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Cubic hypersurfaces and integrable systems

Atanas Iliev, Laurent Manivel

October 14, 2008

Abstract

Together with the cubic and quartic threefolds, the cubic fivefolds are the only hyper-
surfaces of odd dimension bigger than one for which the intermediate Jacobian is a nonzero
principally polarized abelian variety (p.p.a.v.). In this paper we show that the family of
21-dimensional intermediate Jacobians of cubic fivefolds containing a given cubic fourfold X
is generically an algebraic integrable system. In the proof we apply an integrability criterion,
introduced and used by Donagi and Markman to find a similar integrable system over the
family of cubic threefolds in X . To enter in the conditions of this criterion, we write down
explicitly the symplectic structure, known by Beauville and Donagi, on the family F (X) of
lines on the general cubic fourfold X , and prove that the family of planes on a cubic fivefold
containing X is embedded as a Lagrangian surface in F (X). By a symplectic reduction we
deduce that our integrable system induces on the nodal boundary another integrable system,
interpreted generically as the family of 20-dimensional intermediate Jacobians of Fano three-
folds of genus four contained in X . Along the way we prove an Abel-Jacobi type isomorphism
for the Fano surface of conics in the general Fano threefold of genus four, and compute the
numerical invariants of this surface.

1 Introduction

1.1 Background

For a smooth compact Kähler manifold Y of dimension n and any positive integer q ≤ n, its
q-th intermediate Jacobian

Jq(Y ) = (Hq−1,q(Y ) ⊕ · · · ⊕ H0,2q−1(Y ))/H2q−1(Y, Z)

is a complex torus. Because of the skew-symmetry of the Riemann-Hodge bilinear relations the
tori Jq(Y ) aren’t in general abelian varieties, except for the Picard variety J1(Y ) = Pic0(Y )
and the Albanese variety Jn(Y ) = Alb(Y ), see Ch.2 §6 in [CG]. If n = dim Y = 2q − 1 is odd
then J(Y ) = Jq(Y ) is simply called the intermediate Jacobian of Y . In the particular case when
Y ⊂ P

n+1 is a smooth hypersurface of degree d, the intermediate Jacobian J(Y ) happens to be
a non trivial abelian variety only when n = 1 and d ≥ 3, n = 3 and d = 3, 4 (i.e. when Y is a
cubic or quartic 3-fold), or n = 5 and d = 3 (i.e. when Y is a cubic 5-fold), see p.43 in [Col].
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In [DM2] Donagi and Markman studied certain complex algebraic analogs of integrable
systems in mechanics. These analogs take as models the integrable Hamiltonian systems f :
M → B, where the phase space M is a real symplectic 2n-fold, and the general fibers of f are
compact Lagrangian n-folds in M , which by the Arnold-Liouville theorem are n-fold real tori.
In §7 of [DM2] are given general criteria (the cubic conditions) which ensure when an algebraic
family f : M → B of complex tori represents an algebraic integrable system; for more details
see §2 in [DM2] or §2 in [Fr].

The main application of these criteria is the observation that the relative intermediate Jaco-
bians over the gauged moduli spaces of Calabi-Yau threefolds are in fact such algebraic integrable
systems, see [DM1]. This gives rise to the question whether besides the Calabi-Yau integrable
systems there exist other nontrivial examples of families of intermediate Jacobians that are also
algebraic integrable systems, see e.g. Question 4.6 in [AS]. It seems that until now, the only
known such nontrivial example (besides the integrable systems coming from families of Jacobians
of curves) is given in Example 8.22 of [DM2]:

If X ⊂ P
5 is a smooth cubic fourfold, and B = Hs is the open subset in the dual projective

space parameterizing the smooth hyperplane sections Yb of X, then the relative intermediate
Jacobian f : J (Y) → Hs is an algebraic integrable system.

This example is based on an abstract procedure, described in §8 of [DM2], that generates alge-
braic integrable systems in the context of Lagrangian deformations. More precisely, for a given
complex symplectic variety W , its Lagrangian Hilbert scheme parameterizes the Lagrangian
subvarieties of W . By a result of Voisin and Ran the deformations of a smooth Lagrangian
subvariety F ⊂ W are unobstructed and the component H of the Lagrangian Hilbert scheme
of W containing F is generically smooth, see [Voi, Ran]. Consider the universal family F → H
and its Picard bundle PicoF → H. In this context, Theorem 8.1 in [DM2] states:

(DM) If W is a smooth complex symplectic variety and F is a smooth Lagrangian subvariety
of X, then the symplectic structure on W generates a natural symplectic structure on the relative
Picard PicoF → Hs over the base Hs of smooth Lagrangian deformations of F in W , making
the relative Picard PicoF → Hs an algebraic integrable Hamiltonian system.

In the cited Example 8.22, the above criterion (DM) is applied in the case where W = F (X)
is the family of lines on a smooth cubic hypersurface X ⊂ P

5 and F = F (Y ) ⊂ F (X) is the Fano
surface of lines on a smooth hyperplane section Y of X. To enter in the conditions of (DM),
the following results are used:

1. The family F (X) is a symplectic 4-fold, see [BD],
2. F (Y ) ⊂ F (X) is a Lagrangian surface in F (X), see Ex.7 in §3 of [Voi],
3. For a smooth cubic 3-fold Y , its intermediate Jacobian J(Y ) is a principally polarized

abelian variety of dimension 5, the family F (Y ) of lines on Y is a smooth surface of irregularity
5, and the Abel-Jacobi map defines an isomorphism between AlbF (Y ) and J(Y ), see [CG].

The most common situation when (DM) can be applied is the case when the symplectic
variety W = S is a K3 surface and F = C is a smooth curve of genus g on S; notice that any
curve on a K3 surface S is a Lagrangian subvariety of S. In this lowest dimensional case, the
base Hs of the smooth Lagrangian deformation of C in S is an open subset of the complete
linear system |OS(C)| ∼= P

g, and (DM) yields that the relative Jacobian J is a Lagrangian
fibration over Hs. When S = S2g−2 is a K3 surface with a primitive polarization of genus
g = g(C) this fibration can be extended to a Lagrangian fibration J → P

g over the compactified
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relative Jacobian J , which is a smooth compact complex symplectic variety birational to the
g-th punctual Hilbert scheme HilbgS, see §2 in [B2]. In this trend, J. Sawon, in a collaboration
with K. Yoshioka, has recently shown that for any g,m ≥ 2 the g-th Hilbert power HilbgT of
the general primitive K3 surface T of degree m2(2g − 2) can be represented as a torsor over the
compactified relative Jacobian J → P

g of a primitive K3 surface S = S(T ) of degree 2g−2, thus
proving the existence of a regular Lagrangian fibration over P

g on the smooth compact complex
symplectic variety HilbgT , see [Saw].

The above examples give rise to the question when the relative Picard fibrations from (DM)
can be extended to Lagrangian fibrations including fibers over singular Lagrangian deformations
of F ⊂ W . For general integrable systems of type relative Picard as in (DM), a partial
compactification is described in Theorem 8.18 of [DM2] but the proof remains unpublished.

At the end of the same Example 8.22 of [DM2] it is shown that the symplectic structure
on Pico(F) → Hs can be extended to a still non-degenerate symplectic structure over the set
Hn ⊃ Hs of hyperplane sections Y of X that are allowed to be singular but with at most one
node. For a general nodal cubic 3-fold Y ∈ ∂Hn := Hn −Hs the family of lines ℓ ⊂ Y that pass
through the node of Y is parameterized by a smooth curve C of genus 4, and the generalized
intermediate Jacobian J(Y ) of Y is a C

∗-extension of the Jacobian J(C), see e.g. [CM]. Then
the relative Jacobian fibration J (Y) → Hn induces over the nodal boundary ∂Hn a boundary
fibration J (C) → ∂Hn whose fibers are the Jacobians J(C) of the genus 4 curves C. All this
makes it possible to conclude that the boundary abelian fibration J (C) → ∂Hn of the algebraic
integrable system J (Y) → Hn is also an algebraic integrable system, at least over an open
subset of ∂Hn. Donagi and Markman call this system the boundary integrable system for J (Y),
see the end of §8 in [DM2]. As communicated to us by Ron Donagi, this is an instance of the
algebraic symplectic reduction, described in §2 of his later paper [DP] with E. Previato.

1.2 Summary of the results in the paper

In this paper we describe a new example of an algebraic integrable family of intermediate Ja-
cobians in the context of the integrability conditions (DM). It is an analog of the Example
8.22 from [DM2], where the fibers of the integrable system are the 5-dimensional intermediate
Jacobians of smooth cubic 3-folds contained in a fixed cubic fourfold as hyperplane sections. In
our case the fibers of the integrable system are the 21-dimensional intermediate Jacobians of
the general cubic fivefolds containing the same cubic fourfold X as a hyperplane section. By
Theorem 11, the first main conclusion in our paper:

The relative intermediate Jacobian is an algebraic integrable system over an open subset of
the family of isomorphism classes of cubic fivefolds containing a fixed general cubic fourfold X
as a hyperplane section.

To be more precise, the base of the integrable system is a quotient of an open subset of
the family of cubic fivefolds containing X, by the subgroup of PGL7 acting trivially on the
hyperplane spanned by X.

