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ABEL-JACOBI MAPS FOR HYPERSURFACES

AND NON COMMUTATIVE CALABI-YAU’S

A. KUZNETSOV, L. MANIVEL, AND D. MARKUSHEVICH

Abstract. It is well known that the Fano scheme of lines on a cubic 4-fold is a symplectic
variety. We generalize this fact by constructing a closed (2n − 4)-form on the Fano scheme of
lines on a (2n − 2)-dimensional hypersurface Yn of degree n. We provide several definitions of
this form — via the Abel–Jacobi map, via Hochschild homology, and via the linkage class —
and compute it explicitly for n = 4. In the special case of a Pfaffian hypersurface Yn we show
that the Fano scheme is birational to a certain moduli space of sheaves of a (2n−4)-dimensional
Calabi–Yau variety X arising naturally in the context of homological projective duality, and
that the constructed form is induced by the holomorphic volume form on X . This remains true
for a general non Pfaffian hypersurface but the dual Calabi-Yau becomes non commutative.

Introduction

Let Y be a projective or compact Kähler manifold and p : Z → B a family of k-cycles on Y ,
parameterized by a smooth base B. The Abel–Jacobi map of the family p : Z → B is the
homomorphism

AJ : H
•
(Y,Z)−→H

•−2k(B,Z) , AJ(c) = p∗q
∗(c),

where q : Z → Y is the natural projection. The cohomology classes on Y can be represented
by closed forms, and AJ can be interpreted on the level of de Rham or Dolbeault cohomology
via the map of integration over the fibers Zb = p−1(b) of p : for a closed (i, j)-form ω on Y ,
representing a class [ω] ∈ H i,j(Y,C), the formula b 7→

∫
Zb
ω defines the closed (i−k, j−k)-form

AJ(ω) on B.

If Y is a nonsingular hypersurface in Pn, then the only interesting piece of the cohomology
of Y is the primitive part of Hn−1(Y ). Clemens and Griffiths [CG] studied the Abel–Jacobi
map when Y is a cubic threefold in P4 and B = F (Y ) is the Fano surface of Y , that is the
base of the family of lines on it. They showed that AJ is an isomorphism between the Hodge
structures onH3(Y ) andH1(F (Y )), and deduced the nonrationality of Y . Beauville and Donagi
[BD] considered the case of a smooth cubic fourfold in P5. They proved that AJ provides an
isomorphism of polarized Hodge structures between the primitive cohomologies H4(Y )prim and
H2(F (Y ))prim. In particular, H3,1(Y ) ≃ H2,0(F (Y )) is 1-dimensional, that is F (Y ) carries a
holomorphic 2-form α ∈ H2,0(F (Y )), unique up to proportionality. Looking at a special cubic
Y , whose equation is the Pfaffian of a 6-by-6 matrix of linear forms, they identified F (Y ) with
the Hilbert square X [2] of the “orthogonal” K3 surface X = Y ⊥, which is a transversal linear
section of G(2, 6). They deduced from this that α is nondegenerate, hence symplectic, and
moreover, that for any smooth cubic Y , the Fano scheme F (Y ) is an irreducible symplectic
fourfold, obtained by deformation of the complex structure on X [2].

We partly generalize the work of Beauville–Donagi to higher dimensions, in replacing the
cubic Y in P5 by a hypersurface Yn of degree n in P2n−1. Its index, that is the maxi-
mal integer dividing the canonical class KYn is also n. We consider the scheme of lines on
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Yn (denoted by F (Yn) and called the Fano scheme of Yn) and investigate the Abel–Jacobi
map AJ : H•(Yn,Z)−→H•−2(F (Yn),Z), the only nontrivial part of which is the restriction to
H2n−2(Yn,Z)prim. We show that

AJ : H2n−2(Yn,Z)prim−→H2n−4(F (Yn),Z)

is compatible with natural polarizations on both sides. One would expect then that AJ induces
an isomorphism of polarized lattices H2n−2(Yn,Z)prim and H2n−4(F (Yn),Z)prim, similarly to
the case n = 3. However, it turns out that this is not true in general. Firstly, we do not
know whether the cohomology of F (Yn) is torsion-free. Secondly, it follows from the results of
Shimada that the image of the Abel–Jacobi map coincides, modulo torsion, with the saturated
sublattice H2n−4(F (Yn),Z)van ⊂ H2n−4(F (Yn),Z)prim of vanishing cohomology, defined as the
kernel of the Gysin map associated to the embedding F (Yn) →֒ G(2, 2n). We verify that in
the case n = 4 the rank of the Gysin map is 2 and hence H2n−4(F (Yn),Z)van is of corank 1 in
H2n−4(F (Yn),Z)prim.

The above results have the following interesting consequence. Using the Griffiths residue
isomorphism one can easily see that h2n−3,1(Yn) = 1. So, Shimada’s result implies that
h2n−4,0(F (Yn)) = 1. The image αω of a generator ω ∈ H2n−3,1(Yn) under the Abel–Jacobi
map is a nonzero holomorphic form αω ∈ H2n−4,0(F (Yn)) = H0(F (Yn),Ω

2n−4
F (Yn)). As we men-

tioned above, for n = 3, it is symplectic. Moreover, when Y3 is specialized into a Pfaffian
cubic, F (Y3) becomes the Hilbert scheme X [2] of a K3 surface X, and αω is induced by the
holomorphic volume element of X.

We show that for n ≥ 4 the situation is pretty similar. First of all, to each Pfaffian hypersurface
Yn we associate an “orthogonal” Calabi–Yau manifold Xn of dimension 2n− 4 and show that

F (Yn) is birational to a certain subvariety H(Xn) of the Hilbert scheme X
[Cn−1]
n , where Cn−1 is

a Catalan number. Further, we explain that for arbitrary (non-Pfaffian) degree n hypersurface
in P2n−1 the orthogonal Calabi–Yau variety exists on a categorical (or noncommutative) level.
This means that for any Yn there exists a triangulated category Cn, which is a (2n− 4)-Calabi–
Yau category, and for Yn Pfaffian this category is expected to be equivalent to Db(Xn). Actually,
a generic Pfaffian hypersurface Yn is singular in codimension 5 (a phenomenon which does not
occur in the case of a cubic fourfold), so we have to replace Yn by a noncommutative crepant
resolution Ỹn, and Cn is defined as the orthogonal complement to the exceptional collection O,
O(1), . . . , O(n − 1) in the bounded derived category of coherent sheaves on Ỹn, so that there
is a semiorthogonal decomposition

Db(Ỹn) = 〈Cn,O,O(1), . . . ,O(n− 1)〉.

We show that the Fano scheme F (Yn) parameterizes certain objects in the triangulated category
Cn, so it can be considered as a moduli space of coherent sheaves (or of complexes) on the
corresponding non-commutative Calabi–Yau variety. We show that the form αω constructed on
F (Yn) via the Abel–Jacobi map coincides with the form naturally arising on F (Yn) considered
as a moduli space of complexes on a Calabi–Yau variety.

For this we use a homological interpretation of the Abel–Jacobi map. Since we want this
interpretation to have a sense in a noncommutative setup, we have to use a version of homology
defined for noncommutative varieties as well as for commutative ones. So, we use the Hochschild
(or cyclic) homology.

The Hochschild homology HH(Y ) of a smooth projective variety Y was introduced by Markarian
in [Ma]. The exponential of the universal Atiyah class of Y provides an isomorphism

expY : HH(Y ) → H•(Y,Ω•

Y ) = H•(Y,C).

On the other hand, Hochschild homology is functorial with respect to functors between derived
categories. In particular, any object E on the product Y ×M of two smooth projective varieties
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Y and M induces a kernel functor ΦE : Db(Y ) → Db(M) and a map of Hochschild homology
φE : HH(Y ) → HH(M). This map is compatible with the isomorphisms expY and expM and
the modified Abel–Jacobi map:

ÃJch(E) ◦ expY = expM ◦φE ,

where ÃJξ : H•(Y,C) → H•(M,C) is defined for any ξ ∈ H•(Y ×M,C) by ÃJξ(c) = p∗(q
∗(c)∧

ξ ∧ td(Y )), p : Y ×M → M and q : Y ×M → Y being the projections. So, the Hochschild
homology of smooth projective varieties can replace their Dolbeault cohomology.

On the other hand, Hochschild homology can be defined for any triangulated category which
is equivalent to a semiorthogonal component of the derived category of coherent sheaves on a
smooth projective variety [Ku6]. Thus it can be defined for smooth noncommutative varieties
as well. In particular, HH(Cn) is well defined for any Yn and in the Pfaffian case HH(Cn) is
expected to be isomorphic to HH(Xn) = H•(Xn,C). Moreover, it is shown in loc. cit. that
Hochschild homology is additive with respect to semiorthogonal decompositions. So, HH(Cn) is
a direct summand in HH(Yn). We check that the corresponding projection HH(Yn) → HH(Cn)
takes the form ω ∈ H2n−3,1(Yn) to the holomorphic volume form of Cn. We also check that for
an appropriate object E ∈ Db(Yn × F (Yn)) the map φE : HH(Yn) → HH(F (Yn)) takes ω to αω,
and at the same time factors through the projection HH(Yn) → HH(Cn), so the form αω indeed
comes from the holomorphic volume form on Cn.

For Pfaffian hypersurfaces we describe the relation of the form αω on F (Yn) with the holo-
morphic volume form of the corresponding Calabi–Yau variety Xn more explicitly. We show
that the Fano scheme F (Yn) is birational to a certain moduli space H(Xn) of sheaves on Xn,
a subvariety of a Hilbert scheme of points of Xn. We expect that under this birational corre-
spondence the form αω goes to the form on H(Xn) induced by the holomorphic volume form
of Xn.

Although we deal mostly with the Fano scheme of lines on Yn, our approach can be used for any
moduli space M of sheaves on Yn. Using the corresponding Abel–Jacobi map (or its Hochschild
homology incarnation) one can define a closed (2n− 4)-form on M, for which we use the same
notation αω. However, the most convenient way for an explicit computation of the form αω is
via the divisorial linkage class.

For any sheaf F on Yn the divisorial linkage class ǫF of F is the extension class of the complex
Li∗i∗F in Ext1(L0i

∗i∗F [0], L1i
∗i∗F [1]) = Ext2(F ,F ⊗ N ∨

Yn/P2n−1), where i is the embedding

Yn → P2n−1. Since the degree of Yn equals to the index, we have ωYn
∼= N ∨

Yn/P2n−1 , so we can

consider ǫF as an element of Ext2(F ,F⊗ωYn). We show that the value αω|m at a point m = [F ]
of a moduli space M can be computed as the following composition

Ext1(F ,F) × . . .× Ext1(F ,F)︸ ︷︷ ︸
2n− 4 times

Yoneda
−−−−→ Ext2n−4(F ,F)

ǫF−→ Ext2n−2(F ,F ⊗N ∨

Yn/P2n−1)

≃ Ext2n−2(F ,F ⊗ ωYn)
Tr
−→ H2n−2(Yn, ωYn) = C. (1)

We illustrate this approach by an explicit calculation of the 4-form αω on the 7-dimensional
Fano scheme F (Y4) of a generic 6-dimensional quartic Y4 ⊂ P7.

We also address the question of nondegeneracy of the form αω constructed by the above pro-
cedure. For n = 3, one can prove that the form is nondegenerate by using its noncommutative
Calabi–Yau interpretation (see [KuM]). For bigger n, however, the question is not so easy. First
of all, it is not clear at all what the nondegeneracy means for a p-form when p > 2. Several
approaches are possible here. We use the following one. Given a p-form α on a n-dimensional
vector space V (n ≥ p) with even p = 2k, one can define the 2-rank of α as the rank of the
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induced bilinear form on ∧kV (which has the same parity as k), and α is nondegenerate if it
has maximal 2-rank with k and n fixed.

For particular k, n, one can use other notions of rank. For example, if n = 7 and k = 4, there is a
symmetric bilinear form qα on V associated to α and defined up to proportionality (see Section
7). Then we can define the rank of α as the rank of qα. These notions of rank and 2-rank classify,
with a single exception, the orbits of 4-forms on V under the action of GL(V ). In particular
there is an open orbit made of 4-forms of maximal rank and 2-rank, whose stabilizers are (up
to a finite group) copies of the complex exceptional group G2. Moreover, there is a unique
codimension one orbit, made of 4-forms that we call “minimally degenerate”, characterized by
the fact that their rank is equal to four. We show that the 4-form αω on the 7-dimensional Fano
scheme F (Y4) of a generic 6-dimensional quartic Y4 ⊂ P7 has rank 4, that is, it is minimally
degenerate.

As we have already remarked, F (Y4) is (birational to) a moduli space of sheaves on a Calabi–
Yau 4-foldX. It is quite an intriguing question, given a p-dimensional Calabi–Yau manifold and
a moduli space M of sheaves on V , what does the p-form induced on M by the holomorphic
volume element of V look like? Thomas constructed in [Th] an example of a Calabi–Yau
threefold V and a 3-dimensional moduli spaceM , on which the induced 3-form is nondegenerate,
so that M is a new Calabi–Yau threefold associated to V , a quasi-mirror of it. It would be
interesting to find other moduli spaces on X, either related to Y4 or not, and find out, to which
degree their 4-forms are (non)degenerate.

In Section 1, we define the Abel–Jacobi map in the transcendental setting and describe its
properties for the case of the Fano scheme of lines F (Yn) on a hypersurface Yn. In particular,
we use it to define the (2n−4)-form αω on F (Yn). For n = 4, that is when Y is a 6-dimensional
quartic, we also determine the relevant Hodge numbers of Y and F . In Section 2 we introduce
the Hochschild homology interpretation of the Abel–Jacobi map and show that the form αω
on F (Yn) is induced by the holomorphic volume form of a noncommutative Calabi–Yau variety
associated to Yn.

