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Abstract

Vector field segmentation methods usually belong to
either of three classes: methods which segment regions
homogeneous in direction and/or norm, methods
which detect discontinuities in the vector field, and
region growing or classification methods. The first
two classes of method do not allow segmentation of
complex vector fields and control of the type of fields
to be segmented, respectively. The third class does not
directly allow a smooth representation of the segmen-
tation boundaries. In the particular case where the
vector field actually represents an optical flow, a fourth
class of methods acts as a detector of main motion.
The proposed method combines a vector field model
and a theoretically founded minimization approach.
Compared to existing methods following the same
philosophy, it relies on an intuitive, geometric way
to define the model while preserving a general point
of view adapted to the segmentation of potentially
complex vector fields with the condition that they can
be described by a finite number of parameters. The
energy to be minimized is deduced from the choice of a
specific class of field lines, e.g. straight lines or circles,
described by the general form of their parametric
equations. In that sense, the proposed method is a
principled approach for segmenting parametric vector
fields. The minimization problem was rewritten into
a shape optimization and implemented by spline-
based active contours. The algorithm was applied
to the segmentation of precomputed optical flow
fields given by an external, independent algorithm.
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1 Introduction

A segmentation of a vector field is a partition of the
domain of the field into subdomains such that each
subdomain is as homogeneous as possible in terms of a
certain homogeneity function. The standard deviation
of the directions of the vectors contained in a subdo-
main is an example of a homogeneity function. The
function may or may not be the same for each subdo-
main.

Segmentation of vector fields is part of a wider class
of problems that can be called multichannel segmen-
tation. Segmentation of color images is an example
of such problems [26, 29]. More generally, it corre-
sponds to the segmentation of an n-vector valued func-
tion. It can be solved by extending a single-channel
method [23] by substituting a vectorial similarity mea-
sure, e.g. a weighted sum of the individual compo-
nent similarities [28], for the scalar similarity measure.
However, this straightforward extension does not allow
to describe complex region characteristics. Basically,
as far as vector fields are concerned, regions homoge-
neous in direction and/or norm can be detected. The
dual approach is to detect discontinuities in the vec-
tor field [15]. However, this approach is usually not
suitable to determine regions necessary for subsequent
processing tasks and it does not allow to control the
type of fields to be segmented. Using the terminology
of optical flow, the main motion can be segmented by
thresholding the vector field magnitude [11] or, simi-
larly, the image of frame-to-frame difference [34] of a
video sequence. Even if the region of main motion is
found based on a motion model [34], this kind of meth-
ods are better described as motion detections than mo-
tion segmentations. In order to segment complex vec-
tor fields or motions, the use of a model seems appro-
priate. A region growing, or merging, technique can
be used to iteratively group pixels or patches together
when they respect a common motion model (or vector
field model). Precision can be increased while preserv-
ing coherence by implementing successive steps with
increasing model complexity [9]. However, a threshold
is necessary in order to determine when to stop merg-
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ing. This can be avoided by replacing the merging
decision with a classification algorithm [32]. Indeed,
classification relates to a notion of closest distance with
respect to motion candidates. Unfortunatelty, such a
method is strongly constrained by the discretization of
the vector field domain (pixels or patches). It might
be difficult to impose only some smoothness to the seg-
mentation boundary. A minimization approach with
respect to the segmentation domains also allows to
get rid of the thresholding while giving more flexibility
to the representation of the domains [30, 12, 27, 13].
These methods are adapted to optical flow segmenta-
tion (explicitly or implicitly when the input is a video
sequence [12, 13]) and might not be intuitive enough
when it comes to segment a vector field not directly
related to a motion.

The proposed method follows the same philosophy
combining a model and a theoretically founded mini-
mization approach. Compared to existing methods, it
relies on an intuitive, geometric way to define the model
while preserving a general point of view adapted to the
segmentation of potentially complex vector fields of R

2

with the condition that they can be described by a
finite number of parameters.

2 Proposed approach

2.1 Context

The vector field to be segmented is denoted by E. Its
components are denoted by E1 and E2. The field is
assumed to be smooth and normalized (the norm of E
is equal to one everywhere). Two examples of vector
fields are shown in Fig. 1.

Figure 1: Two examples of vector fields: translation
(left) and rotation (right).

We recall that L is a field line of E if and only if

ẋ1(p) E2(x(p)) − ẋ2(p) E1(x(p)) = 0 (1)

and
ẋ(p) 6= 0 (2)

where x(p) is the equation of L, p belongs to a certain
interval [a, b], and ẋ represents the derivative of x with
respect to p. Equation (1) represents the fact that

the vector field is orthogonal to the normal along any
field line (or, equivalently, collinear to the tangent) and
Eq. (2) represents the fact that the norm of the tangent
is never equal to zero.

A typical example of vector fields in video is optical
flow [22, 18, 30, 5, 3, 33], i.e., the vector field describing
the apparent motion between two successive frames of
a video sequence. In this context, if W is the optical
flow between frames ft and ft+1, then E is given by







E =
W

|W |
ft+1(x + W (x)) = ft(x)

. (3)

We will use the segmentation of precomputed optical
flow fields as an illustration of the proposed method.
We will assume that the optical flows are given by an
external, independent algorithm.

2.2 Variational formulation

A segmentation problem can be solved in a variational
context by defining an energy to be minimized. This
energy is obviously a function of the boundaries of
some/all of the segmentation domains (contour-based
segmentation) and/or their regions (region-based seg-
mentation). For simplicity, we will only consider the
case of two domains: the object and the background.
The term “object” must be understood as a region with
specific characteristics and the expression “object do-
main” must be understood as an estimation of the ac-
tual region of the object. In the case of region-based
segmentation, if both the object and the background
domains are taken into account, the segmentation is
said to involve region competition. When only the ob-
ject domain is used, the energy is classically an integral
on the object domain of a function characterizing the
object that should be detected. This function is non-
negative and it is ideally equal to zero on the region of
the object. It relates to a notion of homogeneity of the
object in a broad sense. Our purpose is to find such
functions and to provide a general method for the seg-
mentation of vector fields of R

2 that can be described
by a finite number of parameters. These functions are
deduced from the choice of a specific class of field lines,
e.g. straight lines or circles, described by the general
form of their parametric equations.

The general form of the proposed energies is

J(Ω) =

∫

Ω

h(E, Ω, x) dx (4)

where E is the vector field to be segmented and Ω is
the unknown segmentation domain. Minimization of
this type of energy requires special care since the set F
of domains included in the image region, a bounded,
connected, open set of R

2, is not a vectorial space. The
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shape gradient approach is adapted to this problem.
Although this aspect is not an original contribution of
the paper, we will present it briefly in Section 2.3 since
it is a prerequisite to the understanding of the actual
contributions presented in Sections 3, 4, and 5.

