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Abstract

A variational approach to image or video segmentation
consists in defining an energy depending on local or
global image characteristics, the minimum of which
being reached for objects of interest. This study
focuses on energies written as an integral on a domain
of a function which can depend on this domain. The
derivative of the energy with respect to the domain,
the so-called shape derivative, is a function of a
velocity field applied to the domain boundary. For
a given, non-optimal domain, the velocity should be
chosen such that the shape derivative is negative,
thus indicating a way to deform the domain in
order to decrease its energy. Minimizing the energy
through an iterative deformation process is known
as the active contour method. In the continuous
framework, setting the velocity to the opposite of
the gradient associated with the L2 inner product
is a common practice. In this paper, it is noted
that the negativity of the shape derivative is not
preserved, in general, by the discretization of this
velocity required by implementation. In order to
guarantee that the negativity condition holds in
the discrete framework, it is proposed to choose
the velocity as a linear combination of pre-defined
velocities. This approach also gives more flexibility to
the active contour process by allowing to introduce
some a priori knowledge about the optimal domain.
Some experimental results illustrate the differences
between the classical and the proposed approach.

Keywords: Segmentation, shape optimization, shape deriva-

tive, active contour, discrete formulation, variational approach.

1 Introduction

The shape gradient approach is presented in Sections 1
and 2 and Appendices A and B. Apart from present-
ing the context, these sections emphasize the fact that
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this approach can be seen as a general framework for
boundary-based and region-based segmentation. They
also provide developments already published by the au-
thors in different articles. The proposed study actually
begins with Section 3.

1.1 A variational approach to segmen-

tation

Image or video segmentation can be performed with
the following variational approach: the problem is for-
mulated as the minimization of an energy depend-
ing on assumed characteristics of objects of inter-
est [5, 8, 10, 23, 25, 26, 29]. For simplicity, it is sup-
posed that there is a unique object. Typically, the
energy is a sum of a domain integral and a boundary
integral [16, 29, 31]

E(Γ) =

∫

Ω

φf (Γ, x) dx +

∫

Γ

ϕf (s) ds (1)

where Ω is an open set of R
2, Γ is the oriented bound-

ary ∂Ω of Ω, s is the arc-length parameterization of Γ,
and f is the image or video to be segmented1. En-
ergy (1) is designed to have a unique global minimum2

at Ω⋆, the domain of the object of interest. For an ideal
object, if φ is equal to zero, φ is sometimes referred to
as the descriptor of the object. For instance, if φ is
equal to

φ(Γ, x) = (f(x) − µ(Γ))2 (2)

where µ(Γ) is the average value of f in Ω, then φ is
equal to zero on Ω if and only if f is constant on Ω.
Therefore, φ is a descriptor of objects of constant inten-
sity. Similarly, ϕ is the descriptor of the object bound-
ary.

If the object background can also be characterized,
then the energy can be symmetrized as follows

E(Γ) =

∫

Ω

φ(Γ, x) dx +

∫

Γ

ϕ(s) ds +

∫

Ωc

φc(Γc, x) dx

(3)

1For convenience, φ and ϕ will be used instead of φf and ϕf .
2A problem of maximization is trivially turned into a problem

of minimization.
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where Ωc is the complement D\Ω̄ of Ω in image or
frame domain D. This combination of an integral
on Ω and an integral on Ωc is called region compe-
tition [9, 11, 41]. Nevertheless, in the following devel-
opments, the last integral of (3) will be discarded since
its handling is similar to the one of the first integral.

1.2 Active contour

A possible approach to minimize energy (1) is to set
an initial contour and to deform it iteratively in such a
way that its energy decreases from one iteration to the
next. The contour eventually converges toward a (pos-
sibly local) minimizer. This process is known as active
contour [4, 5, 6, 24]. When φ does not depend on Γ,
the minimization procedure can be based on a local
strategy involving energy evaluations only [17]. Oth-
erwise, the influences of local deformations are linked
together and the contour deformation should be per-
formed at once. The appropriate deformation can be
derived from the derivative of the energy with respect
to the contour [4, 5, 24].

1.3 Shape derivative and evolution

equation

The derivative of energy (1) with respect to Γ can be
obtained by a calculus of variations [2, 5]. However, if
descriptors φ or ϕ depends on Γ, this can be complex.
Some studies on shape gradients [13, 23, 35, 36] offer
a convenient and general basis for this differentiation.
The shape derivative of (1) is a function dE(Γ, V ) of Γ
and a velocity V defined on Ω but applied to Γ only.
For a given Γ, the velocity should be chosen such that
the shape derivative is negative, thus indicating a way
to deform Γ in order to decrease its energy. As noted
by [7], the straightforward choice is to take the oppo-
site of the gradient of (1) associated with the L2 inner
product on Γ. However, one might want to use other
descent directions, for example, to improve the conver-
gence rate [19], to increase spatial coherence and avoid
as much as possible to converge to irrelevant local min-
ima [7], to simplify implementation [30, 37], or to re-
spect the principles of an underlying physical model or
for improved stability and convergence rate [15]. These
alternatives may result from (i) designing other inner
products or from (ii) directly designing descent direc-
tions V verifying [30, 37]

dE(Γ, V ) ≤ 0 . (4)

In any case, the active contour evolution equation has
the form

∂Γ

∂τ
= V (τ) . (5)

When implementing this evolution equation, the nega-
tivity of the shape derivative is not preserved, in gen-

eral, by the discretization of velocity V . This paper
proposes to select other descent directions allowing to
solve this problem in the context of (ii). Moreover, the
proposed approach offers the possibility to introduce
some a priori knowledge about the optimal contour.

Section 2 reminds some results about the shape
derivative. Section 3 describes the above mentioned
discretization error corresponding to the so-called di-
rect approach. It proposes a solution, called the con-
strained approach, based on choosing V as a linear
combination of pre-defined velocities. Section 4 pro-
vides additional remarks about the constrained ap-
proach. Section 5 presents some experimental results
to illustrate the differences between the direct approach
and the constrained approach, and to illustrate how the
constrained approach allows to introduce some a priori
knowledge about the solution of (5).

1.4 Notations

In the following, D is a subset of R
2 and the image to

segment, f , is a function from D to R
m. Domain Ω

is an open set of D. Γ is the oriented boundary ∂Ω
of Ω, and s is the arc-length parameterization of Γ. For
convenience, the notation a(s) refers to a(Γ(s)). Sam-
ples on Γ are denoted by Γi, i ∈ [1, n]. Arc-length si

is such that Γ(si) = Γi. Then, both notations a(si)
and a(Γi) are equivalent. Note that s1 is equal to 0
and sn is equal to L − (sn+1 − sn) where L is the
length of Γ and Γ(sn+1) = Γ(s1). The contour seg-
ment between Γi and Γi+1 (a line segment, a spline
segment. . . depending on the contour representation)
is denoted by γi.

The L2 inner product on the space of velocities will
be denoted

〈U, V 〉 =

∫

Γ

U(s) · V (s) ds (6)

where · is the dot product.

2 Expression of the shape

derivative

2.1 General expression

Let us consider the typical energy

E(Γ) =

∫

Ω

φ(Γ, x) dx +

∫

Γ

ϕ(s) ds . (7)

Energy (7) is a function of a contour and the set of
contours is not a vector space. As a consequence, the
derivative of (7) with respect to Γ cannot be expressed
in the usual way. Let Ω(τ), τ ≥ 0, be a family of
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domains such that Ω(τ = 0) = Ω. Then, when τ in-
creases, Γ(τ) can be considered as a deforming inter-
face in a medium characterized by φ and ϕ. Hence, a
development inspired by works in continuum mechan-
ics [18] can be made in order to determine the deriva-
tive of (7) with respect to τ at τ equal to zero [11].
The study of such energies and their variations was
further developed in the framework of shape optimiza-
tion [13, 19, 23, 35, 36]. In this context, the following
expression is known as the shape derivative of (7)

dE(Γ, V ) =

∫

Ω

∂φ(Γ(τ), x)

∂τ

∣
∣
∣
∣
τ=0

dx −
∫

Γ

(

φ(Γ, s)

−∂ϕ(s)

∂N
+ ϕ(s) κ(s)

)

N(s) · V (s) ds (8)

where vector field V is by definition a velocity defined
on Ω, N is the inward unit normal of Γ, and κ is the
curvature of Γ (some details are given in Appendices A
and B).