In Sections 3–4 we investigate a special case of Pfaffian hypersurfaces. In Section 3, we discuss
the homological projective duality between the Grassmannian of lines and the Pfaffian variety.
We define the Calabi–Yau linear section X = X2n−4 of the Grassmannian Gr(2, 2n) associated
to the Pfaffian hypersurface Y = Yn ⊂ P2n−1, and formulate a conjectural relation between
their derived categories of coherent sheaves. In Section 4, it is proved that the Fano scheme
F (Y ) is irreducible and has a natural crepant resolution for a generic Pfaffian Y . A moduli
space H(X) of sheaves on X is constructed, which is birational to F (Y ). These results base
upon some general facts from geometry of lines on Pfaffian varieties defined by rank-2k Pfaffians
in P(∧2W ∗) (2k ≤ 2n = dimW ), and we gather such facts in the Appendix. In particular,
we construct there a natural crepant resolution of singularities of the variety of lines on the
Pfaffian hypersurface (k = n− 1).

In Section 5, we define the linkage class ǫF , show that it factors through the Atiyah class and
prove that formula (1) provides the value of α2n−4. We also prove a nonvanishing result for ǫF .

In the last two Sections 6 and 7 we consider another special case, n = 4. In Section 6, an
explicit calculation of α4 in coordinates is done for the quartic 6-fold Y4. In the last Section
7, we describe the classification of the orbits of GL(7) in ∧4C7 and show that α4 is minimally
degenerate at the generic point of the 7-fold F (Y4).

In what follows, the base field k is an algebraically closed field of characteristic 0; sometimes
we assume that k = C. A variety is a reduced irreducible (separated) scheme of finite type
over k, and an algebraic space is assumed to be locally of finite type over k, but not necessarily
separated.
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1. Abel–Jacobi map of the family of lines

Let n ≥ 3, and let Y = Yn be a nonsingular hypersurface of degree n in P2n−1. Let F (Y ) be
the Fano scheme of Y . One can think of it either as the Hilbert scheme of lines in Y , or as the
locus of the Grassmannian G = G(2, 2n) parameterizing the lines in P2n−1 that are contained
in Y . Unlike the case of a cubic hypersurface treated by Clemens–Griffiths [CG], where the
Fano scheme of lines is smooth whenever the hypersurface is smooth, the Fano scheme of a
smooth higher degree hypersurface may be singular and even non-reduced, see [T] for the case
of a quartic threefold. Thus we will assume in the sequel that Y is generic, and this assumption
is essential.

Lemma 1.1. Let Y be a generic hypersurface of degree n in P2n−1. Then F (Y ) is a nonsingular
projective variety of dimension 3n− 5.

Proof. Denote by V the vector space C2n whose projectivization contains Y . So P2n−1 = P(V ),
and Y = Yf is defined by an homogeneous form f ∈ SdV ∗. The Grassmannian G = G(2, 2n)
of lines in P2n−1 is naturally embedded into P(∧2V ) via the Plücker embedding and carries
the tautological quotient bundle T such that H0(G, SnT ∗) is canonically isomorphic to SnV ∗

for any n ≥ 1. According to [AK1], F (Y ) is the scheme of zeros of the section sf of SdT ∗

corresponding to f under the above canonical isomorphism (with n = d). As T ∗ is generated
by global sections, so is SdT ∗, and by Kleiman’s generalization of Bertini’s Theorem [K], for
generic f , the section sf is transversal to the zero section of SdT ∗. Thus the zero locus of sf
is smooth and is of expected codimension n + 1 = rkSdT ∗ whenever it is nonempty. The fact
that sf has nonempty zero locus follows from the results of Barth–Van de Ven [BvdV] and
Debarre–Manivel [DM]. �

Following [BD], we define the Abel–Jacobi map on the middle-dimensional integer cohomology
of Y by the formula

AJ : H2n−2(Y,Z)−→H2n−4(F,Z), AJ(c) = p∗q
∗(c), (2)

where F = F (Y ), p : Z → F , q : Z → Y are the natural projections from the universal family
of lines Z in Y ,

Z = {(ℓ, x) ∈ F × Y | x ∈ ℓ}.

We have defined the Abel–Jacobi map on the integral cohomology. Going over to the complex
coefficients, we can represent the cohomology classes on Y by closed forms of type (i, j), and
AJ lifts to the level of closed forms as the map of integration over the fibers p. This allows us
to consider it as a morphism of Hodge structures, shifting the weight by −2.

We will denote by h the class of a hyperplane section of Y , and by σi, σij the Schubert classes
on G = Gr(2, 2n), as well as their restrictions to F ⊂ G. The primitive parts of the above
cohomology groups are defined by

H2n−2(Y,Z)prim = {x ∈ H2n−2(Y,Z) | xh = 0},

H2n−4(F,Z)prim = {u ∈ H2n−4(F,Z) | uσn1 = 0}.

We introduce also the vanishing part of the cohomology of F :

H2n−4(F,Z)van = ker
(
H2n−4(F,Z)

Gysin
−−−→ H6n−4(G,Z)

)
,
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where the Gysin map is associated to the natural embedding F →֒ G. Obviously,
H2n−4(F,Z)van ⊂ H2n−4(F,Z)prim. We will see that though in the Beauville–Donagi case
(n = 3) this inclusion is an isomorphism, this does not hold for n = 4, in which case H4(F,Z)van
is of codimension 1 in H4(F,Z)prim. One can also define the vanishing cohomology of Y as the
kernel of the Gysin map associated to the embedding into P2n−1, but it will coincide with the
primitive cohomology. The following result was proved by Shimada:

Theorem 1.2 (Shimada [Sh]). The Abel–Jacobi map induces an isomorphism

H2n−2(Y,Z)prim ≃ H2n−4(F,Z)van/(torsion).

Now, following the approach of [BD], we will show that AJ is a morphism of polarized Hodge
structures, that is, it respects natural bilinear forms on the primitive cohomology.

Remark that Z = P(TF ), where TF is the restriction to F of the universal rank-2 bundle T over
G, and the tautological sheaf OZ/F (1) coincides with q∗OY (1). By the theory of Chern classes,
H•(Z,Z) = p∗H•(F,Z)[q∗h] with a single relation

(q∗h)2 = p∗σ1q
∗h− p∗σ11.

In particular, we can write
q∗(x) = p∗x2n−4q

∗h− p∗x2n−2

for any x ∈ H2n−2(Y,Z), where xi ∈ H2i(F,Z) and x2n−4 = AJ(x).

Let us define on H2n−4(F,Z) the symmetric bilinear form φ by

φ(u, v) = σn−1
1 uv ∀ u, v ∈ H2n−4(F,Z).

Using the above description of H•(Z,Z), one can easily prove the following lemma (by the same
arguments as in [BD]):

Lemma 1.3. (i) An element x ∈ H2n−2(Y,Z) is primitive if and only if

x2n−4σ11 = 0, x2n−2 = x2n−4σ1.

(ii) For any x, y ∈ H2n−2(Y,Z)prim,

xy = −
1

n!
φ(AJ(x),AJ(y)).

The intersection form (x, y) 7→ xy on H2n−2(Y,Z) is nondegenerate, so part (ii) gives an easy
proof of the injectivity of AJ on H2n−2(Y,Z)prim. But the fact that the image is contained
in H2n−4(F,Z)van (and hence in H2n−4(F,Z)prim) and the surjectivity modulo torsion are the
nontrivial counterparts of Shimada’s result.

Corollary 1.4. AJ|H2n−2(Y,Z)prim
is a Hodge isometry onto a saturated sublattice H2n−4(F,Z)van

of H2n−4(F,Z)prim, polarized by the bilinear form − 1
n!
φ.

As the image of H2n−3,1(Y ) ⊂ H2n−2(Y,C)prim under AJ is in H2n−4,0(F ), we obtain:

Corollary 1.5. F carries a nonzero (2n − 4)-form α ∈ H0(F,Ω2n−4). It is defined uniquely
up to proportionality as a generator of the one-dimensional vector space AJ(H2n−3,1(Y )) =
H2n−4,0(F ).

Proof. The Hodge numbers of Y are given by the Griffiths residue theorem (see e. g. [G]): for
a smooth degree-d hypersurface Yf ⊂ PN , the primitive Hodge cohomology HN−p,p−1(Yd)prim

is identified with the homogeneous component of degree pd − N − 1 of the Jacobian ring
Rf = k[x0, . . . , xN ]/(∂f/∂x0, . . . , ∂f/∂xN ). Here one gets h2n−3,1(Y ) = 1, and Shimada’s
Theorem implies the result. �
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No we will turn to the example n = 4. We will calculate some of the Hodge numbers of
F = F (Y4). In particular, we will show that rkH4(F,Z)prim = rkH6(Y4,Z)prim + 1. The
discrepancy is due to the fact that the ambient Grassmannian G = Gr(2, 8) has a rank two
cohomology H4(G,Z), and its restriction to F is injective, which implies that the Gysin map
H4(F,Q) → H8(G,Q) is surjective.

Proposition 1.6. Let Y = Y4 be a generic quartic 6-fold in P7, and F = F (Y ) its Fano
scheme. Then we have the following results for their Hodge numbers:

(i) h6,0(Y ) = 0, h5,1(Y ) = 1, h4,2(Y ) = 266, h3,3(Y ) = 1108.

(ii) h0,0(F ) = 1 (that is, F is connected), h4,0(F ) = 1, h7,0(F ) = 336, and hi,0(F ) = 0 for i
different from 0, 4, 7.

(iii) h1,1(F ) = 1, h1,2(F ) = 0, h1,3(F ) = 266, h2,2(F ) = 1109.

Proof. The Hodge numbers of Y are computed via the Griffiths residue isomorphism.

To compute the Hodge numbers of F , we will use the fact that F is the zero-locus in the
Grassmannian G = Gr(2, 8) of a general section of the vector bundle S4T ∗, where T is the
tautological rank two bundle on G. This bundle has rank five and is generated by global
sections. We can therefore use the conormal sequence

0 → S4T|F → Ω1
G|F → Ω1

F → 0,

as well as the Koszul complex

0 → ∧5(S4T ) → ∧4(S4T ) → ∧3(S4T ) → ∧2(S4T ) → S4T → OG → OF → 0

in order to compute the cohomology of the restriction to F of vector bundles on G. The wedge
powers of S4T are readily computed in terms of Schur powers (note that since T has rank two,
we simply have Σa,bT = Sa−bT ⊗O(−b)):

∧2(S4T ) = Σ7,1T ⊕ Σ5,3T
∧3(S4T ) = Σ9,3T ⊕ Σ7,5T
∧4(S4T ) = Σ10,6T
∧5(S4T ) = Σ10,10T

In order to compute the cohomology of S4T and Ω1
G restricted to F , we will twist the Koszul

resolution of OF by these bundles and use Bott’s theorem on G. Recall that if Q denotes
the rank 6 quotient vector bundle on G, we have Ω1

G ≃ Q∗ ⊗ T . Bott’s theorem computes
the cohomology of any tensor product of Schur powers of Q and T as follows. Let α and
β be two non-increasing sequences of relative integers, of respective lengths 6 and 2. Let
ρ = (8, 7, 6, 5, 4, 3, 2, 1) and consider the sequence (α, β) + ρ. Call it regular if its entries are
pairwise distinct. In that case there is a unique permutation w such that w((α, β)+ρ) is strictly
decreasing. Then λ = w((α, β) + ρ) − ρ is non-increasing. Bott’s theorem asserts, if V is the
ambient eight-dimensional space, that

Hq(G,ΣαQ⊗ ΣβT ) = ΣλV

if (α, β)+ ρ is regular and q = ℓ(w), and zero otherwise. For example, if β = (a, b), we get that
Hq(G,ΣβT ) 6= 0 if and only if either

q = 0, 0 ≥ a ≥ b;

q = 6, a ≥ 7, 1 ≥ b;

q = 12, a ≥ b ≥ 8.

We can easily deduce the cohomology groups of OF . Indeed, Hq(G,∧i(S4T )) is non zero only
for (i, q) = (0, 0), (2, 6), (5, 12), which implies that Hq(F,OF ) is non zero exactly for q = 0, 4, 7.
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In particular
H4(F,OF ) ≃ H6(G,∧2(S4T )) ≃ C.

Let us turn to the cohomology groups of the cotangent bundle of F . Bott’s theorem implies
that the only non zero groups among the Hq(G, S4T ⊗ ∧i(S4T )) appear in bidegree (i, q) =
(1, 6), (2, 6), (4, 12), (5, 12). In particular q − i is always bigger than three and we can deduce
that Hq(F, S4T|F ) = 0 for q ≤ 3. Moreover, Bott’s theorem gives

H6(G, S4T ⊗ S4T ) = End(V ),
H6(G, S4T ⊗ ∧2(S4T )) = S4V,

and we deduce an exact sequence

0 → H4(F, S4T|F ) → S4V → End(V ) → H5(F, S4T|F ) → 0.

The middle map S4V
ψf
→ End(V ) must be dual to the map End(V )

φf
→ S4V ∗ mapping u to u(f),

where f denotes an equation of Y . Indeed, we can do the same computation in family, with a
variable f , and use the GL(V )-equivariance to ensure that the map φf depends linearly on f .
And there is, up to scalar, a unique equivariant map from S4V ∗ to Hom(End(V ), S4V ∗). We
can conclude that for f general, ψf is surjective, and that its kernel H4(F, S4T|F ) ≃ H4,2(Y )∗.
Indeed, this is just a reformulation of the Griffiths isomorphism.

There remains to compute the cohomology groups of Ω1
G|F . Applying Bott’s theorem as above,

one checks that Hq(G,Ω1
G ⊗ ∧i(S4T )) is non zero only for (i, q) = (0, 1), (2, 7), (5, 12), which

implies that Hq(F,Ω1
G|F ) is non zero only for q = 1, 5, 7. But then we can deduce from the

conormal exact sequence that

H1,3(F ) ≃ H4(F, S4T|F ) ≃ H2,4(Y ).

Finally we need to compute H2,2(F ). Let us denote by K the kernel of the natural map
Ω2
G|F → Ω2

F . Bott’s theorem implies that Hq(G,Ω2
G ⊗ ∧i(S4T )) is non zero only for (i, q) =

(0, 2), (2, 7), (2, 8), (3, 8), (4, 12), (5, 12). In particular the only non zero group Hq(F,Ω2
G|F ) for

q ≤ 4 is
H2(F,Ω2

G|F ) ≃ H2(G,Ω2
G) = C2,

and we get an exact sequence

H2(F,K) → H2,2(G) → H2,2(F ) → H3(F,K) → 0.

In order to compute the cohomology groups of K, consider the exact sequence

0 → S2(S4T )|F → S4T ⊗ Ω1
G|F → K → 0.

