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Abstract. Probably because it is a readily available ocean
color product, almost all models of primary productivity use
chlorophyll as their index of phytoplankton biomass. As
other variables become more readily available, both from re-
mote sensing and in situ autonomous platforms, we should
ask if other indices of biomass might be preferable. Herein,
we compare the accuracy of different proxies of phytoplank-
ton biomass for estimating the maximum photosynthetic rate
(Pmax) and the initial slope of the production versus irradi-
ance (P vs. E) curve (α). The proxies compared are: the total
chlorophyll a concentration (Tchla, the sum of chlorophyll
a and divinyl chlorophyll), the phytoplankton absorption co-
efficient, the phytoplankton photosynthetic absorption coef-
ficient, the active fluorescence in situ, the particulate scat-
tering coefficient at 650 nm (bp (650)), and the particulate
backscattering coefficient at 650 nm (bbp (650)). All of the
data (about 170 P vs. E curves) were collected in the South
Pacific Ocean. We find that when only the phytoplanktonic
biomass proxies are available,bp (650) and Tchla are respec-
tively the best estimators ofPmax andα. When additional
variables are available, such as the depth of sampling, the
irradiance at depth, or the temperature, Tchla is the best es-
timator of bothPmax andα.

Correspondence to: Y. Huot
(huot@obs-vlfr.fr)

1 Introduction

Photosynthesis (P ) in the ocean can be conveniently de-
scribed using two basic quantities: the phytoplankton
biomass (B), and the photosynthetic rates per unit biomass
P B; P=BP B. Both quantities can be measured in situ and
are highly variable. To obtain global estimates of productiv-
ity, however, these quantities must be estimated for all oceans
and with sufficient temporal resolution and this cannot be
achieved by shipboard sampling. Because phytoplankton ab-
sorption changes the color of the light leaving the ocean,
B can be obtained accurately using satellite imagery (using
chlorophylla as a proxy). SinceP B cannot be measured on
large scales continuously, an alternative method must be used
to estimate it. Finding an appropriate method has proven dif-
ficult. Indeed, despite years of research, its estimate remains
the largest uncertainty in our models of oceanic primary pro-
duction.

The main variable influencingP B is the incident irradi-
ance. Describing this influence is relatively simple as it
can be mathematically represented by a saturating function
(Falkowski and Raven, 1997): the so-called PvsE curve.
This function can be parameterized using two parameters:
αB [usually mgC (mgChl)−1 h−1 (µmol photon m−2 s−1)−1]
which describes the initial slope; andP B

max [usually mgC
(mgChl)−1 h−1] which describes the amplitude of the light-
saturated plateau. IfP B

max and αB are known, the influ-
ence of incident light onP B is known. The most diffi-
cult aspect is the prediction of variability inP B

max and αB

that originates from changes in the physiological state (i.e.
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photoacclimation and nutritional status) of phytoplankton or
in the species composition of the community.

On the one hand, it has long been observed that ifP B
max is

normalized to carbon (B=carbon),P B
max is almost indepen-

dent of the growth irradiance, reflecting a parallel physiolog-
ical adjustment of the maximal capacity to fix carbon and the
cellular carbon quota. On the other hand, normalization by
chlorophyll a shows lower values at low growth irradiance
reflecting photoacclimation processes. In an opposite fash-
ion, the light limited portion of the curve, when normalized
to chlorophylla, is largely independent of growth irradiance,
but varies due to photoacclimation when normalized to car-
bon. The ubiquitous nature of these relationships for most
algal groups has been reviewed by MacIntyre et al. (2002),
and several growth and photoacclimation models have been
built to match these observations. It results that, to remove
an important source of physiological variability, that due to
photoacclimation, and to obtain photosynthetic parameters
that are independent of growth irradiance, carbon is a better
quantity to normalize the light saturated rates and chlorophyll
a is better to normalize the light limited part of the curve.

Unfortunately, a direct measure of phytoplankton carbon
in situ or from remote sensing does not exist, such that all
models of primary productivity published to date use chloro-
phyll a to normalize bothαB andP B

max. Since variability in
the biomass-normalized depth-integrated primary production
is thought to be mostly driven by the light-saturated rate of
photosynthesis (Behrenfeld and Falkowski, 1997), progress
in predictingP B

max is central to estimating oceanic primary
production more accurately.

Therefore, if carbon could be measured or estimated ac-
curately, phytoplankton carbon might provide a good al-
ternative for these models. Recently, Behrenfeld and col-
leagues (Behrenfeld et al., 2005; Behrenfeld and Boss, 2003,
2006) suggested that light scattering could provide an accu-
rate proxy of phytoplankton carbon. These suggestions have
brought to the forefront questions regarding the interpreta-
tion of these optical parameters. Though it has long been
known that the beam attenuation coefficient (cp, m−1) is a
good proxy of the total particulate organic carbon (POC) in
case 1 waters (Morel, 1988; Gardner et al., 2006, and refer-
ences therein), the suggestion of Behrenfeld and Boss (2003)
that it represents an accurate proxy of phytoplankton car-
bon merits further research. In a similar way, the particu-
late backscattering coefficient (bbp, m−1), which can be ob-
tained from satellite remote sensing, has been used to esti-
mate the concentration of POC (Stramski et al., 1999). More
recently, Behrenfeld et al. (2005) based on a good correlation
betweenbbp and chlorophylla proposed the utilization of the
backscattering coefficient to estimate the phytoplankton car-
bon over large space and time scales. Aware that the sources
of backscattered light in the ocean remain unknown (Stram-
ski et al., 2004), we will examine here bothbbp andcp as
potential alternatives to Tchla for constraining the variability
of photosynthetic parameters. In this analysis, because mea-

surements of the scattering coefficient (bp, m−1), are avail-
able, we will use them instead ofcp, sincecp is generally
used as a surrogate forbp.