Notice once again that the cubic fivefolds are the unique hypersurfaces of odd dimension
bigger than three for which the intermediate Jacobian is a non trivial abelian variety. Next,
we study the degeneration of this integrable system on the boundary parameterizing the nodal
cubic fivefolds through X, and prove that the induced boundary abelian fibration is also an
algebraic integrable system.
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In our case the symplectic variety W from (DM) is still the same as in the example of
Donagi and Markman: the 4-fold family W = F (X) of lines on a fixed smooth cubic fourfold
X. The difference is in the choice of the Lagrangian subvariety of departure F ⊂ W . At this
point we should mention that discovering principally new or nontrivial examples of Lagrangian
subvarieties of symplectic varieties, especially in a projective-geometric context, looks like a
happy occurrence. In our case this occurrence is realized as the Fano surface F2(Z) of planes on
the general cubic fivefold Z that contains X as a hyperplane section; the surface F2(Z) is regarded
as a subvariety of F (X) by the embedding given by the intersection map iZ : F2(Y ) → F (X),
P

2 7→ P
2 ∩ X. We prove, see Proposition 4:

The intersection image iZ(F2(Z)) of the Fano surface F2(Z) of planes on the general cubic
fivefold Z containing the cubic fourfold X as a hyperplane section, is a Lagrangian surface inside
the 4-fold family F (X) of lines in X (in fact this surface is not smooth, but has ordinary double
points as singularities).

This relies on an explicit description of the symplectic form on F (X), which is provided in
§2.1. Recall that in [BD] the symplectic form on F (X) is described only for the general Pfaffian
cubic 4-folds X, which form a divisor in the space of all cubic fourfolds X ⊂ P

5. For a general
Pfaffian cubic fourfold X, the family F (X) is known to be isomorphic to the Hilbert square
Hilb2S of a K3 surface S of genus 8, and the symplectic form on F (X) is the symplectic form on
Hilb2S described earlier by Fujiki and Beauville, see [B1]. The existence of a symplectic form
on F (X) for the general cubic fourfold X then follows by a deformation argument, see [BD].

By Proposition 4 we enter in the conditions of (DM), this time with the symplectic fourfold
F (X) and its Lagrangian surface iZ(F2(Z)). This gives rise to a Lagrangian fibration on the
relative Picard PicoF → Hs over the scheme Ho of smooth deformations of iZ(F2(Z)) in F (X),
see the beginning of Section 5. In this situation, the analog of 3 above is a result of Collino:

The family F2(Z) of lines on the general cubic 5-fold Z is a smooth surface of irregularity
21, and the Abel-Jacobi map induces an isomorphism between the Albanese variety AlbF2(Z)
and the intermediate Jacobian J(Z), see [Col].

In fact h5,0(Z) and h4,1(Z) vanish, while h2,1(Z) = 21, which explains why J(Z) is a p.p.a.v.
of dimension 21. By duality, J(Z) is also isomorphic with the Picard variety PicoF2(Z). This
implies Theorem 11.

Next, we study a partial compactification of the relative Jacobian fibration from Theorem
11, by including in its base the codimension one boundary ∂Hn of cubic fivefolds with one node.

For a general nodal cubic 5-fold Z, the family of lines ℓ ⊂ Z which pass through the node
of Z is parameterized by a general smooth prime Fano threefold Y of genus 4. This threefold
Y is the analog of the genus 4 curve C from the boundary system in Example 8.22 of [DM2].
Since in this situation the generalized intermediate Jacobian J(Z) is a C

∗-extension of J(Y ),
the boundary fibration J (Y) has for base the set of nodal cubic 5-folds Z containing X and as
general fibers the 20-dimensional intermediate Jacobians of their associated Fano 3-folds Y of
genus 4. Such a Fano 3-fold Y is a complete intersection of a quadric and a cubic in P

5. While
the cubic can be chosen to be X, the quadric (identified with the base of the projective tangent
cone to the node of Z) can move.

In §2 we find the analog of 2 for a general nodal cubic fivefold Z. For this, we show in §2.2
that the Fano surface F2(Z) of planes on Z is almost the same as the Fano surface F (Y ) of
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conics on Y . More precisely, the Fano surface F2(Z) has a double curve Γ(Y ), isomorphic to the
family of lines on Y , and there is a natural map ν : F (Y ) → F2(Z), which is a desingularization,
see Proposition 9. We conclude that the surface F = iZ(F2(Z)) is a singular Lagrangian surface
in F (X), see Proposition 10.

In §4.1 we study in more detail the Fano surface F (Y ) of the general prime Fano 3-fold Y of
genus 4. In particular we find its numerical invariants, see Corollary 15. Next, in §4.2 we prove
the following analog of Collino’s Abel-Jacobi isomorphism for planes on cubic fivefolds:

The family F (Y ) of conics on the general prime Fano 3-fold Y of genus 4 is a smooth surface
of irregularity 20, and the Abel-Jacobi map induces an isomorphism between AlbF (Y ) and the
intermediate Jacobian J(Y ), see Theorem 20.

To prove Theorem 20, we follow the same program as Clemens and Griffiths in their proof of
the Abel-Jacobi isomorphism for the cubic threefold. This program was subsequently applied in
[Let] to prove a similar Abel-Jacobi isomorphism for the Fano surface of conics on the general
quartic hypersurface in P

4, then in [Col] for the Fano surface of planes on the general cubic 5-fold.
In brief, this program consists in verifying that in a general Leftschetz pencil {Yt : t ∈ P

1} of
Fano 3-folds of genus 4, for a finite number of values of t either the Fano surface F (Yt) acquires
isolated singular points but Yt remains smooth, or when Yt becomes singular then its singularity
is a simple node and in this case F (Yt) has a smooth double curve for singular locus, see [Let]
and §3.2. As above, the Abel-Jacobi isomorphism makes it possible to identify PicoF (Y ) with
J(Y ).

In §3.2 we use these results, together with the algebraic symplectic reduction procedure from
[DP] to get Theorem 16, the second main conclusion of this paper:

The algebraic integrable system from Theorem 11 induces on the nodal boundary ∂Hn a
fibration by intermediate Jacobians of Fano 3-folds of genus 4 which is generically an algebraic
integrable system.

Acknowledgements. We express our gratitude to Ron Donagi for pointing us to his paper with
E. Previato, to Vesselin Drensky for the assistance in parallel computing the invariants from §3
with Maple. The first author uses the occasion to thank after many years Alessandro Verra,
Giuseppe Ceresa and especially Maurizio Letizia for the interesting conversations around the
Clemens-Griffiths program.

We also thank an anonymous referee for his careful reading of the manuscript.

2 Revisiting the family of lines on the cubic fourfold

2.1 The symplectic form

Let X ⊂ PV = P
5 be a general cubic hypersurface, with equation P = 0 for some general

polynomial P ∈ S3V ∗. The Fano variety F (X) of lines contained in X is a subvariety of the
Grassmannian G(2, V ). It can be defined as the zero locus of the global section sP of the vector
bundle S3T ∗, naturally defined by P , where T denotes the rank two tautological bundle on the
Grassmannian. Since sP is a general section of the globally generated vector bundle S3T ∗, F (X)
is a smooth four dimensional variety.

It was proved by Beauville and Donagi that F (X) has a symplectic structure. Indeed they
showed that for X a Pfaffian cubic hypersurface there exists a K3 surface S such that F (X) =
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Hilb2S, which is well known to inherit a symplectic structure from that of S. Then the general
case follows by a deformation argument, see [BD]. Nevertheless the use of deformations makes
that the symplectic form on F (X) is not explicit. Markushevich and Tikhomirov [MT] showed
how to deduce it from the Voisin’s observation that the Fano varieties of lines in the hyperplane
sections of X are Lagrangian surfaces in F (X) (see section 3). We shall give below a completely
explicit and down-to-earth description of this form. In fact it suffices to exhibit a non zero
holomorphic two form on F (X) – indeed since h2,0(F (X)) = 1 we know that there exists a
unique such form, so it must define the symplectic structure, that it, it will automatically be a
non degenerate closed form. Consider the tangent exact sequence

0 → TF (X) → TG(2, V )|F (X) → S3T ∗
|F (X) → 0.

Remember that TG(2, V ) ≃ Hom(T,Q), where Q = V/T denote the quotient bundle on the
Grassmannian. Therefore, the tangent space to TF (X) at a line ℓ = PT is

TℓF (X) = {u ∈ Hom(T,Q), P (x, x, ū(x)) = 0 ∀x ∈ T},

where P (x, y, z) is the polarization of P (x) and ū(x) ∈ V is any representative of u(x) ∈ Q.
Note that P (x, x, .) = 0 is an equation of TxX. If ℓ is a general line on X and x varies in ℓ,

we get a quadratic pencil of hyperplanes in PV , whose intersection is a plane Π = PS ⊃ ℓ = PT .
In particular, TℓF (X) ⊃ Hom(T, S/T ).

There is a natural skew-symmetric form on TℓF (X), defined up to scalar as follows. Choose
some vectors e, f, g, h of T and let, for u, v ∈ TℓF (X),

Ψ(u, v; e, f, g, h) = P (e, e, u(g))P (f, f, v(h)) − P (e, e, v(g))P (f, f, u(h)).

This can be seen as defining a skew-symmetric bilinear map on S2T⊗T with values in ∧2TℓF (X)∗.
Note that S2T ⊗ T = S3T ⊕ T ⊗ ∧2 T . We get the component S3T by letting g = e in the
formula above, which gives zero on TℓF (X)∗. So we need only consider the other component,
which gives a map (∧2T )3 → ∧2 TℓF (X)∗ defined by the formula

ω(u, v; e, f) = P (e, e, u(f))P (f, f, v(e)) − P (e, e, v(f))P (f, f, u(e))
+2P (e, f, u(f))P (e, e, v(f)) − 2P (e, e, u(f))P (e, f, v(f))
+2P (f, f, u(e))P (e, f, v(e)) − 2P (e, f, u(e))P (f, f, v(e)).

We can see ω as a form with values in the line bundle (∧2T ∗)⊗3 = O(3). This form has rank
two at the generic point of F (X) and its radical is precisely Hom(T, S/T ).