Applying Bott’s theorem once again, we check that Hq(G, S4T ⊗ Ω1
G ⊗ ∧i(S4T )) is non zero

only for (i, q) = (1, 6), (1, 7), (2, 7), (3, 12), (4, 12), which implies that Hq(F, S4T|F ⊗ Ω1
G|F ) = 0

for q ≤ 4. Therefore Hq(F,K) ≃ Hq+1(F, S2(S4T )|F ) for q ≤ 3. To compute the latter, we
consider the groups Hq(G, S2(S4T )⊗∧i(S4T )) and check by Bott’s theorem that they are non
zero exactly for (i, q) = (0, 6), (1, 6), (2, 6) or q = 12. We have

H6(G, S2(S4T )) = Σ21111110V ≃ sl(V ),
H6(G, S2(S4T ) ⊗ S4T ) = Σ61111110V ⊕ Σ51111111V ≃ S5V ⊗ V ∗,

H6(G, S2(S4T ) ⊗ ∧2(S4T )) = Σ91111111V ≃ S8V.

Hence the exact sequence

0 → H3(F,K) → S8V
αf
→ S5V ⊗ V ∗.

As above we can argue that the map αf must be dual to the natural map βf obtained as the
composition

S5V ⊗ V ∗ → S5V ⊗ S3V → S8V
8



deduced from the map V ∗ → S3V given by the differential of f . Otherwise said, we are just
multiplying quintic polynomials with the derivatives of f , so that Griffiths’ residue theorem
tells us precisely that the cokernel of βf is isomorphic to H3,3(Y )prim. Since this cokernel is
dual to the kernel of αf , we finally get

H2,2(F ) ≃ H2,2(G) ⊕H3(F,K) ≃ H2,2(G) ⊕H3,3(Y )prim.

�

Corollary 1.7. For generic Y = Y4, F is a smooth connected 7-dimensional projective vari-
ety, and H0(F,Ω4

F ) is 1-dimensional, generated by the 4-form αω, the Abel–Jacobi image of a
generator ω of H5,1(Y ) ≃ C.

In the sequel we will investigate this 4-form in more detail. In particular, we believe that F
is a moduli space of sheaves on some (categorical deformation of a) Calabi–Yau 4-fold X, and
αω has a different intepretation as a 4-form induced by the holomorphic volume element of X.
We can produce X only for special quartics Y , namely, the Pfaffian ones.

2. Abel–Jacobi map and Hochschild homology

The natural context for the Abel–Jacobi map is the Hochschild (or cyclic) homology. We will
first recall its definition.

Definition 2.1 ([Ma]). Let X be a smooth projective variety. The Hochschild homology of X
is defined as

HH(X) = H•(X ×X,∆∗OX

L

⊗∆∗OX),

where ∆ : X → X ×X is the diagonal embedding, and H• is the hypercohomology.

The Hochschild homology of X is closely related to its Hodge diamond. To state this relation,
we need the notion of Atiyah class [Ill].

Definition 2.2. Let X be an algebraic variety, ∆ : X → X ×X the diagonal embedding, I∆

the ideal sheaf of the diagonal ∆(X) ⊂ X ×X, and ∆(X)(2) ⊂ X ×X the second infinitesimal
neighborhood of the diagonal, that is the closed subscheme of X×X defined by the ideal sheaf
I2

∆. Then I∆/I2
∆
∼= N ∨

∆(X)/Y ×X
∼= Ω1

X , and there is a natural exact sequence

0 → ∆∗Ω
1
X → O∆(X)(2) → ∆∗OX → 0. (3)

The extension class
ÃtX ∈ Ext1(∆∗OX ,∆∗Ω

1
X).

of this exact triple is called the universal Atiyah class on X. Further, let F be a sheaf on X or
an object of Db(X), and

0 → F ⊗ Ω1
X → pr2∗(pr∗1 F ⊗O∆(X)(2)) → F → 0 (4)

the exact triple obtained by applying pr2∗(pr∗1 F ⊗ • ) to (3). The extension class AtF ∈
Ext1(F ,F ⊗ Ω1

X) of (4) is called the Atiyah class of F , and the object in the middle of (4) is
the sheaf (or the complex) of first jets of F .

Theorem 2.3 ([Ma]). There is an isomorphism IX : HHi(X) ∼= ⊕k−l=iH
k(X,Ωl

X).

The isomorphism IX is given by the exponent of the universal Atiyah class. Explicitly, the
projection HH(X) → H•(X,Ωl

X) is given by the composition

∆∗OX

L

⊗∆∗OX

1
l!

ÃtX
∧l

//
∆∗OX

L

⊗∆∗Ω
l
X [l]

//∆∗Ω
l
X [l].
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Another important point about Hochschild homology is its functoriality. We denote by Db(X)
the derived category of bounded complexes of OX-modules with coherent cohomology [Ve].
For any kernel functor ΦK : Db(X) → Db(Y ), K ∈ Db(X × Y ), one can define an operator
φK : HH(X) → HH(Y ) such that the composition of functors gives the composition of operators.
In particular, for a morphism f : X → Y there are pullback and pushforward maps f ∗ :
HH(Y ) → HH(X) and f∗ : HH(X) → HH(Y ) respectively, and for any object E ∈ Db(X) there
is a map φ∆∗E : HH(X) → HH(X) induced by the tensor product with E functor.

The following result is contained essentially in the paper of Markarian [Ma]. See also [Ra]
and [MS] for a more detailed exposition.

Theorem 2.4. (i) Pullbacks commute with the isomorphisms I:

f ∗ ◦ IY = IX ◦ f ∗.

(ii) Pushforwards commute with the isomorphisms I up to the multiplication by the Todd genus:

f∗(IX(−) ∧ tdX/f
∗tdY ) = IY (f∗(−)),

where tdX is the Todd genus of X and tdY is the Todd genus of Y .
(iii) The map induced by the tensor product with E turns into multiplication with ch(E) after
application of the isomorphism I:

IX(φ∆∗E(−)) = IX(−) ∧ ch(E).

Now assume that M is a fine moduli space of stable sheaves on X. Assume that M is smooth
and projective. Let E be the universal sheaf on M×X. Considering E as a kernel, we obtain the
kernel functor ΦE : Db(X) → Db(M) and the corresponding map on the Hochschild homology
φE : HH(X) → HH(M).

Proposition 2.5. Take any ω ∈ Hn−k−l(X,Ωn−l
X ) ⊂ HH−k(X), where n = dimX, and consider

the corresponding k-form αω ∈ H0(M,Ωk
X) ⊂ HH−k(M). Then αω = φE(ω), up to constant.

Proof. Compare the definition of αω with the definition of φE . By construction, αω is determined
via a Künneth component of the l-th Newton class of E :

αω ⊗ [X] = γ(k,0),(n,n)

(
Tr

(
1

(k + l)!
Atk+lE

)
∧ pr∗2 ω

)
∈ H0(M,Ωk

X) ⊗Hn(X,Ωn
X)

where [X] ∈ Hn(X,Ωn
X) is the fundamental class of X,

Tr : Extk+l(E , E ⊗ Ωk+l) → Hk+l(M×X,Ωk+l)

is the trace map, and

γ(k,l),(s,t) : Hk+l(M×X,Ωk+l) → H l(M,Ωk
X) ⊗H t(X,Ωs

X)

is the projection to a Künneth component. �

Now assume that the moduli space M parameterizes subschemes ofX, that is M is a component
of the Hilbert scheme of X. The example of the Fano scheme we started with is of this kind, for
F (Y ) can be interpreted as the moduli space of sheaves parameterizing the structure (or ideal)
sheaves of lines contained in Y . In this case the universal sheaf E is just the structure sheaf
OZ of the universal subscheme Z ⊂ M× X, and the corresponding kernel functor ΦOZ

boils
down to the composition p∗q

∗, where p : Z → M and q : Z → X are the projections. So, it is
natural to expect a relation to the Abel–Jacobi map. Theorem 2.4 implies that, if we want the
map φOZ

to be compatible with the Atiyah–Jacobi map under the isomorphism I of Hochschild
and Dolbeault homologies, we need either to modify the isomorphism I by multiplying it with
the Todd genus, or to modify the Abel–Jacobi map. We choose the second way.

10



For each ξ ∈ H•(X ×M,C) we define the modified Abel–Jacobi map by the formula

ÃJξ : H•(X,C)−→H•(M,C), ÃJ(c) = p∗(q
∗(c) · ξ · tdX). (5)

Proposition 2.6 (cf. [MS]). For any K ∈ Db(X ×M) there is a commutative diagram

HH(X)
φK

//

∼=
��

HH(M)

∼=
��

⊕Hp(X,Ωq
X)

∼=
��

⊕Hp(M,Ωq
M)

∼=
��

⊕Hk(X,C)
ÃJch(K)

// ⊕Hk(M,C)

where the bottom arrow is the modified Abel–Jacobi map.

Proof. Follows from Theorem 2.4 and the multiplicativity of the Todd genus: td(X × M) =
td(X) · td(M). �

It is well known (see e.g. [Or], Theorem 2.1.8) that HH(X) ∼= HH(Y ) if the derived categories
of X and Y are equivalent. Thus Hochschild homology is an invariant of the derived category
and it is natural to generalize the definition to any triangulated category. Actually, we will
need this in a particular case.

Let A ⊂ Db(X) be an admissible subcategory (i.e. a component of a semiorthogonal decom-
position of Db(X)). It is proved in [Ku5] that there exists an object K(A) ∈ Db(X × X)
such that the corresponding kernel functor ΦK(A) : Db(X) → Db(X) is the projection onto the
subcategory A.

Definition 2.7 ([Ku6]). Let A ⊂ Db(X) be an admissible subcategory. The Hochschild ho-
mology of A is defined as

HH(A) = H•(X ×X,K(A)
L

⊗K(A)∗),

where K(A)∗ is the kernel of the left adjoint functor to the projection onto the subcategory A.

A very important property of Hochschild homology is the following additivity Theorem.

Theorem 2.8 ([Ku6]). If Db(X) = 〈A1,A2, . . . ,An〉 is a semiorthogonal decomposition, then

HH(X) = HH(A1) ⊕ HH(A2) ⊕ · · · ⊕ HH(An).

Recall that a triangulated category T is called an m-Calabi–Yau category, if the shift by m
functor [m] is a Serre functor in T , i.e. if we are given bifunctorial isomorphisms

Hom(F,G) ∼= Hom(G,F [m])∗

for all F,G ∈ T .

Remark 2.9. One can also define the Hochschild cohomology HH•(T ) of an admissible sub-
category T ⊂ Db(X). The Hochschild cohomology is naturally a ring, while the Hochschild
homology is a module over it.

A triangulated category T is called connected if HH<0(T ) = 0 and HH0(T ) = C. One has
HH0(Db(X)) = H0(X,OX), so the derived category of a smooth projective variety is connected
if and only if the variety itself is connected.
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Lemma 2.10 ([Ku6]). Let T be a connectedm-Calabi–Yau category, equivalent to an admissible
subcategory in the derived category of a smooth projective variety, then HHi(T ) = 0 unless
−m ≤ i ≤ m. Moreover dim HH−m(T ) = 1.

Let T be a connected m-Calabi–Yau category and let α = αT be the generator of the space
HH−m(T ). By the above Lemma αT is defined uniquely up to a constant. We will call αT the
holomorphic volume form of T .

Remark 2.11. If T is an m-Calabi–Yau category then the Hochschild homology is a free module
over the Hochschild cohomology ring, and αT is a generator.

Now we are coming back to our original setting: Y = Yn is a general nonsingular hypersurface
of degree n in P2n−1, F = F (Y ) is its Fano scheme, q : Z → Y is the universal family of lines
in Y , p : Z → F the natural projection.

Theorem 2.12 ([Ku1]). The line bundles OY ,OY (1), . . . ,OY (n− 1) form an exceptional col-
lection in Db(Y ), so that we have a semiorthogonal decomposition

Db(Yn) = 〈Cn,OY ,OY (1), . . . ,OY (n− 1)〉,

where Cn = {F ∈ Db(Y ) | H•(Y, F ) = H•(Y, F (−1)) = · · · = H•(Y, F (1 − n)) = 0}. Moreover,
Cn is a connected (2n− 4)-Calabi–Yau category.

Corollary 2.13. We have

HHi(Cn) =





Hn−1+t,n−1−t(Y,C), if i = 2t 6= 0,

Hn−1,n−1(Y,C) ⊕ Cn−2, if i = 0,

0, otherwise.

Proof. The category generated by an exceptional bundle is equivalent to the derived cate-
gory of vector spaces, that is, to the derived category of coherent sheaves on a point. Thus,
HH•(〈OY (k)〉) = C (sitting in degree 0) for any k. Combining with Theorems 2.8 and 2.12 we
conclude that

HHi(D
b(Y )) =

{
HHi(Cn) ⊕ Cn, if i = 0

HHi(Cn), otherwise.

On the other hand, by Theorem 2.3 we have

HHi(D
b(Y )) =





Hn−1+t,n−1−t(Y,C), if i = 2t 6= 0,

Hn−1,n−1(Y,C) ⊕ C2n−2, if i = 0,

0, otherwise.

So, the Corollary follows. �

Our final goal in this section is to show that the form αω on F (Y ) constructed above is induced
by the form αCn ∈ HH4−2n(Cn).

First of all choose a line ℓ = P(T ) ⊂ P(V ) on Y ⊂ P(V ). Then ℓ is the zero locus of a regular
section of a vector bundle V/T⊗OP(V )(1) on P(V ), hence on P(V ) we have the following Koszul
resolution
{
Λ2n−2T⊥ ⊗OP(V )(2 − 2n) → · · · → Λ2T⊥ ⊗OP(V )(−2) → T⊥ ⊗OP(V )(−1) → OP(V )

}
∼= Oℓ.

Restricting the resolution to Y , twisting by OY (k − 2) and truncating in term Λk−2T⊥ ⊗ OY

we obtain a complex
{
Λk−2T⊥ ⊗OY → · · · → T⊥ ⊗OY (k − 3) → OY (k − 2) → Oℓ(k − 2)

}
(6)

which we consider as an object of Db(Y ) and denote by Gkℓ .
12



Remark 2.14. Note that the restriction of the Koszul complex to Y has two cohomology sheaves,
Oℓ at the rightmost term and L1i

∗i∗Oℓ
∼= Oℓ(−n) at the term next to it. Therefore, Gkℓ is

indeed a complex with two cohomology sheaves, a torsion free sheaf at the leftmost term and
Oℓ(k − n− 2) at the third from the right term.