Another proxy of biomass examined herein is phytoplank-
ton absorption (̄aphy, m−1). Indeed it has sometimes been
argued thatāphy is preferable to Tchla for studies of pri-
mary productivity (Perry, 1994; Lee et al., 1996; Marra et
al., 2007). The basis for this proposition is thatāphy is more
directly linked both to the remote sensing signal and pho-
tosynthetic processes than Tchla (Perry, 1994). The evi-
dence for this suggestion is, however, still lacking on large
oceanic scales. Other potentially useful measures exam-
ined in this paper are the: photosynthetic absorption (āps ,
m−1) which encompasses all and only the photosynthetic
pigments; chlorophylla fluorescence, which is due to the
absorption by all photosynthetic pigments and has the ad-
vantage of being readily measured in the ocean with high
temporal and spatial resolution but is strongly affected by
the physiological state of the algae; and, finally, picophyto-
plankton biovolume obtained by flow cytometry.

After providing some background to give a mechanistic
basis for the interpretation of the photosynthetic parameters,
we will use straightforward analyses to verify if any of these
biomass proxies can be substituted for Tchla to obtain better
predictions of the phytoplankton photosynthetic parameters.
Our study will use a dataset obtained during the BIOSOPE
cruise. This cruise encompassed a large range of trophic
conditions from the hyperoligotrophic waters of the South
Pacific Gyre to the eutrophic conditions associated with the
Chile upwelling region, also investigating the mesotrophic
HNLC (high nutrient low chlorophyll) waters of the sube-
quatorial region and in the vicinity of the Marquesas Islands.
We verify that the relationships obtained are applicable to
other regions by comparing our results with those obtained
during the PROSOPE cruise which sampled the Moroccan
upwelling and the Mediterranean sea.

2 Background

To quantitatively evaluate potential alternatives to Tchla and
interpret them within a more general and fundamental frame,
we use the knowledge from theory and laboratory experi-
ments that allows us to describe the photosynthetic param-
eters before normalization to biomass, that isPmax and not
P B

max andα notαB.
ThePmax depends on the concentration (nslowest, m−3) and

the average maximum turnover time (τ̄slowest, s atoms−1) of
the slowest constituent pool in the photosynthetic reaction
chain,

Pmax = 7.174× 10−17nslowest

τ̄slowest
, (1)

where 7.174×10−17 mg C atoms−1 s h−1 is the conversion
factor from seconds to hours and mg of carbon to atoms.
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Alternatively,Pmax can also be related to an instantaneous
maximum carbon specific growth rate (µmax, d−1) realized
under saturating irradiance (neglecting respiration and other
losses) asPmax=Cphyµmax

/

DD, whereD is the daylength
(hours per day) andCphy the phytoplankton carbon (mg C
m−3). This growth rate is an overestimate of the 24-h growth
rate since it is valid only under saturating conditions that are
not present throughout the day. To analyze our results we will
mostly use the representation given in Eq. (1) as it provides
a mechanistic explanation of the processes influencingPmax.

The two formulations are equivalent since
Cphyµmax=cte

(

nslowest
/

τ̄slowest
)

, where cte is a pro-
portionality constant.

The initial slope of the photosynthesis irradiance curve is
given by the product of the spectrally weighted photosyn-
thetic absorption (m−1),

āps =

700
∫

400

aps (λ)
o

E (λ) dλ

/ 700
∫

400

o

E (λ) dλ, (2)

and the maximum quantum yield of carbon fixation for pho-
tons absorbed by photosynthetic pigments (ϕ

ps

C max, mol C
[mol photons absorbed]−1) as follows:

α = 43.2āpsϕ
ps

C max. (3)

In Eq. (3), the factor 43.2 mg C mol C−1 mol photonsµmol
photons−1 s h−1 accounts for the conversion from seconds to
hours,µmol photons to mol photons, and mg C to mol C.

Thusnslowestandāps are measures of biomass (both scale
with the number of cells), the first representing the concen-
tration of slowest molecule in water and the second providing
a good proxy of the concentration of pigmented molecule.
Therefore, bothPmax and α are described by a different
“amount” or “biomass” term (nslowest and āps), and a term
that encompasses variability in the physiological or photo-
synthetic efficiency (̄τslowest andϕ

ps

C max). It follows that, in
theory, the best index of phytoplankton biomass for the sake
of estimating primary production arenslowest for the light-
saturated region of the curve, andāps for the light-limited
region of the curve. The exact nature ofnslowest, however, re-
mains largely unknown in the ocean (though the RUBISCO
enzyme is often considered the slowest pool; Sukenic et al.,
1987).

To assess the accuracy with which different proxies of
phytoplankton biomass allow us to retrieve the photosyn-
thetic parameters, we will use non-linear regression analy-
ses where we will compare directlyPmax andα to proxies of
biomass measured in situ. The trend line will provide the
average relationship while the variability around the trend
line will provide an estimate of the accuracy with which each
proxy of biomass retrieves the “biomass component” ofPmax
andα, namelynslowestandāps . The non-linearity of the re-
lationships will allow us to account for second order effects,

which would be not easy using normalized values without
encountering potential statistical biases (Berges, 1997).

To understand the source of variability around our re-
gression line, it is useful to represent equations 1 and
3 above in terms of normalized quantities. Essentially,
the variability around the mean normalized value will
be similar to the variability around our regression (be-
cause we use non-linear regression with an intercept they
are not exactly equivalent). Normalization ofPmax to
different proxies of phytoplankton biomass (B) leads to
P B

max=7.174×10−17
[

nslowest
B

] 1
τ̄slowest

, and the same normal-

ization forα leads toαB=43.2
[

āps

B

]

ϕ
ps

C max. Since the vari-

ability in ϕ
ps

C max andτ̄slowestshould not be related toB, nor-
malization byB removes most of the variability inPmax
andα originating from changes in biomass (i.e. making the
term in the square brackets nearly constant). Any proxy of
biomass that covaries with̄aps andnslowestwill remove some
of the variability, but proxies that account for a greater frac-
tion of the variability will perform best. For example, nor-
malizingα by āphy does not account for the variability in the
ratio of photosynthetic absorption to total phytoplankton ab-
sorption, while normalizing by Tchla leaves the variability
in the photosynthetic absorption to Tchla. Table 1 describes
the different sources of variability that are not accounted for
when a given biomass proxy is used to normalize the photo-
synthetic parameters. To aid in the interpretation of our re-
sults, and to elaborate on Table 1, we address in more detail
here the case of the scattering and backscattering coefficients.