2.3 Shape derivative

The shape derivative is a measure of the influence of a
deformation of Ω on the value of (4). It is a function
of Ω and of the deformation, V , a function from R

to R
2. In order to be derived, energy (4) should first

be rewritten as a function of a deformation parameter τ

J(τ) =

∫

Ω(τ)

h(E, τ, x) dx . (5)

By definition, parameter τ is such that

Ω(τ) = Tτ (Ω(τ = 0)) (6)

where Ω(τ = 0) is an initial domain and Tτ is an
unknown transformation that must be such that

lim
τ→∞

Ω(τ) = Ω̂ (7)

where Ω̂ is the unique global minimizer of (4) (if this
minimizer exists). Then, it was shown that [14, 2, 17,
20]

dJ

dτ
(τ, V ) =

∫

Ω(τ)

∂h

∂τ
(E, τ, x) dx

−
∫

∂Ω(τ)

h(E, τ, x(s)) V (s) Nτ (s) ds (8)

where ∂Ω(τ) is the oriented boundary of Ω(τ), s is the
arclength along Ω(τ), and Nτ is the inward unit nor-
mal of Ω(τ). Given a domain Ω(τ), we would like to
know which deformation should be applied to Ω(τ) in
order to obtain a new domain “closer” to the domain
for which (5) is minimal, if this domain exists and is
unique. However, the first integral of (8) does not in-
volve V explicitly. In other words, it is not readily
usable. Nevertheless, function h is assumed to be such
that there exists a function h̃ such that
∫

Ω(τ)

∂h

∂τ
(E, τ, x) dx =

∫

∂Ω(τ)

h̃(E, τ, x(s)) V (s) Nτ (s) ds .

(9)
Actually, in some circumstances, this integral is equal
to zero. It will be the case for the energies proposed in
Sections 3, 4, and 5. Therefore, Section 2.4 is written
for this case only.

2.4 Minimization algorithm

Since the purpose is to minimize (5), deformation V
must be chosen such that derivative (8) is negative.

As noted in Section 2.3, the first integral of (8) will
be equal to zero in our case. Clearly, the following
expression satisfies this condition

Vτ = h(E, τ, x) Nτ . (10)

Applying successive deformations (10) to Ω(τ) for in-
creasing values of τ , domain Ω (seen as a function of τ)
should converge toward the unique global minimizer
of (4) (if this minimizer exists). This is typically an
active contour process [21, 7, 26, 8] whose evolution
equation is, noting that Vτ is equal to ∂Γ

∂τ where Γ is a
short notation for ∂Ω,







∂Γ

∂τ
(τ) = h(E, τ, x) Nτ

Γ(τ = 0) = Γ0

(11)

where Γ0 is an initial guess, or estimate, of the segmen-
tation contour. Therefore, the minimization of (4) can
be achieved by iteratively deforming a contour accord-
ing to (11) until (8) is equal to zero.

3 Segmentation of translation

domains

3.1 Translation domain

Let C be the unit circle of R
2 and let C+ be the subset

of C defined by (cos(θ), sin(θ)), θ ∈] − π/2, π/2].
A region of the domain of E containing only field

lines that are straight lines is called a translation do-
main (See Fig. 1). Equivalently, a domain Ω of F is a
translation domain if and only if there exists a unique
parameter a(Ω) of C+ such that for any field line L
verifying L∩Ω 6= ∅ there exists a unique constant c(L)
of R such that

a(Ω) · x = c(L), x ∈ L ∩ Ω . (12)

Vector a(Ω) is called the translation parameter of Ω.
It is actually the normal to the straight field lines. In
our context, the specific value of c(L) is of no impor-
tance and plays the role of an unnecessary parameter.
Therefore, a condition equivalent to (12) while not in-
volving c(L) should be found. Let us parametrize L
by p. For any x(p) of L ∩ Ω

a(Ω) · x(p) = c(L) (13)

⇐⇒ a1(Ω)x1(p) + a2(Ω)x2(p) = c(L) . (14)

The derivative of (14) with respect to p combined
with (1) leads to the following system of equations

(

a1(Ω) a2(Ω)
E2(x(p)) −E1(x(p))

)

ẋ(p) = M ẋ(p) = 0 . (15)
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Combining (2) and (15), it can be concluded that the
determinant of M must be equal to zero. Therefore, a
domain Ω of F is a translation domain if and only if
there exists a unique a(Ω) of C+ such that for any x
of Ω

a(Ω) · E(x) = 0 . (16)

3.2 Dominant translation parameter

From (16), it can be deduced that if Ω is a translation
domain then a(Ω) is a global minimizer of

Ktra
Ω : C+ → R

α 7→
∫

Ω

(α · E(x))2 dx . (17)

Indeed, Ktra
Ω is clearly nonnegative and Ktra

Ω (a(Ω)) is
equal to zero. Moreover, this minimizer is unique in C+

since any candidate must satisfy (16), i.e., must be or-
thogonal to E. Therefore, it must be collinear to a(Ω),
i.e., equal to a(Ω) in C+.

Looking from a domain point of view (as opposed to
the parameter point of view), it can also be deduced
from (16) that Ω minimizes the following energy

Gtra : F → R

ω 7→
∫

ω

(a(ω) · E(x))2 dx (18)

with a(ω) defined as the unique global minimizer
of Ktra

ω .
However, there is no guarantee that for any ω of F

there exists a unique global minimizer of Ktra
ω and

that Ktra
ω is equal to zero for this minimizer. In

other words, ω might not have a translation param-
eter (namely, if it is not a translation domain). Nev-
ertheless, as long as Ktra

ω has a unique global mini-
mizer â(ω), this minimizer is called the dominant trans-
lation parameter of ω.

3.3 Practical formulation

It is clear that any subdomain of a translation domain
is a minimizer of energy (18). As a consequence, the
problem of finding translation domains should be re-
formulated in finding translation domains having an
area as big as possible. This is equivalent to mini-
mizing Gtra(Ω) while maximizing the area of Ω, i.e.,
minimizing the following energy

J tra : F tra → R

Ω 7→
∫

Ω

(â(Ω) · E(x))2 dx − µ

∫

Ω

dx (19)

where F tra is the set of domains of F having a dom-
inant translation parameter, â(Ω) is the dominant
translation parameter of Ω, and µ is a positive con-
stant.

Certainly, the minimization algorithm will require
computation of â(Ω). However, this latter aspect will
be presented later in Section 3.5 when it will be clear
where exactly this parameter is needed in the overall
process.