Lemma 2.15. We have Gkℓ ∈ 〈OY ,OY (1), . . . ,OY (k − 1)〉⊥ for k ≤ n. In particular, Gnℓ ∈ Cn.

Proof. First of all, note that G1
ℓ = Oℓ(−1) is right orthogonal to OY , since we have

Ext
•
(OY (1),Oℓ) = H•(Y,Oℓ(−1)) = 0. On the other hand, we have an exact triangle

Gkℓ → Λk−2T⊥ ⊗OY → Gk−1
ℓ (1)

It follows by induction that Gkℓ ∈ 〈OY (1), . . . ,OY (k − 1)〉⊥, so it remains to check that
Ext

•
(OY ,G

k
ℓ ) = H•(Y,Gkℓ ) = 0. For this we apply the functor H•(Y,−) to the complex (6). We

get a complex

Λk−2T⊥ → Λk−3T⊥ ⊗ V ∗ → · · · → Λ2T⊥ ⊗ Sk−4V ∗ → T⊥ ⊗ Sk−3V ∗ → Sk−2V ∗ → Sk−2T ∗

which is well known to be exact. So, H•(Y,Gkℓ ) = 0 and we are done. �

Denote by L the endofunctor of the category Db(Y ) defined as the composition of a twist by
OY (1) and a left mutation through OY . In other words, for any F ∈ Db(Y ) there is an exact
triangle

H•(Y, F ) ⊗OY → F (1) → L(F ).

Then Gkℓ = Lk−1(Oℓ(−1)). Moreover, one can check (see [Ku1]) that L induces an autoequiv-
alence of the category Cn such that Ln ∼= [2 − n] on Cn. On the other hand, repeating the
arguments of Proposition 5.4 of [KuM] one can check that L induces a chain of isomorphisms

Ext1(Oℓ,Oℓ) = Ext1(Oℓ(−1),Oℓ(−1)) → Ext1(G2
ℓ ,G

2
ℓ ) → · · · → Ext1(Gnℓ ,G

n
ℓ ).

It follows that the form defined on F (Y ) by the structure sheaf OZ of the universal line coincides
(up to a sign) with the form defined by the family {Gnℓ }ℓ∈F (Y ), that is given by the kernel functor
ΦGn , where Gn = (idDb(Y ) ×L)n−1(OZ(−1, 0)) ∈ Db(Y ×F (Y )) (alternatively, one can define Gn

by a universal version of the complex (6)). On the other hand, since Gnℓ ∈ Cn for any ℓ, it follows
that the map φGn : HH(Y ) → HH(F (Y )) factors through the projection HH(Y ) → HH(Cn).

Corollary 2.16. The form αω ∈ H0(F (Y ),Ω2n−4
F (Y )) is induced by the holomorphic volume form

αCn of the Calabi–Yau category Cn.

3. Pfaffian hypersurfaces and their duals

Now we consider a very special type of degree n hypersurfaces Yn ⊂ P2n−1. A hypersurface Yn
is called Pfaffian if its equation can be written as the Pfaffian of a 2n-by-2n matrix of linear
forms. Such hypersurfaces are not generic, in particular they are singular for n ≥ 4. However,
they deserve special consideration because an analogue of the Calabi–Yau category Cn for these
hypersurfaces has a geometric interpretation. Actually, it is equivalent to the derived category
of a certain Calabi–Yau linear section of the Grassmannian Gr(2, 2n). The relation between
Pfaffian hypersurfaces and linear sections of the Grassmannian comes naturally in the context
of homological projective duality [Ku2].

Homological projective duality (HP-duality for short) is a certain duality on the set of smooth
(non-commutative) varieties equipped with a map into a projective space and a compatible
semiorthogonal decomposition of its derived category (called Lefschetz decomposition). It as-
sociates to a smooth variety X with a map f : X → PN and a Lefschetz decomposition A•,
a smooth variety Y with a map into the dual projective space g : Y → P̌N and the dual
Lefschetz decomposition B•. Classical projective duality can be considered as a quasiclassical
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limit of HP-duality since in the case where the map f : X → PN is a closed embedding, the
classically projectively dual variety X∨ ⊂ P̌N coincides with the set of critical values of the
map g : Y → P̌N from the HP-dual variety Y . But the most important property of HP-duality
is a strong relation between the derived categories of linear sections of the HP-dual varieties
X and Y . Choose a projective subspace P(V ) ⊂ P̌N and let P(V ⊥) ⊂ PN be its orthogonal
complement. Let XV = X ×PN P(V ⊥) and YV = Y ×

P̌N P(V ) be the corresponding linear sec-
tions. Then the derived categories Db(XV ) and Db(YV ) have semiorthogonal decompositions,
one part of each coming from the Lefschetz decomposition A• (or B•) of the ambient variety
(this part is called trivial), and the other parts (nontrivial) being equivalent. In some cases one
of the trivial parts is zero, so the nontrivial part coincides with the whole derived category and
one obtains a fully faithful embedding of one of categories Db(XV ) or Db(YV ) into the other,
with the orthogonal complement being trivial (in the above sense).

Though on the categorical level one can always describe the HP-dual variety Y for any X, it is a
very difficult problem to find a geometrical description for it. There are not so many examples
for which the answer is known. However, Pfaffian varieties are among them.

Let W be a vector space of dimension 2n. Consider the space P(Λ2W ∗) of skew-forms onW . Let
Pf(W ∗) ⊂ P(Λ2W ∗) denote the hypersurface of degenerate skew-forms. It is called the Pfaffian
hypersurface. More generally, for each 1 ≤ k ≤ n − 1 let Pfk(W

∗) denote the subvariety
of P(Λ2W ∗) consisting of skew-forms of rank less or equal to 2n−2k. These varieties are called
the generalized Pfaffian varieties. They form a chain

Gr(2,W ∗) = Pfn−1(W
∗) ⊂ Pfn−2(W

∗) ⊂ · · · ⊂ Pf2(W
∗) ⊂ Pf1(W

∗) = Pf(W ∗).

It is easy to see that for k < n − 1 the Pfaffian variety Pfk(W
∗) is singular, its singular locus

being the next Pfaffian variety Pfk+1(W
∗). Moreover, it is easy to see that Pfk(W

∗) is the
closure of a GL(W )-orbit on P(Λ2W ∗), and that Pfk(W

∗) is the (n − 2 − k)-th secant variety
of Gr(2,W ∗).

The sheaf of ideals of Pfk(W
∗) is the image of the map

Λ2(k−1)W ⊗OP(Λ2W ∗)(−(n− k + 1))
σk

//OP(Λ2W ∗) (7)

given by Pfaffians of principal 2(n− k+1)× 2(n− k+1)-minors of a skew-form. Alternatively,
σk can be described as the unique GL(W )-semiinvariant element in the space

H0(P(Λ2W ∗),Λ2(k−1)W ∗ ⊗OP(Λ2W ∗)(n− k + 1)) = Λ2(k−1)W ∗ ⊗ Sn−k+1(Λ2W ∗)

Another interesting fact is that the class of Pfaffian varieties is self dual with respect to pro-
jective duality. More precisely, it is easy to see that (Pfk(W

∗))∨ = Pfn−1−k(W ). This classical
statement has the following extension.

Conjecture 3.1 ([Ku4]). The Pfaffian varieties Pfk(W
∗) admit categorical resolutions of sin-

gularities P̃fk(W
∗) such that P̃fk(W

∗) is Homologically Projectively Dual to P̃fn−1−k(W ). In
particular, the Grassmannian of lines Gr(2,W ) is Homologically Projectively Dual to a certain

categorical resolution of singularities P̃f(W ∗) of the Pfaffian hypersurface Pf(W ∗).

This conjecture was proved in [Ku4] for n = 3.

Now consider the derived categories of linear sections of X = Gr(2,W ) and of Ỹ = P̃f(W ∗)
corresponding to a generic linear subspace V ⊂ Λ2W ∗ of dimension dimV = 2n. Then XV is a
linear section of the Grassmannian X and it is easy to see that its canonical class is zero. On
the other hand, ỸV is a categorical resolution of a degree n hypersurface YV ⊂ P(V ) = P2n−1. If
P(V ) does not intersect the singular locus Sing Pf(W ∗) (which is possible, by dimension reasons,

only for n ≤ 3), then ỸV = YV , and in other cases the resolution ỸV of YV is nontrivial. Both
14



XV and ỸV being linear sections of HP-dual varieties come with semiorthogonal decompositions
of their derived categories. The one for Db(XV ) turns out to be very simple: in this case there is
no trivial part, so the nontrivial part coincides with the whole category Db(XV ). As for Db(YV ),
the trivial part is present here and is given by the exceptional collection O,O(1), . . . ,O(n−1).
So, in using the properties of HP-duality one can deduce from Conjecture 3.1 the following

Conjecture 3.2. Let V ⊂ Λ2W ∗ be a vector subspace of dimension dimV = 2n = dimW . Let
V ⊥ ⊂ Λ2W be the orthogonal. Then the derived category of coherent sheaves on a categorical
resolution of singularities ỸV of the Pfaffian hypersurface YV = P(V ) ∩ Pf(W ∗) ⊂ P(V ) has a
semiorthogonal decomposition with nontrivial component equivalent to the derived category of
the dual linear section of the Grassmanian XV = P(V ⊥) ∩ Gr(2,W ). More precisely,

Db(ỸV ) = 〈Db(XV ),O,O(1), . . . ,O(n− 1)〉.

See [Ku4] in case n = 3.

If the above Conjectures are true then for a Pfaffian hypersurface Yn the Calabi–Yau category
Cn = 〈O,O(1), . . . ,O(n− 1)〉⊥ ⊂ Db(Ỹn) is equivalent to Db(Xn). Thus, for any smooth Yn the
category Cn can be considered as a noncommutative deformation of the derived category of the
Calabi–Yau variety Xn. In case n = 3 there are examples of other special cubics Y3 for which C3

is equivalent to the derived category of a (commutative) K3-surface. It is a fascinating problem
to find other special Yn’s (preferably smooth ones), for which Cn becomes the derived category
of a (commutative) Calabi–Yau manifold.

The semiorthogonal decomposition of Conjecture 3.2 suggests that any moduli space of sheaves
on YV can be represented as a moduli space on XV . In the next two sections, we will show that
this is the case for the Fano scheme of lines on YV .

4. Fano scheme of a Pfaffian variety

Let us fix the notation for this section. We let W = C2n, V = C2n, consider a linear embedding
V → Λ2W ∗, and denote by X = XV = Gr(2,W ) ∩ P(V ⊥) and Y = YV = P(V ) ∩ Pf(W ∗) the
corresponding linear sections.

The goal of this section is to show that the Fano scheme of lines on Y = YV can be interpreted
as a certain moduli space on X = XV . We start by considering the Fano scheme F (Pf(W ∗))
of lines on Pf(W ∗). As it is proved in Appendix A the variety

F̃1 = {(U,L) ∈ Gr(n+ 1,W ) × Gr(2,Λ2W ∗) | L ⊂ Ker(Λ2W ∗ → Λ2U∗)}.

is a resolution of F (Pf(W ∗)).

Let F (Y ) be the Fano scheme of lines on Y and put F̃ (Y ) = F (Y )×F (Pf(W ∗)) F̃1, which we call
the resolved Fano scheme of lines on Y . Let F0(Y ) ⊂ F (Y ) be the open subscheme consisting

of lines which do not intersect Y ∩ Pf2(W
∗) ⊂ Y . Then the projection π : F̃1 → F (Pf(W ∗))

restricts to a projection π : F̃ (Y ) → F (Y ) which is an isomorphism over F0(Y ) by the proof of
Proposition A.6.

Lemma 4.1. Let n ≥ 3. For generic V ⊂ Λ2W ∗ the resolved Fano scheme F̃ (Y ) of lines on
Y = P(V ) ∩ Pf(W ∗) is smooth and connected and F0(Y ) is nonempty. In particular, F (Y ) is
irreducible, F0(Y ) is dense in F (Y ) and π : F̃ (Y ) → F (Y ) is birational.

Proof. To check the smoothness of F (Y ) we consider the universal Pfaffian variety and its
resolved Fano scheme of lines. In other words, we consider Gr(2n,Λ2W ∗) and

Y = PGr(2n,Λ2W ∗)(V) ×P(Λ2W ∗) Pf(W ), F̃(Y) = GrGr(2n,Λ2W ∗)(2,V) ×Gr(2,Λ2W ∗) F̃ (Pf(W )),
15



where we denote the tautological bundle on Gr(2n,Λ2W ∗) by V. We have canonical projections

Y → Gr(2n,Λ2W ∗) and F̃(Y) → Gr(2n,Λ2W ∗) and it is clear that their fibers over V ∈
Gr(2n,Λ2W ∗) are the corresponding Pfaffian variety and its resolved Fano scheme of lines.

Note that F̃(Y) is smooth. Indeed, considering the projection F̃(Y) → F̃ (Pf(W ∗)) we see that
its fiber over a point (U,L) ∈ F̃ (Pf(W ∗)) is just the set of all V ∈ Gr(2n,Λ2W ∗) such that

L ⊂ V ⊂ Λ2W ∗. In other words, F̃(Y) = GrF̃ (Pf(W ∗))(2n− 2,Λ2W ∗/L).

The smoothness of F̃ (Y ) and nonemptyness of F0(Y ) for general Y follow because the general
fiber of a morphism of smooth varieties is smooth and has a nontrivial intersection with a given
open subset.

Now let us verify the connectedness of F̃ (Y ). Since the fibers of the projection F̃ (Y ) → F (Y )
are connected, it suffices to check that F (Y ) is connected. And for this it suffices to check that
H0(F (Y ),OF̃ (Y )) = 0. But F (Y ) ⊂ Gr(2, V ) is the zero locus of a regular section of the vector
bundle SnL∗, so we have the following Koszul resolution

· · · → Λ2(SnL) → SnL→ O → OF (Y ) → 0.