2.2 Expression with only a boundary

integral

Under weak assumptions, the shape derivative of the
domain integral in (7) has an equivalent expression in
the form of a boundary integral [36, 37]. As is clear
from Section 3.1.1, such an expression is convenient in
the active contour framework. Indeed, the evolution
equation of an active contour can be easily deduced
from a boundary integral-only expression.

In the following, it is assumed that the shape deriva-
tive of (7) has been rewritten into a boundary integral

dE(Γ, V ) = −
∫

Γ

Ψ(Γ, s) N(s) · V (s) ds, (9)

either because one of the two conditions (87) or (104)
applies (see Appendix C), or as the result of another
development.

3 From the continuous to the

discrete framework

In this section, the classical, or direct, approach to us-
ing the shape derivative in the active contour frame-
work is presented. It corresponds to choosing the gra-
dient associated with the L2 inner product as the de-
scent direction (among the velocities that ensure the
negativity of the shape derivative) and to discretizing
it. It will be noted that this direct approach implies
a discretization error possibly responsible for the loss
of the negativity condition. A constrained approach
will be proposed to solve this problem. The constraint
is specified in terms of a linear combination of pre-
defined velocities. It will be shown that the negativity

condition still holds after discretization when choosing
the pre-defined velocities in accordance with the active
contour representation.

3.1 Direct approach

3.1.1 Negativity of the shape derivative

Shape derivative (9) is a function of a velocity field V .
Since energy (7) must be minimized, it is necessary to
choose V such that (9) is negative. In other words, the
following inequality must be solved for V

dE(Γ, V ) ≤ 0 . (10)

Interpreting (9) as the L2 inner product on the space
of velocities, the velocity

G = −Ψ N (11)

can be identified with the gradient associated with this
inner product. It is called the shape gradient of (7) [7,
13, 19, 36]. Then, taking a steepest descent approach,
one can think of choosing [11, 23]

V (s) = −G(Γ, s) (12)

in the following evolution equation

∂Γ

∂τ
= V (τ) . (13)

3.1.2 Minimization in the continuous frame-

work

The implementation of evolution equation (13) can be
based on a finite difference approximation of the deriva-
tive with respect to τ verifying the CFL-condition. In-
stead, a line search strategy can be used [19]

{
Γ0

Γ+1 = Γ + α V
(14)

where Γ0 is an initial contour, superscript +1 represents
the next element of a sequence3, α is a positive con-
stant, and V is given by (12). Note that V is defined
on Ω (see Appendix B) but given on Γ only. However,
as is clear from (14), it does not need to be known any-
where else. The optimal value for α can be computed
as follows

α = arg min
α≥0

E(Γ+1(α)) . (15)

3The sequence x(n + 1) = f(x(n)), x(0) = x0 is denoted
by x+1 = f(x), x0.
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3.1.3 Discretization and induced velocity

In practice, active contour Γ is sampled. For instance,
it can be represented by a polygon {Γi, i ∈ [1, n]} with-
out self-intersection [17]. The corresponding discrete
version of evolution equation (14) is

{
Γ0

i

Γ+1
i = Γi + α V (Γi)

(16)

where {Γ0
i } is an initial polygon. Note that (16) does

not make use of V along the edges γi of the polygon.
Instead, it implicitly defines a velocity Ṽ , called in-
duced velocity, transforming edges γi into edges γ+1

i .
However, it is unlikely that such a transformation cor-
responds to the chosen velocity4 (12) (see Fig. 1a). As

(a) (b)

Figure 1: Incorrect deformation due to the sampling
of V . (a) Disks: polygon vertices; Solid line: polygon
before deformation; Dashed line: polygon defined by
the translated vertices; Dotted line: polygon deformed
according to V . (b) Disks: curve samples; Solid line:
curve before deformation; Dashed line: curve interpo-
lating the translated samples; Dotted line: curve de-
formed according to V .

a consequence, the negativity of shape derivative (9)
at Ṽ is not guaranteed. In other words, the discrete
evolution equation (16) might not generate a minimiz-
ing sequence of contours.

This problem is not specific to the polygonal repre-
sentation. It also arises if the contour is represented
by a smooth curve, say, a spline, since it is due to the
sampling of V (see Fig. 1b). Generally speaking, only
these contour samples where V is computed are trans-
lated correctly. The contour segments in-between the
translated samples are defined a posteriori by the cho-
sen interpolation model (a polygon, a uniform cubic
B-spline. . . ).

However, as pointed out by a reviewer, if the edge
length is small enough, dE(Γ, Ṽ ) is still negative and
this direct approach is valid (see Appendix D). The
proposed edge length upper bound is global and de-
pends on maximal variations of Ψ over Γ. It could also

4In particular, (12) does certainly not transform, in general,
a polygon into another polygon.

be adapted locally to be low in portions of Γ where Ψ
varies a lot and higher where Ψ varies slowly [38].

Finally, note that (16) might converge too early since
the condition {V (Γi) = 0, i ∈ [1, n]} is less restrictive
than {V (s) = 0, s}. But again, the smaller the edge
length, the less critical. Nevertheless, instead of a con-
dition on the edge length, one can wonder if there is a
way to choose V such that Ṽ is equal to V .

3.2 Constrained approach

3.2.1 Negativity of the shape gradient

In order to guarantee that, after discretization, the in-
duced velocity Ṽ matches the original velocity V , we
propose to restrict, beforehand in the continuous do-
main, the domain transformations5 to a linear combi-
nation of a set of pre-defined transformations

T (τ) =
∑

i

βiTi(τ), βi ∈ R . (17)

The differentiation of (17) with respect to τ leads to

V =
∑

i

βiVi (18)

where Vi is a so-called pre-defined velocity. In this
context, velocity V will be given by a choice of βi’s
that satisfies the negativity of shape derivative (9).

The shape derivative can be rewritten as

dE(Γ, V ) = dE(Γ,
∑

i

βiVi) (19)

=
∑

i

βi dE(Γ, Vi) (20)

= β · d ~E(Γ, Vi) (21)

where · is the dot product, β is the vector of com-
ponents βi, and d ~E(Γ, Vi) is the vector of compo-
nents dE(Γ, Vi). Taking a steepest descent approach, β
should be such that dE(Γ, V ) is as negative as possible.
The Cauchy-Schwarz inequality implies that

|β · d ~E(Γ, Vi)| ≤ |β| |d ~E(Γ, Vi)| (22)

and, for a given norm of β, dE(Γ, V ) is as large as possi-

ble in absolute value when β and d ~E(Γ, Vi) are linearly
dependent. Therefore, the βi’s are taken equal to

βi = −α dE(Γ, Vi) (23)

where α is a positive constant.
Section 3.2.3 presents a general purpose definition of

pre-defined velocities and an application-driven varia-
tion of it.