The interest of usingbp and bbp as mentioned before
lies in their potential for providing information about the
phytoplankton carbon biomass. The particulate scatter-
ing coefficient is, however, the sum of scattering by all
particles. The relative contribution of each particle type
depends on their scattering efficiency (which depends on
their size, shape, structure, and index of refraction) and
on their concentration (Morel and Bricaud, 1986; Morel,
1973). Given a Junge particle distribution of homogenous
spherical particles, those in the size range of 0.5 to 20µm
(Morel, 1973) will be the most effective at scattering. In
the ocean, we can express the particulate scattering coeffi-
cient asbp=bphy+bbact+bhet+bvir+bmin+bbub+borg, where
bphy, bbact, bhet, bvir , bmin, bbub, andborg are the contribu-
tions from phytoplankton, bacteria, small non-bacterial het-
erotrophs, viruses, mineral particles, bubbles, and non-living
organic matter, respectively. We can thus express the scatter-
ing normalizedPmax as:

P b
max = 7.174× 10−17

(

nslowest

bphy

) (

bphy

bp

)

1

τ̄slowest

a similar equation is obtained forα:

αb = 43.2

(

āps

bphy

) (

bphy

bp

)

ϕ
ps

C max.
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Table 1. Summary of sources of variability in the photosynthetic parameters that are not accounted for by the normalization to different
biomass proxies (always listed as point #1 below), and the principal origin of this variability (presented below as point #2). See Falkowski
and Raven (1997) for details regarding the absorption based proxies; further explanation of the scattering based proxies are developed in the
text.

Absorption-related biomass proxies
Tchla āps āphy Fluorescence

Pmax

1) ratio:nslowest
/

Tchla.
2) Photoacclimation and nutritional
status. Expected to increase with in-
creasing growth irradiance and nutri-
ent availability. Also influenced by
species composition.

1) ratio:nslowest
/

āps .
2) The same sources as Tchla,
plus packaging effects and pig-
ment composition. Expected to
increase with increasing growth
irradiance

1) ratio:
nslowest

/

āphy.
2) The same sources
asāps .

1) ratio:

nslowest

/(

āpsϕ
ps
f

)

where ϕ
ps
f

is the
quantum yield of
fluorescence.
2) Same sources as for
āps plus variability due
to the quantum yield of
fluorescence.

α

1) Chlorophyll specific absorption
coefficient (̄a∗

ps=āpsTchla).
2) Pigment composition and packag-
ing, and thus the physiological status
and species composition.

1) Physiologically none.
2) Methodologically, it may be
susceptible to larger variability
than expected due to significant
errors in the estimation of̄aps .

1) ratio: āps

/

āphy
2) Photoacclimata-
tion, nutritional
status and species
composition. Also
affected by errors
in the determination
of phytoplankton
absorption.

1 ratio: āps

/

āpsϕ
ps
f

2) Additional variabil-
ity in ϕ

ps
f

and dif-
ferent measuring irradi-
ance used to “weight”
āps , and, hence, on the
pigment composition.

Scattering-related biomass proxies
bp (or cp) bbp biovolumes

Pmax

1)
(

nslowest
bphy

) (

bphy
bphy+bbact+bhet+bvir+bmin+bbub+borg

)

2) See text for further details.

1) Same equation as forbp (re-
placingbp by bbp).
2) See text for further details.

1) The intracellularnslowest
concentration.
2) Physiological status and
species composition. Method-
ologically limited by the accu-
racy in volume determination
and cellular volumes observed
by flow cytometry.

α

1)
(

āps

bphy

) (

bphy
bphy+bbact+bhet+bvir+bmin+bbub+borg

)

2) See text for further details.

1) Same equation as forbp (re-
placingbp by bbp).
2) See text for further details.

The volume specific absorp-
tion coefficient.
Dependent on physiological
status. Same methodological
problems as above.

Therefore, bp provides a good proxy of phytoplankton
biomass for normalizing the photosynthetic parameters if
bphy is a good proxy fornslowestor āps (i.e. low natural vari-
ability within the first parentheses of the equations above)
and if, in addition, it meets one of three requirements (low
variability in the second parentheses of above equations):
1) bp must be mostly influenced bybphy and all other con-
stituents must represent small or negligible contributions to
scattering; 2) all other constituents scattering coefficients

must covary tightly withbphy; or 3) a combination of the first
two conditions leading to a reduced variability in thebphy to
bp ratio.

From monoculture of phytoplankton, we know thatbphy is
a good measure of phytoplankton carbon; while the carbon
per cell shows large variability during the day, the carbon
specific attenuation and scattering coefficient remain nearly
constant (Stramski et al., 1995; Stramski and Reynolds,
1993; Claustre et al., 2002). The interspecific variability
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seems to remain within a factor of∼5. If bp is found to be a
good estimator ofPmax, it is however unlikely that it would
be affected mainly by the carbon innslowest, more likely the
covariation ofnslowestwith total phytoplankton carbon would
be the cause.

To be a good proxy of phytoplankton biomass, the par-
ticulate backscattering coefficient must meet the same three
conditions mentioned above forbp. However, based on Mie
theory, particulate backscattering is due to the same con-
stituents as scattering, but the efficiency of backscattering is
more strongly weighted towards smaller-size particles (∼0.1
to 1µm cf., Morel and Ahn, 1991).

3 Materials and methods

All of the data presented herein were collected during
the BIOSOPE and PROSOPE cruises. BIOSOPE sam-
pled 2 transects from the Marquesas Islands to Easter Is-
land, and from Easter Island to Concepcion Chile, through
the South Pacific Gyre from 26 October to 10 December
2004. PROSOPE sampled the Morocco upwelling and the
Mediterranean Sea from 4 September to 4 October 1999 (see
Oubelkheir et al., 2005, for cruise track). Because the dataset
for the BIOSOPE cruise is more complete and allows con-
sistent analyses between the parameters studied, we carried
out the statistical analysis on that dataset only, and used the
PROSOPE dataset for comparison purposes only. While we
will not discuss the comparison with the PROSOPE dataset
further, we will mention here that trends and absolute values
compare well with the BIOSOPE dataset for all variables.
All the data shown here are obtained from CTD and rosette
casts made near solar noon. Nine depths were usually sam-
pled for the PvsE experiments and all data are matched to
these depths. For discrete samples obtained from Niskin bot-
tles (e.g. Tchla, PvsE parameters and absorption), we com-
pare data from the same bottle or from duplicate bottles from
the same depth as the PvsE curve data. The data obtained
from profiling instruments (e.g. CTD, fluorescence,bp and
bbp), are from the same cast as that of the PvsE sample, and
represent the average over 2 m centered on the depth of the
PvsE bottle.