Looking at the hypercohomology spectral sequence it is easy to note that it suffices to check that
Hq(Gr(2, V ),Λt(SnL)) = 0 for q ≤ t and t > 0. But the Bott–Borel–Weil theorem implies that
Hq(Gr(2, V ),Λt(SnL)) can be nontrivial only for q = dimV −2 = 2n−2 and q = 2(dimV −2) =
4n−4. On the other hand r(SnL) = n+1, so t ≤ n+1. Since for n ≥ 3 we have 2n−2 ≥ n+1
we see that Hq(Gr(2, V ),Λt(SnL)) = 0 for q ≤ t and t > 0 unless n = 3 and q = t = 4. In
the latter case H4(Gr(2, 6),Λ4(S3L)) = H4(Gr(2, 6),Σ6,6L) = H4(Gr(2, 6),O(−6)) = 0 (in this
case the nontrivial cohomology is H8 = C 6= 0), so we conclude that H0(F (Y ),OF̃ (Y )) = 0 and

that F̃ (Y ) is connected.

Since F̃ (Y ) is smooth and connected we conclude that F̃ (Y ) is irreducible. Therefore the Fano

scheme F (Y ) = π(F̃ (Y )) is irreducible as well. And since F0(Y ) 6= ∅ the map π : F̃ (Y ) → F (Y )
is birational. �

Denote by ρ the projection F̃ (Y ) → Gr(n + 1,W ). Our further goal is to identify the image
of F̃ (Y ) in Gr(n+1,W ). Consider the map ϕ : V ⊗OGr(n+1,W ) → Λ2W ∗⊗OGr(n+1,W ) → Λ2U∗

on the Grassmannian Gr(n + 1,W ). Denote

G(Y ) = {U ∈ Gr(n + 1,W ) | rank(ϕU) ≤ 2n− 2},
G0(Y ) = {U ∈ Gr(n + 1,W ) | rank(ϕU) = 2n− 2}.

Lemma 4.2. We have ρ(F0(Y )) = G(Y ). Moreover, the projection ρ : F̃ (Y ) → G(Y ) is an
isomorphism over G0(Y ).

Proof. For any point (U,L) ∈ F̃ (Y ) we have ϕg(L)(L) = 0 by definition of F̃ . Hence at any
such point the rank of ϕ is less than or equal to dimV/L = 2n− 2. On the other hand, assume
that rankϕ ≤ 2n− 2 at a point U ∈ Gr(n + 1,W ). Then there is a two-dimensional subspace
L ⊂ V such that ϕU(L) = 0, which means that (U,L) ∈ F̃ (Y ). �

We have the following diagram

F̃ (Y )
π

vvnnnnnnnnnnnnn

ρ

((PPPPPPPPPPPPP

F0(Y ) ⊂ F (Y ) G(Y ) ⊃ G0(Y )

where both maps π and ρ are isomorphisms over open subsets F0(Y ) and G0(Y ) respectively.
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Lemma 4.3. For generic Y the set G0(Y ) is nonempty. In particular, for generic Y the

projection ρ : F̃ (Y ) → G(Y ) is birational.

Proof. Consider the universal versions of G(Y ) and G0(Y ):

G(Y) = {(V, U) ∈ Gr(2n,Λ2W ∗) × Gr(n+ 1,W ) | rank(ϕ : V → Λ2U∗) ≤ 2n− 2},
G0(Y) = {(V, U) ∈ Gr(2n,Λ2W ∗) × Gr(n+ 1,W ) | rank(ϕ : V → Λ2U∗) = 2n− 2}.

It is easy to see that G(Y ) is irreducible and G0(Y ) is open in G(Y ). Hence the general fiber of
G0(Y ) over Gr(2n,Λ2W ∗), which is nothing but G0(Y ), is nonempty. �

Our further goal is to identify G(Y ) for Y = YV in terms of the corresponding Calabi–Yau
linear section X = XV of the Grassmannian Gr(2,W ). Let

dn = deg Gr(2, n+ 1), cn = (n2 − 3n + 4)/2 = (n− 1)(n− 2)/2 + 1

Actually, dn is the Catalan number Cn−1, but we do not need it.

Consider the Hilbert scheme Hilbdn(X) of Artinian subschemes of X of length dn and its
subvariety

H(X) =

{
Z ∈ Hilbdn(X)

∣∣∣∣
rank(W ∗ → H0(Z,S∗

|Z)) ≤ n + 1,

rank(Λ2W ∗ → H0(Z,Λ2S∗
|Z)) ≤ cn

}
.

where S is the tautological bundle on G(2,W ). If for a point Z ∈ H(X) the rank of the map
W ∗ → H0(Z,S∗

|Z) equals n+ 1, we can associate to Z the kernel of the map W ∗ → H0(Z,S∗
|Z).

Thus we obtain a rational map H(X) → Gr(n− 1,W ∗) = Gr(n+ 1,W ). More precisely, let

H̃(X) =

{
(U,Z) ∈ Gr(n+ 1,W ) × Hilbdn(X)

∣∣∣∣
Z ∈ Hilbdn(X ∩ Gr(2, U)),
rank(Λ2U∗ → H0(Z,Λ2S∗

|Z)) ≤ cn

}
.

We have projections H̃(X) → Gr(n + 1,W ) and H̃(X) → H(X).

Lemma 4.4. The image of H̃(X) in Gr(n+ 1,W ) coincides with G(Y ).

Proof. Let (U,Z) ∈ H̃(X). Since Z ⊂ X ∩ Gr(2, U) we have commutative diagram

V //

%%K
K

K
K

K
K

++

Λ2W ∗ //

��

Λ2U∗

��

H0(X,Λ2S∗
|X) // H0(Z,Λ2S∗

|Z)

Note that the dashed map vanishes by definition of X. Therefore, the dotted arrow is also zero.
In other words, the composition

V → Λ2U∗ → H0(Z,Λ2S∗
|Z)

is zero. On the other hand, the rank of the second map here is not greater than cn by definition
of H̃(X). Therefore the rank of the map V → Λ2U∗ is not greater than dim Λ2U∗ − cn =
n(n + 1)/2 − (n2 − 3n+ 4)/2 = 2n− 2, so we see that U ∈ G(Y ) by definition of G(Y ).

Vice versa, assume that U ∈ G(Y ). Then X ∩ Gr(2, U) ⊂ Gr(2,W ) is the linear section of
Gr(2, U) by the image of V ⊂ Λ2W ∗ in Λ2U∗. By definition of G(Y ) the dimension of this
image is not greater than 2n − 2, so X ∩ Gr(2, U) is a linear section of the Grassmannian
Gr(2, U) = Gr(2, n + 1) of codimension ≤ 2n − 2. But since dim Gr(2, n + 1) = 2n − 2 such
an intersection contains not less than deg Gr(2, n + 1) = dn points, so we conclude that there

exists a subscheme Z ⊂ X ∩ Gr(2, U) of length dn. Then (U,Z) ∈ H̃(X). �
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Denote the maps from H̃(X) to H(X) and G(Y ) by π′ and ρ′ respectively. Consider the open
subsets

G′
0(Y ) = {U ∈ Gr(n+ 1,W ) | X ∩ Gr(2, U) is zero-dimensional},

H0(X) = {Z ∈ H(X) | rank(W ∗ → H0(Z,S∗
|Z)) = n+ 1}.

We have a diagram

H̃(X)
π′

((QQQQQQQQQQQQQ

ρ′

vvnnnnnnnnnnnnn

G′
0(Y ) ⊂ G(Y ) H(X) ⊃ H0(X)

Also denote

H̃ ′
0(X) = ρ′−1(G′

0(Y )) =

{
(U,Z)

∣∣∣∣
Z = X ∩ Gr(2, U) ∈ Hilbdn,
rank(Λ2U∗ → H0(Z,Λ2S∗

|Z)) ≤ cn

}
,

H̃0(X) = π′−1(H0(X)) =

{
Z ∈ Hilbdn(X)

∣∣∣∣
rank(W ∗ → H0(Z,S∗

|Z)) = n + 1,

rank(Λ2W ∗ → H0(Z,Λ2S∗
|Z)) ≤ cn

}
.

Lemma 4.5. If n ≥ 3 then for a generic X the set H̃ ′
0(X)∩H̃0(X) is nonempty. In particular,

the sets H̃(X) and H(X) have irreducible components H̃1(X) and H1(X) such that restriction

of the maps ρ′ and π′ to H̃1(X) are birational transformations H̃1(X) → G(Y ) and H̃1(X) →
H1(X).

Proof. Once again, consider the universal versions of H̃(X), H̃0(X) and H̃ ′
0(X):

H̃0, H̃
′
0 ⊂ H̃ = {(V, U, Z) ∈ Gr(2n,Λ2W ∗) × Gr(n + 1,W ) × Hilbdn(Gr(2,W )) |

| Z ⊂ P(V ⊥) ∩ Gr(2, U) ⊂ Gr(2,W ) and rank(Λ2U∗ → H0(Z,Λ2S∗
|Z)) ≤ cn}.

It is easy to see that H̃0∩H̃′
0 ⊂ H̃ is a nonempty open subset and its projection to Gr(2n,Λ2W ∗)

is dominant. It follows that the generic fiber of H̃0 ∩ H̃′
0 over Gr(2n,Λ2W ∗) is nonempty, so

H̃0(X)∩ H̃ ′
0(X) is nonempty for generic X. Define H̃1(X) to be the closure of H̃0(X)∩ H̃ ′

0(X)
in H̃(X) and H1(X) = π′(H̃1(X)). Then the claim becomes obvious. �

Corollary 4.6. For a generic V ⊂ Λ2W ∗, the varieties F (Y ), G(Y ) and H(X) are birational.

Since H(X) is a moduli space on a Calabi–Yau manifold X of dimension 2n−4, it has a natural
(2n− 4)-form.

Conjecture 4.7. The birational isomorphism of F (Y ) and H(X) is compatible with (2n− 4)-
forms.

We conclude this section by describing the above construction in cases n = 2 and n = 3 more
explicitly.

If n = 2 then Pf(C4) = Gr(2, 4), so Y = P3 ∩Gr(2, 4) is a quadric in P3, and X = Gr(2, 4)∩P1

is a pair of points. In this case dn = 1, cn = 1, so H(X) = X is a pair of points. However, the
map π′ in this case is not birational, it is a P1-fibration in fact, so H̃(X) is a union of two P1,
as well as G(Y ) and F (Y ). So, in case n = 2 our construction shows that the variety of lines
on a 2-dimensional quadric is P1 ⊔ P1.

If n = 3 then Y = P5 ∩ Pf(C6) is a Pfaffian cubic fourfold, and X = Gr(2, 6) ∩ P8 is a K3-
surface. In this case d = 2, cn = 2 and it is easy to see that all the maps π, ρ, ρ′, π′ described
above are biregular isomorphisms. Moreover, the conditions rank(W ∗ → H0(Z,S∗

|Z)) ≤ 4,

rank(Λ2W ∗ → H0(Z,Λ2S∗
|Z)) ≤ 2 defining H(X) ⊂ Hilb2(X) are void since Z is a length 2

subscheme in X, so H(X) = Hilb2(X) and our construction gives the classical isomorphism
between the Fano scheme F (Y ) of lines of Y and Hilb2(X).
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5. Exterior forms via the linkage class

We will start by defining the divisorial linkage class (see [KuM], Section 3 for a more general
notion of k-th linkage classes associated to any closed embedding i : Y →֒ W ). In what follows,
Y is a hypersurface (that is, an effective Cartier divisor) in a nonsingular algebraic variety W .
We reserve the calligraphic letters F , G,. . . for coherent OY -modules or objects of Db(Y ) and
the block letters F , G, . . . for coherent OW -modules or objects of Db(W ).

The restriction (or pullback) functor i∗ : Coh(W ) → Coh(Y ) has a left derived functor Li∗ :
Db(W ) → Db(Y ). It can be described as follows: let R(F ) denote a locally free resolution
of any F ∈ Db(W ). Then Li∗(F ) is quasi-isomorphic to i∗R(F ). The cohomology hkLi∗(F )
of the complex Li∗(F ) is denoted by L−ki

∗(F ) or Lki∗(F ). Assume that F is a sheaf, that
is a complex concentrated at grade 0. Then the cohomology of Li∗(F ) can only appear at
k ≤ 0. More exactly, we can write Li∗(F ) = OY ⊗f−1OW

f−1R(F ) and compute Lki
∗(F ) using

the symmetry of the tensor product on its arguments together with the fact that OY , as an
OW -module, has a locally free resolution of the form R(i∗OY ) = [OW (−Y ) → OW ]. We obtain
that L0i

∗(F ) = i∗(F ), L1i
∗(F ) = i∗(F ) ⊗ OW (−Y )|Y = i∗(F ) ⊗ N ∨

Y/W , where N ∨

Y/W denotes
the conormal sheaf of Y in W , and all the other cohomologies are zero.

If we consider R(i∗OY ) ⊗f−1OW
f−1F and OY ⊗f−1OW

f−1R(F ) as complexes of OW -modules,
then they are quasi-isomorphic to each other and to the direct sum of their cohomologies.
But they are different as complexes of OY -modules: the first one is quasi-isomorphic to the
direct sum of its cohomologies, the second may be a nontrivial extension. More exactly, let
τ •Li∗(F ) be the canonical filtration on Li∗(F ). Then τ−1Li∗(F ) and gr0

τ Li
∗(F ) are complexes

concentrated at only one grade, so they are quasi-isomorphic to their cohomologies:

τ−1Li∗(F ) ≃
qis
L1i

∗(F )[1], gr0
τ Li

∗(F ) ≃
qis
L0i

∗(F ).

Thus the exact triple

0 → τ−1Li∗(F ) → τ 0Li∗(F ) → gr0
τ Li

∗(F ) → 0 (8)

defines the extension class

ǫF ∈ Ext1(L0i
∗(F ), L1i

∗(F )[1]) = Ext2(L0i
∗(F ), L1i

∗(F )) = Ext2(i∗F, i∗F ⊗N ∨

Y/W ). (9)

Definition 5.1. The extension class (9) of the exact triple (8) is called the divisorial linkage
class of F with respect to the embedding i : Y →֒ W . To make explicit its dependence on the

embedding, we will also denote it by ǫ
Y/W
F . By abuse of notation, the divisorial linkage class of

i∗F for an OY -module F will be denoted ǫF or ǫ
Y/W
F .