3.4 Shape derivative

Following the methodology of Section 2.3, energy (19)
is rewritten as a function of an evolution parameter τ

J tra(τ) =

∫

Ω(τ)

(â(τ) · E(x))2 dx − µ

∫

Ω(τ)

dx (20)

where â(τ) is a short notation for â(Ω(τ)). Applying
result (8) to each integral, the shape derivative of (20)
can be computed

dJ tra

dτ
(τ, V ) =

∫

Ω(τ)

d

dτ
(â(τ) · E(x))2 dx

−
∫

∂Ω(τ)

(â(τ) · E(s))2 V (s) · Nτ (s) ds

−
∫

Ω(τ)

dµ

dτ
dx

+

∫

∂Ω(τ)

µ V (s) · Nτ (s) ds (21)

=
dâ

dτ
(τ)

∫

Ω(τ)

d

dα
(α · E(x))2|â(τ) dx

−
∫

∂Ω(τ)

(â(τ) · E(s))2 V (s) · Nτ (s) ds

+

∫

∂Ω(τ)

µ V (s) · Nτ (s) ds (22)

=
dâ

dτ
(τ)

d

dα

(

∫

Ω(τ)

(α · E(x))2 dx

)

|â(τ)

−
∫

∂Ω(τ)

[

(â(τ) · E(s))2 − µ
]

V (s) · Nτ (s) ds

(23)

=
dâ

dτ
(τ)

dKtra
Ω(τ)

dα
|â(τ)

−
∫

∂Ω(τ)

[

(â(τ) · E(s))2 − µ
]

V (s) · Nτ (s) ds

(24)

where E(s) is a short notation for E(x(s)). Expres-
sion (24) still contains a surface integral. As explained
in Section 2.3, the shape derivative is readily usable if
it contains only a line integral. Parameter â(τ) mini-
mizes Ktra

Ω(τ) on C+. However, since Ktra
Ω(τ) is an even

function, â(τ) also minimizes it on C. Vectors of C
respect the following constraint

φ(α) = |α|2 − 1 = 0 . (25)
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Therefore, there exists a Lagrange multiplier λτ such
that

dKtra
Ω(τ)

dα
|â(τ)= λτ

dφ

dα
|â(τ) . (26)

Using (26) in (24), the shape derivative of (20) is

dJ tra

dτ
(τ, V ) = λτ

dâ

dτ
(τ)

dφ

dα
|â(τ)

−
∫

∂Ω(τ)

[

(â(τ) · E(s))2 − µ
]

V (s) · Nτ (s) ds

(27)

= λτ
d

dτ
φ(â(τ))

−
∫

∂Ω(τ)

[

(â(τ) · E(s))2 − µ
]

V (s) · Nτ (s) ds .

(28)

Since φ(â(τ)) is constant with respect to τ , the final
expression of the shape derivative of (20) is

dJ tra

dτ
(τ, V ) = −

∫

∂Ω(τ)

[

(â(τ) · E(s))2 − µ
]

V (s)·Nτ (s) ds .

(29)

3.5 Minimization algorithm

As presented in Section 2.3, the minimization of (19)
can be achieved by iterating an active contour evolu-
tion equation deduced from shape derivative (29). The
evolution equation is

∂Γ

∂τ
(τ) =

[

(â(τ) · E)2 − µ
]

Nτ (30)

where Γ(τ = 0) is an initial estimate of the segmen-
tation contour. Dominant translation parameter â(τ)
of Ω(τ) must be computed in order to implement evo-
lution (30). In Section 3.2, â(τ) was expressed as the
unique global minimizer of Ktra

Ω(τ). Although expres-

sion (17) is not readily usable, it can be rewritten as
follows

Ktra
Ω(τ)(α) = αT

(

∫

Ω(τ)

E(x) E(x)T dx

)

α (31)

= αT Qτ α . (32)

Matrix Qτ is clearly symmetric and real. Therefore, it
has real eigenvalues δ1 and δ2. Without loss of gener-
ality, it is assumed that δ1 ≤ δ2. Rewritting (32) in an
orthonormal basis of eigenvectors, we have

Ktra
Ω(τ)(α) = δ1 α2

1 + δ2 α2
2 (33)

= (δ1 − δ2) α2
1 + δ2 (34)

since we look for α in C+ (α2
1+α2

2 = 1). If δ1 and δ2 are
equal, Ktra

Ω(τ) is constant on C+. Therefore, a necessary

and sufficient condition of uniqueness of â(τ) is that Qτ

has two distinct eigenvalues. In other words, Qτ must
not be equal to the identity matrix times a constant.
In this case, Ktra

Ω(τ) is minimum when α1 is equal to one,
which implies that α2 is equal to zero. Since α has been
expressed in a basis of eigenvectors, it is actually equal
to the eigenvector of C+ associated with eigenvalue δ1.
In brief, â(τ) is the unique solution in C+ of

Qτ α = δmin α (35)

where δmin is the lowest eigenvalue of Qτ .

In Appendix A, we propose a sufficient condition of
nonexistence of a dominant translation parameter as
an illustration of the case where Qτ is equal to the
identity matrix times a constant.

Given the proposed iterative method, there is a con-
cern about the choice of an initial contour Γ(τ = 0).
Indeed, it must be such that Ω(τ = 0) is a domain
of F tra. Furthermore, this property should hold for
all τ positive, until convergence. As explained in Ap-
pendix C, a sufficient condition is that Ω(τ = 0) con-
tains domain Ωtra, minimizer of (19), entirely while

not exceeding an area of 1+
√

2
2 times the area of Ωtra.

Naturally, since Ωtra is unknown, it implies the impos-
sibility of a “blind” initialization. Nevertheless, it is
not uncommon to have such constraints in the field of
segmentation using active contours.

4 Segmentation of rotation do-

mains

4.1 Rotation domain

A region of the domain of E containing only field lines
that are circles is called a rotation domain (See Fig. 1).
Equivalently, a domain Ω of F is a rotation domain if
and only if there exists a unique parameter a(Ω) of R

2

such that for any field line L verifying L∩Ω 6= ∅ there
exists a unique constant c(L) of R such that

|x − a(Ω)|2 = c(L), x ∈ L ∩ Ω . (36)

Vector a(Ω) is called the rotation parameter of Ω. It
is actually the center of the circular field lines. In our
context, the specific value of c(L) is of no importance
and plays the role of an unnecessary parameter. There-
fore, a condition equivalent to (36) while not involv-
ing c(L) should be found. Let us parametrize L by p.
For any x(p) of L ∩ Ω

|x(p) − a(Ω)|2 = c(L) (37)

⇐⇒ (x1(p) − a1)
2 + (x2(p) − a2)

2 = c(L) (38)
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The derivative of (38) with respect to p combined
with (1) leads to the following system of equations

(

x1(p) − a1 x2(p) − a2

E2(x(p)) −E1(x(p))

)

ẋ(p) = M ẋ(p) = 0 .

