 
an not beremoved at the same step. Hen
e, at step k0, either wl or wr is removed. Assumethat the removed vertex at step k0 is wl. Then, at step k0, (w, wl) is given a bi-orientation and re
eives label 1 on w's side and label 2 on wl's side, see Figure 20.Similarly, if the removed vertex is wr then, at step k0, (w, wr) is bi-orientated andre
eives label 1 on w's side and label 3 on wr's side.Finally, it is easy to see that only this se
ond 
ase 
an happen in the path P ,be
ause the starting vertex of P is on the left of the end vertex of P on Ck.Lemma 10.8. None of the 
on�gurations of Figure 26 
an be the boundary of a
lo
kwise 
ir
uit in X0.Proof. We take here the example of the third 
on�guration of the 
ase {n(3)

e =

2, n
(4)
e = 2} of Figure 26 and show why this 
on�guration 
an not be a 
lo
kwise
ir
uit in X0. Let C be a 
lo
kwise 
ir
uit 
orresponding to su
h a 
on�guration.Then C 
ontains two su

essive dual edges e∗1 and e∗2 �in 
ounter-
lo
kwise orderaround C� and a unique primal vertex whi
h we denote by vC . Let M ′ be thesubmap of G′ obtained by removing all edges and verti
es outside of C. Let M bethe submap of G obtained by keeping only the edges whose asso
iated edge-vertexbelongs to M ′ and by keeping the verti
es in
ident to these edges. As C is anessential 
ir
uit, no edge inside C has its origin on C, see [Felsner 2004, Lem.17℄. Therules of labelling (see Figure 19), the fa
t that all edge-verti
es have outdegree 1,ACM Journal Name, Vol. V, No. N, Month 20YY.
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)Fig. 27. The 3 possible 
ases for the boundary of the map M asso
iated to the third 
on�gurationof the 
ase {n
(3)
e = 2, n

(4)
e = 2} in Figure 26.and the fa
t that no edge goes from a vertex of C toward the interior of C determineunambiguously the labels and orientations of all the edges on the boundary of M in

X0, up to the label of the outgoing edge of vC on C. Figures 27(a), 27(b) and 27(
)represent the respe
tive 
on�gurations when the label of the outgoing edge of vCon C is 1, 2 or 3.First, we deal with the 
ase of Figure 27(a). Let v̂ (resp. v̂0) be the primal vertexoutside of C and adja
ent to the edge-vertex asso
iated to e∗2 (resp. e∗1). Let v̂′ bethe primal vertex inside of C and adja
ent to the edge-vertex asso
iated to e∗2. Let
k be the step at whi
h v̂ is treated. As already explained in pre
eding proofs (forexample in the proof of Lemma 10.5), it is easy to see that k ≥ 2 and that v̂ is the
hosen vertex v(k). Hen
e we 
an use Lemma 10.2 and Lemma 10.3. Lemma 10.2and the 
on�guration of Figure 27(a) ensure that v̂′ is the right neighbour of v̂ on
Ck and that v̂0 is the next a
tive vertex on the right of v̂ on Ck. Moreover, the
on�guration of Figure 27(a) ensures that v̂1 
orresponds to the vertex v1 in thestatement of Lemma 10.3. Hen
e Lemma 10.3 ensures that v̂1 is on Ck on the leftof v̂. We see on Figure 27(a) that there is an oriented path P going from v̂1 to
v̂ su
h that ea
h edge of the path is leaving with label 1. Lemma 10.7 ensuresthat all edges of P are bilabelled 1-3, in 
ontradi
tion with the fa
t that (v̂′, v) isbilabelled 1-2.We deal with the 
ase of Figure 27(b) similarly. We de�ne v̂ := vC and denoteby v̂0 the primal vertex outside of C and adja
ent to the edge-vertex asso
iated to
e∗2. We denote by v̂1 the primal vertex inside of C and adja
ent to the edge-vertexasso
iated to e∗1. Let k be the step where v̂ is removed. Then it is easy to see that
k ≥ 2 and v̂ = v(k). Hen
e we 
an use Lemma 10.2 and Lemma 10.3. Lemma 10.2and the 
on�guration of Figure 27(b) ensure that v̂0 is the next a
tive vertex onthe right of v̂ on Ck. We see on Figure 27(b) that the vertex v̂1 
orresponds to thevertex v1 in the statement of Lemma 10.3. Hen
e, Lemma 10.3 ensures that v̂1 ison Ck on the left of v̂. We see on Figure 27(b) that there exists an oriented path Pgoing from v̂1 to v̂ su
h that ea
h edge of P leaves with label 1; but the last edgeof P is simply oriented, in 
ontradi
tion with Lemma 10.7.The 
ase of Figure 27(
) 
an be treated similarly, as well as all 
on�gurations ofACM Journal Name, Vol. V, No. N, Month 20YY.
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tions and trees · 49Figure 26.Finally, Theorem 9.3 follows from Lemma 10.8 and from the fa
t that all possible
on�gurations for a 
lo
kwise 
ir
uit of X0 are listed in Figure 26.ACKNOWLEDGMENTSN. Boni
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