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Abstract

Large sinking particles transport organic and inorganic matter into the deeper layers

of the oceans. From 70 to 90% of the superficial particulate material is disaggregated

within the upper 1000 m. This decrease with depth indicates that remineralization pro-

cesses are intense during sedimentation. Generally, the estimates of vertical flux rely5

on the sediment trap data but difficulties inherent in their design, limit the reliability of

this information. During the BIOSOPE study in the southeastern Pacific, 76 vertical

casts using the Underwater Video Profiler (UVP) and deployments of a limited number

of drifting sediment traps provided an opportunity to fit the UVP data to sediment trap

flux measurements. We applied than the calculated UVP flux in the upper 1000 m to the10

whole 8000 km BIOSOPE transect. Comparison between the large particulate material

(LPM) abundance and the estimated fluxes from both UVP and sediment traps showed

different patterns in different regions. On the western end of the BIOSOPE section the

standing stock of particles in the superficial layer was high but the export between 150

and 250 m was low. Below this layer the flux values increased. High values of about15

30% of the calculated UVP maximum superficial flux were observed below 900 m at

the HNLC station. The South Pacific Gyre exported about 2 mg m
−2

d
−1

. While off

Chilean coast 95% of the superficial matter was remineralized or advected in the up-

per kilometer, 20% of the superficial flux was observed below 900 m near the Chilean

coast. These results suggest that the export to deep waters is spatially heterogeneous20

and related to the different biotic and abiotic factors.

1 Introduction

The biological pump is the sum of biological processes by which atmospheric CO2 fixed

in photosynthesis is transferred from the euphotic layer to the ocean interior. Organic

and inorganic matter is transported into the deep layers mainly by sinking particles25

(Volk and Hoffert, 1985). Small (micrometers range) particles are considered to be
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suspended material while large (>100 micrometers) particles are considered to set-

tle. Size is an important parameter, determining among others the sinking velocity,

mass content and food potential of particles. Particles volume distribution for surface

water shows that most of the mass is encompassed in the 0.1–3 mm range (Jackson

et al., 1997). Stemmann et al. (2007) showed that the volume of large particles can5

equal the volume of the smaller ones. On the other hand, according to Richardson and

Jackson (2007), picoplankton despite their small size, may contribute more to oceanic

carbon export than currently recognized. Picoplankton can aggregate, be incorpo-

rated into settling detritus or consumed as aggregates or as individual cells by higher

trophic levels such as the pelagic filter-feeder tunicates or flux-feeder pteropods. This10

zooplankton short-circuit the microbial loop (Alldredge, 2005; Andersen et al., 1998;

Gorsky et al., 1999; Noji et al., 1997) and transform small slowly settling particles into

rapidly sinking large particulate matter (LPM). Organic particles leaving the euphotic

zone sink until they are remineralized or reach the ocean bottom. Numerous studies

agree that relatively little of the organic matter that leaves the euphotic zone reaches15

the bottom. Particle flux at 1000 m is considered to be about 10% of that at 100 m

(Betzer et al., 1984; Martin et al., 1987; Suess, 1980). The decrease in concentration

of particles with depth (Bishop and Edmond, 1976; Gardner and Walsh, 1990) implies

that intense solubilizing processes of sinking particles occur in the water column during

sedimentation. Particles can also be repackaged into larger faster settling objects with20

lower concentrations and therefore more difficult to sample.

Estimates of sinking material rely primarily on the deployment of sediment traps (As-

per, 1987; Buesseler et al., 2007a; Gardner et al., 2000; Honjo et al., 1984). Problems

associated with the use of sediment traps such as hydrodynamic flushing, swimmer

contamination, and sample degradation, make trap measurements difficult to validate25

(see Buessler et al., 2007, for review). According to Yu et al. (2001) the trapping ef-

ficiency of 40% is a typical minimum value for the pelagic upper ocean. One way to

increase the reliability of quantitative estimations of vertical export of the particulate

matter is to deploy neutrally buoyant traps which drifting in the sampled water mass
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minimize the bias of advective effects (Buesseler et al., 2007a). In fact, most of the

changes in flux with depth occur in the upper 1000 m (Lutz et al., 2002) and most of

the processes that can bias flux estimates occur in this layer of the water column. On

the other side, little attention is given in the literature to the role of the particle size

distribution although many particle properties, fundamental in biogeochemical studies,5

such as sinking rate, carbon content depend on accurate determinations of particle

size (Burd et al., 2007).

Here we are estimating the flux of particles by a method based on optical quantifi-

cation of particles >100µm (LPM) including the marine snow fraction (Gorsky et al.,

2000; Guidi et al., 2007). As this methodology gives a detailed vertical assessment of10

the LPM abundance and size spectrum, we can estimate fluxes between the surface

and the depth of 1000 m (the depth limit of the instrument’s deployment)

The BIOSOPE (Biogeochemistry and Optics South Pacific Experiment) cruise cov-

ered a large range of contrasting hydrodynamic and trophic regimes along a ∼8000 km

transect from west of the Marquesas archipelago to the coastal waters of Chile (Claus-15

tre et al., 2008).