5For definitions and notations, see Appendix B.
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3.2.2 Minimization in the continuous frame-

work and discretization

In the continuous framework, a possible minimizing se-
quence is

{
Γ0

Γ+1 = Γ − α
∑

i dE(Γ, Vi) Vi
(24)

where the optimal value for α can be computed as fol-
lows

α = argmin
α≥0

E(Γ+1(α)) . (25)

With the polygonal representation mentioned in Sec-
tion 3.1.3, the discretization of (24) leads to the follow-
ing evolution equation

{
Γ0

i

Γ+1
i = Γi − α

∑

j dE(Γ, Vj) Vj(Γi)
. (26)

However, for the pre-defined velocities proposed in Sec-
tion 3.2.3, the sum over the pre-defined velocities re-
duces to a single term since at Γi, only Vi is not equal
to zero

{
Γ0

i

Γ+1
i = Γi − α dE(Γ, Vi) Vi(Γi)

. (27)

3.2.3 Examples of pre-defined velocities for

the polygonal representation

According to the remarks of Section 3.1.3, it can be
deduced that the pre-defined velocities must be consis-
tent with the contour representation: the representa-
tion must be preserved when the contour is deformed
by a linear combination of the Vi’s. Moreover, ide-
ally, the Vi’s should be able to generate any velocity V
by linear combination (at least, if there is no a priori
knowledge about the optimal contour). There is no
such basis of velocities. However, the Vi’s must allow
to represent a reasonable variety of velocities. If the
contour is represented by a polygon with n vertices,
the following definitions can be considered.
(i) At vertex Γi, a pseudo-normal N(Γi) is de-
fined [14, 27] and Vi is the velocity collinear to N(Γi) at
Γi and transforming (Γi−1, Γi, Γi+1) into (Γi−1, (Γi +
N(Γi)), Γi+1) (see Fig. 2). In other words, Vi is a
vector field with support [Γi−1, Γi+1], linear from zero
(at Γi−1) to N(Γi) (at Γi), and linear again back to zero
(at Γi+1). This definition involves no a priori knowl-
edge (see Section 5.1 for an example of application).
(ii) The previous definition can be modified to in-
troduce some a priori knowledge. For instance, in
tracking, the approximate motion of the tracked ob-
ject might be known. In particular, a joint segmen-
tation and motion computation method [10] certainly
requires computation of the motion for a given, fixed
segmentation (and vice-versa). Therefore, if mi is the

Figure 2: A possible choice for the pre-defined veloc-
ity Vi.

estimated motion of Γi, then Vi can be defined simi-
larly to (i) by replacing N(Γi) with mi or mi/|mi| (see
Section 5.2 for an example of application).

3.2.4 Coherence between the continuous and

discrete evolutions

In order to establish that (24) and (27) lead to iden-
tical evolutions, it must be shown that the deforma-
tions induced by (27) on contour segments γi are equal
to the deformations of the continuous evolution (24).
This would also prove that the negativity of the shape
derivative is preserved in the discrete framework. In-
deed, if both evolutions are identical, the induced ve-
locity Ṽ matches the constrained velocity V .

Polygonal representation Let x be a point on
edge γi (see Fig. 3). There exists t ∈ [0, 1] such that

x = γi(t) = (1 − t) Γi + t Γi+1 . (28)

Let Vi be a pre-defined velocity as defined in Sec-

Figure 3: Transformation of point x on edge γi.

tion 3.2.3 (either of the two definitions). The veloc-
ity V (t) at γi(t) is the combination of two velocities

V (t) = βi Vi(t) + βi+1 Vi+1(t) . (29)

Therefore, in the continuous framework, point γi(t) is
translated to

γi(t)+V (t) = (1−t) Γi+βi Vi(t)+t Γi+1+βi+1 Vi+1(t) .
(30)
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The pre-defined velocities are such that
{

Vi(t) = (1 − t) Vi(Γi)
Vi+1(t) = t Vi+1(Γi+1)

. (31)

Combining (30) and (31) leads to

γi(t) + V (t) = (1 − t) (Γi + βi Vi(Γi))

+t (Γi+1 + βi+1 Vi+1(Γi+1)) (32)

= (1 − t) Γ+1
i + t Γ+1

i+1, (33)

meaning that the translation of point γi(t) in the con-
tinuous framework (left-hand side) is a point on line
segment [Γ+1

i , Γ+1
i+1] obtained by joining the discrete

translations of Γi and Γi+1 (right-hand side). More-
over, when γi(t) describes edge γi, then the translation
of γi(t) describes the whole line segment. As a con-
clusion, the continuous equation (24) and the discrete
equation (27) lead to identical evolutions.

Uniform cubic B-spline representation If the
contour is represented by a uniform cubic B-spline
with n segments [3, 21, 32, 40] (see Appendix E for
the notations and properties used here), then one can
think of basing the pre-defined velocities on blending
function B (see Fig. 9). For example,

Vi(t) = Bi
i(t) N(Γi), t ∈ [−n/2, n/2] (34)

where Bi
i represents blending function B shifted to be

“centered” on Γi and “seen” from spline segment γi.
More specifically,







Bi
i(Γi) = B(0)

Bi
i(Γi−1) = Bi

i(Γi+1) = B(1)
Bi

i(Γi−2) = Bi
i(Γi+2) = B(2)

(35)

and Γj corresponds to t = j − i. Therefore, velocity V
on spline segment γi parameterized as described above
is equal to

V (t) =
∑

j

βjVj(t) (36)

=

i+2∑

j=i−1

βjVj(t) (37)

=

i+2∑

j=i−1

βjB
i
j(t) N(Γj) . (38)

Moreover, γi is defined by

γi(t) =

i+2∑

j=i−1

qj Bi
j(t), t ∈ [0, 1] . (39)

Therefore, after evolution, point γi(t) is translated to

γ+1
i (t) = γi(t) + V (t) (40)

=

i+2∑

j=i−1

(qj + βjN(Γj))
︸ ︷︷ ︸

q
+1

j

Bi
j(t) . (41)

Equation (41) represents a spline uniquely defined by
the new control points q+1

i . It must be checked whether
the sampling points Γ+1

i this spline interpolates are also
obtained by the discrete evolution equation. Since (41)
represents a closed, uniform cubic B-spline, the follow-
ing property holds

Γ+1
i =

1

6
(q+1

i−1 + 4q+1
i + q+1

i+1) (42)

=
1

6
[(qi−1 + 4qi + qi+1) + βi−1N(Γi−1)

+4βiN(Γi) + βi+1N(Γi+1)] (43)

= Γi + βi−1B
i
i−1(0)N(Γi−1) + βiB

i
i(0)N(Γi)

+βi+1B
i
i+1(0)N(Γi+1) (44)

= Γi +

i+1∑

j=i−1

βjB
i
j(0) N(Γj) (45)

Noting that Bi
i+2(0) is equal to zero, (45) is equiva-

lent to

Γ+1
i = Γi +

i+2∑

j=i−1

βjB
i
j(0) N(Γj) (46)

= Γi + V (0) (47)

which is the discrete evolution equation (26). There-
fore, this spline representation associated with appro-
priate pre-defined velocities guarantees that the dis-
crete evolution matches the continuous evolution (24).

4 Some remarks about the pre-

defined velocities

4.1 Normalization

The weight of pre-defined velocity Vi is equal to
−α dE(Γ, Vi). The weight of k Vi is k times larger.
Therefore, a pre-defined velocity can be made artifi-
cially preponderant in evolution process (26). As a
consequence, it seems appropriate to normalize the pre-
defined velocities (unless otherwise imposed by some a
priori). Actually, they are defined up to a multiplica-
tive constant. Their norm does not need to be equal
to one. It should only be the same for all Vi’s. The
pre-defined velocities proposed in Section 3.2.3 are such
that

|Vi|2 = 〈Vi, Vi〉 =
2l

3
(48)

where l is the edge length.

4.2 Interpretation as a projection

4.2.1 Individual projections and redundancy

Weights (23) can be interpreted as individual projec-
tions of the opposite of gradient G (see Eq. (11)) onto
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the Vi’s

βi = 〈−G, Vi〉, (49)

up to a multiplicative constant.
One can check that the pre-defined velocities pro-

posed in Section 3.2.3 do not form an orthogonal set
relative to the L2 inner product

〈Vi, Vj〉 =







2l
3 if i = j
l
6 N(Γi) · N(Γj) if |i − j| = 1
0 otherwise

(50)

where N(Γi) ·N(Γj) is equal to the cosine of the angle
between N(Γi) and N(Γj). In other words, these pre-
defined velocities are redundant.