Remark 5.2. In practice, to compute ǫF , one can use a partial resolution 0 → G→ E → F → 0
with E locally free and G torsion free instead of the full resolution R(F ). Tensoring by OY ,
we get the 4-term exact sequence

0 → i∗ Tor1(i∗OY , F ) → i∗G→ i∗E → i∗F → 0,

whose extension class in Ext2(i∗F, i∗ Tor1(i∗OY , F )) = Ext2(i∗F, i∗F ⊗N ∨

Y/W ) is ǫF .

Remark 5.3. In [KuM], a more abstract definition of ǫF is given, valid for an object F of
Db(Y ). It is a morphism in the derived category included into the following distinguished

triangle: Li∗i∗F //F
ǫF

//F ⊗N ∨

Y/W [2].

The following example seems to be the easiest one for which the linkage class is nonzero.

Example 5.4. Take for i the Segre embedding Y = P1 × P1 →֒ W = P3 with image given by
the equation xw−yz = 0, and set F = OY (1, 0). Then F = i∗F has a resolution [OW (−1)⊕2 →
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O⊕2
W ] with the map given by the matrix

(
x y
z w

)
. It follows that Li∗F ≃

qis
[OY (−1,−1)⊕2 → O⊕2

Y ]

with the map given by the same matrix, L1i
∗(F ) = OY (−1,−2), L0i

∗(F ) = F = OY (1, 0), and,
by Remark 5.2, ǫF ∈ H2(Y,OY (−2,−2)) is the extension class of the exact quadruple

0 → OY (−1,−2)−−−→OY (−1,−1)⊕2 −−−−→O⊕2
Y −−−−−→OY (1, 0) → 0(

−y
x

) (
x y
z w

) (
w −y

)

We have ǫF = 0 ⇐⇒ Li∗F ≃
qis

OY (1, 0) ⊕ OY (−1,−2)[1] =⇒ H0(Y,OY (−1, 0) ⊗ Li∗F ) = C.

But from the resolution,

H0(Y,OY (−1, 0) ⊗ Li∗F ) = H0(Y, [OY (−2,−1)⊕2 → OY (−1, 0)⊕2]) = 0,

hence ǫF 6= 0.

Now we go over to the situation when Y = Yn is a hypersurface of degree n in W = P2n−1

and F is a sheaf representing a point m = [F ] of some connected component M of the smooth
locus of the moduli space of stable (or simple) sheaves on Y . There is a canonical isomorphism
TmM = Ext1(F ,F), and formula (1) defines a p-linear form αp(m) on TmM with p = 2n− 4.
It depends on the choice of the isomorphism N ∨

Y/W ≃ ωY , where ωY is the dualizing sheaf of

Y . Fixing once and forever such an isomorphism, the forms αp(m) fit to a well-defined cross-
section αp of the vector bundle ∧pT ∨M = Ω2n−4

M . One way to see that it is a regular section is
to relativize the definition of ǫF and formula (1) in flat families of sheaves. We will use another
approach, consisting in relating ǫF to the Atiyah class of F .

We will use the Atiyah class of torsion sheaves on Y with support Z which is a locally complete
intersection subscheme in Y . Let i : Z →֒ Y be the natural embedding. For any F ,G ∈ Db(Z),
we have a spectral sequence

Epq
2 = Extp(Lqi

∗i∗F ,G) =⇒ Extp+q(i∗F , i∗G),

and a canonical isomorphism Lqi
∗i∗F

can
−−−→∼ F ⊗ ∧qN ∨

Z/Y . This provides a natural map

Ext1(i∗F , i∗G) → Hom(F ⊗N ∨

Y/W ,G).

Assume now that, moreover, F is a locally free sheaf on Z. Then there is a canonical isomor-
phism i∗ Ext q(i∗F , i∗G) = Hom (F ⊗∧qN ∨

Z/Y ,G), and we obtain another natural map between
the same objects:

Ext1(i∗F , i∗G) → H0(Y, Ext 1(i∗F , i∗G)) = H0(Z, i∗ Ext 1(i∗F , i∗G)) =

= H0(Z,Hom (F ⊗N ∨

Y/W ,G)) = Hom(F ⊗N ∨

Y/W ,G),

where the first arrow comes from the local-to-global spectral sequence for Exts. One can prove
that these two maps coincide.

Theorem 5.5. Let Z be a locally complete intersection subscheme in Y and i : Z →֒ Y the
natural embedding. Let F ∈ Db(Z). Then the image of the Atiyah class Ati∗F ∈ Ext1(i∗F , i∗F⊗
Ω1
Y ) in Hom(F ⊗N ∨

Z/Y ,F ⊗ Ω1
Y |Z) coincides with 1F ⊗ κZ/Y , where κZ/Y denotes the natural

map of sheaves N ∨

Z/Y → Ω1
Y |Z.

Proof. See [KuM], Theorem 3.2 (iii). �

When Y is a hypersurface in a smooth variety W , consider the conormal bundle sequence

0 //N ∨

Y/W

κY/W
//Ω1
W |Y

ρY/W
//Ω1
Y

//0 . (10)

Denote by νY/W the extension class of (10) in Ext1(Ω1
Y ,N

∨

Y/W ).
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Theorem 5.6. Let Y be a hypersurface in a smooth variety W , i : Y → W the natural

embedding, and F ∈ Db(Y ). Then the linkage class ǫ
Y/W
F ∈ Ext2(F ,F ⊗N ∨

Y/W ) factors through

the Atiyah class AtF ∈ Ext1(F ,F ⊗ Ω1
Y ):

ǫ
Y/W
F = (1F ⊗ νY/W ) ◦ AtF .

Proof. See [KuM], Theorem 3.2 (i). �

In the next theorem, we deal with exterior forms on a moduli space M of sheaves on a projective
variety Y . Speaking about exterior forms on M , we will always mean that M is smooth. On
the other hand, it is not important to us whether M is separated or not. Thus we will take for
M an open subset of the smooth locus of either one of the following two moduli spaces: either
the moduli space of H-stable sheaves on Y in the sense of the definition of Simpson [Si] for some
ample divisor class H on Y , or the moduli space of simple sheaves on Y as defined in [AK2]. The
former is a quasi-projective scheme over k, and the latter is a possibly non-separated algebraic
space.

Corollary 5.7. Let Y = Yn be a smooth hypersurface of degree n in W = P2n−1 and M
a connected component of the smooth locus of the moduli space of stable or simple sheaves
on Y . Let us fix an isomorphism N ∨

Y/W ≃ ωY . Then there exists a closed regular p-form

αp ∈ H0(M,Ωp
M), where p = 2n − 4, such that its value αp(m) at any point m = [F ] ∈ M

represented by a sheaf F is given by formula (1). For n = 4, and M = F (Y ), αp is proportional
to the 4-form on F (Y ) defined in Corollary 1.7.

Proof. As in the proof of Theorem 2.2 of [KuM], we can shrink M to the biholomorphic image
of a polydisc in it, choose a universal sheaf F over M × Y and represent (p + 1)αp as the
Künneth component γ2n−4,2n−2 ∈ H0(M,Ω2n−4

M ) ⊗H2n−2(Y,Ω2n−2
Y ) of

γ = Tr(At
∧(2n−3)
F

) ∧ νY/W ∈ H2n−2(M × Y,Ω4n−6
M×Y ),

where νY/W is viewed here as an element of H1(Y,Ω2n−3
Y ) ≃ Ext1(Ω1

Y ,N
∨

Y/W ). Then γ is de

Rham closed by [HL], Sect. 10.1.6. In the same way as in loc. cit., this fact together with
the projectivity of Y implies that all the Künneth components of γ are dM -closed, where dM
denotes the de Rham differential on M . �

To conclude this section, we will prove a nonvanishing theorem for ǫF which is a direct gen-
eralization of Proposition 4.1 of [KuM] from n = 3 to all n ≥ 3. We use here a more general
definition of the linkage class, referred to in Remark 5.3.

Proposition 5.8. Assume that F ,G ∈ Cn, that is Hp(Y,F(−k)) = Hp(Y,G(−k)) = 0 for all
p ∈ Z and k = 0, 1, . . . , n−1. Then the multiplication by the linkage class ǫG ∈ Ext2(G,G(−n))
induces an isomorphism Extp(F ,G) ∼= Extp+2(F ,G(−n)) for all p ∈ Z.

Proof. Consider the Beilinson spectral sequence for i∗G (see [Bei, OSS])

E−p,q
1 = Hq(P2n−1, i∗G(−p)) ⊗ Ωp

P2n−1(p) =⇒ i∗G,

where i : Y →֒ P2n−1 is the natural embedding. By the assumption on G, we have E0,q
1 =

E−1,q
1 = . . . = E−n+1,q

1 = 0 for all q. Hence the derived pullback Li∗i∗G is contained in
the triangulated subcategory of Db(Coh(Y )) generated by i∗Ωn

P2n−1(n), i∗Ωn+1
P2n−1(n + 1), . . . ,

i∗Ω2n−1
P2n−1(2n− 1). Let V = C2n, so that P2n−1 = P(V ). The Euler exact sequence

0−→OP2n−1−→V ⊗OP2n−1(1)−→TP2n−1−→0
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and the isomorphism Ω2n−1−k
P2n−1 ≃ ∧kTP2n−1(−2n) lead to the following resolutions for the sheaves

Ω2n−1−k(2n− 1 − k) (k = 0, 1, . . . , n− 1):

0 → O(−k − 1) → . . . → ∧k−1V ⊗O(−2) → ∧kV ⊗O(−1) → Ω2n−1−k(2n− 1 − k) → 0 .

Hence this subcategory coincides with the subcategory of Db(Coh(Y )) generated by OY (−1),
. . . , OY (−n). By Serre duality on Y and by the hypothesis on F , we obtain:

Extp(F ,OY (−k − 1)) ∼= H2n−1−p(F(−k))∨ = 0

for all k = 0, 1, . . . , n − 1. Hence Ext•(F , Li∗i∗G) = 0. It remains to note that we have

a distinguished triangle Li∗i∗G //G
ǫG

//G(−n)[2] . Applying the functor Hom(F ,−), we
deduce the proposition. �

For n = 3, this nonvanishing property implies the nondegeneracy of α2n−4 on moduli spaces M
that parameterize sheaves from Cn. The same argument implies only partial results for bigger
n. For example:

Corollary 5.9. Let n = 4, so that Y is a quartic in P7, and assume that a moduli space M
parameterizes sheaves from Cn. Then the 2-rank of α4 at a point m ∈ M representing a sheaf
F coincides with the dimension of the image of the Yoneda coupling

Ext1(F ,F) × Ext1(F ,F)−→Ext2(F ,F).

Proof. Similar to the proof of Theorem 4.3 in [KuM]. �

6. An explicit calculation

Throughout this section, Y will denote a generic quartic hypersurface in P7 (a quartic 6-fold).
Let F = F (Y ) be the Fano scheme of Y , that is the Hilbert scheme of lines in Y . We have
seen that F is a smooth connected projective variety of dimension 7. We will denote by {ℓ}
the point of F (Y ) representing a line ℓ ⊂ Y .

The constructions of Corollaries 1.7 and 5.7 provide a closed 4-form α = α4 ∈ H0(F (Y ),Ω4
F (Y )).

We will produce an explicit formula for its value α(m) at a point m = {ℓ}.

Proposition 6.1. Let Y be a generic quartic hypersurface in P7. Then there is an algebraic
subset R(Y ) in F (Y ) of codimension ≥ 3 such that Nℓ/Y ≃ O(1)⊕2 ⊕ O⊕3 for all {ℓ} ∈
F (Y ) \R(Y ), and Nℓ/Y ≃ O(1)⊕3 ⊕O ⊕O(−1) if {ℓ} ∈ R(Y ).

Proof. Denote by V the vector space C8 whose projectivization contains Y . So P7 = P(V ), and
Y = Yf is defined by an octal quartic form f ∈ S4V ∗.

The possible types of the normal bundle follow easily from the two exact triples

0 → Tℓ → TY |ℓ → Nℓ/Y → 0 , 0 → TY |ℓ → TP7 |ℓ → NY/P7|ℓ → 0.

Indeed, the tangent space T{ℓ}F (Y ) is of dimension h0(Nℓ/Y ), so the smoothness of F (Y ) implies
that h1(Nℓ/Y ) = 0 for all ℓ. Hence the Grothendieck splitting of Nℓ/Y has no summands O(a)
with a < −1. As TP7 |ℓ ≃ O(2) ⊕ O(1)⊕6 and TY |ℓ has an injective map to it, TY |ℓ is the sum
of sheaves O(ai) with 2 ≥ a1 ≥ 1 ≥ a2 ≥ · · · ≥ a6 ≥ −1, and

∑
ai = deg TY |ℓ = 4. Moreover,

a1 = 2 because Tℓ ≃ O(2) has a nonzero map to TY |ℓ. This leaves only two possible choices
(ai) = (2, 12, 03) or (2, 13, 0,−1). Splitting off O(a1) ≃ Tℓ, we obtain the two possible normal
bundles Nℓ/Y .

Thus the lines in Y are of two types. The summands O(1) of Nℓ/Y span the subbundle
corresponding to infinitesimal deformations of ℓ inside the projective subspace

⋂
P∈ℓ TPY , the

intersection of the tangent hyperplanes to Y at all the points of ℓ. This is a cubic pencil of
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hyperplanes, and generically there are 4 linearly independent ones. Hence
⋂
P∈ℓ TPY ≃ P3 for ℓ

in an open subset of F (Y ). These are lines of the first type. Their complement R(Y ) in F (Y )
is the set of lines of the second type; for them

⋂
P∈ℓ TPY ≃ P4. It remains to estimate the

codimension of R(Y ).