On the western end of the BIOSOPE transect, near Marquesas archipelago an en-

hancement of the primary production is visible from satellite. This level of production is

often due to the island mass effect and has been explained by the dynamic interaction

of the circulation and the topography (Martinez and Maamaatuaiahutapu, 2004, and20

references therein).

The South Pacific Gyre (SPG) is the largest subtropical anticyclonic gyre and the

least described region of the ocean (Claustre and Maritorena, 2003; Longhurst, 1995).

We know remarkably little about organic matter production and fate in it. The rare

observations report very low chlorophyll concentrations (Chavez et al., 1995).25

On the eastern end of the BIOSOPE transect large biomass is exported offshore and

to the deep layers near the Chilean coast fuelled by the Chilean upwelling (Claustre et

al., 2008; Thomas, 1999).

The Underwater Video Profiler (UVP see below for details) was used to assess the
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particles stock and size spectrum at a high vertical resolution. As part of the BIOSOPE

program we fitted the UVP data to sediment trap flux measurements and applied the

UVP flux estimations to the 76 profiles made during the BIOSOPE transect. We char-

acterised the distribution of the large particulate matter (LPM) and the resulting fluxes

in the 1000 m water column over the whole transect.5

2 Methods

2.1 Zone of the study and data acquisition

The BIOSOPE cruise was conducted from 26 October to 11 December 2004. The

detailed description of the cruise including the sampling strategy is reviewed in Claustre

et al. (2008).10

Within this spatial context, we examined the vertical distribution of the Large Partic-

ulate Matter (LPM>100µm to 2 cm) using a non-destructive imaging system the Un-

derwater Video Profiler (UVP) constructed in the Laboratoire d’Océanologie of Ville-

franche sur mer, France. The vertical deployments were conducted from the surface to

the depth of 1000 m (Table 1) at a descent speed of 1 m/s. During the section 76 ver-15

tical profiles were realised from Marquesas archipelago to the coastal waters of Chile

(Fig. 1).

The UVP coupled to a CTD SBE19 (Seabird Inc.) quantified and measured objects

illuminated in a slab of water of known volume of 10.53 L. Object sizes are represented

by the number of pixels in an image. Size and volume calibrations were conducted20

in a sea-water tank using natural particles of different types to determine the conver-

sion between pixels to metric units (Stemmann et al., 2002). Images were recorded

digitally at a rate of 12 images per second and processed with custom made image

analysis software (Gorsky et al., 2000). The equivalent spherical diameter (ESD) of

each particle was calculated assuming that the particle projected shape was a circle.25

The resulting particles size distribution and flux data integrated over 5 m intervals
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were related to the simultaneously acquired CTD and fluorescence data.

2.2 Flux estimation from the size spectrum of particles

The mass flux was calculated from size spectra using the method from Guidi et

al. (2008)
1
.

The mass of a spherical particle with diameter (d ) is given by5

m(d ) = α d3 (1)

where α=π ρ/6 and ρ is its average density.

Its settling rate can be calculated using Stokes Law:

w(d ) = β d2 (2)

where β=g (ρ−ρ0 )(18υρ0)
−1

, g is gravitational acceleration, ρ0 is the fluid density, and10

υ is the kinematic viscosity.

The size spectrum of a “population” of particles is usually defined in terms of the

number concentration of particle (∆C) in a given small size range (∆d): n=∆C/ ∆d. The

total mass flux (Fp) is the mass flux integrated over all particle sizes. Using diameter

(d ) as a measure of particle size, then:15

Fp =

∞∫

0

n(d )m(d )w(d )dd (3)

Aggregate flux (Fp) is equal to aggregate mass multiplied by aggregate settling rate

(Eq. 3). Hence, with some simplification aggregate mass flux can be related to ag-

1
Guidi, L., Jackson, G. A., Stemmann, L. Miquel, J. C., Picheral, M., and Gorsky, G.: Particle

size distribution and flux in the mesopelagic: a close relationship, Deep-Sea Res. I., in revision,

2008.
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gregate size by power relationship (Eq. 1 and Eq. 2; Alldrege and Gotshalk, 1988;

McCave, 1984; Alldredge, 1998) following:

Fp =

m∑
i=1

ni · A · db
i

(4)

Note that the flux integration is only for particles between classes i to m available with

the UVP, not the 0−∞ shown in Eq. (3).5

Hence, knowing A and b (Eq. 4), aggregate with a given size (d ) can be directly

related to its mass flux. Estimated fluxes with UVP were compared to matching sed-

iment trap observations at global scale. A minimization procedure using the Matlab

function fminsearch (Mathworks Inc., Natick, MA) provided a means to calculate A and

b providing the best fit between the two fluxes, measured from sediment traps and10

estimated from particle size distributions (Guidi et al., 2008
1
). Residues’ normality

between model (estimated UVP flux) and data (sediment traps) were tested and the

model validated.