There is also a natural quadratic form on ∧2TℓG(2, V ), defined again up to scalar by the
following formula: if u, v, u′, v′ ∈ Hom(T,Q) and e, f is a basis of T , let

K(u∧v, u′
∧v′) = u(e)∧u′(f)∧v(e)∧v′(f) − u(f)∧u′(f)∧v(e)∧v′(e)

+u(f)∧u′(e)∧v(f)∧v′(e) − u(e)∧u′(e)∧v(f)∧v′(f),

seen as a element of the line ∧4Q. More precisely, K is a quadratic form on ∧2TℓG(2, V ) with
values in the line bundle Hom((∧2T ),∧4Q) = O(3)⊗ det(V ).

Observe that this form can be described in terms of the natural decomposition ∧2TℓG(2, V ) =
∧2T ∗⊗S2Q⊕S2T ∗⊗ ∧2 Q, as the composition of the natural morphisms

S2(∧2TℓG(2, V )) → S2(S2T ∗⊗ ∧2 Q) → S2(S2T ∗)⊗S2(∧2Q) → (∧2T ∗)⊗ 2 ⊗ ∧4 Q.
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Now we restrict the quadratic form K to ∧2TℓF (X). We claim that the restriction has rank
at most two. Indeed, it is clear that K vanishes on Hom(T, S/T ) ∧ TℓF (X), a hyperplane in
∧2TℓF (X). In particular we can write

K(u∧v, u∧v) = ω(u, v)Ω(u, v)

for u, v ∈ TℓF (X), where Ω is now a well-defined skew-symmetric form on TℓF (X) (with values
in det(V ), to be precise), since K and ω both take values in O(3).

Theorem 1 The form Ω defines a symplectic structure on the Fano variety F (X).

Proof. As explained above we just need to prove that Ω is non trivial at some point ℓ = PT of
F (X). This reduces to an easy computation in coordinates: we chose a basis e1, . . . , e6 of V
such that T = 〈e1, e2〉. If z1, . . . , z6 are the corresponding coordinates on V , we may suppose
that P (e1, e1, z) = z4, P (e1, e2, z) = z5, P (e2, e2, z) = z6. In particular the intersection of the
tangent spaces of X along ℓ is S = 〈e1, e2, e3〉.

An element of the tangent space TℓF (X) is a homomorphism u ∈ Hom(T,Q) such that

u(e1) = ae3 + be5 − 2ce6,
u(e2) = de3 − 2be4 + ce5

for some scalars a, b, c, d. Take another u′ ∈ TℓF (X) defined by the scalars a′, b′, c′, d′. Then
K(u∧u′, u∧u′) is proportional to u(e1)∧u(e2)∧u′(e1)∧u′(e2), that is, to the determinant

∥

∥

∥

∥

∥

∥

∥

∥

a d a′ d′

0 −2b 0 −2b′

b c b′ c′

−2c 0 −2c′ 0

∥

∥

∥

∥

∥

∥

∥

∥

= 4(bc′ − b′c)(a′c − ac′ + bd′ − b′d).

The factor bc′ − b′c is proportional to ω(u, u′). We conclude that Ω(u, u′) is proportional to
a′c − ac′ + bd′ − b′d, so that Ω has maximal rank. 2

Note that ω(u, u′) = 0 if and only if the tangent plane generated by u and u′ contains an
element u′′ ∈ Hom(T,Q) whose image is contained in S/T . If it is not the case, then this
tangent plane is isotropic if and only if

u(T ) + u′(T ) 6= Q,

that is, there is a hyperplane H ⊂ Q containing the image of any u′′ in the tangent plane.

2.2 Lagrangian surfaces in F (X)

Our very explicit description of the symplectic structure of F (X) will help us to identify La-
grangian surfaces.
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2.2.1 Voisin’s example

First we recover the following observation of Claire Voisin (see [Voi]).

Proposition 2 Let Y = X ∩ H be a generic hyperplane section. Then the Fano surface F (Y )
of lines in Y is a Lagrangian surface in F (X).

Proof. For u, u′ in TℓF (Y ) ⊂ Hom(T,Q), the images u(T ) and u′(T ) are contained in the
hyperplane of Q defined by H. So clearly K(u∧u′, u∧u′) = 0. But ω(u, u′) is non zero, at least
generically, so Ω(u, u′) = 0. 2

Remark. As observed by the referee, one can also argue as follows. The universal families on
F (X) and F (Y ) allow to define a commutative diagram

H4(X) −→ H2(F (X))
↓ ↓

H4(Y ) −→ H2(F (Y )).

The symplectic form on F (X) defines a class in H2,0(F (X)) which can be lifted to H3,1(X).
Therefore its restriction to F (Y ) is the image of a class in H3,1(Y ). But this group is zero, so
F (Y ) is Lagrangian.

2.2.2 Planes in cubic fivefolds

We now turn to the inverse situation where X is a hyperplane section of a cubic fivefold Z ⊂
P

6 = PW , say X = Z ∩ H with H = PV . Generically, such a cubic fivefold contains projective
planes, and the Fano variety F2(Z) of planes in Z is a smooth surface in the Grassmannian
G(3,W ). Cutting such a plane Π with the hyperplane H we get a line in X, because X contains
no plane. Hence a map

iZ : F2(Z) −→ F (X).

Lemma 3 For general X and Z, the map iZ is a closed immersion.

Proof. Let Π = PS be a plane in Z, such that ℓ = P ∩H is a line in X. If R = 0 is an equation
of Z, we have

TΠF2(Z) = {u ∈ Hom(S,W/S), R(x, x, u(x)) = 0 ∀x ∈ S}.

The differential of iZ at Π maps u ∈ Hom(S,W/S) to its restriction u|T from T to V/T ≃ W/S.
If this restriction is zero, then u = e∗ ⊗ f has rank one and R(x, x, f) = 0 for all x ∈ S. This
means that the intersection of the tangent hyperplanes to Z along Π intersect along a linear
space strictly larger that Π. Call such a plane special. We claim that a general cubic fivefold
contains no special plane. Indeed, choose linear coordinates x0, . . . , x6 on P

6, such that the
plane Π is defined by x3 = x4 = x5 = x6 = 0. If Z contains Π, its equation is of the form
x3Q3 + x4Q4 + x5Q5 + x6Q6 for some quadrics Q3, . . . , Q6. The intersection of the tangent
hyperplanes to Z along Π contains Π+ of equations x4 = x5 = x6 = 0 if and only if the quadric
Q3 = 0 contains Π. So Π is special if and only if it is special in the sense of [Col]. Collino proves
that if Π is contained in the smooth locus of Z, then it defines a smooth point of F2(Z) if and
only if it is non special. In particular a smooth Z such that F2(Z) is smooth contains no special
plane, and iZ is immersive. 2
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Proposition 4 The map iZ maps F2(Z) to a Lagrangian surface in F (X).

Proof. If ω vanishes on (iZ)∗TΠF2(Z), then TΠF2(Z) must contain a morphism u ∈ Hom(S,W/S)
whose restriction to T has rank one. But this cannot happen generically, so we just need to
prove that our quadratic form K on ∧2TℓF (X) vanishes on the line ∧2(iZ)∗TΠF2(Z).

By definition of K this means that two morphisms in TΠF2(Z) cannot send T to two inde-
pendent subspaces in W/S. So our claim follows from the following observation:

Lemma 5 There exists a hyperplane hΠ in W/S such that for all u ∈ TΠF2(Z) ⊂ Hom(S,W/S),
we have u(S) ⊂ hΠ.

Proof. Again we just need to prove this for a general cubic fivefold Z and a general plane
Π ∈ F2(Z). The cubic equation R of Z defines a linear map ρ : W/S → Sym2S∗, mapping w̄
to the quadratic form x 7→ R(x, x,w) on S, for any representative w of w̄ in W . Consider the
diagram

∧2S∗ ⊗S∗

↓

TΠF2(Z) ⊂ Hom(S,W/S)
id⊗ ρ
−→ S∗⊗Sym2S∗

↓
Sym3S∗

where the vertical strand is part of a Koszul complex. Since TΠF2(Z) maps to zero in Sym3S∗,
its image by id⊗ ρ lies in the image of ∧2S∗ ⊗S∗. Note that since S has dimension three,
∧2S∗ ⊗S∗ = detS ⊗End(S). Once we chose a generator α of det S, we thus conclude that for
any u ∈ TΠF2(Z), there exists some θu ∈ End(S) such that

R(x, x, u(y))α = θu(x)∧x∧y ∀x, y ∈ S.

Generically, the endomorphism θu is semisimple, and for any z ∈ u(S) the quadratic form
x 7→ R(x, x, z) vanishes along the three eigenlines of θu.

We interpret this as follows. The pull-back by ρ of the discriminant defines a cubic surface Σ
in P(W/S), and this surface has only isolated singularities by the genericity assumption. Since
the image of the plane Pu(S) by ρ is the net of conics passing through three general points, Pu(S)
is a tritangent plane to the surface Σ. But there are only a finite number of such tritangent
planes, so u(S) does not depend on u (as long as u has maximal rank). This is what we wanted
to prove. 2

Remark. An alternative proof can also be given along the same lines as for Proposition 2, using
again that H3,1(Z) = 0.

Beware that iZ is not injective, so that iZ(F2(Z)) is in fact a singular Lagrangian surface
in F (X). Indeed, a simple dimension count shows that the set of pairs (P,P ′) of (distinct)
projective planes contained in a general cubic fivefold Z ⊂ P

6, and meeting along a line, has
expected dimension two. This implies that a finite number δ of lines ℓ = P ∩P ′ will be contained
in a general hyperplane H ⊂ P

6 (with δ > 0 if this expected dimension is the effective one).
And we can conclude that iZ(F2(Z)) has precisely δ double points.
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As suggested by the referee, the number δ can be computed by noting that the self-intersection
of a Lagrangian subvariety in a symplectic manifold is equal to its topological Euler character-
istic. In order to compute the self-intersection of iZ(F2(Z)), we need the following Lemma. Let
T denote the rank two tautological vector bundle on G(2, 6), restricted to F (X).