(39)
Combining (2) and (39), it can be concluded that the
determinant of M must be equal to zero. Therefore, a
domain Ω of F is a rotation domain if and only if there
exists a unique a(Ω) of R

2 such that for any x of Ω

(x − a(Ω)) · E(x) = 0 . (40)

4.2 Dominant rotation parameter

From (40), it can be deduced that if Ω is a rotation
domain then a(Ω) is a global minimizer of

Krot
Ω : R

2 → R

α 7→
∫

Ω

((x − α) · E(x))2 dx . (41)

Indeed, Krot
Ω is clearly nonnegative and Krot

Ω (a(Ω)) is
equal to zero. Moreover, this minimizer is unique in R

2

(See Section 4.5).
Looking from a domain point of view (as opposed to

the parameter point of view), it can also be deduced
from (40) that Ω minimizes the following energy

Grot : F → R

ω 7→
∫

ω

((x − a(ω)) · E(x))2 dx (42)

with a(ω) defined as the unique global minimizer
of Krot

ω .
However, there is no guarantee that for any ω of F

there exists a unique global minimizer of Krot
ω and

that Krot
ω is equal to zero for this minimizer. In other

words, ω might not have a rotation parameter (namely,
if it is not a rotation domain). Nevertheless, as long
as Krot

ω has a unique global minimizer â(ω), this mini-
mizer is called the dominant rotation parameter of ω.

4.3 Practical formulation

It is clear that any subdomain of a rotation domain
is a minimizer of energy (42). As a consequence, the
problem of finding rotation domains should be reformu-
lated in finding rotation domains having an area as big
as possible. This is equivalent to minimizing Grot(Ω)
while maximizing the area of Ω, i.e., minimizing the
following energy

J rot : F rot → R

Ω 7→
∫

Ω

((x − â(Ω)) · E(x))2 dx − µ

∫

Ω

dx

(43)

where F rot is the set of domains of F having a domi-
nant rotation parameter, â(Ω) is the dominant rotation
parameter of Ω, and µ is a positive constant.

Certainly, the minimization algorithm will require
computation of â(Ω). However, this latter aspect will
be presented later in Section 4.5 when it will be clear
where exactly this parameter is needed in the overall
process.

4.4 Shape derivative

Following the methodology of Section 2.3, energy (43)
is rewritten as a function of an evolution parameter τ

J rot(τ) =

∫

Ω(τ)

((x − â(τ)) · E(x))2 dx − µ

∫

Ω(τ)

dx

(44)
where â(τ) is a short notation for â(Ω(τ)). Apply-
ing result (8) to each integral, the shape derivative
of (44) can be computed in a way similar to the de-
velopment presented in Section 3.4. The only differ-
ence is that, in the rotation case, parameter â(τ) min-
imizes Krot

Ω(τ) on R
2. In other words, there are no con-

straints on â(τ). As a consequence, it can be concluded
that dKrot

Ω(τ)/dα|â(τ) is equal to zero without involving

a Lagrange multiplier. The shape derivative of (44) is

dJ rot

dτ
(τ, V ) = −

∫

∂Ω(τ)

[

((x(s) − â(τ)) · E(s))2 − µ
]

V (s) · Nτ (s) ds . (45)

4.5 Minimization algorithm

As presented in Section 2.3, the minimization of (43)
can be achieved by iterating an active contour evolu-
tion equation deduced from shape derivative (45). The
evolution equation is

∂Γ

∂τ
(τ) =

[

((x − â(τ)) · E)2 − µ
]

Nτ (46)

where Γ(τ = 0) is an initial estimate of the segmen-
tation contour. Dominant rotation parameter â(τ)
of Ω(τ) must be computed in order to implement evo-
lution (46). In Section 4.2, â(τ) was expressed as the
unique global minimizer of Krot

Ω(τ).

It can easily be shown that

HKrot
Ω(τ)

= 2 Qτ (47)

where HKrot
Ω(τ)

is the Hessian matrix of Krot
Ω(τ) and Qτ

is the matrix in (32). Considering (17) and (32), it is
clear that Qτ is nonnegative. As a consequence, Krot

Ω(τ)

is convex. However, its strict convexity cannot be in-
ferred yet.
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If â(τ) actually exists, it is such that

dKrot
Ω(τ)

dα
|â(τ)= 0 (48)

Although expression (48) is not readily usable, it can
be rewritten as follows

Qτ â(τ) =

∫

Ω(τ)

(x · E(x)) E(x)dx . (49)

Therefore, a necessary and sufficient condition of exis-
tence and uniqueness of â(τ) is that the determinant
of Qτ is not equal to zero. In this case, â(τ) is the
unique solution in R

2 of (49), namely

â(τ) = Q−1
τ

∫

Ω(τ)

(x · E(x)) E(x)dx . (50)

The uniqueness of the solution of (48) implies the
strict convexity of Krot

Ω(τ). Therefore, it can be con-

cluded that â(τ) is indeed the unique global minimizer
of Krot

Ω(τ).
In Appendix B, we propose a necessary and suffi-

cient condition of nonexistence of a dominant rotation
parameter as an illustration of the case where the de-
terminant Qτ is equal to zero.

Given the proposed iterative method, there is a con-
cern about the choice of an initial contour Γ(τ = 0).
Indeed, it must be such that Ω(τ = 0) is a domain
of F rot. Furthermore, this property should hold for
all τ positive, until convergence. As explained in Ap-
pendix D, a sufficient condition is that Ω(τ = 0) con-
tains domain Ωrot, minimizer of (43), entirely. Natu-
rally, Ωrot is unknown. However, this constraint can
easily be respected by choosing Ω(τ = 0) equal to the
entire image domain.

5 Segmentation of g-domains

Sections 3 and 4 deal with the segmentation of spe-
cific vector fields: translation fields and rotation fields,
respectively. In this section, we extend the proposed
method in order to define a general framework for the
segmentation of vector fields of R

2 that can be de-
scribed by a finite number of parameters. As a result,
we propose a step-by-step procedure from the defini-
tion of a vector field model (by means of a field line
equation) to the segmentation algorithm.

5.1 Set of constraints and g-domain

A subset of R
n, ∆, is called a set of constraints if it

is equal to R
n or if it is given by the following set of

intersections

∆ = O ∩ (∩m
i=1∆i) (51)

where O is a subset of R
n and ∆i is defined by

∆i = {α ∈ R
n, φi(α) = 0} (52)

where each φi is a function C1 from O to R and, for j 6=
i, φi and φj are linearly independent.