Let g = gf : Y → Y ∗ ⊂ P7∗, P 7→ TPY be the Gauss map, given in homogeneous coordinates
by (x0 : · · · : x7) 7→ (∂f/∂x0 : · · · : ∂f/∂x7), where f is the quartic form defining Y . As the
partial derivatives ∂f/∂xi have no common zero on Y , the Gauss map is finite. Its restriction
to a line ℓ in Y is given by a cubic pencil without fixed points, so the image g(ℓ) is either a
cubic rational curve, or a line. In the latter case,

⋂
P∈ℓ TPY would be 5-dimensional, which is

impossible by the above. Hence g(ℓ) is always a rational cubic, and {ℓ} ∈ R(Y ) if and only if
g(ℓ) has exactly one singular point. Thus if we define the algebraic set

R̃(Y ) = {(ℓ, P ) ∈ F (Y ) × Y | P ∈ ℓ, g(P ) ∈ Sing g(ℓ)},

then the projection pr1 : R̃(Y ) → F (Y ) is finite of degree 2 and has R(Y ) as its image, so

dimR(Y ) = dim R̃(Y ). We will deduce the dimension of R̃(Y ) by a standard dimension count.

Consider two incidence varieties:

I1 = {(P,Q, f) ∈ P(V ) × P(V ) × P(S4V ∗) | P 6= Q, ∇Pf ∼ ∇Qf, PQ ⊂ Yf},

where ∇Pf = (∂f/∂x0, · · · , ∂f/∂x7)|P is the gradient of f at P , the sign ∼ stands for propor-
tionality, and PQ denotes the line passing through P,Q, and

I2 = {([P, v], f) ∈ P(TP7) × P(S4V ∗) | P ∈ Yf , v ∈ TPYf , v 6= 0, (∇Pf, v) = 0, P v ⊂ Yf},

where [P, v] is the proportionality class of v considered as a point of P(TPP7), and Pv is the
line through P in the direction of v.

The proportionality ∇Pf ∼ ∇Qf can be interpreted as the coincidence of the tangent spaces
TPYf = TQYf as soon as both gradients are nonzero. The part of I1 for which Yf is nonsingular

parametrizes all the triples (P,Q, f) for which gf(PQ) has a node at gf(P ) = gf(Q). Similarly,
the part of I2 for which Yf is nonsingular parametrizes the pairs ([P, v], f) for which gf(Pv)

has a cusp at gf(P ). Thus, assuming Y = Yf nonsingular, we can represent R̃(Y ) as the union
of two algebraic sets π−1

i (f), where πi : Ii → P(S4V ∗) (i = 1, 2) is the natural projection.

Looking at the other projection pr12 : I1 → P(V ) × P(V ) \ (diagonal), we find that all of its
fibers are isomorphic to each other and irreducible of dimension 319, hence I1 is irreducible
of dimension 333. As dim P(S4V ∗) = 329, we conclude that π−1

1 (f) is either empty, or is of
dimension 333− 329 = 4 for generic f . Similarly, I2 is irreducible and dim I2 = 332, so π−1

2 (f)
is either empty or is of dimension 3 for generic f . Hence dim R̃(Y ) ≤ 4 for generic f , as was to
be proved. �

Fix now a generic quartic Y ⊂ P7 = P(V ) and a line ℓ of first type in Y . Choose homogeneous
coordinates in P7 in such a way that ℓ = {x0 = · · · = x5 = 0}. Then the equation f of Y can
be written in the form

f = x0f0(x0, . . . , x7) + · · · + x5f5(x0, . . . , x7),

where the fi are cubic forms. Denote by f i = f i(x6, x7) the restriction of fi to ℓ. The fact
that ℓ is of the first type implies that the 6 forms f i = ∂f

∂xi
|ℓ generate the whole 4-dimensional

vector space of binary cubics, and by a linear change of coordinates x0, . . . , x5, we can arrange
the things so that

f0 = x3
6, f 1 = x2

6x7, f2 = x6x
2
7, f 3 = x3

7, f 4 = f5 = 0.

Now we will construct an explicit Grothendieck splitting of TY |ℓ and Nℓ/Y . We have P(V ) =
V 0/C∗, where V 0 = V \ {0}. The symbols ∂/∂xi, dxi have a natural meaning as vector fields,
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respectively 1-forms on V or V 0. A rational section of TP7(k) can be represented in the form∑
φi∂/∂xi mod E, where φi are rational homogeneous functions in xj of degree k + 1, and

E =
∑
xi∂/∂xi is the Euler vector field. Let us denote ∂/∂xi mod E by ∂i. Then ∂0, . . . , ∂7

form a basis of H0(TP7(−1)), and H0(TP7) is generated by xi∂j , 0 ≤ i, j ≤ 7, with a single linear
relation

∑
xi∂i = 0.

A rational vector field
∑
φi∂i is tangent to Y if and only if

∑
φi∂f/∂xi|Y = 0. Similarly,

an expression
∑
ψidxi, where ψi are rational homogeneous functions in xj of degree k − 1,

represents a rational section of Ω1
P7(k) whenever

∑
xiψi = 0, and then

∑
ψidxi|Y mod df

represents a rational section of Ω1
Y (k). We will use the overbar to denote the restriction of

sections of Ω1
P7(k) or TP7(k) to sections of Ω1

Y (k)|ℓ or TY (k)|ℓ. With this notation, we have the
following Grothendieck splitting:

TY |ℓ = Oℓ(2)e0 ⊕Oℓ(1)e1 ⊕Oℓ(1)e2 ⊕Oℓe3 ⊕Oℓe4 ⊕Oℓe5, (11)

where the ei are the following sections of appropriate twists of TY |ℓ:

e0 = x−1
6 ∂7 = −x−1

7 ∂6, e1 = ∂4, e2 = ∂5,

e3 = x6∂1 − x7∂0, e4 = x6∂2 − x7∂1, e5 = x6∂3 − x7∂2. (12)

Thus e0 ∈ H0(TY (−2)|ℓ), e1 and e2 are elements of H0(TY (−1)|ℓ), and the remaining ei are
sections of TY |ℓ. We can identify Nℓ/Y as the sum of the last five summands. Denote by ěi the
dual basis of H0(ℓ, (Ω1

Y |ℓ) ⊗ k(ℓ)), so that (ěi, ej) = δij . Then

ě0 = x6dx7 − x7dx6 ∈ H0(Ω1
Y (2)|ℓ),

ě1 = dx4, ě2 = dx5 ∈ H0(Ω1
Y (1)|ℓ), H0(Ω1

Y |ℓ) = 〈ě3, ě4, ě5〉, ě3 = −
dx0

x7
,

ě4 =
1

2

(
−
x6

x2
7

dx0 −
1

x7
dx1 +

1

x6
dx2 +

x7

x2
6

dx3

)
, ě5 =

dx3

x6
. (13)

Here dxi are well-defined for i = 0, . . . , 5 by the formula

dxi = dxi −
xi
xj
dxj =

(
dxi −

xi
xj
dxj

)∣∣∣∣
ℓ

mod df |ℓ (j = 6 or 7). (14)

The Grothendieck splitting of Ω1
Y |ℓ has the form

Ω1
Y |ℓ = Oℓ(−2)ě0 ⊕Oℓ(−1)ě1 ⊕Oℓ(−1)ě2 ⊕Oℓě3 ⊕Oℓě4 ⊕Oℓě5 (15)

and the last four summands give a Grothendieck splitting of N ∨

ℓ/Y .

Let us now compute the composition (1) with p = 4 on four sections ξi ∈ Ext1(Oℓ,Oℓ) =
H0(Nℓ/Y ), i = 1, . . . , 4,

ξi = (ai0x6 + ai1x7)e1 + (bi0x6 + bi1x7)e2 + ci1e3 + ci2e4 + ci3e5, (16)

where aij , bij, cij are elements of k.

Theorem 6.2. In the above notation, the 4-form α4(m) defined by (1) at a point m = [Oℓ] of
the Fano scheme F (Y ) is given up to a constant factor by the formula

α4(m)(ξ1, . . . , ξ4) =

∣∣∣∣∣∣

a10 b10 c12 c13
...

...
...

...
a40 b40 c42 c43

∣∣∣∣∣∣
−

∣∣∣∣∣∣

a10 b11 c11 c13
...

...
...

...
a40 b41 c41 c43

∣∣∣∣∣∣

−

∣∣∣∣∣∣

a11 b10 c11 c13
...

...
...

...
a41 b40 c41 c43

∣∣∣∣∣∣
+

∣∣∣∣∣∣

a11 b11 c11 c12
...

...
...

...
a41 b41 c41 c42

∣∣∣∣∣∣
. (17)
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Proof. By Theorem 5.6, α4(m) is the composition of the maps in the upper line of the diagram

Ext1(Oℓ,Oℓ)
4Yoneda

//

)
(

��

Ext4(Oℓ,Oℓ)
AtOℓ

//

)
(

��

Ext5(Oℓ,Oℓ ⊗ Ω1
Y )

)
(

��

ν
// Ext6(Oℓ,Oℓ ⊗ ωY )

)
(

��

Tr
// k

H0(Nℓ/Y )4 ∧
// H0(∧4Nℓ/Y )

κ
// H0(∧5Nℓ/Y ⊗ Ω1

Y )
ν

// H1(ωℓ)
Tr

// k

Here we are using the canonical isomorphisms Ext q(Oℓ,Oℓ) = ∧qNℓ/Y , and the vanish-
ing hi(∧qNℓ/Y ) = hi(∧4Nℓ/Y ⊗ Ω1

Y ) = 0 for i > 0 implies that the vertical maps, com-
ing from the local-to-global spectral sequence, are also isomorphisms. Further, by [KuM],
Lemma 1.3.2, the Yoneda coupling on the Ext-sheaves corresponds to the wedge product
under these isomorphisms. The symbols κ, ν were defined in Theorems 5.5, 5.6. After
applying ν ∈ Ext1(Ω1

Y ,N
∨

Y/P7) in both lines, we also use the isomorphisms N ∨

Y/P7 ≃ ωY ,

∧5Nℓ/Y ⊗ N ∨

Y/P7 ≃ ωℓ ; the constant factor mentioned in the statement of the theorem de-
pends only on the choice of these isomorphisms.

Thus we can calculate α4(m) in following the bottom line of the digram, in which the Yoneda
product turns into the wedge one. We have κ = e1 ⊗ ě1 + · · · + e5 ⊗ ě5, and the image of
(ξ1, . . . , ξ4) in H0(∧5Nℓ/Y ⊗ Ω1

Y ) is

ψ = ξ1 ∧ ξ2 ∧ ξ3 ∧ ξ4 ∧ κ = e1 ∧ . . . ∧ e5 ⊗

∣∣∣∣∣∣∣∣

a10x6 + a11x7 b10x6 + b11x7 c11 c12 c13
...

...
...

...
a40x6 + a41x7 b40x6 + b41x7 c41 c42 c43

ě1 ě2 ě3 ě4 ě5

∣∣∣∣∣∣∣∣
,

where the determinant is understood as its row expansion with respect to the last row. We can
equally omit the factor e1 ∧ . . .∧ e5, for it is a nowhere vanishing section of detNℓ/Y (−2) ≃ Oℓ.
Then ψ is just the section of Ω1|ℓ(2) given by the determinant in the last formula.

Next we have to couple ψ with ν. The Ext-group to which ν belongs can be represented as
H1(TY (−4)) or else H1(Ω5

Y ). As we know from Proposition 1.6, h51(Y ) = 1. Thus we have to
determine the image of the 1-dimensional H1(Ω5

Y ) inside the 14-dimensional H1(Ω5
Y |ℓ). Keeping

in mind that Ω5
Y ≃ TY (−4), we use the natural exact triple

0 → TY (−4) → TP7(−4)|Y → OY → 0.

Then we see that H1(TY (−4)) = βY (H0(OY )), where βY is the Bockstein homomorphism, and
the commutativity of the maps of the exact triple with the restriction to ℓ implies that

im
(
H1(TY (−4))

restriction
−−−−−→ H1(TY (−4)|ℓ)

)
= im

(
H0(Oℓ)

βℓ−→ H1(TY (−4)|ℓ)
)
,

where βℓ is the Bockstein homomorphism of the restricted exact triple

0−→TY (−4)|ℓ−→TP7(−4)|ℓ−→Oℓ−→0.

The surjection in this exact triple is induced by ∂i 7→ (∂f/∂xi)|ℓ, so that x−3
6 ∂0 7→ 1 and

x−3
7 ∂3 7→ 1. Taking the standard covering of ℓ = P1 by the open affine sets U6 = {x6 6= 0},
U7 = {x7 6= 0}, we get a Čech representative for βℓ(1) ∈ H1(TY (−4)|ℓ) of the form

x−3
7 ∂3 − x−3

6 ∂0 =
x2

7e3 + x6x7e4 + x2
6e5

x3
6x

3
7

∈ Γ(U6 ∩ U7, TY (−4)|ℓ). (18)

The wanted quantity α4(m)(ξ1, . . . , ξ4) is by construction Tr(ν ∧ ψ) when ν is considered as
an element of H1(Ω5

Y |ℓ), but (18) represents it as an element of H1(TY (−4)|ℓ), and the wedge
product becomes the contraction of 1-forms with vector fields. Thus we are computing Tr(ν, ψ),
which is nothing but the image of (ν, ψ) under the Serre coupling

H1(TY (−4)|ℓ) ×H0(Ω1
Y (2)|ℓ)−→H1(Oℓ(−2)).
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On the level of Čech cocycles, the value of the coupling on a pair (
∑

i φiei,
∑

j ψj ěj) is the

coefficient of 1
x6x7

in the expression
∑

i φiψi. This is due to the fact that the cohomology class

of the cocycle 1
x6x7

generates H1(Oℓ(−2)), and the classes of all the other cocycles of the form
1

xi
6x

j
7

(i + j = 2, (i, j) 6= (1, 1)) are zero. We obtain that α4(m)(ξ1, . . . , ξ4) is the coefficient of
1

x6x7
in the product



x2

7e3 + x6x7e4 + x2
6e5

x3
6x

3
7

,

∣∣∣∣∣∣∣∣

a10x6 + a11x7 b10x6 + b11x7 c11 c12 c13
...

...
...

...
a40x6 + a41x7 b40x6 + b41x7 c41 c42 c43

ě1 ě2 ě3 ě4 ě5

∣∣∣∣∣∣∣∣


 ,

which coincides with (17). �

Corollary 6.3. Let Y be a smooth quartic hypersurface in P7, and ℓ a line of first type in Y .
Then F (Y ) is smooth at m = [Oℓ], and there exists a basis (a0, a1, b0, b1, c1, c2, c3) of the
OF (Y )-module Ω1

F (Y ) over an open neighborhood U of m such that the 4-form α4 defined on U
by Theorem 5.7 is given by

α4 = a0 ∧ b0 ∧ c2 ∧ c3 − a0 ∧ b1 ∧ c1 ∧ c3 − a1 ∧ b0 ∧ c1 ∧ c3 + a1 ∧ b1 ∧ c1 ∧ c2.