Lemma 6 The fundamental class of iZ(F2(Z)) in the Chow ring of F (X) is 63c2(T ).

Proof. Consider the projective bundle π : P = P(W/T ) → F (X). Over P we have the rank-three
tautological vector bundle S such that S/T = OP (−1). The inclusion S ⊂ V ⊗ OP induces a
map P → G(3, 7). Let K denote the kernel of the natural restriction map Sym3S∗ → Sym3T ∗,
a vector bundle of rank 6 on P . An equation of Z defines a global section of K, whose zero
locus FP (Z) is mapped isomorphically to F2(Z) in G(3, 7), in such a way that the restriction of
π to FP (Z) gets identified with iZ . We conclude that we can compute the fundamental classes
of these surfaces as [FP (Z)] = c6(K) and [iZ(F2(Z))] = π∗c6(K).

These computations are straightforward. First, K has a filtration with successive quotients
Sym3(S/T )∗, Sym2(S/T )∗ ⊗T ∗, (S/T )∗ ⊗Sym2T ∗. Hence

c6(K) = 3hc2(T
∗ ⊗OP (2))c3(Sym2T ∗⊗OP (1))

= 3h(c2 + 2hc1 + 4h2)(4c1c2 + (4c2 + 2c2
1)h + 3c1h

2 + h3),

where h = c1(OP (1)) and c1, c2 denote the Chern classes of T ∗. Now recall that the Chow
ring of P is a free module over that of F (X), generated by the class h modulo the relation
h5 +

∑

k>0 ck(W/T )h5−k = 0. In particular, up to lower order terms in h, we deduce that
h5 = −c1h

4 and h6 = c2h
4 hence c6(K) = 63h4c2. Since π∗h

4 = 1, while the lower order terms
in h are killed by π∗, we deduce that π∗c6(K) = 63c2. 2

Observe that c2(T ) is the fundamental class of F (X∩H) ⊂ F (X) for any general hyperplane
H ⊂ P

5. In particular c2(T )2 = 27, and therefore the self-intersection of iZ(F2(Z)) equals
27 × 632. Now we can apply the double point formula ([Fu], Theorem 9.1). Observe that
the normal bundle NiZ = i∗ZTF (X)/TF2(Z) is identified through the symplectic form, since
iZ(F2(Z)) is Lagrangian, with the cotangent bundle of F2(Z). We thus get

2δ = 27 × 632 − χtop(F2(Z)) = 94122,

since the topological Euler characteristic χtop(F2(Z)) = 13041 (see 4.1).

Proposition 7 For a general cubic fivefold Z containing X, the image of F2(Z) in F (X) is a
singular Lagrangian surface with δ = 47061 ordinary double points as only singularities.

2.2.3 Conics on Fano threefolds of genus four

A Fano threefold of genus four is the complete intersection Y = Q ∩ X of a quadric Q and a
cubic hypersurface X in P

5.

Proposition 8 For Y general, the set of lines in Y is a smooth curve Γ(Y ) and the set of conics
in Y is a smooth surface F (Y ).
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Proof. Choosing equations for Q and X we get sections σQ and σX of S2T ∗ and S3T ∗ on G(2, 6),
and the zero locus of σQ ⊕σX , is precisely Γ(Y ). Hence the first assertion.

The Hilbert scheme K of conics in P
5 is nothing else than the total space of the projective

bundle P(S2T ∗)
π
→ G(3, 6). On K we have a tautological sequence

0 → O(−1) → π∗S2T ∗ → Q → 0,

and the equation of Q defines a section τQ of Q whose zero-locus is the set of conics contained
in Q. In a similar way, the vector bundle M defined by the exact sequence

0 → π∗T ∗ ⊗O(−1) → π∗S3T ∗ → M → 0,

has a global section τX defined by the equation of X whose zero locus is the set of conics contained
in C. Now τQ ⊕ τX is a general section of the globally generated vector bundle Q⊕M, whose
zero locus is F (Y ). So by Bertini, F (Y ) is a smooth surface. 2

Remark. The invariants of the curve Γ(Y ) were computed in [Mar], in particular its genus is
g(Γ(Y )) = 271. We will compute the invariants of F (Y ) in the next section. As noticed in Ch.
2 , §4 of [Isk], F (Y ) contains a special curve B(Y ) ⊂ F (Y ) that consists of conics that lie in
the ruling planes of Q. Since Q has two family of ruling planes, this curve has two connected
components B+(Y ) and B−(Y ).

Now consider in P
6 a general nodal cubic 5-fold Z, with equation x0pQ + pX , where x0 is an

equation of the hyperplane P
5 ⊃ Q,X, and pQ, pX are equations of Q,X, respectively. Denote

its node by eo = (1 : 0 : · · · : 0). The projective tangent cone K(Q) to Z at eo is the cone in
P

6 with vertex eo over the quadric Q. Its intersection with Z is the cone K(Y ) over the Fano
3-fold Y = X ∩ Q ⊂ P

5.
From another point of view, the cone K(Y ) is the union of all lines ℓ ⊂ Z which pass through

the node of Z; in other words, Y is the base of the family of lines on Z that pass through eo.
Denote by F2(Z) the Fano variety of planes in Z. We shall construct a natural map

ν : F (Y ) → F2(Z)

as follows. Let q ⊂ Y be a conic. Then q, together with the node eo span a 3-space P 3
q , which

intersects Z along a cubic surface Sq = P 3
q ∩Z. This surface is not irreducible, since it contains

the quadratic cone K(q) with vertex eo and base q. Therefore

Sq = K(q) + P 2
q ,

where P 2
q ⊂ Z is a plane, and we let q 7→ ν(q) := P 2

q .
Note that ℓq := P 2

q ∩X is a line that is 2-secant to q. We denote by j the map F (Y ) → F (X)
sending q to ℓq.

Next, we shall try to find where is the inverse of ν : F (Y ) → F2(Z) defined.
First note that any plane Π in Z that passes through eo evidently lies in K(Y ) and intersects

on Y a line ℓ = Π ∩ Y . Conversely, Π is just the span of ℓ ∪ e0. In other words, the curve of
lines Γ(Y ) is the base of the family Γ(Z) of planes on Z that pass through eo. in particular
Γ(Z) ∼= Γ(Y ).
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Let Π ∈ F2(Z) − Γ(Z), and let ℓ = Π ∩ Y ∈ Γ(Y ) be its corresponding line on Y . Since
eo /∈ Π, the span of Π ∪ eo is a 3-space, that intersects Z along a cubic surface SΠ = Π ∪ QΠ,
where QΠ is a quadric surface in Z.

Since SΠ clearly passes through eo = Sing(Z), but Π does not, the quadric QΠ must be
singular at eo. Therefore QΠ must be a quadratic cone with vertex eo, meeting P

5 along a conic
q on Y = X ∩ Q. Clearly q = ν−1(Π).

Thus ν is invertible outside Γ(Z) ∼= Γ(Y ). There remains to find the pre-images on F (Y ) of
the planes Π ∈ Γ(Z) ⊂ F2(Z). Let ℓ = Π ∩ Y ∈ Γ(Y ).

Let q ∈ ν−1(Π). Then with the previous notations Sq = P 3
q ∩ Z is a cone with vertex

e0, which can be defined as the set of points (x0, y), with y in the span P 2
q of q, such that

x0pQ(y) + pX(y) = 0. So Q must contain the plane P 2
q , which itself contains ℓ. But a line in

a four dimensional quadric is contained in exactly one plane in each of the two rulings of Q.
Denote the two planes in Q that contain ℓ by P+ and P−. The intersection of X with P± is the
union of ℓ with a conic q±, and we conclude that

ν−1(Π) = {q+, q−}.

We summarize our discussion.

Proposition 9 The map ν : F (Y ) → F2(Z), q 7→ P 2
q is an isomorphism outside the curve

B(Y ) = B+(Y ) ∪ B−(Y ) ⊂ F (Y ), and the restriction of ν to B±(Y ) is an isomorphism with
Γ(Z).

In particular Γ(Z) is the singular locus of F2(Z), whose normalization is ν.

Now, since the condition of being Lagrangian is closed, we can deduce from Propositions 4
and 9 the following result:

Proposition 10 For any general cubic fourfold X ⊂ P
5 and any general quadric Q ⊂ P

5, the
map sending a conic q ⊂ Y = Q ∩ X to the residual line ℓq in the intersection of the linear
span P 2

q of q, with X, maps the surface F (Y ) of conics in Y to a singular Lagrangian surface
in F (X).

3 Two integrable systems

3.1 Cubic fivefolds containing a given fourfold

By a result of Z. Ran, deformations of smooth Lagrangian subvarieties are unobstructed. More-
over the same statement holds for deformations of Lagrangian immersions of smooth vari-
eties in a fixed symplectic manifold. We will apply this result to the Lagrangian immersions
iZ : F2(Z) → F (X), for Z a general cubic fivefold containing the fixed general cubic fourfold X
as a hyperplane section.

The family of cubic fivefolds Z containing X = Z ∩ H as a hyperplane section is a parame-
terized by the linear system

|IX(3)| = 〈cX , x0|O(2)|〉,

where cX is an equation of X in H and x0 is an equation of H. This linear system has dimension
28 and admits a natural action of the seven-dimensional group G, consisting of automorphisms

12



of P
6 whose restriction to H is trivial. Moreover the subvariety iZ(F2(Z)) ⊂ F (X) does not

change when Z moves in a G-orbit.

Remark. Note that the tangent space to the corresponding deformation is H1(Z, TZ ⊗ IX) =
H1(Z, TZ(−1)), which can be computed from the exact sequence

0 −→ TZ(−1) −→ TP
6(−1)|Z −→ OZ(2) −→ 0.