Finally different relationships were described between mass, fluxes of organic and

inorganic carbon and, particulate nitrogen and aggregate size distributions. The mass15

flux is given in units of dry weight (DW).

3 Results

3.1 Hydrology

The general hydrology studied during the BIOSOPE cruise is described in Claustre

et al. (2008). The surface salinity pattern varied over a large range, from the highly20

salty waters associated with the South Pacific Tropical Waters (SPTW) around 130
◦

W

(salinity of 36.6) towards the Eastern South Pacific Intermediate Water (ESPIW), at

78
◦

W (salinity of ∼34, Fig. 1). The South Equatorial Current (SEC) surrounding the

Marquesas Islands (stations MAR) constituted the southern border of High Nutrients
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Low Chlorophyll (HNLC) waters of the equatorial upwelling region (see Claustre et al.,

2008, and the references herein). The South Pacific gyre (station GYR) was character-

ized by the strongly stratified Eastern South Pacific Central Waters (ESPCW). East of

100
◦

W, the transition zone between the ESPCW and the waters, influenced by fresher

Subantarctic Surface Waters (SASW, Fig. 1), marked the subtropical front. East of5

EGY stations a tongue of low salinity waters was observed at a depth of 300 m and

flowed close to the surface near the coast.

East of 78
◦

W, the ESPIW lies above the relatively saltier Equatorial Subsurface Wa-

ter (EESW), which extends in the 100–400 m range. The ESPIW is part of the poleward

Peru-Chile undercurrent (PCUC, stations UPW, UPX).10

3.2 Distribution of the biogeochemical parameters

The distribution and amounts of total chlorophyll a concentration (TChla) measured

along the transect by different methods were similar (Raimbault et al., 2007 and Ras et

al., 2007). These in situ chlorophyll a measurements matched the values derived from

satellite imagery and showed considerable variations along the section. The highest15

concentrations of Tchla were recorded in surface layers at the western and eastern

extremities; very low chlorophyll content was measured in the center of the SPG. The

lowest concentration occurred near the surface at 114
◦

W (∼0.02 mg TChla m
−3

). Dis-

tribution of the in vivo fluorescence of TChla (Fig. 2) shows the range of variation of the

autotrophic biomass along transect.20

The water column was explored in more detail during the long stations (Fig. 3). Drift-

ing sediment traps were deployed below the mixed layer (Claustre et al., 2008).

During the BIOSOPE cruise, the subsuperficial LPM distribution was generally cor-

related with the vertical distribution of fluorescence (Fig. 3) suggesting a direct relation-

ship between the two parameters. Except the UPX station near the Chilean coast, this25

relationship was not evident in the deeper layers where the UVP maxima were certainly

associated with the detritic or heterotrophic matter. LPM biovolume and abundance

were the lowest respectively at the GYR, EGY and HNLC stations while near Chile the
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water column contained the highest volumes of LPM (Figs. 3 and 4). However, con-

sidering only the euphotic zone (see Claustre et al., 2008) the MAR and UPW stations

displayed the highest maximum LPM values.

3.3 Comparison of the distinct zones along the BIOSOPE transect

LPM concentrations along the BIOSOPE transect (Fig. 4) reveal the following features:5

1) high abundance of particles in the superficial layer at the station MAR and rela-

tively high concentration of particles from 150–300 m. 2) deep LPM maximum between

135 and 130
◦

W, 3) a discontinuity in the abundance pattern at the vicinity of 100
◦

W

and 4) low particle densities in the low salinity ESPIW water mass (Figs. 1 and 4).

3.3.1 Western portion of the section10

The mass flux estimated from size distribution profiles of the LPM along the BIOSOPE

transect revealed a strong potential export in the superficial 150 m at the western end

of the transect (Fig. 5). However, below this layer, between 150 and 300 m at the MAR

station the LPM vertical flux was very low, forming a discontinuity stratum between

the surface and the mesopelagic layers (Fig. 5). Despite the low vertical fluxes at15

this station (Fig. 5) the abundance of particles was high (Fig. 4). This observation

may be explained by the small size and low settling velocities of these particles. The

section between MAR and GYR is characterized by the increasing oligotrophy and by

the deepening of the nutricline (Raimbault et al., 2007). The deep chlorophyll maximum

(DCM) deepens also (Figs. 2 and 3), its base follows the 26 kg m
−3

isopycnal (Claustre20

et al., 2008).