Let us consider three successive vertices Γi−1, Γi,
and Γi+1 and their respective pre-defined velocities.
Suppose that G is equal to Vi. If the pre-defined ve-
locities did form an orthogonal set, the velocity V ap-
plied to Γ would be proportional to −Vi, as expected.
Instead, the pre-defined velocity weights are equal to
(up to a multiplicative constant) −N(Γi−1) ·N(Γi), -4,
and −N(Γi) · N(Γi+1), respectively. It means that all
three pre-defined velocities get weights different from
zero (in general) with a higher weight for Vi (in ab-
solute value). If the dot products are positive (i.e.,
if the (pseudo) curvature is not too high in absolute
value), this can be interpreted as a smoothing of the
response obtained in the case of an orthogonal set of
pre-defined velocities, which could, as suggested in [7],
increase the spatial coherence of the active contour evo-
lution. Unfortunately, if the dot products are negative,
Vi−1 and Vi+1 get positive weights, leading to an unde-
sirable evolution where Γi is translated in a way that
decreases the energy and the two other vertices are
translated in a way that (although slightly) tends to
increase the energy.

As suggested by a reviewer, the redundancy can
be suppressed by generating mutually orthogonal pre-
defined velocities V ⊥

i using the Schmidt orthonormal-
ization process, or G could be projected onto the space
of linear combinations of the pre-defined velocities in-
stead of being projected individually onto each pre-
defined velocity (see Section 4.2.2).

4.2.2 Alternative linear combination

Instead of computing weights βi as individual projec-
tions (49), they could be computed such that V is the
L2 projection of −G onto the space of linear combina-
tions of the Vi’s

β = argmin
β

∣
∣− G −

∑

i

βi Vi

∣
∣
2

(51)

= argmin
β

∣
∣
∣
∣

∑

i

βi Vi

∣
∣
∣
∣

2

+ 2
∑

i

βi 〈G, Vi〉 (52)

= arg min
β

∑

i

β2
i |Vi|2 + 2

∑

i<j

βiβj 〈Vi, Vj〉

+2
∑

i

βi 〈G, Vi〉 (53)

where β is the vector of components βi.
If the Vi’s form an orthonormal set, then (53) is

equivalent to

β = arg min
β

|β|2 + 2 β · η (54)

where η is the vector of component 〈G, Vi〉. For a given
norm of β, the Cauchy-Schwarz inequality leads to the
result based on individual projections βi = −ηi, up to
a multiplicative constant.

For the pre-defined velocities proposed in Sec-
tion 3.2.3, if G is equal to Vi, then the projection
of −G is necessarily such that βj is equal to zero if
j 6∈ {i − 1, i, i + 1}. Let us fix the norm of β to one.
Using the fact that β2

i−1 + β2
i + β2

i+1 is equal to one,
one can check that the projection is unique and given
by

{
βi = −1
βj = 0, j 6= i

, (55)

thus solving the problem of redundancy mentioned in
Section 4.2.1.

The constrained approach using the projection-
based weights (53) was implemented and compared
with the constrained approach using the weights based
on individual projections (49) (see Section 5.1).

4.3 Parametric approach

4.3.1 Presentation

Another way to avoid the problem mentioned in Sec-
tion 3.1.3 is to parameterize the active contour and
to rewrite energy (7) as a function of these parame-
ters [22, 28, 39]. The problem of minimizing (7) is
then restricted to the set of domains whose bound-
ary can be described by such parameters. It can be
solved in R

n where n is the number of parameters. If φ
in (7) does not depend on Γ, then the partial deriva-
tives of (7) with respect to each parameter can be ob-
tained by a calculus of variations [22]. However, it can
be more complex if φ does depend on Γ, unless noticing
that the partial derivatives can be expressed as shape
derivatives [12, 28]. Let Γ be a curve described by a
set of parameters p = {pi, i ∈ [1, n]}, e.g., a spline.
Energy (7) can be rewritten as a function of p

E(p) =

∫

Ω(p)

φ(Γ(p), x) dx +

∫

Γ(p)

ϕ(s) ds . (56)

It can be shown that the gradient of (56) is equal to

∇E(p) =
∑

i

dE

(

Γ,
∂Γ

∂pi

)

ei (57)
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where ∂Γ/∂pi is a so-called admissible velocity and ei

is the ith element of the canonical basis of R
n. En-

ergy (56) can be minimized using the following proce-
dure {

p0

p+1 = p − α ∇E(p)
(58)

where the optimal value for α can be computed as fol-
lows

α = argmin
α≥0

E(p+1(α)) . (59)

Section 4.3.2 shows that the constrained ap-
proach (24)/(26) is equivalent to the parametric ap-
proach (58) in certain circumstances.

4.3.2 Link with the constrained approach

Polygonal representation If the contour is repre-
sented by a polygon with n edges (see Section 3.2.3),
then the parameters involved in the parametric ap-
proach are the coordinates (ai, bi) of each vertex Γi.
Referring to the notations of Section 4.3.1, parame-
ters p are

p = {pj , j ∈ [1, 2n]}
= {a1, b1, a2, b2 . . . , an, bn} where (ai, bi) = Γi .

(60)
Therefore, there are 2n admissible velocities such that







∂Γ

∂ai

(Γi) = e1

∂Γ

∂bi

(Γi) = e2

, i ∈ [1, n] (61)

where (e1, e2) is the canonical basis of R
2. Writing

procedure (58) in terms of vertices leads to

Γ+1
i = Γi − α

[

dE

(

Γ,
∂Γ

∂ai

)

e1 + dE

(

Γ,
∂Γ

∂bi

)

e2

]

(62)

= Γi − α

[

dE

(

Γ,
∂Γ

∂ai

)
∂Γ

∂ai

(Γi)

+dE

(

Γ,
∂Γ

∂bi

)
∂Γ

∂bi

(Γi)

]

(63)

which is a discrete, constrained evolution (26). Not-
ing that ∂Γ/∂ai and ∂Γ/∂bi fit definition (ii) of the
pre-defined velocities proposed in Section 3.2.3 and ac-
cording to the equivalence between discrete and con-
tinuous evolutions shown in Section 3.2.4, it can be de-
duced that the equivalence between (26) and (58) holds
in the continuous framework. In conclusion, with the
polygonal representation, if the pre-defined velocities
are chosen equal to the admissible velocities, then the
constrained approach is equivalent to the parametric
approach.

Uniform cubic B-spline representation If the
contour is represented by a uniform cubic B-spline
with n segments [3, 21, 32, 40] (see Appendix E for
the notations and properties used here), then the pa-
rameters involved in the parametric approach are the
coordinates (ai, bi) of each control point qi. Referring
to the notations of Section 4.3.1, parameters p are

p = {pj , j ∈ [1, 2n]}
= {a1, b1, a2, b2 . . . , an, bn} where (ai, bi) = qi .

(64)
For clarity, the following notations will be temporarily
used







dEi
a = dE

(

Γ, ∂Γ
∂ai

)

dEi
b = dE

(

Γ, ∂Γ
∂bi

)

dEi
a,b = (dEi

a dEi
b )

T

(65)

where AT is the transpose of matrix A. According
to (64), procedure (58) can be rewritten as follows

{
a+1

i = ai − α dEi
a

b+1
i = bi − α dEi

b

, i ∈ [1, n] (66)

⇐⇒ q+1
i = qi − α dEi

a,b, i ∈ [1, n] . (67)

Spline segment γi is defined by

γi(t) = P (t) Qi, t ∈ [0, 1] . (68)

One can verify that, after evolution, the new seg-
ment γ+1

i satisfies

γ+1
i (t) = P (t) Q+1

i (69)

= γi(t) − α

n∑

j=1

(

dE

(

Γ,
∂Γ

∂aj

)
∂γi

∂aj

(t)

+dE

(

Γ,
∂Γ

∂bj

)
∂γi

∂bj

(t)

)

(70)

which is (locally on segment γi) the continuous, con-
strained evolution (24). In conclusion, with the uni-
form cubic B-spline representation, if the pre-defined
velocities are chosen equal to the admissible veloci-
ties, then the constrained approach is equivalent to the
parametric approach.

About redundancy The admissible velocities are
not necessarily mutually orthogonal. In particular, for
the polygonal representation, they are not. Yet, these
velocities arise in the computation of the gradient of
energy (56), a function from R

n to R. In this context,
the notion of gradient is classical. This might make
thinking that redundancy is not always an undesirable
property.
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Figure 4: Direct/constrained segmentation comparison at a 40-pixel resolution (purposely low to emphasize the
difference between the two approaches): initial contour (white plot), result with the direct approach (red plot),
with the constrained approach using normal-based pre-defined velocities weighted according to Section 3.2.1
(cyan plot), and with weights computed as suggested in Section 4.2.2 (green plot).