7. Nondegeneracy of exterior forms

The classification of trilinear alternating forms in seven complex variables goes back to Schouten
(1931). There are exactly ten orbits ofGL7 (including zero); in particular, as was already known
to E. Cartan, there is an open orbit of forms whose stabilizer is (up to a finite group) a form of
the exceptional group G2 (see [CH]). Moreover the normal form of a generic alternating 3-form
encodes the multiplication table of the Cayley octonion algebra.

The classification of 4-forms in seven complex variables is almost equivalent to that of 3-forms,
because of the isomorphism ∧4U ≃ ∧3U∨⊗det(U) for a seven dimensional vector space U . More
precisely, the projective classifications are completely equivalent, and it follows that GL(U) has
the same orbits in ∧4U and in ∧3U∨, with isomorphic stabilizers up to finite groups.

One way to distinguish the orbits is to observe that there exists a GL7-equivariant map
S3(∧3U∨) → S2U∨ defined up to constant. Indeed, let us choose a generator Ω of det(U)∨. To
each ω ∈ ∧3U∨ we associate the quadratic form qω on U defined by the formula

ω ∧ (uy ω) ∧ (uy ω) = qω(u)Ω ∀u ∈ U,

where uyω denotes the 2-form obtained by contracting ω with u. Then qω is non-degenerate if
and only if ω belongs to the open orbit, and this yields the classical embedding G2 ⊂ SO7. On
the complement of this open orbit the rank of qω drops to four. More precisely, it is equal to
four exactly on the codimension one orbit.

One can check that the orbit structure of ∧4U is as follows, where we denote by Od
k(r, ρ) the

orbit corresponding to the 3-form denoted fk in [CH], Table 1; d is the dimension of the orbit,
r is the 2-rank and ρ the rank.
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O35
9 (21, 7)

��

O34
7 (18, 4)

''NNNNNNNNNNN

xxppppppppppp

O31
5 (16, 2)

��

O28
6 (18, 1)

��

O25
4 (12, 0)

��

O22
3 (12, 0)

''NNNNNNNNNNN

O24
8 (15, 1)

xxppppppppppp

O20
2 (10, 0)

��

O13
1 (6, 0)

��

0

Comparing the expression of our 4-form in Corollary 6.3, we see that it does not belong to the
open orbit O35

9 , so it does not define a G2-structure. Nevertheless, it belongs to the codimension
one orbit O34

7 , and in this sense it can be said “minimally degenerate”.

Appendix A. Lines on Pfaffian varieties

Let F (Pfk(W
∗)) denote the Fano scheme of lines on Pfk(W

∗). By definition it is a subscheme
of Gr(2,Λ2W ∗) with equations given by σk. In other words, the sheaf of ideals of F (Pfk(W

∗))
is the image of the map

Λ2(k−1)W ⊗ S−(n−k+1)L
σk

//OGr(2,Λ2W ∗) ,

where σk is defined in (7) and L is the tautological bundle on Gr(2,Λ2W ∗).

Consider the product Gr(n + k,W ) × Gr(2,Λ2W ∗) and the subvariety

F̃k = {(U,L) ∈ Gr(n+ k,W ) × Gr(2,Λ2W ∗) | L ⊂ Ker(Λ2W ∗ → Λ2U∗)}. (19)

The projection π of Gr(n + k,W ) × Gr(2,Λ2W ∗) onto the second factor maps F̃k into
F (Pfk(W

∗)). The goal of this section is to prove the following

Theorem A.1. The map π : F̃k → F (Pfk(W
∗)) is a resolution of singularities. For k = 1 this

resolution is crepant.

We start with the following simple observation.

Lemma A.2. F̃k is a smooth connected algebraic subvariety of codimension (n+ k− 1)(n+ k)
in Gr(n+ k,W ) × Gr(2,Λ2W ∗).
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Proof. Consider the projection F̃k → Gr(n + k,W ). It is clear that its fiber over a point
U ∈ Gr(n + k,W ) is the Grassmannian Gr(2,Ker(Λ2W ∗ → Λ2U∗)). Therefore F̃k is smooth
and connected. This also allows to compute the codimension. �

The most complicated part is the surjectivity of π.

Proposition A.3. The map π : F̃k → F (Pfk(W
∗)) is surjective.

Proof. By definition F̃k is the zero locus of the canonical global section φ of the vector bundle
Λ2U∗

⊠L∗ where U and L denote the tautological bundles on the Grassmannians Gr(n+k,W )
and Gr(2,Λ2W ∗) respectively. By Lemma A.2 this section is regular, hence we have the Koszul
resolution

· · · → Λ2(Λ2U ⊠ L) → Λ2U ⊠ L → O → OF̃k
→ 0. (20)

Its t-th term equals

Λt(Λ2U ⊠ L) =
⊕

a+b=t, a≥b

Σ(a,b)′(Λ2U) ⊠ Σ(a,b)L,

where Σα is the Schur functor associated with the partition α and α′ denotes the transposed
partition of α. Let π be the projection of the product Gr(n + k,W ) × Gr(2,Λ2W ∗) onto the
second factor. We are going to apply the pushforward functor π∗ to the above Koszul resolution.
For this we will need the following vanishing result.

Lemma A.4. We have Hq(Gr(n+ k,W ),Σ(a,b)′(Λ2U)) = 0 for all q ≥ a+ b− 1 with only two
exceptions:

Hn−k(Gr(n+ k,W ),Σ(n−k+1,0)′(Λ2U)) = Λ2k−2W, H0(Gr(n+ k,W ),Σ(0,0)′(Λ2U)) = C.

We postpone the proof of the Lemma, and now finish with the Proposition. Note that

π∗(Σ
(a,b)′(Λ2U) ⊠ Σ(a,b)L) ∼= H•(Gr(n+ k,W ),Σ(a,b)′(Λ2U)) ⊗ Σ(a,b)L.

Therefore, the spectral sequence of hyperdirect images together with the above Lemma shows
that we have the following exact sequence

. . . //Λ2(k−1)W ⊗ S−(n−k+1)L
ξk

//OGr(2,Λ2W ∗)
//π∗OF̃k

//0,

so it follows that π(F̃k) is the zero locus of a section ξk of the vector bundle Λ2(k−1)W ∗⊗Sn−k+1L∗

on Gr(2,Λ2W ∗). Moreover, since F̃k is GL(W )-invariant it follows that ξk should be GL(W )-
semi-invariant. But as it was mentioned in Section 3, the only GL(W )-semi-invariant section

there is σk, so ξk = σk and we conclude that π(F̃k) = F (Pfk(W
∗)). In particular, the projection

π restricts to a surjective map π : F̃k → F (Pfk(W
∗)), which is precisely what is claimed in the

Proposition. �

Corollary A.5. The Fano scheme F (Pfk(W
∗)) is irreducible.

Proof of the Lemma A.4. Note that Σ(a,b)′(Λ2U) ⊂ Λa(Λ2U)⊗Λb(Λ2U). The decomposition of
Λa(Λ2U) into irreducible components is

Λa(Λ2U) =
⊕

λ∈W (a)

Σd(λ)U,

the sum being taken over the set W (a) of non decreasing sequences λ = (λ1 ≥ · · ·λc ≥ c) such

that a = |λ| + c(c−1)
2

, and we use the notation

d(λ) = (λ1, . . . , λc, c
λc−c+1, (c− 1)λc−1−λc , . . . , 1λ1−λ2).
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Now assume that α = (α1, α2, . . . , αn+k) is a Young diagram with n+ k rows and even number
2m of boxes such that ΣαU is a component of Σ(a,b)′(Λ2U). Then Hq(Gr(n+ k,W ),ΣαU) 6= 0
only if

q = p(n− k), α1 ≥ · · · ≥ αp ≥ n− k + p, and p ≥ αp+1 ≥ · · · ≥ αn+k for some p.

Moreover, ΣαU must be a component of the tensor product of Σd(λ)U and Σd(µ)U for some
λ = (λ1 ≥ · · · ≥ λc ≥ c) ∈W (a) and some µ = (µ1 ≥ · · · ≥ µd ≥ d) ∈W (b).

If p = 0 then α = 0, so we get the case H0(Gr(n + k,W ),Σ(0,0)′(Λ2U)) = C.

Assume that p ≥ 1. Recall that by the Littlewood-Richardson rule, the diagram of α is obtained
by adding 2b boxes to the diagram of d(λ) (with certain restrictions imposed by d(µ)). In
particular αc ≥ d(λ)c ≥ c, and therefore p ≥ c (and symmetrically p ≥ d). Because of the
special form of the partition d(λ), this implies that

d(λ)p+1 + · · ·+ d(λ)n+k = 1
2
|d(λ)| − c(c+1)

2
− (d(λ)c+2 + · · · + d(λ)p)

≥ a− c(c+1)
2

− c(p− c− 1) = a + c(c+1)
2

− cp.

And of course we have a similar estimate for d(λ).

Now, we observe that following the Littlewood-Richardson rule, the diagram of α is obtained
from that of d(λ) by adding some numbered boxes, with for each i, exactly d(µ)i boxes numbered
i. Moreover the j-th line can only contain boxes numbered by some i ≤ j, so all the boxes
numbered k must appear on line k or below. This implies that

αp+1 + · · · + αn+k ≥ d(λ)p+1 + · · ·+ d(λ)n+k + d(µ)p+1 + · · ·+ d(µ)n+k

≥ a+ c(c+1)
2

− cp+ b+ d(d+1)
2

− dp.

But since α1 ≥ · · · ≥ αp ≥ n− k + p, we deduce that

a+ b ≥ p(n− k + p) + c(c+1)
2

− cp+ d(d+1)
2

− dp

= q + (p−c)2

2
+ (p−d)2

2
+ c+d

2
≥ q + p.

Under the hypothesis that q ≥ a + b − 1, we deduce that p = c = d = 1, and the only
possibility is α = (n − k + 1, 1, . . . , 1, 0, . . . , 0) (the number of ones being n − k + 1). Then
Hn−k(Gr(n + k,W ),ΣαU) = Λ2k−2W , which gives the second case, since ΣαU is a component
of Σ(n−k+1,0)′(Λ2U) (with multiplicity one), but of no other Σ(a,b)′(Λ2U). �

Proposition A.6. The map π : F̃k → F (Pfk(W
∗)) is birational.

Proof. Since π is surjective and proper, and F (Pfk(W
∗)) is irreducible, it suffices to check that

it is an isomorphism over an open subset of F (Pfk(W
∗)). Let F 0

k ⊂ F (Pfk(W
∗)) be the open

subset consisting of lines which do not intersect the locus of skew-forms of rank ≤ 2n− 2k− 2.
Let L be such a line. Note that if U ⊂W is a subspace of dimension n+ k such that φL,U = 0,
then for each point in L the space U contains a 2k-dimenisonal subspace lying in the kernel of
the corresponding skew-form. But if all skew-forms in L have rank 2n− 2k then U contains all
their kernels. Thus it suffices to check that for such L the linear hull of the kernels of all forms
in L has dimension n+ k. For this we consider the following exact sequence on P(L):

0 → K(−1) →W ⊗OP(L)(−1) → W ∗ ⊗OP(L) → K∗ → 0,

where the middle map is the evaluation of a skew-form on a vector and K is the bundle of
kernels of skew-forms. Then the codimension of the linear hull of kernels coincides with H0 of
the image I of the middle map. Computing the determinant of this exact sequence we see that
degK∗ = n − k. Since K∗ is a vector bundle of rank 2k on P(L) = P1 generated by global
sections we conclude by Riemann–Roch that dimH0(P(L), K∗) = n + k. On the other hand,
from the above exact sequence it follows that the map H0(P(L),W ∗ ⊗OP(L)) → H0(P(L), K∗)
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is surjective, hence dimH0(P(L), I) = 2n− (n + k) = n− k. So the codimension of the linear
hull of kernels is n− k, hence the dimension is n + k as required. �

The next goal is to investigate where the map π is not an isomorphism. For this we need the
following.

Lemma A.7. Let L ∈ F (Pfk(W
∗)) be a line on Pfk(W

∗). If L ∩ Pfk+1(W
∗) 6= ∅ then π−1(L)

contains a line.

Proof. Let U ⊂W be a subspace of dimension n+ k isotropic for L and assume that the form
λ corresponding to a point of L has rank strictly less than 2n− 2k. Then there exists a vector
subspace U ′ ⊂W of dimension n+k+1 containing U and isotropic for λ. Let U ′ = U⊕Cw. Let
λ′ be another skew-form in L. Then λ′(−, w) is a linear form on U . Let U ′′ be its kernel. Then
it is clear that each vector subspace of dimension n + k in U ′ containing U ′′ is isotropic both
for λ and λ′. These subspaces form a line in Gr(n + k,W ) which is contained in π−1(L). �

By Lemma A.2 variety F̃k is smooth and by Proposition A.6 the map π : F̃k → F (Pfk(W
∗))

is birational, hence F̃k is a resolution of F (Pfk(W
∗)). The final statement of the Theorem is

given by the following

Lemma A.8. The resolution π : F̃1 → F (Pf(W ∗)) is crepant.

Proof. Compute the canonical class of F̃1. Recall that F̃1 is the zero locus of a regular section
of Λ2U∗

⊠ L∗ on Gr(n + 1,W ) × Gr(2,Λ2W ∗). We have

ωGr(n+1,W )×Gr(2,Λ2W ∗) = O(−2n,−n(2n− 1)),
det(Λ2U∗

⊠ L∗) = det(Λ2U∗)⊗2 ⊗ (detL∗)⊗n(n+1)/2 = O(2n, n(n + 1)/2),

so by adjunction we get ωF̃1

∼= O(0,−3n(n−1)/2). Thus the canonical class of F̃1 is a pullback

from F (Pf(W ∗)) ⊂ Gr(2,Λ2W ∗), so π : F̃1 → F (Pf(W ∗)) is crepant. �
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