3.3.2 The South Pacific gyre

As expected the lowest values of particles abundance and the lowest export values

were measured in and below the GYR. Abundances were higher in the 100–400 m

layer. The low biovolume and low fluxes indicate that particles in the SPG were small25
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(Figs. 3 and 5). Eastwards, the strong salinity gradient delineated the limit of the SPG

and indicated the presence of the subtropical frontal zone (Fig. 1). A discontinuity in the

particle abundance pattern was observed in this zone and the vertical fluxes displayed

the lowest values.

3.4 Eastern portion of the section5

East of the EGY station, and below the ESPIW waters (at a depth of 250 m and below)

the water mass had small particle abundance and low vertical flux values. A significant

decrease in the concentration of particles was observed at the UPW station in the

subsurface layer. Nevertheless, the particulate volume and vertical export remained

high. This result suggests that the contribution of large size class particles in the10

particles population was high. Near the Chilean coast the mixed layer was reduced

and the nutrient concentrations and the primary production were high. At the UPX

station the Chla fluorescence signal was measurable even in the intermediate layers.

The abundance of particles and the resulting vertical flux was high in the entire water

column (Figs. 4 and 5).15

4 Discussion

Marine particles vary in length from submicron colloidal particles to marine snow larger

than tens of millimeter in diameter (Alldredge and Gotschalk, 1988; Fowler et al., 1987).

The concentration of particles varies across this size range, with smaller particles gen-

erally being more abundant than larger ones (McCave, 1975). The particle mass how-20

ever, tends to be concentrated in the larger particles (e.g., Jackson et al., 1997; Mc-

Cave, 1975).

During the BIOSOPE cruise several contrasting provinces (from oligotrophy to eutro-

phy) were studied using the Underwater Video Profiler (UVP). This instrument was built

for exhaustive optical estimation of 1) the stock of the particles >100µm (large particu-25
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late matter – LPM) from the surface to the depth of 1000 m and 2) their size distribution

(Stemmann et al., 2007). We estimated the LPM mass flux along the whole transect.

Drifting sediment traps (Claustre et al., 2008) were deployed during the long stations

below the mixed layer (between 200 and 400 m depth range). We could therefore com-

pare the UVP estimations with the biomass collected in the traps. As described more in5

details in Guidi et al. (2008)
1
, we integrated the mass flux over all the particles accord-

ing to their sizes. We used particle diameter to estimate their mass and their settling

rate (see Methods section). A minimization procedure was applied to find the best fit

between the two fluxes on a global scale. Flux estimations were made for the 76 UVP

profiles made during the cruise and were compared to the drifting sediment traps mass10

flux measurements (Fig. 6).

Fluxes can be calculated from size spectrums as showed above and the results fit-

ted to sediment trap measurements (Fig. 6). This procedure allows for a comparison of

fluxes in the 1000 m water column sampled by the UVP. When fitting the UVP data to

free-drifting trap data we assumed that the latter are correct. Thus we do not improve15

the sediment trap measurements but as the correlation between the optical assess-

ment and the collected matter is good we are applying the flux estimations to all the

76 UVP profiles providing extensive information on the potential vertical export in the

different depths along the whole transect. Image acquisition is a conservative sam-

pling method. With the improvement of the sediment trap methodology sensu Bues-20

seler et al. (2007b) we will be able to ameliorate also the traps-UVP correlations and

provide more precise flux data with high spatial and temporal resolution. This treat-

ment can be done retrospectively and also on past data stored in the UVP databank

(http://www.obs-vlfr.fr/LOV/ZooPart/UVP/).
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4.1 Abundance vs. fluxes

4.1.1 Western portion of the section

On the western end of the BIOSOPE transect, (station MAR), the abundance of partic-

ulate matter in the superficial layer is very high (Fig. 4). According to Gomez (2007),

the small pennate cluster forming diatom Pseudo-nitzschia delicatissima and the large5

centric diatom Rhizosolenia bergonii were the main microphytoplanktonic constituents

of this layer. Large, rapidly sinking phytoplankton, such as diatoms, are believed to

control carbon flux from upper ocean layers (Michaels and Silver, 1988). However as

pointed out by Gomez (2007) in the western and eastern part of the BIOSOPE tran-

sect the superficial diatom population was characterized by frustules with low silicate10

content because of the silicate-limited environment. This feature may limit also their

ballasting efficiency.