3.1 Photosynthesis vs. irradiance curves

The PvsE curves of the particulate fraction were determined
by closely following the protocol of Babin et al. (1994). One
modification was made for the BIOSOPE cruise (but not
PROSOPE): we replaced the GFF filters with 0.2µm pore
size polycarbonate membrane filters. This modification re-
duced the dispersion observed in surface samples (M. Babin,
personal observation). Incubations lasted between 2 and

3.5 h. The data were fit to the following equation (Platt et
al., 1980; MacIntyre and Cullen, 2005):

P = Ps

[

1 − exp

(

−
o

E α
/

Ps

)] [

exp

(

−β
o

E

/

Ps

)]

+ Po

wherePs (mgC m−3 h−1) is an hypothetical maximum pho-
tosynthetic rate without photoinhibition and an analytic func-
tion of β, α and Pmax; β (mg C m−3 h−1 [µmol photons
m−2 s−1]−1) is a parameter describing the reduction of the
photosynthetic rates due to photoinihibition at high irradi-
ance; andPo an intercept term. ThePmax reported herein are

equal toPmax+Po wherePmax=Ps

(

α
/

α+β
) (

β
/

α+β
)α/β .

The 95% confidence interval (CI) on the parameters was es-
timated using the standard MATLAB routinenlpredci.m. Es-
timated parameters for which the CI was greater than 50%
of the parameter value were discarded. To have a uniform
dataset, we also discarded the points for which there were
no concurrent values for all of the following: Tchla, bp,
bbp, aphy, aps , and nitrate. This left 159 points forPmax
and 153 points forα from an original dataset of 338 PvsE
curves. Roughly half of the points (77 forPmax and 75 for
α were excluded because of the criteria we chose for the CI.
Since the number of phytoplankton biovolume estimates was
significantly smaller, data for missing biovolume estimates
were not excluded.

3.2 Pigments

The concentration of phytoplankton pigments was measured
by HPLC, using a method modified from the protocol of Van
Heukelem and Thomas (2001) for the BIOSOPE cruise (Ras
et al., 2007), and Vidussi et al. (1996) for the PROSOPE
cruise.

3.3 Phytoplankton and photosynthetic absorption

The method used for phytoplankton absorption spectra mea-
surements is detailed in the works of Bricaud et al. (1998)
and Bricaud et al. (2004). Photosynthetic absorption was ob-
tained following the procedure of Babin et al. (1996) using
the individual pigment spectra in solution given by Bricaud
et al. (2004). Both were weighted according to the irradiance
inside the photosynthetron (see Eq. 4; the same equation was
used forāphy by replacingaps by aphy) to provide an average
value for the spectra.

3.4 Fluorescence

Fluorescence was measured in situ using an Aquatracka
III fluorometer (Chelsea Technology Group) placed on the
same rosette as the Niskin bottle for the discrete samples.
No correction for the decrease of fluorescence due to non-
photochemical quenching was attempted and this is expected
to increase the variability in the comparison with other
biomass proxies.

www.biogeosciences.net/4/853/2007/ Biogeosciences, 4, 853–868, 2007
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3.5 Scattering and backscattering coefficient

The particulate scattering (bp) and backscattering coeffi-
cients (bbp) were measured using an AC-9 (WET Labs) and
an ECO-BB3 sensor (WET Labs), respectively. AC-9 data
were acquired and processed according to the method of
Twardowski et al. (1999), using the temperature and salin-
ity correction coefficients obtained by Sullivan et al. (2006).
Scattering errors in the reflective tube absorption measure-
ment were corrected using the spectral proportional method
of Zaneveld et al. (1994). Between field calibrations with pu-
rified water during the cruise, instrument drift was fine-tuned
to independent measurements of absorption in the dissolved
fraction made on discretely collected samples by (Bricaud
et al., 2007)1. The ECO-BB3 data were processed accord-
ing to Sullivan et al. (2005), using the chi-factors obtained
therein to convert volume scattering measurements at 117◦

to backscattering coefficients. For optimal accuracy, direct
measurements of in situ dark counts were periodically col-
lected by placing black tape over the detectors for an en-
tire cast. More details on the processing in Twardowski et
al. (2007).

3.6 Diffuse attenuation coefficient

The diffuse attenuation coefficient (Kd , m−1) in the visible
bands was obtained as described in Morel et al. (2007).

3.7 Phytoplankton biovolumes

Prochlorococcus, Synechococcus and picophytoeukaryote
biovolumes were estimated from mean cell size and abun-
dance by assuming a spherical shape. See Grob et al. (2007)
for details. Cell abundances were directly determined us-
ing flow cytometry, except for the weakly fluorescent sur-
faceProchlorococcus populations whose abundance was es-
timated from divinyl chlorophylla concentrations. Mean cell
sizes were obtained by establishing a direct relationship be-
tween the cytometric forward scatter signal (FSC) normal-
ized to reference beads and cell size measured with a Coul-
ter Counter for picophytoplanktonic populations isolated in
situ and cells from culture (see Sect. 2.1 and Fig. 3a in Grob
et al., 2007). Mean cell sizes were then used to calculate
cell volumes assuming a spherical shape. Finally, biovol-
umes (µm3 ml−1) were obtained by multiplying cell volume
and abundance. Because, as noted above, in surfaces wa-
ter at some stations, theProchlorococcus population fluores-
cence was undetectable, we discarded allProchlorococcus
measurements for this study. The biovolumes thus include
only theSynechococcus and picophytoeukaryotes. The max-
imum cell diameter observed with the instrument settings
used during the cruise was 3µm. This included most of the

1Bricaud, A., Babin, M., Claustre, H., Ras, J., and Tieche, F.:
The par titioning of light absorption in South Pacific Waters, in
preparation, 2007.

phytoplankton cells in oligotrophic waters but missed a sig-
nificant fraction in more eutrophic waters. Similarly, the ab-
sence ofProchlorococcus may miss a significant fraction of
the biomass in oligotrophic waters.