The Euler exact sequence restricted to Z gives H0(Z, TP
6(−1)|Z) = H0(P6,O(1))∗ := V and

H1(Z, TP
6(−1)|Z) = 0. Since H0(Z,OZ(2)) = H0(P6,O(2)) = S2V ∗, we get that

H1(Z, TZ ⊗ IX) = Coker(V
cZ−→ S2V ∗)

is the cokernel of the map cZ defined as the differential of an equation of Z. This map is always
injective for Z smooth, hence h1(Z, TZ ⊗ IX) = 21. In particular we can easily obtain locally
complete families for our deformation problem, parameterized by linear subsystems of |IX(3)|
transverse to PcX(V ).

Let Z → H ≃ P
21 be such a locally complete family of cubic fivefolds Z containing X. Let Hs

be the open subset defined by the conditions that F2(Z) is a smooth surface and iZ is immersive.
Following [Ran], Corollary 3.4, for such a Z the space D of deformations of iZ with fixed target
F (X) is smooth at the corresponding point, with tangent space H0(NiZ ) ≃ H1,0(F2(Z)) (recall
that the normal bundle NiZ is isomorphic with the cotangent bundle of F2(Z) since iZ is a
Lagrangian immersion). This tangent space has dimension 21, and the map Hs → D is étale.
Moreover there is an obvious map from D to the Hilbert scheme HF (X) of F (X). When iZ(F2(Z))
has only ordinary double points, it is easy to check that its normal sheaf N ≃ (iZ)∗Ω

1
F2(Z). In

particular the tangent space to HF (X) at the corresponding point is H0(N) ≃ H1,0(F2(Z)),
implying that the Hilbert scheme is smooth and the map D → HF (X) is also étale at that point.

Consider the relative Picard bundle Pic0F2(Z) → Hs. By [DM2], Theorem 8.1, this is an
algebraic completely integrable Hamiltonian system (ACIHS): the total space of the fibration
admits a symplectic structure such that the fibers are Lagrangian subvarieties. In fact the
result of Donagi and Markman is only stated for Lagrangian embeddings, but their proof adapts
verbatim to the case of Lagrangian immersions.

It was proved by Collino that the Abel-Jacobi morphism

AlbF2(Z) −→ J(Z)

to the intermediate Jacobian, is an isomorphism for a general cubic fivefold Z [Col]. In particular
AlbF2(Z), like J(Z), is self-dual, hence naturally isomorphic with the Picard variety Pic0F2(Z).
Denote by Ha ⊂ Hs the open subset over which the Abel-Jacobi theorem does hold. We conclude:

Theorem 11 The relative intermediate Jacobian J(Ha) over the locally complete family Ha of
smooth cubic fivefolds containing X, is an algebraic completely integrable Hamiltonian system.

In particular, the cubic condition of Donagi and Markman must hold (see [DM2], section
7.2). That is, the map

TJ(Z)A = Sym2H3(Z,Ω2
Z) −→ T[Z]Ha ≃ H1(Z, TZ ⊗ IX),
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where A denotes the moduli space of polarized abelian varieties, must be completely symmetric.
To be precise, note that H3(Z,Ω2

Z) can easily be computed with the help of the normal exact
sequence for Z ⊂ P

6 and the Euler sequence restricted to Z. We obtain

H3(Z,Ω2
Z) = Ker(S2V

ct
Z−→ V ∗) = H1(Z, TZ ⊗ IX)∗.

Let H := H3(Z,Ω2
Z). The cubic condition is that the map S2H → H∗ introduced above, which

is just the differential of the induced map from Ha to the moduli space A, comes from a cubic
form θZ ∈ S3H∗. This form can be described as the tautological cubic

θZ : S3H →֒ S3(S2V ) −→ S2(S3V )
c2Z−→ C.

3.2 Fano threefolds of genus four contained in a given cubic fourfold

We want to extend our ACIHS to an open subset Hn ⊂ H, containing Ha, by allowing Z to be a
general cubic fivefold with a node. In this case we know that F2(Z) gets singular along a curve,
and that its normalization is the Fano surface of conics F (Y ) of a general prime Fano threefold
of genus 4.

We begin with a few observations. Let Z be a general nodal cubic fivefold containing X.

1. The singular surface F2(Z) is a flat deformation of the smooth F2(Z
′), with Z ′ smooth.

This follows e.g. from Kollár’s criterion (6.1.3) in [Kol], following which a family of relative
dimension at least two on a smooth base, whose special fiber, with its reduced structure,
is S2, must be flat. This criterion applies in our situation since F2(Z) is a locally complete
intersection, hence has property S2.

2. The map iZ : F2(Z) → F (X) is again a closed immersion. Indeed, with the notations of
Lemma 3, iZ is the restriction of the natural projection p : G(3,W ) 99K G(2, V ). We
observed in the proof of this lemma that the Zariski tangent space to F2(Z) at some Π
is transverse to the tangent space to the fiber of p if and only if Π is non special. Then
our claim follows, since a general nodal cubic fivefold contains no special plane by [Col],
Lemma (1.6).

3. It follows that the singular surface iZ(F2(Z)) is a flat deformation of the singular surface
iZ′(F2(Z

′)), with Z ′ smooth. Indeed the effect of iZ and iZ′ is merely to create a certain
number of double points, outside the double curve of iZ(F2(Z)), and these double points
vary smoothly when Z deforms to a smooth cubic.

Proposition 12 Let Z denote the universal family over the Hs. Then the relative Picard bun-
dle, the ACIHS Pic0F2(Z) −→ Hs, extends to a dense open subset of Hn.

Proof. The strategy of proof will be the following. The Picard fibration extends to the general
point of Hn. Moreover, Donagi and Markman observed that the symplectic form which makes
this fibration an ACIHS, extends to a natural skew-symmetric form, which will certainly remain
closed. What we need to prove is that is also remains non-degenerate at the generic point of
Hn. For this we need a careful analysis of the Picard fibration.
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We first describe, for Z a general nodal cubic, the relevant data in terms of the asso-
ciated Fano threefold Y of genus 4. We keep the notations of 2.2.3. Recall that the map
ν : F (Y ) → F2(Z) restricts to an isomorphism

F (Y ) − B+(Y ) ∪ B−(Y ) → F2(Z) − Γ(Z).

We have seen that the curves B+(Y ) and B−(Y ) are mapped isomorphically to Γ(Z). Moreover
the two branches of F2(Z) along Γ(Z) intersect transversely at every point, and this remains
true for iZ(F2(Z)). We denote by Γ0 the set of double points on iZ(F2(Z)). It does not meet
the image of Γ(Z). We let µ := iZ ◦ ν : F (Y ) → F (X). For simplicity we denote Γ = iZ(Γ(Z))
and F = iZ(F2(Z)) = µ(F (Y )) ⊂ F (X).

Outside Γ0, the surface F is a locally complete intersection in F (X), so its normal sheaf
N = Hom(IF /I2

F ,OF ) is a locally free OF -module of rank two. Since the two branches of F
along Γ are Lagrangian, their tangent spaces generate in TF (X) the orthogonal TΓ⊥ to TΓ with
respect to the symplectic form. The quotient of TΓ⊥ by TΓ is the direct sum of the normal
bundles N+ and N− of B+(Y ) and B−(Y ) in F (Y ). In particular the symplectic form restricts
to a non degenerate pairing N+ ⊗ N− → OΓ.

Note that the natural map TF (X)⊗OF → N is not surjective along Γ. Let us choose
local coordinates x, y, z, t on F (X) at some point p ∈ Γ, such that F be given by the equations
xy = z = 0, and Γ by x = y = z = 0. Then the image of TF (X)⊗OF in N = Hom(IF /I2

F ,OF )
is defined by the condition that xy ∈ IF be sent to IΓ. If we denote by δ the OF -module map
sending xy to 1 and z to zero, the image of TF (X)⊗OF is IΓδ +OF ∂/∂z. On the other hand,
there is a globally defined map of OF -modules N → N+ ⊗N−, sending δ to ∂/∂x⊗ ∂/∂y and
∂/∂z to zero. The kernel of this map is precisely the image of TF (X)⊗OF .

Now consider the tangent map TF (Y ) → µ∗TF (X) ≃ µ∗Ω1
F (X). Dualizing and pushing

forward, we get a map TF (X) ⊗ OF → µ∗µ
∗TF (X) → µ∗Ω

1
F (Y ), whose image we denote by

N0 ⊂ µ∗Ω
1
F (Y ). Clearly N0 and µ∗Ω

1
F (Y ) are isomorphic outside Γ. At our point p ∈ Γ, an

element of the fiber of µ∗Ω
1
F (Y ) consists in pairs of differential forms on the two branches of

F2(Z) at that point. Such a pair is in the image of TF (X) ⊗ OF ≃ Ω1
F (X) ⊗ OF if and only if

the restrictions of the two forms to TpΓ coincide. So the quotient of µ∗Ω
1
F (Y ) by N0 is naturally

identified with Ω1
Γ.

Using the fact that the two branches of F2(Z) at p are Lagrangian, one easily sees that the
maps from TF (X)⊗OF to N and N0 have exactly the same kernels. An elementary computation
shows that this remains true over double points of F . So there is an induced map N0 → N . We
get the following diagram:

0
↓

0 −→ N0 −→ µ∗Ω
1
F (Y ) −→ Ω1

Γ −→ 0

↓
N
↓

N+ ⊗N− ≃ OΓ

↓
0

15



Taking global sections, we get that h0(N0) ≤ h0(µ∗Ω
1
F (Y )) = h0(Ω1

F (Y )) and h0(N) ≤ 1 +

h0(N0) ≤ 1 + h0(Ω1
F (Y )) = 21. But H0(N) is the Zariski tangent space to the Hilbert scheme

of F (X) at the point defined by F . This Hilbert scheme has dimension at least 21 at this
point, because we are on the boundary of its open subset considered in the previous subsection.
Thus in fact h0(N) = 21 and the Hilbert scheme of F (X) is smooth at the point defined by F .
Moreover we get the exact sequence

0 −→ H0(N0) ≃ H0(Ω1
F (Y )) −→ H0(N) −→ H0(OΓ) −→ 0.