Although the abundance profile shows a vertical continuum and the surface LPM

maximum is the second highest on the whole transect (Fig. 4), the flux estimations

calculated from the UVP data fitted to the drifting sediment trap measurements reveal15

that the export between 150 and 250 m is very low (Fig. 5). This discontinuity in the

vertical flux clearly observed at the station MAR may be the result of different biolog-

ical and physical factors. Large unknown transparent objects were detected by the

UVP at the MAR site (see Fig. 7 in Stemmann et al., 2007). These circular-shaped

objects were about 2–5 mm in diameter with concentrations between 1–10 objects L
−1

.20

They were located throughout the upper 200 m but below 170 m their concentration

decreased. They might increase the potential flux values in the superficial layer. Below

this layer the population was composed of small particles. The hydrology at the MAR

site may also contribute to the discontinuity in the vertical export. The discontinuity

stratum (150–250 m) corresponds to the zone of narrowing density field and is the site25

of strong advective processes (Figs. 3 and 4 in Claustre et al., 2008). These advective

processes may be responsible of the change in the size structure of the particles pop-

ulation. Below this discontinuity layer the vertical flux values increase. This feature is
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clearly visible in the Fig. 7.

An increase of the LPM flux was observed in the HNLC zone in the vicinity of 130
◦

W.

This increase may be associated with the deepening of the sub-surface isotherms

(Claustre et al., 2008). About 30% of the maximum superficial flux was observed

below 900 m at the HNLC station. In fact, the mean export initially decreased at 200 m5

when compared to the maximum flux at the surface layer, but than it increased with

depth (Fig. 3 and 7). The superficial production at this region is weak. Only about

99 mg m
−2

d
−1

in the maximum layer but still about 20 mg m
−2

d
−1

below 900 m. The

reason of the deep increase of the exported mass may be linked among other pro-

cesses to the aggregation, advection or to the anoxic conditions. Furthermore, no10

significant difference was observed between the day and night fluxes that may be at-

tributed to the vertical zooplankton migration (Stemmann et al., 2007) and according

to Claustre et al. (2008) in this area the currents were weak. Therefore, the hypothe-

sis that the increase of large particles flux may be associated with suboxic conditions

should be further explored. According to Claustre et al. (2008) this oxygen minimum15

reflects the signature of a north-westwards propagation of the oxygen minimum zone

developed along South America. The suboxic conditions might prevent the degrada-

tion of particulate matter This hypothetical particle preservation could also occur in the

Marquesas area. Below 200 m there is a good conservation of the mass flux. Mass

flux estimated at 900 m corresponds to 70% of mass flux estimated at 200 m.20

4.1.2 The South Pacific gyre

The SPG is known as a hyper-oligotrophic water mass (Claustre and Maritorena, 2003;

Morel et al., 2007). The biological production in the superficial layer is the lowest in

the global ocean. Peaks of small particles centered at 100 m were associated with a

Prochlorococcus sp. population (Grob et al., 2007). The deep chlorophyll maximum25

(DCM) located between 160–200 m was mainly composed of pico-phytoeukaryotes,

although some coccolithophorid and diatom cells were also present (Beaufort et al.,

2007; Gomez et al., 2007; Ras et al., 2007). The maximum phaeophorbide (a tracer for
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altered Chla) concentration was found also in this layer (Ras et al., 2007). Oligotrophic

regions, where small cells dominate the production, can contribute significantly to the

global carbon flux via detritus (Richardson and Jackson, 2007). The mass flux as-

sociated with the DCM was estimated from the UVP data as ∼30 mg m
−2

d
−1

. 20%

of this flux was estimated to be exported below 200 m and about 8% below 900 m5

(∼2 mg m
−2

d
−1

). While considering the large geographical extent of the SPG, this ex-

treme oligotrophic ecosystem is producing a non negligible amount of carbon. Due to

the lack of seasonal vertical mixing and weak lateral advection, the biologically pro-

duced LPM carbon can be exported and trapped in the deep layers for long periods.

4.1.3 Eastern portion of the section10

In the vicinity of 100
◦

W, we are observing a clear discontinuity in the abundance dis-

tribution of the LPM (arrow in Fig. 4). This discontinuity corresponds to the uplifted

isolines delineating the subtropical front as described in Claustre et al. (2008). At EGY,

the DCM is located at the depth of 80 m but the export values are low, similar to the

HNLC station. The mean superficial maximum export is estimated as 127 mg m
−2

d
−1

,15

and a slight increase of fluxes with depth can be observed (Fig. 7). About 13% of the

superficial export is measured below 900 m. This result constitutes 94% of the vertical

flux estimated at 200 m. No difference was observed between the day and night fluxes.

The situation is contrasting off and near Chilean coast. High LPM concentrations are

observed at the superficial layer with a strong decrease below this layer at the location20

of the low salinity waters (Fig. 1). This feature is not detected on the flux plot (Fig. 5).