5 Experimental results

5.1 Direct vs. constrained approach

A 512×512-pixel image was segmented using the direct
then the constrained approach with the same initial
contour in a region-competition context (see Fig. 4).
Object descriptor (2) was used for both the object and
the background and no boundary descriptor was de-
fined. The corresponding energy is

Ec(Γ) =

∫

Ω

(f(x)−µ(Γ))2 dx+

∫

Ωc

(f(x)−µ(Γc))2 dx

(71)
and its shape derivative is equal to

dEc(Γ, V ) = −
∫

Γ

(
(f(x) − µ(Γ))2

−(f(x) − µ(Γc))2
)

N(s) · V (s) ds .

(72)

For the constrained approach, the normal-based pre-
defined velocities (see Section 3.2.3 - definition (i))
were used so that the comparison with the direct ap-
proach based by definition on an evolution along the
normals (see Section 3.1) is coherent. The active con-
tour was sampled into a polygon with an edge length l
of 40 pixels. It was periodically resampled to maintain
this resolution.

The algorithm of the direct approach is described
in Alg. 1. Constant αmin is homogeneous to a num-
ber (possibly not an integer) of pixels. It is related
to the achievable accuracy of the segmentation (the
lower αmin, the better the accuracy).

The algorithm of the constrained approach is de-
scribed in Alg. 2. Note that the weights of the pre-
defined velocities are computed as individual projec-
tions of the opposite of the gradient 〈−G, Vi〉.

The 40-pixel resolution was purposely low in order to
emphasize the difference between the two approaches
(which did not allow to segment the object accurately).
In fact, in this example, the direct approach segmenta-
tion is fairly similar to the segmentation obtained with
the constrained approach (see Fig. 4). The constrained
approach performed a little bit better, though. Quanti-
tatively, the energy at convergence for the constrained
approach (requiring 52 iterations) is 6.5% lower (i.e.,
better) than the one of the direct approach (requiring
55 iterations). If the weights of the pre-defined veloc-
ities are computed so that

∑

i βi Vi is the projection
of −G onto the space of the linear combinations of
the pre-defined velocities (see Section 4.2.2), then the
energy at convergence (now requiring 71 iterations) is
5.5% lower than the energy reached with the weights
based on individual projections. Therefore, when the
pre-defined velocities do not form an orthonormal set,
the weights should be computed as suggested in Sec-
tion 4.2.2 for maximum accuracy. In conclusion, the
constrained approach can perform better than the di-
rect approach when the contour resolution is low. How-
ever, this slight advantage would vanish at high reso-
lution since the error mentioned in Section 3.1.3 would
get negligible (see Fig. 5). Experimentally, the segmen-
tation was performed again with a contour resolution of
16 pixels (corresponding to the same ratio with respect
to the object size as the one used in Section 5.2). As
expected, the results are almost identical for all three
methods (see Fig. 6). Therefore, the interest of the
constrained approach is not the gain in precision but
rather the coherence it provides between the theory de-
veloped in the continuous framework and its discrete
implementation, and the flexibility it gives to the evo-
lution process, as illustrated in Section 5.2.
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1. Choose an initial polygon Γ = {Γi, i ∈ [1, n]} with
an edge length equal to a given resolution l;
Choose a threshold αmin.

2. Compute domain Ω as the binary mask of Γ.

3. Compute the mean intensities µ(Γ) and µ(Γc) in Ω
and Ωc, respectively.

4. [Optionally, compute energy Ec to check that it
decreases.]

5. Compute the L2-gradient at Γi

G(Γ, Γi) = (f(Γi)−µ(Γc))2−(f(Γi)−µ(Γ))2 N(Γi) .
(a)

6. Update Γ according to

Γ+1
i = Γi − α G(Γ, Γi) (b)

where α is computed as arg minα≥0 Ec(Γ+1(α)) .

7. If needed, resample Γ to maintain a resolution of l.

8. If α was less than αmin, then the algorithm is sup-
posed to have converged; Otherwise go back to
step 2.

Algorithm 1: Direct approach algorithm for the polyg-
onal representation.

5.2 An example of tracking constraint

An application where the possibility to introduce a pri-
ori knowledge in the evolution process can be useful is
tracking. Indeed, a usual procedure is to use the seg-
mentation of the object of interest in a frame as the
initialization to segment the next frame. Then, the
contour deformation necessary to segment the object of
interest in the next frame is correlated to the motion
of the object6. Therefore, one can think of choosing
motion-based pre-defined velocities. To track a player
on the standard test sequence “Football”, the normal
in the normal-based pre-defined velocities was replaced
with a unit vector in the direction of the local motion
(see Section 3.2.3 - definition (ii)). The choice of the
energy is independent of the choice of the pre-defined
velocities. However, it is natural in tracking to use an
energy which involves motion [10]. Here, considering
the complexity of the motion of the object of inter-

6Ideally, the motion could even transform the segmentation in
a frame directly into the segmentation in the next frame. How-
ever, because the sequence is a two-dimensional projection of
a three-dimensional scene and because the available motion is
usually an apparent motion, this is not the case in practice.

1.-4. See Alg. 1.

5. Compute the pre-defined velocities Vi according
to Section 3.2.3 - definition (i) and compute the
shape derivatives dEc(Γ, Vi).

6. Update Γ according to

Γ+1
i = Γi − α dEc(Γ, Vi) Vi(Γi) (a)

= Γi − α dEc(Γ, Vi) N(Γi) (b)

where α is computed as arg minα≥0 Ec(Γ+1(α)) .

7.-8. See Alg. 1.

Algorithm 2: Constrained approach algorithm for the
polygonal representation.

Figure 5: The error between the correctly deformed
curve (dotted line) and the wrongly estimated curve
(dashed line) decreases when resolution gets higher.
Disks: curve samples; Solid line: curve before deforma-
tion; Dashed line: curve interpolating the (correctly)
translated samples; Dotted line: curve correctly de-
formed.

est and the slight motion blur, it seemed appropriate
to confine the motion use to the pre-defined velocities
and to use a motion-free energy able to account for the
color variability of the object [2]

E(Γ) =

∫

R2

k(h(Γ, a), hprev(a)) da (73)

where h is a smooth, normalized version of the color
histogram in Ω of the frame ft to be segmented

h(Γ, a) =
1

|Ω|

∫

Ω

g(ft(x) − a) dx (74)

where |Ω| is a measure of Ω and g is a smooth-
ing kernel, e.g., a 2-dimensional Gaussian. Simi-
larly, hprev is a smooth, normalized version of the color
histogram of the segmentation in the previously seg-
mented frame ft−1. Note that a and ft(x) should be-
long to R

3. However, to limit the computation load,
only the two most significant color components out of
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Figure 6: Direct/constrained segmentation compari-
son at a 16-pixel resolution: result with the direct ap-
proach (red plot), with the constrained approach using
normal-based pre-defined velocities weighted according
to Section 3.2.1 (cyan plot), and with weights com-
puted as suggested in Section 4.2.2 (green plot).

three were considered. Function k is a positive function
from R

2 to R defined as k(x, y) = (x− y)2. A maximal
area constraint [34] was added to energy (73) since its
sensitivity decreases in the inner neighborhood of the
correct segmentation

EA(Γ) = −δ

∫

Ω

dx (75)

where δ is a weighting parameter. The shape derivative
of the sum of (73) and (75) is

dE(Γ, V ) = −
∫

Γ

(
1

|Ω| (g ⋆ k′(h(Γ, ·), href(·)))(ft(s))

− 1

|Ω|2
∫

R2

h(Γ, a) k′(h(Γ, a), href(a)) da

− δ

)

N(s) · V (s) ds (76)

where ⋆ is the convolution operator and k′ is the partial
derivative of k with respect to its first variable.