3.8 Stepwise regression and determining the quality of fits

We use three quantities to assess the quality of fits: the cor-
relation coefficient (r), the root mean square error (RMSE),
and the mean absolute percent error (MAPE). While the first
two are more commonly used statistical measures of fits,
the third provides an estimate of variability that is indepen-
dent of range or absolute values (relative measure, with-
out units) of the data and hence is more easily comparable
between different estimated variables. The MAPE is ex-
pressed as a fraction (instead of a percentage, sometimes
abbreviated as MAE in the literature) and is calculated as

MAPE= 1
n

n
∑

i=1

(

Yi−Ŷi

)/

Yi , whereY is the measured data,

Ŷ is the estimated value andn the total number of points.
All stepwise regressions will be conducted with the fol-

lowing constraints: a variable is added if the maximum p-
value is 0.05 and removed if the minimum p-value is 0.10.
The p-values provided in the text regarding the stepwise re-
gression are the probability that the regression coefficient is
equal to 0.

4 Results and discussion

4.1 Overview of the dataset

This dataset was collected in case 1 waters. In these waters,
away from land influences, all the optical properties covary
with the phytoplanktonic biomass (which spanned roughly 3
orders of magnitude) as it underlies the functioning of the
whole ecosystem. Indeed, an overview of the biomass data
collected during the BIOSOPE cruise shows that most vari-
ables follow the trends expected as a function of chlorophyll
a for case 1 waters (Fig. 1); the relationships between sur-
face measurements ofbp, bbp, andaphy, and Tchla concen-
tration are consistent with statistical relationships previously
established (Bricaud et al., 2004; Loisel and Morel, 1998;
Morel and Maritorena, 2001). It is interesting to note the
resemblance between panels A and H showing respectively
bp and the phytoplankton biovolume obtained from the flow
cytometry measurements as a function of the Tchla concen-
tration. Despite (or because of) of the lack ofProchlorococ-
cus in the biovolumes dataset and the upper limit of 3µm,
and unless strongly covarying particles are present, this sug-
gests that variability inbp is in large part influenced by the
biovolume (similar to carbon concentration) of phytoplank-
ton. A similar observation can be made with respect toPmax
and biovolumes which both shows patterns that reassembles
strongly those ofbp and suggest that they are good proxy
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Fig. 1. Comparison of different estimators of phytoplankton biomass obtained during the BIOSOPE cruise with published statistics for case
1 waters.(A) Particulate scattering coefficient at 650 nm vs. Tchla (sum of chlorophylla and divinyl chlorophyll (A),(B) Backscattering
coefficient at 470 nm vs. Tchla, (C) Phytoplankton and photosynthetic absorption multiplied by 0.2 (allows it to be discerned from the
former) weighted by the photosynthetron irradiance spectra vs. Tchla, (D) In situ fluorescence vs. Tchla, (E) Pmax vs. Tchla, (F) α vs.
Tchla, (G) Pmax vs.α, lines are for two extreme saturation irradiances (Ek) for photosynthesis,(H) Biovolume obtained from a calibrated
flow cytometer vs. Tchla. Colorscale represents depth.

of the slowest pool. The decrease ofbp with depth for a
given Tchla concentration (Fig. 1a) is consistent with the
oft-reported trends attributed to a “photoacclimation-like”
behavior (i.e. an increase in the Tchla per scattering parti-
cle, cf. Kitchen et al., 1990). A similar trend is observed
in bbp (Fig. 1b). The phytoplankton absorption coefficient
(Fig. 1c) generally follows the statistical relationship estab-
lished for case 1 waters by Bricaud et al. (2004) but shows a
slightly higher slope and lower intercept. A sigmoidal shape
is observed in log space for the fluorescence vs. Tchla re-
lationship (Fig. 1d). A clear depth dependence is observed
in the Pmax vs. Tchla relationship, while this dependence
is reversed and much less accentuated forα (Figs. 1e and
f; see Methods section). The relationship betweenα and
Pmax (Fig. 1g) also shows a depth dependence which rep-

resents changes inEk with depth (i.e. higher values at the
surface; lower values at depth) consistent with photoadapta-
tion (or less-likely photoacclimation). The predominant fac-
tor in these changes ofEk are likely photoadaptation rather
than photoacclimation as there is a layering of species with
depth in these stratified environments (see Ras et al., 2007).

So while all properties covary with one another, there re-
mains some variability. This remaining variability, however,
is not all random (e.g. depth dependence of thebp vs. Tchla
relationship) and thus contains information about the system.
If this information is pertinent to the retrieval of photosyn-
thetic parameters some of the measures should provide less
variability when compared with the photosynthetic parame-
ters than other.

www.biogeosciences.net/4/853/2007/ Biogeosciences, 4, 853–868, 2007



860 Y. Huot et al.: Proxies of biomass for primary production

Fig. 2. Histograms of the photosynthetic parameters measured during the BIOSOPE cruise.(A) P chl
max, (B) Pmax normalized tobp, (C) αchl,

(D) α normalized tobp. The normalized range was calculated as (min(x)–max(x))/median(x), where x is the normalized photosynthetic
parameter. It provides a rough guide to compare the variability between the different panels. For panel (B), two ranges are given, one for the
whole dataset, as in the other panels, and one for normalizedPmax smaller than 7 mg C m−2 h−1 for (focusing on the “normal” region of the
distribution). The abscissas are scaled such that the ratio of the maximum of the axis to the minimum value of the data are equal (for each
row independently).