A domain Ω of F is called a g-domain, where g is a
smooth function from R

2×R
n to R, if and only if there

exists a unique parameter a(Ω) of a set of constraints ∆
such that for any field line L verifying L∩Ω 6= ∅ there
exists a unique constant c(L) of R such that

g(a(Ω), x) = c(L), x ∈ L ∩ Ω . (53)

Vector a(Ω) is called the g-parameter of Ω.
Translation domains and rotation domains are

clearly two particular cases of g-domains with, respec-
tively,

{

∆tra = C+ = O ∩ ∆1

gtra(a(Ω), x) = a(Ω) · x , (54)

where O is the set of x of R
2 such that x1 ≥ 0 and x2 >

−1 and ∆1 is defined by φ1(α) = |α|2 − 1, and
{

∆rot = R
2

grot(a(Ω), x) = |x − a(Ω)|2 . (55)

In our context, the specific value of c(L) in (53)
is of no importance and plays the role of an unnec-
essary parameter. Therefore, a condition equivalent
to (53) while not involving c(L) should be found. Let
us parametrize L by p. For any x(p) of L ∩ Ω

g(a(Ω), x(p)) = c(L) . (56)

The derivative of (56) with respect to p combined
with (1) leads to the following system of equations
(

∂g
∂x1

(a(Ω), x(p)) ∂g
∂x2

(a(Ω), x(p))
E2(x(p)) −E1(x(p))

)

ẋ(p) = M ẋ(p)

(57)

= 0 . (58)

Combining (2) and (58), it can be concluded that the
determinant of M must be equal to zero. Therefore, a
domain Ω of F is a g-domain if and only if there exists
a unique a(Ω) of ∆ such that for any x of Ω

∇xg(a(Ω), x) · E(x) = 0 (59)

where ∇xg is the vector of components ∂g
∂xi

.

5.2 Dominant g-parameter

From (59), it can be deduced that if Ω is a g-domain
then a(Ω) is a global minimizer of

Kg
Ω : ∆ → R

α 7→
∫

Ω

(∇xg(α, x) · E(x))2 dx . (60)
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Indeed, Kg
Ω is clearly nonnegative and Kg

Ω(a(Ω)) is
equal to zero.

Looking from a domain point of view (as opposed to
the parameter point of view), it can also be deduced
from (59) that Ω minimizes the following energy

Gg : F → R

ω 7→
∫

ω

(∇xg(a(ω), x) · E(x))2 dx (61)

with a(ω) defined as the unique global minimizer
of Kg

ω.
However, there is no guarantee that for any ω of F

there exists a unique global minimizer of Kg
ω and

that Kg
ω is equal to zero for this minimizer. In other

words, ω might not have a g-parameter (namely, if it
is not a g-domain). Nevertheless, as long as Kg

ω has a
unique global minimizer â(ω), this minimizer is called
the dominant g-parameter of ω.

5.3 Practical formulation

It is clear that any subdomain of a g-domain is a min-
imizer of energy (61). As a consequence, the problem
of finding g-domains should be reformulated in finding
g-domains having an area as big as possible. This is
equivalent to minimizing Gg(Ω) while maximizing the
area of Ω, i.e., minimizing the following energy

Jg : Fg → R

Ω 7→
∫

Ω

(∇xg(â(Ω), x) · E(x))2 dx − µ

∫

Ω

dx

(62)

where Fg is the set of domains of F having a dominant
g-parameter, â(Ω) is the dominant g-parameter of Ω,
and µ is a positive constant.

5.4 Shape derivative

Following the methodology of Section 2.3, energy (62)
is rewritten as a function of an evolution parameter τ

Jg(τ) =

∫

Ω(τ)

(∇xg(â(τ), x) · E(x))2 dx − µ

∫

Ω(τ)

dx

(63)
where â(τ) is a short notation for â(Ω(τ)). Applying
result (8) to each integral and following a development
similar to the translation case (See Section 3.4), the
shape derivative of (63) can be computed

dJg

dτ
(τ, V ) =

dâ

dτ
(τ)

dKg
Ω(τ)

dα
|â(τ)

−
∫

∂Ω(τ)

[

(∇xg(â(τ), x(s)) · E(s))2 − µ
]

V (s) · Nτ (s) ds . (64)

Expression (64) still contains a surface integral. As
explained in Section 2.3, the shape derivative is readily
usable if it contains only a line integral. Parameter â(τ)
minimizes Kg

Ω(τ) on ∆ (See Section 5.1). Therefore,

there exists Lagrange multipliers λi
τ such that

dKg
Ω(τ)

dα
|â(τ)=

m
∑

i=1

λi
τ

dφi

dα
|â(τ) . (65)

Using (65) in (64) and following a development simi-
lar to the translation case (See Section 3.4), the final
expression of the shape derivative of (63) is

dJg

dτ
(τ, V ) = −

∫

∂Ω(τ)

[

(∇xg(â(τ), x(s)) · E(s))2 − µ
]

V (s) · Nτ (s) ds . (66)

5.5 Minimization algorithm

As presented in Section 2.3, the minimization of (62)
can be achieved by iterating an active contour evolu-
tion equation deduced from shape derivative (66). The
evolution equation is

∂Γ

∂τ
(τ) =

[

(∇xg(â(τ), x) · E)2 − µ
]

Nτ (67)

where Γ(τ = 0) is an initial estimate of the segmenta-
tion contour. Dominant g-parameter â(τ) of Ω(τ) must
be computed as the unique global minimizer of Kg

Ω(τ)

(See Section 5.2) in order to implement evolution (67).

6 Experiments

The proposed algorithm was applied to vector fields
obtained in two ways: synthetic fields and dense optical
flow fields.

6.1 Synthetic fields and optical flow

Synthetic fields are 100×100-pixel images composed of
two regions. Each region can contain either a random
field, a translation field, or a rotation field. These fields
were obtained by assigning a two-dimensional vector
with a norm equal to one to each pixel. The random
field was obtained by drawing random numbers inde-
pendently for each component and normalizing the re-
sulting vector.

The optical flow fields between two consecutive
frames of a video sequence was computed by a block
matching technique similar to [22]. For each pixel of
the first frame, a surrounding, centered block of 21×21
pixels was extracted and its best match in the second
frame in terms of the zero-mean normalized sum of
squared differences (ZNSSD) was found using a fast,
suboptimal diamond search procedure [35]. In order to
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limit the computation time to a reasonable value, the
search procedure was restricted to a maximum ampli-
tude of 4 pixels in the four directions. The vector of
displacement from the original block to its matching
block was assigned to the pixel at the center of the
original block. In order to apply the proposed segmen-
tation method, two processing steps were necessary.
(i) Vectors equal to zero were replaced with vectors
with random directions so that no global coherence was
added to the field. (ii) The vectors were normalized.