This must be interpreted as follows: H0(N) is the tangent space to the Hilbert scheme of F (X)
at the point defined by F ; its hyperplane H0(N0) ≃ H0(Ω1

F (Y )) is the tangent space to the

hypersurface parameterizing the surfaces iZ(F2(Z
′)) for Z ′ a nodal cubic, or equivalently the

images of the Fano surfaces F (Y ) for Y a Fano threefold of genus 4 contained in X. We have
proved:

Lemma 13 Let Z be a general nodal cubic fivefold containing X. Let F = iZ(F2(Z)) ⊂ F (X).
Then the Hilbert scheme HF (X) of F (X) is smooth at the corresponding point, as well as the
hypersurface defined by the nodal deformations of Z.

After these preliminaries, we consider the relative Picard fibration Pic0(F) → Hn. As we
mentioned above, the symplectic form defined over Hs has a natural extension over Hn: this is
explained in [DM2], section 8.4, for the Picard fibration over the Hilbert scheme of deformations
of smooth Lagrangian subvarieties. In the case we consider, the component of HF (X) that we
deal with parametrizes Lagrangian subvarieties with ordinary double points, and we pull-back
the form by the étale map Hn → HF (X). Nevertheless the existence of double points will only
require minor modifications.

The extension of the skew-symmetric form over the Picard fibration goes as follows. If L is
an invertible sheaf over F2(Z), we can consider the torsion sheaf LF := iZ∗L on F (X). This
embeds the total space of the Picard fibration into Simpson’s moduli space of simple sheaves
on F (X), whose tangent space at the corresponding point is Ext1OF (X)

(LF , LF ). When F2(Z) is

smooth, and F has only ordinary double points as singularities, a local computation shows that

Ext1OF (X)
(LF , LF ) ≃ N ≃ iZ∗NiZ

(recall that NiZ is the normal bundle to iZ , defined as the quotient i∗ZTF (X)/TF2(Z); the role of
the sheaf iZ∗NiZ is considered in [Ca]; since iZ is a Lagrangian immersion and F2(Z) is smooth,
we simply have NiZ ≃ Ω1

F2(Z)). The local to global spectral sequence for Ext’s yields the exact
sequence

0 −→ H1(OF2(Z)) −→ Ext1OF (X)
(LF , LF ) −→ H0(iZ∗NiZ ) = H0(Ω1

F2(Z)) −→ 0.

which identifies with the tangent sequence of the Picard fibration.
Donagi and Markman observe that the skew-symmetric form on this space, which defines

the symplectic structure, can be defined by the composition

∧2Ext1OF (X)
(LF , LF ) −→ Ext2OF (X)

(LF , LF )
c1(O(1))
−→ Ext4OF (X)

(LF , LF ) ≃ Hom(LF , LF )∗ = C,
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where we have used Serre duality and the fact that the canonical sheaf of F (X) is trivial. The
point is that this description extends to the boundary points where Z is a general nodal cubic.
What we need to check is that the extended form remains non degenerate at the generic point
of the boundary.

For a general nodal cubic Z, we still have Ext1OF (X)
(LF , LF ) ≃ N . Again we consider the

induced exact sequence

0 −→ H1(OF2(Z)) −→ Ext1OF (X)
(LF , LF ) −→ H0(N) −→ 0,

which is again the tangent sequence to the Picard fibration. Since this fibration is Lagrangian
over Hs, by continuity H1(OF2(Z)) remains isotropic on the boundary. So the skew-symmetric
form that we defined on Ext1OF (X)

(LF , LF ) remains non degenerate if and only if the induced

pairing

H1(OF2(Z)) ⊗ H0(N) −→ H1(N)
c1(O(1))
−→ H2(N ⊗ Ω1

F (X)|F ) −→ H2(N ⊗ N) −→ C

is non degenerate. (Note that to define the rightmost arrows, we first used the natural map
Ω1

F (X)|F ≃ TF (X)|F → N , and then, since N ≃ Ext1OF (X)
(LF , LF ), the induced Yoneda map

N ⊗N → Ext2OF (X)
(LF , LF ); finally we used the fact that, again by the local to global spectral

sequence for Ext’s, H2(Ext2OF (X)
(LF , LF )) ≃ Ext4OF (X)

(LF , LF ) ≃ C.)

Over Hs, N is identified with iZ∗Ω
1
F2(Z) and the non degeneracy follows from the Hard Lef-

schetz theorem on the smooth surface F2(Z). Over ∂Hn := Hn−Hs we consider the commutative
diagram

0 −→ H0(OΓ) −→ H1(OF2(Z)) −→ H1(OF (Y )) −→ 0

↓ ↓ ↓
0 −→ H1(Ω1

Γ) −→ H0(N)∗ −→ H0(Ω1
F (Y ))

∗ −→ 0

The rightmost vertical map

H1(OF (Y )) −→ H0(Ω1
F (Y ))

∗ ≃ H2(Ω1
F (Y ))

is defined by the cup product with c1(µ
∗O(1)). Since µ is finite µ∗O(1) is still ample on the

smooth surface F (Y ), so Hard Lefschetz applies and this map is an isomorphism. On the other
hand, the leftmost vertical map H0(OΓ) −→ H1(Ω1

Γ) is given by c1(O(1)|Γ), and again it is an
isomorphism. So the middle vertical map is an isomorphism, and this concludes the proof of the
Proposition. 2

Now we will obtain a new ACIHS by symplectic reduction on the boundary. We need two
easy observations.

Proposition 14 Let Z be a general nodal cubic and Y the associated prime Fano threefold of
genus 4. There is an exact sequence

0 −→ C
∗ −→ Pic0F2(Z)

ν∗

−→ Pic0F (Y ) ≃ J(Y ) −→ 0.
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Proof. The fact that Pic0F (Y ) ≃ J(Y ) will be proved in §4, see Theorem 20. Now consider the
exact sequence 0 → O∗

F2(Z) → ν∗O
∗
F (Y ) → O∗

Γ(Y ) → 0, and the associated long exact sequence

0 −→ H0(O∗
Γ(Y )) = C

∗ −→ Pic F2(Z)
ν∗

−→ Pic F (Y ).

Since H0(O∗
Γ(Y )) is connected, it certainly maps to Pic0F2(Z). We thus have the same exact

sequence with Pic0 instead of Pic. Finally, the rightmost arrow must be surjective since its
differential is. Indeed, the additive version 0 → OF2(Z) → ν∗OF (Y ) → OΓ(Y ) → 0 of the previous
exact sequence yields the exact sequence in cohomology

0 −→ H0(OΓ) −→ H1(OF ) −→ H1(OF (Y )) −→ 0,

and the righthand map is the differential in question. 2

Recall that the Fano threefold Y has been defined as the intersection in H = P
5 of the fixed

cubic fourfold X, with the base Q of the tangent cone to Z at its unique node pZ . The map
Z 7→ Q is constant along the orbits of the group G, the group of projective transformations
acting trivially on H.

Proposition 15 There is a birational isomorphism

|OP5(2)| −→ ∂Hn = Hn −Hs.

Proof. Let ∆X ⊂ |IX(3)| denote the discriminant hypersurface, parameterizing the singular
cubics containing X. For X general ∆X is irreducible. Let ∆n

X denote the open subset param-
eterizing cubics with a single node. The map ∆n

X → |OP5(2)| sending the nodal cubic Z to the
trace on H of its tangent cone at the node, is constant on the G-orbits. More precisely, it is
easy to check that its fibers are precisely the G-orbits. This implies that there exists a G-stable
open subset ∆0

X ⊂ ∆n
X such that the restriction map ∆0

X → |OP5(2)| is a good quotient of
the G-action. In particular, there is an induced rational map |OP5(2)| → ∂Hn, which is clearly
dominant.

So we just need to check that this map is generically bijective, that is, a general Fano
threefold Y = X ∩ Q is uniquely determined by the singular Lagrangian surface iZ(F2(Z)) ⊂
F (X) associated to the nodal cubic Z whose equation is P + x0Q = 0 for some equation x0

of H ⊂ P
6. By construction, the singular locus of iZ(F2(Z)) is nothing else than the curve

Γ(Y ) ⊂ F (X) ⊂ G(2, 6) of lines in Y . So we just need to check that Γ(Y ) defines uniquely the
quadric Q such that Y = X ∩ Q. That is, we must prove that

H0(G(2, 6), IΓ(Y ) ⊗ S2T ∗) = C.

For Y generic, IΓ(Y ) can be resolved by the Koszul complex of the section of the vector bundle
E = S2T ∗⊕S3T ∗ that defines Γ(Y ). The claim then follows from the identities H0(G(2, 6), E∗⊗
S2T ∗) = C and Hk(G(2, 6),∧k+1E∗ ⊗ S2T ∗) = 0 for k > 0. Both facts are easy consequences of
Bott’s theorem on the Grassmannian. 2

Now we are exactly in the situation considered in [DP]: an ACIHS F → B is defined over
some smooth base B, and there is a smooth hypersurface ∆ ⊂ B over which the fibers degenerate
to extensions

0 −→ C
∗ −→ F −→ J(F) −→ 0,
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where J(F) is a family of abelian varieties over ∆. If h is a local equation of ∆, suppose that
the corresponding Hamiltonian vector field, which is a vertical vector field for the fibration, is
tangent to the C

∗ direction. Then symplectic reduction applies, and there is an induced ACIHS
J(F) → ∆.