The minimization algorithm follows the same steps
as Alg. 2. Resolution l was chosen equal to 10 pixels
(to be compared to a size of frame of 352×288 pixels).
In step 5 of Alg. 2, the local motion at the vertices, re-
quired to determine the pre-defined velocities, was esti-
mated by a sub-optimal block matching technique [42]
with a 1/4-pixel precision. Here, a block was defined as
the intersection between a 21×21-pixel square centered
on a vertex and the mask of the current active contour.
This prevented the pixels considered to be outside the
object from interfering with the motion estimation.
This procedure is given for illustrative purposes only.

In a real-world tracking application, motion estima-
tion should certainly be more sophisticated [1, 20, 33].
Figure 7 presents the results obtained with the con-
strained approach using normal-based pre-defined ve-
locities and motion-based pre-defined velocities. The

Figure 7: Tracking of a player on frame 75 of the
standard test sequence “Football” with the constrained
approach. Top left: manual segmentation of frame
74 (used as the initial contour for the segmentation
of frame 75); Top right: histogram (for display pur-
poses, upper and lower zero-valued regions were cut
out) of the manually segmented region (used as his-
togram hprev); Middle left: initial contour on frame
75 (copied from frame 74); Middle right: a closeup of
the normals (red arrows) and the local motions (green
arrows) computed at the vertices of the polygon at
the first iteration; Bottom left: segmentation of frame
75 using normal-based pre-defined velocities; Bottom
right: segmentation of frame 75 using motion-based
pre-defined velocities.

normal-based segmentation is globally similar to the
motion-based segmentation except for a small region
wrongly included above the player. These segmenta-
tions correspond to two local minima, one of which
being more relevant. In a way, the motion-based evo-
lution took the shortest path toward the object of inter-
est and converged toward a more satisfying minimizer.
As a matter of fact, the convergence was reached after
10 iterations while it took 14 iterations for the normal-



PREPRINT – Published in Journal of Mathematical Imaging and Vision 12

based evolution. An intuition of the behavior of the
normal-based evolution is given by the normals shown
in Fig. 7 compared to the local motions. When a nor-
mal has a direction close to the direction or opposite
direction of the local motion7, then both evolution pro-
cesses behave similarly. However, when these direc-
tions are close to be orthogonal, then the normal-based
process could have a tendency to evolve toward a less
relevant local minimum and/or to require more itera-
tions to converge. Indeed, the local motion is likely to
be a better direction to take in a tracking application.

5.3 An example of symmetry con-

straint

Pre-defined velocities can also be chosen in order to
maintain symmetry. Suppose that the initial contour
has an axis of symmetry. Although the previous exam-
ples used one pre-defined velocity per sample, it is not
necessary to do so. A pre-defined velocity could be as-
signed to each pair of symmetric samples, the velocity
being itself symmetric with respect to the axis. For ex-
ample, if the contour is represented by a polygon, then
the sum for a pair of symmetric samples of the normal-
based pre-defined velocities proposed in Section 3.2.3 -
definition (i) could specify one such pre-defined veloc-
ity. The weight of this velocity being unique, the dis-
placements of the two related samples will be identical
in norm. Since their directions is given by the local
normal, which is symmetric with respect to the axis of
symmetry, the symmetry of the contour will be main-
tained during evolution.

To illustrate this procedure, an object artificially
made slightly asymmetric was segmented using en-
ergy (71) and Alg. 2 (see Fig.8). In this simple exam-
ple, the axis of symmetry was supposed to be known.
(For comparison purposes, the segmentation was also
computed using one normal-based pre-defined velocity
per sample, as in Section 5.1.) Note that this method
does not allow to recover the symmetric object. The
computed segmentation is rather a symmetric shape
representing a trade-off between asymmetric regions
kept inside and left outside the contour.

6 Conclusion

A variational approach to segmentation was presented
and the shape derivative was highlighted as a conve-
nient framework for deriving the evolution equation of
an active contour from the energy to be minimized. It
was noted that an error is induced by a discretization

7If the direction of the normal is opposite to the direction of
the local motion, the shape gradient takes equal values in abso-
lute value for both but with opposite signs, making no difference
as far as evolution is concerned.

Figure 8: Segmentation of an asymmetric object with
(green contour) and without (red contour) a symmetry
constraint imposed by an appropriate choice of pre-
defined velocities.

of the evolution equation when the contour velocity is
taken equal to the gradient of the energy associated
with the L2 inner product. Although there are no con-
sequences in practice if the contour is discretized finely
enough, the constrained approach proposed to solve
this problem also gives more flexibility to the active
contour process by allowing to introduce some a pri-
ori knowledge. This property can be useful, e.g., for a
tracking application where motion gives an a priori on
the position of the tracked object in the next frame.
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A Shape gradient of a boundary

energy

Let us consider the following boundary energy

E(Γ) =

∫

Γ

ϕ(s) ds (77)

where Γ is the oriented boundary ∂Ω of an open set Ω
of R

2 and s is the arc-length parameterization of Γ.
The shape derivative of (77) is equal to [36, 13]

dE(Γ, V ) =

∫

Γ

(
∂ϕ(s)

∂N
− ϕ(s) κ(s)

)

N(s) · V (s) ds

(78)
where N is the inward unit normal of Γ and κ is the
curvature of Γ.

Note that this result can also be obtained by a cal-
culus of variations [5].
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B Shape gradient of a domain

energy

Let Ω be an open set of R
2 and let T be a transforma-

tion of Ω such that






Ω = T (τ = 0, Ω)
ΩT (τ) = T (τ, Ω)
xT (τ) = T (τ, x), x ∈ Ω

. (79)

The deformation at x is defined as

VT (x) := lim
τ→0

xT (τ) − x

τ
(80)

=
∂T

∂τ
(0, x) . (81)

For clarity, ΩT (τ), xT (τ), and VT (x) are referred to
as Ω(τ), x(τ), and V (x), respectively. Function V is
called the velocity of Ω.

Let us consider the following domain energy

E(Γ) =

∫

Ω

φ(Γ, x) dx (82)

where Γ is the oriented boundary ∂Ω of Ω. The same
energy computed for the transformed domain Ω(τ) is
equal to

E(Γ, T, τ) =

∫

Ω(τ)

φ(Γ(τ), x) dx . (83)

Then, the shape derivative of (82) is defined as

dE(Γ, T ) := lim
τ→0

E(Γ, T, τ) − E(Γ, T, 0)

τ
. (84)

It is equal to [36, 13]

dE(Γ, T ) =

∫

Ω

∂φ(Γ(τ), x)

∂τ

∣
∣
∣
∣
τ=0

dx

−
∫

Γ

φ(Γ, s) N(s) · V (s) ds (85)

where s is the arc-length parameterization of Γ and N
is the inward unit normal of Γ. Since V appears explic-
itly in the shape derivative expression, dE(Γ, T ) can be
replaced with dE(Γ, V ).

Note that this result can also be obtained by a cal-
culus of variations [2].

C Rewriting the shape deriva-

tive as a boundary integral

Under weak assumptions, the shape derivative of a do-
main energy (see Appendix B) has an equivalent ex-
pression in the form of a boundary integral [36, 37].
Such an expression is convenient in the active contour

framework (see Section 3.1.1). Indeed, the evolution
equation of an active contour can be easily deduced
from a boundary integral-only expression.

Two (sets of) conditions are proposed to allow to
practically rewrite shape derivative (85) into an ex-
pression without any domain integral.