Therefore, the decrease in abundance is related to the small particle fraction. At the

UPW station, the situation is different. The potential export from the Chla maximum

estimated for the whole section is 7367 mg m
−2

d
−1

. At the depths of 200 m only 4.6%

and below 900 m only 1.5% of this flux remained. Thus, 95% of the matter was rem-25

ineralized or advected. At both coastal stations the vertical zooplankton migration was

significant. Near the Chilean coast, at the UPX stations, the vertical flux remained high

in the entire water column. The surface maximum export was 1400 mg m
−2

d
−1

, lower
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than the mean UPW surface maximum but in contrary to the latter, 20% of the superfi-

cial flux was observed below 900 m (Fig. 7). Thus the remineralization processes differ

in the two stations near the Chilean coast.

4.2 Export efficiency

Particulate export is a result of particle supply, production, consumption and aggrega-5

tion. These processes are developed at different scales of variability including time lags

between biological production and export. During settling, particles disaggregate, de-

compose and disappear. Most are transformed into smaller particles or into dissolved

matter by the processes of remineralization. Some may coalesce into larger particles

by grazing or aggregation (Alldredge and Silver, 1988; Jackson and Burd, 2002). It is at10

depths between the surface euphotic zone and roughly 1000 m where most sinking par-

ticles are remineralized (Buesseler et al., 2007b). The variety of vertical profiles shows

that there are variations in remineralization rates or advection rates with depth. Blooms

of some species, like coccolithophores or diatoms and the consequent phytodetritus

deposition, can cause episodic changes in remineralization length-scales (Nodder et15

al., 2007); blooms of filter-feeder thaliaceans, larvaceans or flux-feeder pteropods can

change element ratios, sinking speeds and ballasting (Alldredge, 2005; Andersen et

al., 1998; Boyd and Newton, 1995) or size distributions of particles (Gorsky et al.,

1999). Zooplankton affect particle flux in the sea in a number of ways; they create

or aggregate particles by feeding and producing sinking fecal pellets, disaggregate20

sinking particles by their feeding or swimming activities, remineralize sinking particles

through their feeding and metabolism, and actively transport particulate and dissolved

organic matter from the surface to depth by vertical migration (e.g., Fowler et al., 1987;

Longhurst et al., 1990). Beyond the overall changes in particle flux with depth, changes

in composition of the sinking material can have an impact on carbon gradients. Stein-25

berg et al. (2008), compared losses of sinking POC measured by neutrally buoyant

sediment traps with bacteria and zooplankton metabolic requirements in the subtrop-

ical Pacific and in the subarctic Pacific. Mesopelagic bacterial carbon demand was
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respectively 3- to 4-fold, and 10 fold greater than the loss of sinking POC flux, while

zooplankton carbon demand was 1- to 2 fold, and 3- to 9-fold greater. Nevertheless, on

the studied section and in the different trophic regimes UVP data indicate that particle

export below 900 m was not negligible.

During the BIOSOPE transect in the different geographic zones the relative fluxes5

when compared to the superficial maximum were different (Fig. 8). Higher proportion

of particulate matter was mediated to the deep layers in the GYR region than in the

superficially rich MAR or UPW zones.

Sinking velocities determine the depth at which remineralization occurs, which in

turn determines how soon remineralized nutrients and carbon will be returned to the10

surface ocean (Sarmiento and Gruber, 2006). Particles of the same excess density

settle at roughly the same speed principally because Reynolds number is very sen-

sitive to particle size (Khelifa and Hill, 2006a, b). Although organic compounds are

initially present in different proportions in the particles with different settling velocities,

the degradation process can lead to uniform chemical compositions of particles (Goutx15

et al., 2007). This change reflects the processes of loss through enzymatic hydrolysis

of source compounds and input of bacterial biomass. The settling speed may differ in

the different regions due to the differences in the composition of primary and secondary

producers. More studies should test the hypothesis on which our flux estimations are

based, i.e., that at mesopelagic depths particles of similar size settle at a more or less20

uniform speed due to their similar composition.

5 Conclusions

Stock and size spectrum of particles >100µm was optically estimated from the surface

to the depth of 1000 m and the mass flux of the particle bulk calculated. The resulting

mass fluxes estimated with the UVP were compared to the drifting sediment trap data25

and applied over the whole BIOSOPE transect.

The LPM abundance and the estimated fluxes differed within the study area. At the

886

http://www.biogeosciences-discuss.net
http://www.biogeosciences-discuss.net/5/871/2008/bgd-5-871-2008-print.pdf
http://www.biogeosciences-discuss.net/5/871/2008/bgd-5-871-2008-discussion.html
http://www.egu.eu


BGD

5, 871–901, 2008

Aggregates

distribution in the

South-Eastern Pacific

L. Guidi et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

◭ ◮

◭ ◮

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

EGU

MAR station the abundance profile showed a vertical continuum while the vertical flux

decreased significantly between 150 and 250 m. This change could be due to circular-

shaped objects 2–5 mm in diameter with concentrations between 1–10 objects L
−1

observed in the superficial layer, as well to intense hydrodynamic processes (Figs. 3

and 4 in Claustre et al., 2008) in this zone. Only about 2% of the superficial LPM was5

exported below 900 m.