We apply this result to our setting: F → B is our relative Picard fibration Pic0(F2(Z)) → Hn.
Over the hypersurface ∆ = ∂Hn defined by nodal cubics, the fibers Pic0(F2(Z)) are C

∗-
extensions of the intermediate Jacobians J(Y ) of the associated Fano threefolds Y of genus
4. Moreover we have seen that the C

∗ factor is orthogonal, with respect to the extended sym-
plectic form, to the tangent hyperplane to ∆. So symplectic reduction applies and we conclude:

Theorem 16 Let X ⊂ P
5 be a general cubic fourfold. Consider inside the 20-dimensional linear

system |OP5(2)|, the open subset |OP5(2)|X of smooth quadrics Q transverse to X. Denote by

J(YX) −→ |OP5(2)|X

the family of intermediate Jacobians of the genus 4 prime Fano threefolds Y = X ∩ Q, where
Q ∈ |OP5(2)|X . Then J(YX) is an algebraic completely integrable Hamiltonian system over a
dense open subset of the base.

Here again the cubic form can easily be identified. Let W = H0(OP5(1))∗. From the normal
sequence of Y we can easily deduce an exact sequence

H0(Y, TP
6(−1)|Y ) = W

cQ,cX
−→ W ∗ ⊕ S2W ∗/Q −→ H1(Y, TY (−1)) ≃ H1(Y,Ω2

Y ) −→ 0.

Since Q smooth, cQ is an isomorphism and we get an isomorphism S2W ∗/Q ≃ H1(Y,Ω2
Y ).

The dual space H1(Y,Ω2
Y ) can therefore be identified with the with the space AQ ⊂ S2W

corresponding to quadrics in the dual projective space which are apolar to Q. The cubic form
θQ on AQ is then simply given by the composition

θQ : S3AQ →֒ S3(S2W ) −→ S2(S3W )
c2
X−→ C.

4 The family of conics on the Fano threefold of genus four

In this section we consider the Fano surface of conics on the general Fano threefold Y of genus
four. We first compute its numerical invariants – these results will not be used in the sequel,
but they complete the computations made in [Mar]. Then we prove the Abel-Jacobi type
isomorphism theorem that we used to prove Proposition 14.

4.1 Invariants of the Fano surface F (Y )

Recall from §2.2.3 that we denoted by K the Hilbert scheme of conics in P
5, which is the total

space of the projective bundle P(S2T ∗)
π
→ G(3, 6). On K we defined vector bundles Q and M

by the natural exact sequences

0 → O(−1) → π∗S2T ∗ → Q → 0,

0 → π∗T ∗ ⊗O(−1) → π∗S3T ∗ → M → 0,
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and we observed that for a general Y , the Fano surface of conics F (Y ) ⊂ K is defined as the
zero-locus of a general section of the vector bundle Q⊕M. Its fundamental class is therefore
given by the Thom-Porteous formula, that is

[F (Y )] = c12(Q⊕M) = c5(Q)c7(M) ∈ A12(K).

The Chow ring A(K) is generated over A(G) by the hyperplane class h = c1(O(1)), modulo the
relation c6(Q) = 0. In particular A(K) is a free A(G)-module with basis 1, . . . , h5. We say that
a class in A(K) is written in normal form when it is expressed in that basis. We have

c(Q) =
c(S2T ∗)

1 − h
, c(M) =

c(S3T ∗)

c(T ∗(−1))
.

In particular the first identity gives the relation hc5(Q) = −c6(S
2T ∗).

The Chern classes of S2E and S3E, for E a vector bundle of rank three, are given by universal
formulas in terms of the Chern classes of E, that we denote by c1, c2, c3. The splitting principle
easily gives

c(S2E) = (1 + 2c1 + 4c2 + 8c3)(1 + 2c1 + c2
1 + c2 + c1c2 − c3).

The computation for S3E is much more complicated. With the help of Maple we get the following
formulas:

c1(S
3E) = 10c1

c2(S
3E) = 40c2

1 + 15c2

c3(S
3E) = 82c3

1 + 111c1c2 + 27c3

c4(S
3E) = 91c4

1 + 315c2
1c2 + 189c1c3 + 63c2

2

c5(S
3E) = 52c5

1 + 429c3
1c2 + 513c2

1c3 + 324c1c
2
2 + 162c2c3

c6(S
3E) = 12c6

1 + 282c4
1c2 + 679c3

1c3 + 593c2
1c

2
2 + 792c1c2c3 + 85c3

2 + 27c2
3

c7(S
3E) = 72c5

1c2 + 448c4
1c3 + 464c3

1c
2
2 + 1386c2

1c2c3 + 259c1c
3
2 + 108c1c

2
3 + 243c2

2c3

c8(S
3E) = 120c5

1c3 + 132c4
1c

2
2 + 1116c3

1c2c3 + 246c2
1c

3
2 + 81c2

1c
2
3 + 567c1c

2
2c3 + 36c4

2 + 243c2c
2
3

c9(S
3E) = 360c4

1c2c3 + 72c3
1c

3
2 + 108c3

1c
2
3 + 540c2

1c
2
2c3 + 36c1c

4
2 − 243c1c2c

2
3 + 108c3

2c3 + 729c3
3

c10(S
3E) = 108c4

1c
2
3 + 216c3

1c
2
2c3 − 486c2

1c2c
2
3 + 108c1c

3
2c3 + 729c1c

3
3

If x1, x2, x3 are the Chern roots of E, and if L is a line bundle with first Chern class h, we can
also compute

c(E ⊗L∗)−1 =
∏

i(1 + xi − h)−1 = (1 − h)−3
∏

i(1 + xi

1−h)−1

=
∑

k≥0(−1)ksk(E)(1 − h)−k−3,

where sk denotes the k-th Segre class of E.
Now we specialize to E = π∗T ∗ (for simplicity we omit the symbol π∗ in the sequel) and

L = O(1), and we deduce that

c7(M) =
∑

j,k≥0

(−1)k
(

j + k + 2

j

)

c7−j−k(S
3T ∗)sk(T

∗)hj .

We use the basis of A(G) given by the Schubert classes σijk, 3 ≥ i ≥ j ≥ k ≥ 0. Among these
are the Chern classes ci(T

∗) = σi and the Segre classes sk(T
∗) = σ1k of T ∗. In the Schubert

basis the total Chern class of S2T ∗ is

c(S2T ∗) = 1+4σ1+5σ2+5σ11+20σ3+15σ21+30σ31+10σ22+6σ211+20σ32+12σ311+4σ221+8σ321.
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Denote by c7(M)(j) the coefficient of hj in that sum, for 0 ≤ j ≤ 7. Using the relation
hc5(Q) = −c6(S

2T ∗) = −8σ321, we get

[F (Y )] = c5(Q)c7(M)(0) − 8σ321

7
∑

j=1

c7(M)(j)h
j−1.

This almost expresses [F (Y )] in normal form, except for the term with j = 7 in the sum. Since
c7(M)(7) = 36, the normal form is

[F (Y )] = c5(Q)c7(M)(0) − 8σ321

6
∑

j=1

c7(M)(j)h
j−1 + 288σ321

5
∑

i=0

c6−i(S
2T ∗)hi.

The computations that remain are to be done in A(G), which is zero in degree greater than
nine. Since [F (Y )] has degree 12, it must be a combination of the four classes σ333h

3, σ332h
4,

σ331h
5 and σ322h

5.
First we compute c7(M)(0) = c7(S

3T ∗) − c6(S
3T ∗)σ1 + c5(S

3T ∗)σ11 − c4(S
3T ∗)σ111. The

formulas for the Chern classes of a third symmetric power give

c7(S
3T ∗) = 8820σ331 + 6342σ322,

c6(S
3T ∗) = 3675σ33 + 7140σ321 + 1302σ221,

c5(S
3T ∗) = 2870σ32 + 2436σ311 + 1442σ211,

c4(S
3T ∗) = 1155σ31 + 560σ22 + 588σ211,

hence c7(M)(0) = 1757σ331 + 1190σ332. The other relevant classes for M are

c7(M)(6) = 196σ1

c7(M)(5) = 595σ2 + 406σ11

c7(M)(4) = 1375σ3 + 1500σ21 + 404σ111

The final result of the computation is:

Proposition 17 The fundamental class of the surface F (Y ) ⊂ K is

[F (Y )] = 15840σ333h
3 + 8100σ332h

4 + (1341σ331 + 774σ322)h
5.

In particular, we have the following intersection numbers in the Chow ring of F (Y ):

h2 = 0, hσ1 = −360, σ2 = 1341, σ2
1 = 2115.

Now we can compute the Chern numbers of F (Y ). From the exact sequences

0 −→ TF (Y ) −→ TK|F −→ Q|F ⊕M|F −→ 0,

0 −→ T vK −→ TK −→ π∗TG −→ 0

and the observation that the vertical tangent bundle of the fibration π is nothing else than Q(1),
we deduce that

c1(F (Y )) = 2h − 3σ1,
c2(F (Y )) = −3h2 − 9hσ1 + 13σ11 − σ2.
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Corollary 18 The Chern numbers and the arithmetical genus of the Fano surface F (Y ) are

c1(F (Y ))2 = 23355, c2(F (Y )) = 11961, pa(F (Y )) = 2942.

Remark. We can compare with the invariants of the Fano surface F2(Z) of planes in a cubic
fivefold Z ⊂ P

6. As a subvariety of G(3, 7), F2(Z) is defined as the zero locus of the global
section of the rank ten vector bundle S3T ∗, defined by an equation of Z. Therefore

[F2(Z)] = c10(S
3T ∗) = 1134σ442 + 1701σ433,

as we can easily deduce from the expression given above for the Chern classes of a third symmetric
power. On F2(Z) we thus have σ2 = 1134 and σ2

1 = 2835. Since c(TF ) = 1 − 3σ1 + 13σ11 − σ2,
we conclude that

c1(F2(Z))2 = 25515, c2(F2(Z)) = 13041, pa(F2(Z)) = 3212.

In particular we have the relation pa(F (Y )) = pa(F2(Z)) + 1 − g(Γ(Y )), as expected.