6.2 Implementation

If the region, respectively object, of interest is as-
sumed to be a translation domain, to have a motion
of translation, evolution (30) should be implemented.
Similarly, evolution (46) should be implemented if ro-
tation is suspected. These active contour processes
can be implemented with an implicit representation
allowing changes of topology of the active contour
such as level sets [4, 24, 10, 1, 16]. Since the vec-
tor fields used are assumed to contain only one ob-
ject, changes of topology were not an issue. Therefore,
we chose an explicit representation based on evolving
spline curves [31, 6, 19, 25]. For translation, the seg-
mentation algorithm can be described synthetically as
follows

1. Choose weight µ of the area constraint

2. Choose an initial domain Ω(τ = 0) according to
Appendix C

3. Compute dominant translation parameter â(τ)
of Ω(τ) as the solution of (35)

4. Compute energy (19) of Ω(τ)

5. For τ positive, if the energy of Ω(τ) is equal to
the energy of Ω(τ − 1), then the algorithm has
converged and Ω(τ) is the solution of the segmen-
tation, otherwise go to step 6

6. Update Ω according to a discretization of evolu-
tion (30)

Γ(τ + 1) = Γ(τ) + α
[

(â(τ) · E)2 − µ
]

Nτ (68)

where α is chosen heuristically in order to “ensure”
stability of the evolution

α = 1 / max
x∈Γ(τ)

∣

∣(â(τ) · E(x))2 − µ
∣

∣ . (69)

7. Go back to step 3

The boundary Γ was represented by a spline passing
through samples regularly spaced at a distance equiv-
alent to 5 pixels. The discrete representation of Ω was
the mask of pixels of Γ. Evolution (68) was applied

to the samples of Γ(τ) and Γ(τ + 1) was computed
as the spline passing through the moved samples. To
maintain a distance of 5 pixels between the samples,
periodic resampling was necessary.

Convergence was not tested exactly as stated in
step 5, especially since the choice of α could cause end-
less oscillations around the solution. Instead, the algo-
rithm was assumed to have converged when the energy
was roughly constant during the last few iterations.

6.3 Translation domain

Since the background is not taken into account by the
segmentation process, it was interesting to see the be-
havior of the algorithm when segmenting a translation
domain on a translation background (See Figs. 2 and 3)
and a rotation background (See Fig. 4). If the ini-

Figure 2: Segmentation of a translation domain on a
translation background: (from left to right and top to
bottom) the initial contour superimposed on the image
of the first component of the vector field, the final con-
tour on the same image, and the final contour on the
vector field.

tial domain contains a reasonably higher portion of
the object than the portion of the background, then
the translation domain should be detected accurately
(See Fig. 2). However, if the initial domain contains
more background than object, then the notions of ob-
ject and background naturally exchange for each other
in the computation of the dominant translation pa-
rameter (See Fig. 3). In the three tests on synthetic
translation domains (Figs. 2, 3, and 4), weight µ of the
area constraint was taken equal to 0.1.

A real-world, standard, sport sequence was also used
to test the proposed algorithm, as if part of a larger
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Figure 3: Segmentation (interrupted before conver-
gence) of a translation domain on a translation back-
ground: (from left to right and top to bottom) the initial
contour superimposed on the image of the first compo-
nent of the vector field, the final contour on the same
image, and the final contour on the vector field.

processing chain. The optical flow between frames 15
and 16 of sequence “football” was computed as ex-
plained in Section 6.1. The sequence is in the CIF
format: it is composed of 352 × 288-pixel frames. The
main flow is due to the motion of the player in the cen-
ter of the field of view. The segmentation of the optical
flow is shown in Figs. 5 and 6. As far as the opti-
cal flow is concerned, the segmentation seems accurate
(See Fig. 5 and the image on the left in Fig. 6). When
superimposing the segmentation on frame 15 (See the
image on the right in Fig. 6), the contour does not out-
line the player very precisely. Indeed, the optical flow
is not accurate at the boundary of objects and in ho-
mogeneous or nearly homogeneous regions. It is a con-
sequence of the block matching method when a block
contains parts of different moving objects and when
the correlation function is too flat and has several local
minima, respectively. However, the purpose of this ex-
periment was to test the proposed algorithm on a real-
istic optical flow, i.e. quite complex and noisy. In that
respect, the result is satisfying. With sequence “foot-
ball”, weight µ of the area constraint was taken equal
to 0.05, which is consistent with the value used with
the synthetic vector fields while being a little smaller
to account for noise. Indeed, a high value of µ increases
the tolerance on the error of the segmentation term of
evolution (30), implying a higher probability to include
incorrect vectors in the segmentation.

Figure 4: Segmentation of a translation domain on a
rotation background: (from left to right and top to bot-
tom) the initial contour superimposed on the image of
the first component of the vector field, the final con-
tour on the same image, and the final contour on the
vector field.

6.4 Rotation domain

Similarly to the translation case, segmentation of a ro-
tation domain was evaluated with several backgrounds:
a translation background (See Figs. 7 and 8), a ro-
tation background (See Fig. 9), and a random back-
ground (See Fig. 10). Two elements can be noticed on
Figs. 7 and 8. First, since a rotation domain poten-
tially contains vectors in all directions, there is an in-
evitable match with the direction of the translation in
the background. Therefore, some vectors of the back-
ground close to the object and which happen to have
a direction plausible in terms of the rotation might be

Figure 5: Segmentation of the optical flow of frame
15 of sequence “football”: the initial contour super-
imposed on the image of the first component of the
vector field (left) and the final contour on the same
image (right).



PREPRINT – Published in Journal of Mathematical Imaging and Vision 11

Figure 6: Segmentation of the optical flow of frame 15
of sequence “football” superimposed on the vector field
(left) and superimposed on frame 15 (right).

Figure 7: Segmentation of a rotation domain on a
translation background: (from left to right and top to
bottom) the initial contour superimposed on the image
of the first component of the vector field, the final con-
tour on the same image, and the final contour on the
vector field.

included in the segmentation. Second, the segmenta-
tion is different whether the initial contour is inside
or outside the object. Nevertheless, it has the same
shape and behavior regarding translation vectors in
the neighborhood of the object. This tends to show
that, in this configuration of object and background
vector fields, energy (43) is flat around the solution
and has several local minima. With a rotation back-
ground having a rotation center far enough from the
rotation center of the object, the segmentation is satis-
fying (See Fig. 9). Although an extensive study of the
robustness and accuracy of the proposed method is out
of the scope of this paper, it can be expected that seg-
mentation becomes less accurate as the rotation centers
of the background and the object get closer. The last

Figure 8: Segmentation of a rotation domain on a
translation background: (from left to right and top to
bottom) the initial contour superimposed on the image
of the first component of the vector field, the final con-
tour on the same image, and the final contour on the
vector field.

experiment with a synthetic rotation domain was done
with a random background. The segmentation shown
in Fig. 10 seems accurate. In the four tests on synthetic
rotation domains (Figs. 7, 8, 9 and 10), weight µ of
the area constraint was taken equal to 10. This value,
significantly higher than the values used for transla-
tion domains, tends to show that rotation energy (43)
requires more tolerance on its segmentation term to
segment the whole object than translation energy (19)
does.