Contrastingly, about 30% of the maximum superficial flux was observed below 900 m

at the HNLC station. This feature may be associated to the suboxic (Claustre et al.,

2008) conditions.

In spite of relatively small values (2% of the superficial maximum), the carbon export10

below the extreme oligotrophic SPG is not negligible. The lack of seasonal vertical

mixing and weak lateral advection suggest that this matter can be trapped in the deep

layers for long periods.

A discontinuity in the abundance distribution of the LPM is observed in the vicinity of

100
◦

W and is associated with the intrusion of the subtropical front.15

High LPM concentrations are observed in the superficial layer off and near Chilean

coast. There is a strong decrease of particles abundance below this layer in the low

salinity waters, but not in the vertical flux, suggesting a decrease in the small particles

population only.

The potential export from the Chla maximum displays the highest value at the UPW20

station but at the depths of 200 m only 4.6% and below 900 m only 1.5% of this flux

remains. 95% of the matter is remineralised or advected above 200 m.

At the UPX station, the vertical flux remains high in the entire water column. In

contrast to UPW, 20% of the superficial flux is still observed below 900 m.

Variations in the estimated flux rates of LPM obtained in this study suggest that a25

wide variety of biotic and abiotic processes may drive the aggregation-disaggregation

processes and influence the export of matter from mesopelagic layers. This conclusion

suggests that LPM export to deep waters is heterogeneous and that optical methods

allowing high spatial resolution studies should be utilized in deep sea habitats.
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Table 1. Location and time of the UVP deployments.

Station Longitude Latitude Date Time (UT) Station Longitude Latitude Date Time (UT)

ES01 −144.001 −12.5 25-Oct-04 01:23 a.m. STA13 −101.5 −29.09 22-Nov-04 11:31 a.m

MAR01 −141.14 −8.25 26-Oct-04 01:24 p.m. STA15 −95.501 −30.42 24-Nov-04 11:34 a.m.

MAR02 −141.16 −8.23 27-Oct-04 10:32 a.m. STA16 −92.59 −31.25 25-Nov-04 10:18 a.m.

MAR02 −141.16 −8.23 27-Oct-04 11:06 a.m. EGY02 −91.28 −31.49 26-Nov-04 06:45 a.m.

MAR02 −141.16 −8.22 28-Oct-04 01:45 a.m. EGY02 −91.27 −31.5 27-Nov-04 03:07 a.m.

MAR02 −141.16 −8.22 28-Oct-04 02:19 a.m. EGY03 −91.25 −31.52 27-Nov-04 06:07 a.m.

MAR03 −141.16 −8.201 28-Oct-04 10:53 a.m. EGY03 −91.25 −31.52 27-Nov-04 06:41 a.m.

MAR03 −141.16 −8.201 28-Oct-04 11:27 a.m. EGY03 −91.24 −31.52 27-Nov-04 07:08 p.m.

MAR04 −141.16 −8.19 29-Oct-04 10:06 a.m. EGY03 −91.24 −31.52 27-Nov-04 09:05 p.m.

MAR04 −141.16 −8.19 29-Oct-04 10:40 a.m. EGY03 −91.24 −31.52 27-Nov-04 09:39 p.m.

HLNC01 −136.52 −9.001 31-Oct-04 12:57 p.m. EGY04 −91.25 −31.52 28-Nov-04 08:54 a.m.

HLNC01 −136.52 −9.01 01-Nov-04 01:25 a.m. EGY04 −91.25 −31.52 28-Nov-04 09:11 p.m.

HLNC02 −136.53 −9.001 01-Nov-04 10:14 a.m. EGY04 −91.25 −31.52 28-Nov-04 09:45 p.m.

HLNC02 −136.53 −9.001 01-Nov-04 10:48 a.m. EGY05 −91.25 −31.54 29-Nov-04 06:18 a.m.

HLNC02 −136.59 −9.03 02-Nov-04 05:09 a.m. EGY05 −91.25 −31.54 29-Nov-04 06:52 a.m.

HLNC03 −136.58 −9.04 02-Nov-04 10:15 a.m. EGY05 −91.21 −31.54 29-Nov-04 12:03 p.m.

HLNC03 −136.58 −9.04 02-Nov-04 10:49 a.m. EGY05 −91.22 −31.53 29-Nov-04 09:49 p.m.

STA01 −134.21 −11.31 03-Nov-04 02:12 p.m. EGY06 −91.24 −31.54 30-Nov-04 09:07 a.m.

STA03 −130.23 −15.08 05-Nov-04 01:39 p.m. STA17 −87.26 −32.18 01-Dec-04 10:31 a.m.

STA05 −125.57 −18.301 07-Nov-04 01:36 p.m. STA18 −84.04 −31.42 02-Dec-04 08:40 p.m.