We can also deduce the number ν of conics in Y passing through a general point. For this
consider the universal conic C → K. This is a subscheme of the universal supporting plane
P = P(π∗T )

ρ
−→ K. Let γ = π ◦ ρ. On P we have a tautological line bundle OP(−1) ⊂ γ∗T ,

and a tautological section τ of ρ∗OK(1) ⊗OP (2) defined by the composition

ρ∗OK(−1) →֒ γ∗S2T ∗ −→ OP (2);

the zero locus of τ is precisely C.
Let V ⊂ C

6 be a general three dimensional subspace. The zero locus PV of the induced
morphism

OP (−1) ⊂ γ∗T −→ (C6/V ) ⊗OP

is the set of points in P mapped to PV by the natural morphism P −→ P5. In particular the
class of PV is H3, if H denotes the first Chern class of OP (1), and the class of its intersection
CV with C is (2H + h)H3.

Now the intersection of the cycle CV with ρ−1(F (Y )) is the number of conics in Y meeting
PV . Since Y has degree 6 this number is equal to 6ν, and therefore

6ν = (2H + h)H3ρ∗[F (Y )] = ρ∗(2H
4 + hH3)[F (Y )].

But ρ∗H
3 = −σ1 and ρ∗H

4 = σ11, so using Proposition 17 we obtain:

Proposition 19 There are ν = 318 conics in Y passing through a given general point.

Along the same line of ideas, one can consider in F (Y ) the curve ∆ of degenerate conics,
and the Steiner map s : ∆ → P

5 mapping each such conic to its vertex. The same arguments as
in [CMW] yield

deg s(∆) = (2h + 2σ1)(3h + 2σ1) = 4860.
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4.2 The Abel-Jacobi isomorphism for F (Y )

Since Clemens and Griffiths proved that the Abel-Jacobi mapping AlbF (X) → J(X) is an iso-
morphism for X a general cubic threefold and F (X) is Fano variety of lines, similar statements
have been obtain for several other Fano manifolds. We fill in a gap in the literature by proving
the following statement.

Theorem 20 Let Y be a general prime Fano threefold of genus 4. Then the Abel-Jacobi mapping

AlbF (Y ) −→ J(Y )

is an isomorphism; and so by duality J(Y ) = J(Y )∗ ≃ AlbF (Y )∗ = Pic0F (Y ).

We adopt the strategy developed by Clemens and Griffiths, and used in [Let] for the quartic
threefold, in [CV] for the sextic double solid and in [Col] for the cubic fivefold. The claim is
that the theorem will follow from the existence of a Lefschetz pencil (Yt)t∈P1 such that

1. Yt = Q ∩ Ct is contained in a fixed smooth quadric Q,

2. Yt and F (Yt) are smooth for general t,

3. if Yt is smooth but not F (Yt), then the later only has isolated singularities,

4. if Yt is singular, then the singular locus of F (Yt) is a smooth curve, along which F (Yt) has
two smooth branches intersecting transversely.

Consider a generic quadric hypersurface Q ⊂ P
5, a generic pencil of cubics Ct ⊂ P

5, t ∈ P
1,

and then the pencil of complete intersections Yt = Q ∩ Ct. Condition (2) clearly holds, and (3)
follows from a simple dimension count. We focus on condition (4). The pencil (Yt) meets the
discriminant hypersurface ∆ parameterizing singular complete intersections of type (2, 3) at a
finite number of points. These points must belong to the dense open subset of ∆ parameterizing
complete intersections with a single node. So we are reduced to proving that for a general nodal
complete intersection Y , the Fano surface of conics F (Y ) has the type of singularities allowed
by condition (4).

This involves the following steps, which we only sketch since the arguments are similar to
those of [Let, CV, Col, PB].

1. A conic q ⊂ Y not passing through the vertex v of Y , defines a smooth point of F (Y ). To
check this we need to characterize, for a conic q ⊂ Yreg (Y having arbitrary singularities),
the fact that it defines a smooth point in F (Y ). This goes as follows. Choose coordinates
in P

5 such that q be defined by the equations x3 = x4 = x5 = 0 and q̄(x0, x1, x2) = 0. If
Y = Q ∩ C, write the equations of Q and C as

Q̄(x) = αq̄(x0, x1, x2) + x3l3 + x4l4 + x5l5,
C̄(x) = λq̄(x0, x1, x2) + x3q3 + x4q4 + x5q5.

Suppose that α 6= 0, which means that the supporting plane of q is not contained in
Q. We say in that case that q is a non isotropic conic. Then there is a unique cubic
hypersurface αC − λQ containing Y and this supporting plane. Replacing C by this
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cubic we may suppose that λ = 0. Then we consider the exact sequence of normal bundles
0 → Nq/X → Nq/P5 → NX/P5|q → 0. We have Nq/P5 = O(1)⊕ 3⊕O(2) and NX/P5 = O(2)⊕
O(3). Moreover, F (Y ) is smooth at q if and only if h0(Nq/X) = 2, which is equivalent
to the surjectivity of the map H0(Nq/P5) → H0(NX/P5|q). This map is easy to identify in
terms of α, l3, l4, l5, q3, q4, q5, and we come to the following conclusion: q defines a smooth
point of F (Y ) if and only if q3, q4, q5 define linearly independent sections of O(2)|q.

Now suppose that α 6= 0, that is q is an isotropic conic. We checked that the map
H0(Nq/P5) → H0(NX/P5|q) is always surjective under the hypothesis that q ⊂ Yreg.

2. For Y nodal but general, F (Y ) is smooth at any point defined by some conic q ⊂ Yreg.
Indeed we can call a conic in some (arbitrary) Y special, either if it is non isotropic but
does not verify the condition above, or if it is isotropic and meets the singular locus of
Y . Then the space of complete intersections Y containing a special conic has at most two
irreducible components, none of which coincides with the discriminant hypersurface.

3. The set of conics in Y passing through the vertex v, is the union of a complete curve D
parameterizing conics which are all smooth at v, and of 66 conics q(l, l′) = l + l′, where l
and l′ are lines in Y passing through v. Moreover the conics q(l, l′) define smooth points
of F (Y ). Indeed Y contains 12 lines passing through v; hence the 66 reducible conics.
The fact that for Y general (among nodal complete intersections), a conic of type q(l, l′)
defines a smooth point of F (Y ) is a boring computation. This computation also shows
that the (linear) condition for a conic to pass through v is transverse to the tangent space
to F (Y ) at q(l, l′), which is thus isolated among the conics in Y passing through v.

4. Let P
+ → P

5 be the blow-up of v, and Y + → Y the strict transform of Y . Let F (Y +)
π
→

F (Y ) be the Fano surface of conics in Y +. Then π−1(D) = D+ ∪ D− is the union of two
curves, and the restriction of π to D± is a bijection with D. More precisely, F (Y +) is
the component of the Hilbert scheme of Y + containing the strict transforms of the conics
in Y not passing through v. If q̃ ∈ π−1(q), where q is a conic passing through v but
smooth at that point, then q̃ must be the union of the strict transform q̄ of q, with a line
ℓ in the exceptional divisor. Moreover ℓ must meet q̄ at the point defined by the tangent
line to q at v. But S = E ∩ Y + is a smooth quadric surface, hence through that point
pass exactly two lines ℓ+ and ℓ−, one from each of the two rulings of S. This is why
π−1(q) = {q̄ + ℓ+, q̄ + ℓ−}, and π−1(D) = D+ ∪ D−.

5. The Fano surface F (Y +) of conics in Y + is smooth along D±, and the differential of
the birational morphism F (Y +) → F (Y ) maps the tangent planes to F (Y +) along D± to
planes in the Zariski tangent space to F (Y ), meeting exactly along the tangent space to D.
The smoothness assertion follows from a computation with normal bundles, using the fact
that Y + is a complete intersection in P

+ ⊂ P
5 × P

4, of type (1, 1), (1, 2). Moreover the
conic q̄ + ℓ± is also a complete intersection, of type (1, 0), (0, 1), (0, 1), (1, 1). If p = q̄ ∩ ℓ±,
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we have a commutative diagram

0 0 0 0
↓ ↓ ↓ ↓

0 −→ H0(N) −→ H0(N(ℓ±)) ⊕ H0(N(q̄)) −→ Np −→ 0
↓ ↓ ↓ ↓

0 −→ H0(E) −→ H0(E(ℓ±)) ⊕ H0(E(q̄)) −→ Ep −→ 0
↓ ↓ ↓ ↓

0 −→ H0(F ) −→ H0(F (ℓ±)) ⊕ H0(F (q̄)) −→ Fp −→ 0

where N denotes the normal bundle of q̃ in Y + (recall that Y + is smooth and q̃ is a locally
complete intersection), E denotes the normal bundle of q̃ in P

+, and F the normal bundle
of Y + in P

+, restricted to q̃. Moreover N(ℓ±) denotes the restriction of N to ℓ±, and so
on.

Denote by φ(ℓ±) the map H0(E(ℓ±)) → H0(F (ℓ±)). The smoothness of the tangent cone
to C at the vertex v is enough to imply that φ(ℓ±) is surjective, hence h0(N(ℓ±)) =
2. Moreover there is no non trivial section vanishing at p, and the evaluation map
H0(N(ℓ±)) → Np is an isomorphism. Therefore H0(N) ≃ H0(N(q̄)).

Now denote by φ(q̄) the map H0(E(q̄)) → H0(F (q̄)). The fact that q is non special implies
that φ(q̄) is surjective. So h0(N) = h0(N(q̄)) = 2 and F (Y +) is smooth at q̃±.

All this also holds for the finite number of isotropic conics passing through the vertex.
Indeed one can check that if it did not hold for such an isotropic conic, then the conic
would have to meet another singular point of Y , which is impossible.

Finally, we check that the images of the differentials of π at q̄+ℓ± meet along a line, which
must be the Zariski tangent space to D. So D is smooth, and isomorphic with D±.

This concludes the proof. 2
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