A real-world, somewhat artificial sequence was also
used to test the proposed algorithm, as if part of a
larger processing chain. A sponge was rotated manu-
ally by a few degrees around its center on a still back-
ground. A sequence composed of two 640 × 480-pixel
frames was made and the optical flow between these
frames was computed (See Fig. 11). The segmentation
is shown in Fig. 12. Since the optical flow in the up-
per part of the background is mostly equal to zero, it
was replaced with a random field as explained in Sec-
tion 6.1. The lower part of the optical flow of the back-
ground was already randomly distributed. The seg-
mentation of the optical flow, superimposed on the first
frame of the sequence, appears to outline the sponge
accurately.
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Figure 9: Segmentation of a rotation domain on a rota-
tion background: (from left to right and top to bottom)
the initial contour superimposed on the image of the
first component of the vector field, the final contour on
the same image, and the final contour on the vector
field.

7 Conclusion

A methodology was proposed for the segmentation of
vector fields of R

2 that can be described by a finite
number of parameters. The idea is to characterize a
specific vector field by its underlying field lines. Given
the type of subfield to be segmented (e.g., translation
or rotation), a specific model must be defined by means
of the general form of the parametric equations of the
field lines (straight lines or circles, respectively). The
segmentation problem is expressed as the minimization
with respect to the segmentation domain of an energy
deduced from the field line equations. The minimiza-
tion is rewritten into a shape optimization and solved
by a spline-based active contour procedure requiring
the choice of an initial estimate. The parameters of
the field line equations are computed as part of the
evolution process of the active contour (normal to the
straight lines and center of the circles, respectively).

The method proved to work well for translation do-
mains and rotation domains. Furthermore, it pro-
vides a general framework for more complex vector
fields. However, it is adapted to normalized vector
fields. Therefore, the necessary normalization step
prior to the segmentation of an unnormalized field in-
duces some loss of information: (i) A vector with a
small norm and a random direction within a coherent
region (a “noise” vector) will have, after normalization,

Figure 10: Segmentation of a rotation domain on a
random background: (from left to right and top to bot-
tom) the initial contour superimposed on the image of
the first component of the vector field, the final con-
tour on the same image, and the final contour on the
vector field.

as much influence on the computation of the dominant
g-parameter as a vector with a large norm and a coher-
ent direction; (ii) It is not possible to make the distinc-
tion between two translation domains having different
norms but the same direction. As a consequence, fur-
ther developments should use the “natural” vector field
and take the norm of the vectors into account.

A Domain with no dominant

translation parameter

Let Ω be a domain such that there exists a diffeomor-
phism t from R

2 to R
2 such that for any x of Ω

t(Ω) = Ω (70)

| det(Jt(x))| = 1 (71)

E(t(x)) · E(x) = 0 (72)

where Jt is the Jacobian matrix of t. The orthogonality
between E(t(x)) and E(x) implies that

E1(t(x)) = ǫ E2(x), ǫ ∈ {−1, 1} (73)

E2(t(x)) = −ǫ E1(x) (74)

E1(t(x)) E2(t(x)) = −E1(x) E2(x) . (75)

Matrix QΩ defined in (32) has the following form

QΩ =

(

a1 b
b a2

)

(76)
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Figure 11: Rotating sponge on a still background:
sponge before rotation (top) and optical flow of the
rotation before processing as explained in Section 6.1
(bottom).

where a1, a2, and b are equal to

ai =

∫

Ω

Ei(x)2 dx, i ∈ {1, 2} (77)

b =

∫

Ω

E1(x) E2(x) dx . (78)

We have

a1 =

∫

Ω

E2(t(x))2 dx (79)

=

∫

t(Ω)

E2(y)2 | det(Jt(y))| dy (80)

=

∫

t(Ω)

E2(y)2 dy (81)

=

∫

Ω

E2(y)2 dy (82)

= a2 . (83)

Moreover, we have

b = −
∫

Ω

E1(t(x)) E2(t(x)) dx (84)

Figure 12: Segmentation of the optical flow superim-
posed on the image of the sponge before rotation (ini-
tialization (top) and solution (bottom)).

= −
∫

t(Ω)

E1(y) E2(y) | det(Jt(y))| dy (85)

= −
∫

t(Ω)

E1(y) E2(y) dy (86)

= −
∫

Ω

E1(y) E2(y) dy (87)

= −b . (88)

Therefore, b is equal to zero. In conclusion, QΩ is equal
to the identity matrix times a constant. As shown in
Section 3.5, this means that Ω has no dominant trans-
lation parameter.

For instance, a disk containing vectors rotating
around the center of the disk has no dominant trans-
lation parameter. Indeed, it suffices to choose t as the
rotation of π

2 around the center of the disk.

B Domain with no dominant ro-

tation parameter

Taking the opposite of the equivalence of existence of a
dominant rotation parameter proposed in Section 4.5,
it can be stated that Ω has no dominant rotation pa-
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rameter if and only if the determinant of QΩ is equal
to zero. Explicitly, it means that

∫

Ω

E1(x)2 dx

∫

Ω

E2(x)2 dx =

(
∫

Ω

E1(x) E2(x) dx

)2

.

(89)

According to Cauchy-Schwarz, (89) is a superior-or-
equal inequality in general. It is an equality, like in the
present case, if and only if there exists a constant λ
of R such that

E2(x) = λ E1(x) (90)

for any x of Ω. However, E being normalized, for any x
of Ω we also have

E1(x)2 + E2(x)2 = 1 . (91)

From (90) and (91), it can easily be deduced that E is
constant within Ω. In other words, Ω is a translation
domain.

Since this result was obtained by a series of equiva-
lences, it can be concluded that a domain has no domi-
nant rotation parameter if and only if it is a translation
domain.