Table 2. Statistical difference between the different index of
biomass used for predictingPmax andα (in Figs. 3 to 6). The es-
timator for which the correlation coefficient is not different at the
95% confidence level share the same letter. Letters are ordered al-
phabetically to the quality of the fits (Figs. 3, 4, 5 and 6), the best
correlation have an “a” and the worst a “c”.

bp Biovolume Tchla bbp aphy fluorescence aps

Pmax a a, b b b b b b
α c c a c b a, b a, b

A comparison of the distributions of the photosynthetic pa-
rameters when they are normalized to Tchla or to the partic-
ulate scattering coefficient is provided in Fig. 2. The val-
ues obtained forP chl

max [0.26 to 7.2 mg C (mg chl)−1 h−1]
andαchl [0.0028 to 0.086 mg C (mg chl)−1 h−1 (µmol pho-
tons m−2 s−1)−1] are consistent with values from the liter-
ature, but clearly do not cover the full range of variability
reported. A review of several datasets of photosynthetic pa-
rameters by Behrenfeld et al. (2004) gives a range of 0.04 to
24.3 (mostly between∼0.5 and∼10) mg C (mg chl)−1 h−1

for P chl
max, and of 0.0004 to∼0.7 (mostly between∼0.005

and∼0.2) mg C (mg chl)−1 h−1 (µmol photons m−2 s−1)−1

for αchl though some variability inαchl originates from the
different spectra used for the measurement irradiance. Using
a crude index of dispersion, the normalized range (see Fig. 2
caption for details and the values reported on the graphs),
shows that normalization of bothPmax andα by Tchla re-
duces the variability in the data relative to normalization by

bp (but only slightly in the case ofPmax). The distribution for
Pmax normalized tobp, however, shows a normal distribution
of points below values of 7 mg C m−2 h−1 with a long tail
above. If we consider only the points below that threshold,
the variability is much reduced and becomes lower than when
Tchla is used as the normalization factor. The higherPmax
normalized tobp values occur mostly in regions with higher
chlorophyll concentrations (coastal upwelling regions, deep
chlorophyll maxima, and Marquesas Islands). This could
be the result of real physiological variability or indicate a
bias in the normalization bybp with trophic status (e.g. ratio
of bphy/bp increasing with increasing chlorophyll concentra-
tion, see Table 1 and Background section).

4.2 Determining the best proxy of phytoplankton biomass
to predict photosynthetic parameters

Figures 3 and 4 show the comparison betweenPmax and dif-
ferent measures of biomass. On both figures, the left panels
show the scatter plots ofPmax against the different biomass
indices measured, and a 2nd order polynomial obtained on
the log-transformed data. The right-hand-side panels show
the values ofPmax predicted by using the polynomial fit
against the measured values (the statistics of the fits are also
provided). As previously mentioned, all fits and statistics
refer only to the BIOSOPE dataset as it is more complete
and allows a consistent comparison of all proxies of biomass
from an equal number of points taken simultaneously, or near
simultaneously, while the PROSOPE dataset is superposed
for comparative purposes only. WhilePmax is expected to
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Fig. 3. Relationships between four estimators of biomass andPmax. Left Column:Pmaxvs. the different estimators. The black line represents
the best-fit second order polynomial. Right column: Measured and estimatedPmax using the best-fit line in the left column. Also shown are
the statistics of the predictions.

covary strongly with all proxies of biomass, what interests us
here is the remaining variability, which should be lower for
the better proxies. Several points can be made about these
figures. Firstly, thebp(650) and biovolumes estimated from
flow cytometry measurements provide the best estimates of
Pmax (Fig. 4). Since the variability in̄τslowestand the mea-
surement errors onPmax are equal for all panels, this suggests
thatbp(650) is the best single measure ofnslowest. Secondly,

the backscattering coefficient provides estimates ofPmax that
are equivalent to those using Tchla. However, at low values
of Pmax the predictability is reduced as the slope between
Pmax andbbp is much smaller (as two become essentially in-
dependent). Indeed, for values ofPmax<∼0.1,bbp continues
to decrease whilePmax remains constant. Thirdly,aps , aphy
and chlorophyll fluorescence all perform similarly in estimat-
ing Pmax but slightly worse than Tchla. We can summarize
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Fig. 4. Relationships between three estimators of biomass andPmax. See Fig. 3 for details.

these results in terms of decreasing accuracy of estimates (us-
ing MAPE as the index) as follows:bp≈biovolume>Tchla
≈bbp≈ fluo ≈aphy≈aps . Statistically (see Table 2 for a com-
plete comparison), the correlation coefficient (r) onbp is sig-
nificantly greater (p<0.05, t-test on the z-transform of the
correlation coefficient, Sokal and Rohlf, 1995) than the pa-
rameters with values ofr equal to or lower than that of Tchla

(i.e. Tchla, bbp, fluorescence,aphy, aps). There is no signif-
icant difference between the correlation coefficients on the
other parameters.

Figure 5 shows the comparison betweenα and different
measures of biomass. In contrast with thePmax measure-
ments, both measures of scattering as well as the biovolume
estimates perform very poorly, while Tchla and āps show
the best estimates, with Tchla not significantly better than
āps . Finally, fluorescence is followed bȳaphy. In summary,
estimators order as follows (from the most to the least accu-
rate): Tchla ≈āps≈fluo>āphy≫bp> biovolumes>bbp. Sta-
tistically (see Table 2 for a complete comparison), the cor-

relation coefficient of Tchla is significantly greater than the
other proxies with values ofr equal or lower to that ofaphy
(p<0.05; t-test on z-transform). The correlation coefficient
on āphy is significantly different frombp, bbp or biovolumes
(p<0.001; t-test on the z-transform).

To summarize these results, it can be said that we obtained
very intuitive results for the relationships betweenα and the
different proxies of biomass. Indeed, that Tchla, āps , and
āphy provide the best measures ofα is what we expected as
they represent a measure closely related to the absorption
of photosynthetic pigments. On the other hand, the results
concerningPmax are more noteworthy:bp, despite not being
specific to phytoplankton, provides a better estimate ofPmax
than the traditional measure of Tchla. These results are con-
sistent with those of Behrenfeld et al. (2005); Behrenfeld and
Boss (2006) where they showed that the ratiocp/Tchla pro-
vided good estimates ofPmax/Tchla. Hence, for the waters
studied here, which are representative of many oceanic wa-
ters,bp is the best proxy for estimatingPmax when no other
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Fig. 5. Relationships between four estimators of biomass andα (in mgC m−3 h−1 [µmol photon m−2 s−1]−1). Left Column:α versus the
different biomass estimators. The black line represents the best-fit second order polynomial. Right column: Measured and estimatedα using
the best-fit line in the left column. Also shown are the statistics of the predictions.