STA07 −120.51 −21.44 09-Nov-04 01:05 p.m. STA19 −81.38 −32.57 03-Dec-04 10:25 a.m.

STA09 −116.01 −24.42 11-Nov-04 12:51 p.m. STA20 −78.22 −33.19 04-Dec-04 10:21 a.m.

GYRE02 −113.59 −26.001 12-Nov-04 11:56 a.m. STA21 −75.501 −33.35 05-Dec-04 09:57 a.m.

GYRE03 −114.01 −26.001 13-Nov-04 08:16 a.m. UPW01 −73.23 −33.52 07-Dec-04 01:27 a.m.

GYRE03 −114.01 −26.001 13-Nov-04 08:50 a.m. UPW02 −73.23 −33.58 07-Dec-04 05:12 a.m.

GYRE03 −114.001 −26.03 13-Nov-04 11:19 p.m. UPW02 −73.23 −33.58 07-Dec-04 05:46 a.m.

GYRE03 −114.001 −26.03 13-Nov-04 11:53 p.m. UPW02 −73.24 −33.58 07-Dec-04 08:08 a.m.

GYRE04 −114.02 −26.04 14-Nov-04 10:53 a.m. UPW02 −73.21 −33.52 07-Dec-04 09:21 p.m.

GYRE04 −114.02 −26.04 14-Nov-04 11:27 a.m. UPW02 −73.21 −33.52 07-Dec-04 09:55 p.m.

GYRE04 −114.01 −26.05 14-Nov-04 11:20 p.m. UPW03 −73.18 −33.5 08-Dec-04 06:26 a.m.

GYRE04 −114.01 −26.05 14-Nov-04 11:54 p.m. UPW03 −73.18 −33.5 08-Dec-04 07:00 a.m.

GYRE05 −114.01 −26.04 15-Nov-04 08:08 a.m. UPX01 −72.24 −34.32 09-Dec-04 09:03 p.m.

GYRE05 −114.01 −26.04 15-Nov-04 08:42 a.m. UPX02 −72.26 −34.36 10-Dec-04 01:30 a.m.

GYRE05 −114.01 −26.04 15-Nov-04 09:16 a.m. UPX02 −72.27 −34.37 10-Dec-04 06:29 a.m.

GYRE05 −114.02 −26.04 15-Nov-04 11:25 p.m. UPX02 −72.27 −34.37 10-Dec-04 07:03 a.m.

GYRE06 −114.001 −26.04 16-Nov-04 10:28 a.m. UPX02 −72.301 −34.401 11-Dec-04 01:21 a.m.

STA10 −110.401 −26.51 17-Nov-04 12:22 p.m. UPX03 −72.29 −34.39 11-Dec-04 08:10 a.m.

STA11 −107.35 −27.42 20-Nov-04 12:17 p.m. UPX03 −72.29 −34.39 11-Dec-04 08:39 a.m.
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Fig. 1. Salinity section below the BIOSOPE transect superimposed on a SeaWiFS composite

image of Chla concentration. The South American continent is in black and grey. Position of the

6 long-term stations is from left to right: MAR – Marquesas station, HNLC, GYR, EGY, UPW

and UPX stations.
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Fig. 2. In vivo fluorescence plot of Chla along the BIOSOPE section. Note the relatively high

values at each end of the transect.
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Fig. 3. Mean 0–1000 m profiles of the long-term stations displaying the temperature, salinity,

fluorescence (RU) and the biovolumes (in mm
−3

L
−1

) of the LPM estimated from the UVP data.

Note the logarithmic scale for the LPM data.
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Fig. 4. Abundance of LPM >100µm in the first km of the BIOSOPE cruise. The arrow illustrate

the discontinuity zone in the abundance distribution of the large particulate matter.
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Fig. 5. Mass flux of LPM in mg DW m
−2

d
−1

estimated from size measurements of every

individual particle recorded during the vertical deployment of the UVP. Only data from 0–500 m

are shown for better visualisation of the superficial structures. The vertical resolution of the

sampling was 10.5 L every 8 cm (see Guidi et al., 2007, for details). Isohalines are in white.
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Fig. 6. Drifting sediment trap mass flux measurements versus the UVP estimated mass flux.

The sediment traps were deployed below the mixed layer 200 m deep at the extremities of the

transect and at the depth of about 400 m at the center of the SPG.
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Fig. 7. Mean export at different depths and the % exported below 900 m related to the potential

superficial export maximum.
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Fig. 8. The s ratio corresponding to the LPM mass flux (F ) estimated at depth Z normalized

by the flux estimated below Ze (s ratio(Z)=F (Z)/F (Ze)). Here, Ze is the depth where the mass

flux is maximal (s ratio is equal to 1 for Ze: dark red).
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