C.1 Recursive applications of the shape

derivative

Under some conditions on the dependency of φ on Γ,
applying recursively (85) to its first integral leads to
an expression containing no domain integral [23]

dE(Γ, V ) = −
∫

Γ

Ψ(Γ, s) N(s) · V (s) ds . (86)

Let us assume that






φi(Γ, x) = φi(gi(Γ), x), i ∈ [1, n − 1]
gi(Γ) =

∫

Ω
φi+1(Γ, x) dx, i ∈ [1, n − 1]

φn(Γ, x) = φn(x)
(87)

where φ1 = φ (note that gi has the same form as (82)).
The first integral of (85) reads

∫

Ω

∂φ1(g1(Γ(τ)), x)

∂τ

∣
∣
∣
∣
τ=0

dx =

∫

Ω

∂φ1(k, x)

∂k

∣
∣
∣
∣
g1(Γ)

∂g1(Γ(τ))

∂τ

∣
∣
∣
∣
τ=0

dx (88)

=
∂g1(Γ(τ))

∂τ

∣
∣
∣
∣
τ=0

∫

Ω

∂φ1(k, x)

∂k

∣
∣
∣
∣
g1(Γ)

dx

(89)

:= dg1(Γ, V )
∫

Ω

∂φ1(k, x)

∂k

∣
∣
∣
∣
g1(Γ)

dx

(90)

= dg1(Γ, V ) A1(Γ) (91)

where dg1(Γ, V ) is equal to

dg1(Γ, V ) =

∫

Ω

∂φ2(Γ(τ), x)

∂τ

∣
∣
∣
∣
τ=0

dx

−
∫

Γ

φ2(Γ, s) N(s) · V (s) ds . (92)

Then, the development leading to (91) can be re-
peated with the successive domain integrals present
in dgi(Γ, V ), i increasing, until

dgn−1(Γ, V ) = −
∫

Γ

φn(s) N(s) · V (s) ds (93)
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which does not contain any domain integral since φn is
independent of Γ. Gathering the successive boundary
integrals together, the shape derivative is equal to

dE(Γ, V ) = −
∫

Γ

Ψ(Γ, s) N(s) · V (s) ds (94)

= −
∫

Γ





n∑

i=1

φi(gi(Γ), s)

i−1∏

j=1

Aj(Γ)





N(s) · V (s) ds (95)

where Aj(Γ) is equal to

Aj(Γ) =

∫

Ω

∂φj(x, k)

∂k

∣
∣
∣
∣
gj(Γ)

dx (96)

with the following convention

φn(gn(Γ), s) = φn(s) . (97)

For instance, φ may involve the variance g1 of f in Ω.
The variance involves the average value g2 of f in Ω.
Finally, the average value involves f but no term de-
pending on Γ.

C.2 Domain integral equal to zero

Under some conditions, Ψ in (86) is simply equal
to φ [34]. In other words, the first integral of (85)
is equal to zero. For instance, if φ is given by (2), i.e.,
(f(x)−µ(Γ))2, the integrand of the first integral of (85)
is equal to

∂φ(Γ(τ), x)

∂τ

∣
∣
∣
∣
τ=0

=
∂
(
(f(x) − µ(Γ(τ)))2

)

∂τ

∣
∣
∣
∣
∣
τ=0

(98)

= −2 (f(x) − µ(Γ))
∂µ(Γ(τ))

∂τ

∣
∣
∣
∣
τ=0

(99)

where µ(Γ) can be written as follows

µ(Γ) =

∫

Ω

f(x) dx /

∫

Ω

dx . (100)

Then, the first integral of (85) is equal to

∫

Ω

∂φ(Γ(τ), x)

∂τ

∣
∣
∣
∣
τ=0

dx = −2
∂µ(Γ(τ))

∂τ

∣
∣
∣
∣
τ=0

∫

Ω

(f(x) − µ(Γ)) dx(101)

= −2
∂µ(Γ(τ))

∂τ

∣
∣
∣
∣
τ=0

(∫

Ω

f(x) dx

−µ(Γ)

∫

Ω

dx

)

(102)

= 0 . (103)

In general, a sufficient condition for the first integral
of (85) to be equal to zero is

{
φ(Γ, x) = φ(g(Γ), x)
g(Γ) = arg mink

∫

Ω
φ(k, x) dx

. (104)

In other words, g(Γ) is the minimizer of (82) seen as
a function of g with Γ fixed. For convenience, the fol-
lowing notation will be used

g(Γ) = argmin
k

EΓ(k) . (105)

If g is assumed to be differentiable, the development
of (91) can be continued using the new condition (104)

∫

Ω

∂φ(g(Γ(τ)), x)

∂τ

∣
∣
∣
∣
τ=0

dx = dg(Γ, V )

∫

Ω

∂φ(k, x)

∂k

∣
∣
∣
∣
g(Γ)

dx

(106)

= dg(Γ, V )

∂

∂k

∫

Ω

φ(k, x) dx

∣
∣
∣
∣
g(Γ)

(107)

= dg(Γ, V )
∂EΓ(k)

∂k

∣
∣
∣
∣
g(Γ)

.(108)

If g(Γ) is a constraint-free minimizer of EΓ, then it can
be immediately concluded that (108) is equal to zero.
Otherwise, let us assume that g(Γ) is the minimizer
of EΓ under the constraint

ξ(g(Γ)) = 0 . (109)

Then, there exists a Lagrange multiplier λ such that

∂EΓ(k)

∂k

∣
∣
∣
∣
g(Γ)

= λ
∂ξ(k)

∂k

∣
∣
∣
∣
g(Γ)

. (110)

Therefore,

∫

Ω

∂φ(g(Γ(τ)), x)

∂τ

∣
∣
∣
∣
τ=0

dx = λ
∂g(Γ(τ))

∂τ

∣
∣
∣
∣
τ=0

∂ξ(k)

∂k

∣
∣
∣
∣
g(Γ(τ=0))

(111)

= λ
∂ξ(g(Γ(τ)))

∂τ

∣
∣
∣
∣
τ=0

.(112)

By definition, for any τ , ξ(g(Γ(τ))) has the same value
(equal to zero). It can be concluded that (112) is equal
to zero.

As suggested by a reviewer, noting that E(Γ) can be
written as F (Γ, g(Γ)) leads to an immediate proof of
the result of C.2.
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D Validity of the direct ap-

proach

As suggested by a reviewer, despite the discretization
error, the direct approach can still be valid (i.e., evolu-
tion (16) generates a minimizing sequence) if the con-
tour discretization is fine enough. The following devel-
opment is largely inspired from the reviewer’s proof.

Let G be the gradient associated with the L2 inner
product

G(Γ, s) = −Ψ(Γ, s) N(s) . (113)

For convenience, G(s) and Ψ(s) will be used instead
of G(Γ, s) and Ψ(Γ, s), respectively. Let us assume
that Γ is represented by a polygon with n edges of equal
length l (see Section 1.4 for notations). Note that l is
equal to si+1 − si. Let L be the length of Γ. Let N be
a C2 pseudo-normal of Γ. Function Ψ is also assumed
to be C2 so that G′′ exists and is continuous. With the
direct approach, the induced velocity Ṽ at s ∈ [si, si+1]
is equal to

Ṽ (s) = −(1 − s̄) G(si) − s̄ G(si+1) (114)

= Ψ(si) (1 − s̄) N(si)

+Ψ(si+1) s̄ N(si+1) (115)

where s̄ is equal to (s − si)/l. Note that (1 − s̄) N(si)
and s̄ N(si+1) are equal to Vi(s) and Vi+1(s), re-
spectively, the normal-based pre-defined velocities pro-
posed in Section 3.2.3 - definition (i). Also note
that Vj(s) is equal to zero if j is not equal to i or i+1.
Therefore, the induced velocity can be rewritten as fol-
lows

Ṽ (s) =

n∑

i=1

Ψ(si) Vi(s) (116)

where s can now belong to [0, L]. The shape deriva-
tive (9) at Ṽ is equal to

dE(Γ, Ṽ ) =

∫

Γ

G(s) ·
n∑

i=1

Ψ(si) Vi(s) ds (117)

=

n∑

i=1

Ψ(si)

∫

Γ

G(s) · Vi(s) ds . (118)

Velocity Vi being different from zero on γi−1 and γi

only, the shape derivative is equal to

dE(Γ, Ṽ ) =
n∑

i=1

Ψ(si)

(
∫

γi−1

G(s) · Vi(s) ds

+

∫

γi

G(s) · Vi(s) ds

)

. (119)

According to Taylor’s theorem with the Lagrange form
of the remainder term, there exists ti in ]si−1, si+1[
such that

G(s) = G(si)+G′(si) (s−si)+
G′′(ti)

2
(s−si)

2 . (120)

The first integral of (119) is equal to

I1 = G(si) ·
∫

γi−1

Vi(s) ds + G′(si)

·
∫

γi−1

(s − si) Vi(s) ds

+
G′′(ti)