measurements are available. This means thatbp is strongly
influenced by phytoplankton scattering or that the scattering
coefficients of all other particulate matter show tight relation-
ships with the phytoplankton scattering coefficient. Further-
more, since it is better correlated toPmax than Tchla, which
is present only in phytoplankton, it implies thatbp provides a
measure that covaries better withnslowestthan Tchla. Conse-
quently, it implies that there is considerable variability in the
ratio nslowest/Tchla (not correlated with Tchla). Even more
interesting is the good retrieval ofPmax usingbbp(650) which
is equivalent to estimates using Tchla. Because the size frac-
tions that are expected to influencebbp the most are smaller
than the smallest phytoplankton (assuming a Junge distribu-
tion, generally observed during BIOSOPE, Sciandra et al.,
2007)2, it implies that either backscattering from that fraction

2Sciandra, A., Stramski, D., and Babin, M.: Variablity in parti-
cle size distribution in contrasted trophic regions of the South East
Pacific, in preparation, 2007.

is very well correlated with phytoplankton backscattering, or
phytoplankton cells are affectingbbp more than expected.

We now want to examine the possibility of predicting the
large variability in the ratio ofnslowest/Tchla using other en-
vironmental variables and examine if the relationship with
bp can be further improved with these same variables.

4.3 Using environmental variables in addition to proxies of
phytoplankton biomass

While the results of the previous analysis are interesting,
it remains a somewhat academic exercise because biomass
proxies are rarely obtained without at least some information
about the sampled location and environment. We thus, now
turn to our second question. Can we improve the estimates
of α andPmax by using additional measurable quantities? In
other words, what is the origin of the remaining variability?
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Fig. 6. Relationships between three estimators of biomass andα (in mgC m−3 h−1 [µmol photon m−2 s−1]−1). See Fig. 5 for details.

To address this question we used a stepwise regres-
sion analysis with the log transform ofα and Pmax as
our dependent variable and a series of potentially relevant
independent variables. For each fit, we used only one
log-transformed “biomass proxy” (i.e. whether log(Tchla),
log(bp), log(bbp). . . ). The analysis was conducted for all
depths. Table 3 provides all the independent variables tested
and a summary of the results. A succinct rationale is given
for the different variables used (the variables squared allow
non-linear relationships to be present). Depth is a general
proxy for growth irradiance (including UV), nutrient avail-
ability, and mixing regime (while different types of waters
were encountered, light, UV and diffusivity coefficient al-
ways decrease with depth while nutrient always increase).
Temperature is expected to have an effect on enzymatic rates
and species composition. The log of the mean PAR irradi-
ance at depth over the last three days provides a measure of
irradiance experienced by the cells in their recent past (often

referred to as light history), potentially affecting their pho-
toacclimation status. The log of the theoretical PAR irradi-
ance at depth provides a measure essentially similar to the
optical depth (except that the surface irradiance is accounted
for) and provides a longer term (∼weeks) proxy of the mean
irradiance value at depth; relevant to processes of compet-
itive exclusion (by species that have different photoadapta-
tion). The nitrate concentration is used as a proxy of nutrient
availability. Figure 7 compares graphically the results for
Pmax usingbp(650) and Tchla as the independent biomass
variable.

The results are clear (see Table 3, e.g. MAPE row). Us-
ing other independent variables beyond biomass, it is pos-
sible to significantly improve the relationship betweenPmax
and Tchla (as well asaphy, aps , and fluorescence). How-
ever, the same does not occur forbp or bbp, for which the
relationships improve only marginally by using several new
variables. Most of the improvements using Tchla arise from

Biogeosciences, 4, 853–868, 2007 www.biogeosciences.net/4/853/2007/



Y. Huot et al.: Proxies of biomass for primary production 865

Table 3. Stepwise fit results forPmax vs. different indices of biomass. Values represent the fitted coefficients for each variable. NU is used
for “Not Used in the fit” (e.g.Pmax(Tchla)=0.236+1.07log10(Tchla)−6.18E−3z+1.35E−5z2+1.55E−2T).

Tchla aps aphy fluo bp(650) bbp(650)

Intercept 0.236 2.42 2.71 0.509 2.05 14.5
Log10(Biomass) 1.07 −4.42E−03 −5.39E−3 −6.84E-3 3.21 6.83
Log10(Biomass)2 NU 8.32E−06 1.16E−5 1.61E−5 0.677 0.834
Depth −6.81E−3 3.34E−2 3.18E−2 NU NU NU
Depth2 1.35E−5 NU NU NU NU NU
T 1.55E−2 −9.52E−2 NU NU NU −1.95E−1
T2 NU 1.34E−02 NU NU 5.36E−3 5.37E−3
Log10(Egrowth)

† NU NU NU 5.18E−3 NU NU
Log10(PARtheo)

§ NU NU NU NU NU NU
Log10(PARtheo)

2 NU 1.82 1.93 1.21 −5.55E−3 NU
Log10(NO3) NU 0.143 0.161 NU NU NU
RMSE 0.15 0.16 0.16 0.18 0.21 0.25
MAPE 0.29 0.31 0.30 0.36 0.43 0.54
R2 0.93 0.92 0.90 0.90 0.86 0.80

† Egrowth is the mean PAR irradiance during daylight (µmol photon m−2 s−1) at the sampling depth over the three days previous to the
sampling day. It is calculated using the incident irradiance measured on the ship and the attenuation coefficient measured at the station.
§PARtheo is the mean PAR irradiance calculated using the Gregg and Carder (1990) model at the sampling depth using the attenuation
coefficient measured at the station for the sampling day. Therefore it does not account for cloudiness.

Table 4. Stepwise fit results forα vs. different indices of biomass. Values represent the fitted coefficients for each variable. NU is used for
“Not Used in the fit”.