C Initial segmentation of a

translation domain

In Section 3.5, it is shown that a domain Ω has a dom-
inant translation parameter if and only if there is no
constant λ such that

QΩ = λ Id (92)

where Id is the identity matrix or, equivalently,

∫

Ω

E2
1(x) dx = λ (93)

∫

Ω

E2
2(x) dx = λ (94)

∫

Ω

E1(x) E2(x) dx = 0 . (95)

Vector field E being normalized, E2
2 can be replaced

with 1 − E2
1 in (94). As a result, (93) and (94) can be

combined into
∫

Ω

E2
1(x) dx =

|Ω|
2

(96)

where |Ω| is the measure of Ω. Therefore, Ω has a
dominant translation parameter if and only if

∫

Ω

E2
1(x) dx 6= |Ω|

2
(97)

or
∫

Ω

E1(x) E2(x) dx 6= 0 . (98)

Let Ωtra be the (unknown) minimizer of (19). It is
assumed that

Ω ⊃ Ωtra (99)

and

|Ω/Ωtra| <

√
2

2
|Ωtra| (100)

where A/B is the intersection between A and the com-
plement of B. Note that (100) is equivalent to

|Ω| < (1 +

√
2

2
)|Ωtra| . (101)

Our purpose is to show that if conditions (99) and (100)
are respected, then (97) or (98) is true.

Since E is normalized, there exists θ, a function
from R

2 to [0, 2π], such that

E(x) =

(

sin(θ(x))
cos(θ(x))

)

. (102)

Furthermore, Ωtra being a translation domain, there
exists a constant θtra such that for any x of Ωtra

θ(x) = θtra . (103)

Finally, note that

min
θ∈[0,2π]

{max{| sin(2θ)|, | cos(2θ)|}} =

√
2

2
. (104)

Combining (100) and (104), it can be deduced that

|Ω/Ωtra| < | sin(2θtra)| |Ωtra| (105)

or
|Ω/Ωtra| < | cos(2θtra)| |Ωtra| . (106)

• First case: Inequality (105) is true. We have
∣

∣

∣

∣

∣

∫

Ω/Ωtra

E1(x) E2(x) dx

∣

∣

∣

∣

∣

≤
∫

Ω/Ωtra

|E1(x) E2(x)| dx

(107)

≤
∫

Ω/Ωtra

| sin(2θ(x))|
2

dx

(108)

≤
∫

Ω/Ωtra

1

2
dx (109)

≤ 1

2
|Ω/Ωtra| (110)

<
1

2
| sin(2θtra)| |Ωtra| .(111)

It can be concluded that, in particular,
∫

Ω/Ωtra

E1(x) E2(x) dx 6= −1

2
sin(2θtra) |Ωtra| . (112)
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Besides
∫

Ω

E1(x) E2(x) dx =

∫

Ωtra

E1(x) E2(x) dx

+

∫

Ω/Ωtra

E1(x) E2(x) dx

(113)

=
1

2
sin(2θtra) |Ωtra|

+

∫

Ω/Ωtra

E1(x) E2(x) dx .

(114)

Combining (112) and (114), it can be concluded that
∫

Ω

E1(x) E2(x) dx 6= 0 . (115)

• Second case: Inequality (106) is true. We have
∣

∣

∣

∣

∣

∫

Ω/Ωtra

(

E1(x)2 − 1

2

)

dx

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∫

Ω/Ωtra

E1(x)2 dx

−|Ω/Ωtra|
2

∣

∣

∣

∣

(116)

≤
∫

Ω/Ωtra

∣

∣

∣

∣

E1(x)2 − 1

2

∣

∣

∣

∣

dx

(117)

≤
∫

Ω/Ωtra

∣

∣

∣

∣

sin2(θ(x)) − 1

2

∣

∣

∣

∣

dx

(118)

≤
∫

Ω/Ωtra

| cos(2θ(x))|
2

dx

(119)

≤
∫

Ω/Ωtra

1

2
dx (120)

≤ 1

2
|Ω/Ωtra| (121)

<
1

2
| cos(2θtra)| |Ωtra| .

(122)

It can be concluded that, in particular,

∫

Ω/Ωtra

E1(x)2 dx − |Ω/Ωtra|
2

6= 1

2
cos(2θtra) |Ωtra| (123)

⇐⇒
∫

Ω/Ωtra

E1(x)2 dx + (sin2(θtra) − 1

2
) |Ωtra|

6= |Ω/Ωtra|
2

(124)

⇐⇒
∫

Ω/Ωtra

E1(x)2 dx +

∫

Ωtra

E1(x)2 dx

6= |Ω/Ωtra|
2

+
|Ωtra|

2
(125)

⇐⇒
∫

Ω

E1(x)2 dx 6= |Ω|
2

. (126)

As a conclusion, if initial domain Ω(τ) respects condi-
tions (99) and (100), then it has a dominant translation
parameter. Intuitively, evolution (30) will make Ω(τ)
shrink until, ideally,

Ω(τ = 0) = Ωtra . (127)

Therefore, conditions (99) and (100) should hold for
all τ positive, until convergence.

D Initial segmentation of a rota-

tion domain

The opposite of the equivalence of nonexistence of a
dominant rotation parameter proposed in Appendix B
reads that a domain has a dominant rotation parameter
if and only if it is not a translation domain. Let Ωrot be
the (unknown) minimizer of (43). It is assumed that
initial domain Ω(τ = 0) is such that

Ω(τ = 0) ⊃ Ωrot . (128)

Clearly, since Ω(τ = 0) contains a rotation domain, it
cannot be a translation domain. Therefore, it can be
concluded that it has a dominant rotation parameter.
Intuitively, evolution (46) will make Ω(τ) shrink until,
ideally,

Ω(τ = 0) = Ωrot . (129)

Therefore, condition (128) should hold for all τ posi-
tive, until convergence.
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[30] C. Schnörr. Computation of discontinuous opti-
cal flow by domain decomposition and shape opti-
mization. Int. J. Comp. Vision, 8:153–165, 1992.

[31] M. Unser, A. Aldroubi, and M. Eden. B-spline
signal processing: Part I - Theory. IEEE Trans.
Signal Proc., 41:821–833, 1993.

[32] J. Y. A. Wang and E. H. Adelson. Spatio-temporal
segmentation of video data. In SPIE on Image and
Video Processing II, volume 2182, pages 120–131,
San Jose (CA), USA, 1994.

[33] J. Weickert and C. Schnörr. Variational optic flow
computation with a spatio-temporal smoothness
constraint. Journal of Mathematical Imaging and
Vision, 14:245–255, 2001.

[34] S. F. Wu and J. Kittler. A gradient-based method
for general motion estimation and segmentation.
Journal of Visual Communication and Image Rep-
resentation, 4:25–38, 1993.

[35] S. Zhu and K.-K. Ma. A new diamond search algo-
rithm for fast block matching motion estimation.
IEEE Trans. Imag. Proc., 9:287–290, 2000.