2
·
∫

γi−1

(s − si)
2 Vi(s) ds . (121)

With the change of variable t = 2si − s, noting
that 2si − si−1 is equal to si+1, and due to the sym-
metry of Vi with respect to si, one can verify that
∫

γi−1

(s− si) Vi(s) ds = −
∫

γi

(s− si) Vi(s) ds . (122)

Therefore, (119) is equal to

dE(Γ, Ṽ ) =

n∑

i=1

Ψ(si)

(

G(si) ·
∫

Γ

Vi(s) ds

+
G′′(ti)

2
·
∫

Γ

(s − si)
2 Vi(s) ds

)

.(123)

Replacing Vi with its expression, one can verify
that

∫

Γ
Vi(s)ds is equal to l N(si) and that

∫

Γ

(s − si)
2 Vi(s) ds =

l2

6

∫

Γ

Vi(s) ds . (124)

Finally, (119) is equal to

dE(Γ, Ṽ ) =

n∑

i=1

Ψ(si)

(

G(si) +
l2

12
G′′(ti)

)

·
∫

Γ

Vi(s) ds (125)

=

n∑

i=1

Ψ(si) (−Ψ(si) N(si)

+
l2

12
G′′(ti)

)

· l N(si) (126)

= l

n∑

i=1

Ψ(si)
l2

12
G′′(ti) · N(si) − Ψ(si)

2 .

(127)

If l is such that

l2

∣
∣
∣
∣
∣

n∑

i=1

Ψ(si)

12
G′′(ti) · N(si)

∣
∣
∣
∣
∣
≤

n∑

i=1

Ψ(si)
2, (128)

then the negativity of (127) is guaranteed. The follow-
ing stronger condition can be deduced from (128)

l2
M

12

n∑

i=1

|Ψ(si)| ≤
n∑

i=1

Ψ(si)
2 (129)

⇐⇒ l2 ≤ 12

M

∑n
i=1 Ψ(si)

2

∑n
i=1 |Ψ(si)|

(130)

⇐⇒ l2 ≤ 12

M

l
∑n

i=1 Ψ(si)
2

l
∑n

i=1 |Ψ(si)|
(131)
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where M is equal to

M = sup
s

|G′′(s)| (132)

and M and
∑n

i=1 |Ψ(si)| are assumed to be different
from zero (otherwise, the negativity of (127) is triv-
ially verified). Functions |Ψ| and Ψ2 being Riemann-
integrable, the limit when l tends toward zero of the
right-hand side of (131) exists and is equal to8

12

M

∫

Γ
Ψ(s)2 ds

∫

Γ |Ψ(s)| ds
, (133)

assuming that Ψ is not identically equal to zero on Γ
(otherwise, the negativity of (127) is again trivially ver-
ified). Limit (133) being strictly positive, there exists a
value lmax such that if l is smaller than lmax, then con-
dition (131) is verified, implying the negativity of (127).

Let Iu and Su be the integral and the sum at the
numerators of (133) and (131), respectively. The error
between Iu and Su is such that

|Iu − Su| ≤ L P l (134)

=⇒ Iu − L P l ≤ Su (135)

where P is equal to 2 sups |Ψ(s) Ψ′(s)|. Let Id and
Sd be the integral and the sum at the denominators
of (133) and (131), respectively. Using the Chasles’s
equality and the mean value theorem, one can check
that

Sd − Id = l

n∑

i=1

|Ψ(si)| − |Ψ(ti)| (136)

≤ n l (sup
s

|Ψ(s)| − inf
s
|Ψ(s)|)

︸ ︷︷ ︸

Q

(137)

where ti belongs to ]si, si+1[. Then, a condition
stronger than (131) is

l2 ≤ 12

M

Iu − L P l

Id + L Q
(138)

⇐⇒ M

12
(Id + L Q) l2 + L P l − Iu ≤ 0 (139)

⇐⇒ l ≤ lroot
max (140)

where lroot
max is the largest root of the polynom in (139).

One can check that it exists and is positive.
Note that lroot

max depends on Γ and Ψ, which implies
that it should be computed at each iteration of the
active contour evolution.

The reviewer’s proof led to the following, much sim-

pler upper bound 1/
√

M
√

L.

8Remember that sn is equal to L− l (see Section 1.4). There-
fore, it is correct to sum for all i up to n (and not up to n − 1)
to approximate the integral over Γ.

E Some properties of closed,

uniform cubic B-splines

Here, we present the properties of closed, uniform cubic
B-splines that are used in Sections 3.2.4 and 4.3.2.

A closed, uniform cubic B-spline with n segments [3,
21, 32, 40] is uniquely defined by the coordinates (ai, bi)
of n control points qi and the following blending func-
tion B (see Fig. 9)

B(t) =







2

3
− t2 +

|t|3
2

if 0 ≤ |t| < 1

(2 − |t|)3
6

if 1 ≤ |t| < 2

0 if |t| ≥ 2

. (141)

The equation of spline segment γi is

Figure 9: Top: the uniform cubic B-spline blending
function B. It is equal to zero outside the inter-
val [−2, 2]; Bottom: function Bi+1

i , i.e., blending func-
tion B shifted to be “centered” on Γi and “seen” from
segment γi+1.

γi(t) =

i+2∑

j=i−1

qj Bi
j(t), t ∈ [0, 1] (142)

where Bi
j represents blending function B shifted to

be “centered” on Γj and “seen” from segment γi (see
Fig. 9). Mathematically,

Bi
j(t) = B(t − (j − i)) . (143)
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Note that the following notation abuses are made






q0 = qn

qn+1 = q1

qn+2 = q2

. (144)

The extremities γi(0) and γi(1) of a segment are equal
to sampling points Γi and Γi+1, respectively.

Property 1 Although Bi
j(t) was defined for t ∈

[0, 1], the domain of definition can be extended
to [−n/2, n/2], covering the entire curve. Note that
if t is an integer in this extended interval, then it cor-
responds to Γi+t.

Property 2 Sampling points and control points are
linked together by the following equation

Γi =
1

6
(qi−1 + 4qi + qi+1) . (145)

Property 3 Replacing B with its definition, the seg-
ment equation reads

γi(t) =
t3

6
(qi+2 − 3qi+1 + 3qi − qi−1)

+
t2

2
(qi+1 − 2qi + qi−1)

+
t

2
(qi+1 − qi−1) +

1

6
(qi+1 + 4qi + qi−1),

t ∈ [0, 1] (146)

or, using matrices,

γi(t) = P (t) Qi (147)

where






P (t) =
(

t3

6 − t3

2 + t2

2 + t
2 + 1

6

t3

2 − t2 + 2
3 − t3

6 + t2

2 − t
2 + 1

6

)

Qi = ( qi+2 qi+1 qi qi−1 )
T

(148)
and AT is the transpose of matrix A. Let (e1, e2) be
the canonical basis of R

2. Note that

P (t) =

(
∂γi

∂ai+2
(t) · e1

∂γi

∂ai+1
(t) · e1

∂γi

∂ai

(t) · e1
∂γi

∂ai−1
(t) · e1

)

(149)

=

(
∂γi

∂bi+2
(t) · e2

∂γi

∂bi+1
(t) · e2

∂γi

∂bi

(t) · e2
∂γi

∂bi−1
(t) · e2

)

. (150)

Property 4 Let j be an integer in the interval [i −
1, i + 2]. Then, the derivative of (146) with respect
to aj is equal to

∂γi

∂aj

(t) = α(t) e1 (151)

where α is a polynom. If j is outside the interval [i −
1, i + 2], then

∂γi

∂aj

(t) = 0 (152)

since, in this case, γi is independent of aj. In both
cases,

∂γi

∂aj

(t) · e2 = 0 . (153)

Similarly,
∂γi

∂bj

(t) · e1 = 0 . (154)

Property 5 Considering (151) and (152), it can be
deduced that

i+2∑

j=i−1

αj

∂γi

∂aj

(t) =

n∑

j=1

αj

∂γi

∂aj

(t) (155)

for any set of αj’s, and similarly when taking the
derivative with respect to bj.
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