Tchla bp(650) bbp(650) aps aphy fluo

Intercept −1.39 0.63 19.0 1.28 1.36 −1.18
Log10(Biomass) 1.36 3.40 767 1.91 1.29 1.47
Log10(Biomass)2 NU 0.652 0.96 0.114 NU NU
Depth NU NU 7.66E−3 NU −1.12E−2 -3.43E-3
Depth2 4.81E−6 2.33E−5 5.48E−5 1.22E−5 4.77E−5 2.71E−5
T NU NU −0.642 NU NU −1.24E−2
T2 NU 3.00E−4 1.52E−2 4.64E−4 2.94E−4 NU
Log10(Egrowth) † −3.07E−2 NU NU NU NU NU
Log10(PARtheo)

§ NU NU 0.155 NU NU NU
Log10(PARtheo)

2 NU −1.99E−2 −4.09E−2 NU −2.29E−2 NU
Log10(NO3) NU NU −4.01E−2 NU −1.167E−2 1.43E−2
RMSE 0.21 0.30 0.31 0.22 0.23 0.21
MAPE 0.40 0.65 0.66 0.44 0.44 0.41
R2 0.90 0.80 0.78 0.89 0.88 0.90

† See Table 3
§ See Table 3

accounting for the depth effects. This is not unexpected given
the clear depth dependence ofPmax for a given Tchla con-
centration observed in Fig. 1e. The relationships retrieved
or the parameters used are not discussed further here, but
the result that interests us is that the pigment or absorption
based estimates ofPmax can be relatively easily improved
beyond a simple biomass relationship whereas the same is
not true for the scattering based methods. The latter hence

have lower predictive skill when other sources of variability
are accounted for. We also note that the errors on the pre-
diction of Pmax using this simple regression approach with
Tchla are very reasonable; the average error (MAPE) is 25%
for the BIOSOPE dataset (see Table 3) and 33% for the inde-
pendent PROSOPE dataset.

We carried out a similar analysis forα (Table 4 and Fig. 8).
In this case, all estimates improved by important margins
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Fig. 7. Prediction ofPmax using several variables.(a) Using Tchla
as the biomass index and other variables as given in Table 3.(b)
Same as (a) except usingbp as the biomass proxy.

relative to the relationship using only the biomass index.
However, the Tchla and absorption based measures remained
significantly better than the scattering based methods (Ta-
ble 4). In fact, the improvements in the scattering based
methods are due to the fact that they started off so poorly,
and any variable that is somewhat correlated withα or Tchla
will improve the relationships.

4.4 Additional information in scattering beyond Tchla

An important question remains: given the regression using
Tchla and environmental variables, can scattering based vari-
ables allow us to improve estimates ofPmax andα? In other
words, is there supplementary information in the scattering
based proxies? This question can also be addressed by a
stepwise regression analysis, by verifying if adding scatter-

Fig. 8. Prediction of α (in mgC m−3 h−1 [µmol pho-
ton m−2 s−1]−1) using several variables.(a) Using Tchla as the
biomass index and other variables as given in Table 4.(b) Same as
(a) except usingbp as the biomass proxy.

ing based measures improves the fit significantly. We tested
the addition of the following variables:bp(650), bp(650)2,
and Tchla/bp(650). Only thebp(650) provided a very small
but significant improvement to the fits forPmax (RMSE de-
creased from 0.1488 to 0.1441). None provided signifi-
cant improvements in the regression ofα (all had values of
p >0.14). We therefore conclude that, for the waters studied,
the bulk scattering measurements adds very little to the esti-
mates of photosynthetic parameters, once basic information
regarding chlorophyll concentration and irradiance at depth
is available (see Tables 3 and 4).

Biogeosciences, 4, 853–868, 2007 www.biogeosciences.net/4/853/2007/



Y. Huot et al.: Proxies of biomass for primary production 867

This conclusion is of course only valid for the environ-
ments and the space and time scales that we studied. Scatter-
ing based measurements have been proposed to help in the
estimation of primary production based on diurnal changes
in the cp (e.g. Siegel et al., 1989; Claustre et al., 2007) or
of phytoplankton carbon concentration and growth rate from
space on large spatial scales (Behrenfeld et al., 2005). These
applications are beyond the scope of our analysis and our re-
sults are difficult to extrapolate to them.

4.5 Estimation of primary productivity using empirical re-
lationships

Primary productivity models are generally expressed with
the production (P )-irradiance relationship normalized to
biomass (e.g.P B). This relationship is depth integrated
and then multiplied by biomass,P=BP B (the depth in-
tegration can occur after the multiplication by biomass if
depth photosynthetic parameters vary with depth). In or-
der to reduce the variability inP B, some authors relate it
to its location and time (Platt and Sathyendranath, 1999;
Longhurst, 1998), while others describe it in terms of envi-
ronmental variables (e.g.P B (T, Salinity, Ed )) (Behrenfeld
and Falkowski, 1997). The aim of our study is to identify
the normalization factor (“B”) that reduces as much as pos-
sible the variability in the photosynthetic parameters. In do-
ing so, we obtain regressions that predictPmax andα from
different biomass proxies and environmental variables (Ta-
ble 3 and Table 4). Our relationships can thus be written as
P=f (B, T , Salinity, Ed , z. . . ). Therefore, these relation-
ships, or extensions of them, could be used in primary pro-
duction models using remote sensing data, but without the
need to multiply the resulting primary production by an esti-
mate of the phytoplankton biomass. Here, the phytoplankton
biomass serves directly as a predictive variable.

5 Conclusions

Within the context of evolving ocean observation technology,
our analysis consolidates a rationale for the direction taken
over the past 50 years or so for estimating primary produc-
tivity. Indeed, we find that chlorophylla remains the best
proxy of phytoplankton biomass for studies of primary pro-
ductivity. In particular, we find that the scattering coefficient
(and other scattering-based variables) did not provide infor-
mation about the photosynthetic parameters that could not be
more accurately estimated by a measure of chlorophylla (or
fluorescence) and incident irradiance at depth. This is prob-
ably due as much to the superior accuracy of the estimation
of Tchla compared to other measurements as to its speci-
ficity to phytoplankton. There is one main limitation in our
present study: most of our dataset originates from subtropi-
cal stratified waters (BIOSOPE) and warm temperate waters
(PROSOPE). Photosynthetic parameters depend on environ-

mental variables and thus on the regions sampled. While our
measurements are representative of a wide range of chloro-
phyll concentrations (from∼0.02 to∼3 mg m−3), they are
not representative, for example, of polar or cold temperate
water columns. It is possible that in these waters scattering-
based measurement prove to be more robust for the determi-
nation of phytoplankton photosynthetic parameters.
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