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Abstract

The role of potential factors limiting bacterial growth was investigated along vertical and

longitudinal gradients across the South Eastern Pacific Gyre. The effects of glucose,

nitrate, ammonium and phosphate additions on heterotrophic bacterial production (us-

ing leucine technique) were studied in parallel in unfiltered seawater samples incubated5

under natural daily irradiance. Longitudinally, the enrichments realized on the subsur-

face showed three types of responses. From the Marquesas plateau (8
◦
W to approx

125
◦
W), bacteria were not bottom-up controlled, as confirmed by the huge potential

of growth in non-enriched seawater (43±24 times in 24 h). Within the Gyre (125
◦
W–

95
◦
W), nitrogen alone stimulated leucine incorporation rates by a factor of 5.6±3.6, but10

rapidly labile carbon (glucose) became a second limiting factor (enhancement factor

49±32 when the two elements were added). Finally from the border of the gyre to

the Chilean upwelling (95
◦
W–73

◦
W), labile carbon was the only factor stimulating het-

erotrophic bacterial production. Interaction between phytoplankton and heterotrophic

bacterial communities and the direct versus indirect effect of iron and macronutrients15

on bacterial production were also investigated in four selected sites: two sites on the

vicinity of the Marquesas plateau, the centre of the gyre and the Eastern border of

the gyre. Both phytoplankton and heterotrophic bacteria were limited by availability of

nitrogen within the gyre, but not by iron. While iron limited phytoplankton at Marquesas

plateau and at the eastern border of the gyre, heterotrophic bacteria were only limited20

by availability of labile DOC in those environments.

1 Introduction

Heterotrophic bacteria generally meet their energy and elemental needs from utilisa-

tion of organic matter, which includes essential elements like, C, N, P and Fe. How-

ever, in oligotrophic environments, elemental needs are sometimes not satisfied only25

by utilization of organic matter and heterotrophic bacteria can compete with phyto-
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plankton for mineral nutrients like N, P or Fe (Kirchman, 1994; Tortell et al., 1999;

Thingstad, 2000). To examine factors limiting heterotrophic bacterial growth, seawater

samples are generally amended with various components (organic molecules, macro

nutrients, iron), alone or in combination. After 24–48 h, some bacterial parameters are

examined, the main one primarily being bacterial production (either with thymidine or5

leucine technique). Different elements have been shown to stimulate bacterial pro-

duction: phosphorus in the Atlantic Ocean (Sargasso Sea: Cotner et al., 1997, Gulf of

Mexico: Pomeroy et al., 1995) and in the Mediterranean Sea (Eastern: Zohary and Ro-

barts, 1998; Thingstad et al., 2005; Western: Van Wambeke et al., 2002), nitrogen in

the South West Pacific Ocean (French Polynesia: Torréton et al., 2000), labile organic10

carbon in the Equatorial and Subarctic Pacific (Kirchman, 1990; Kirchman and Rich,

1997), iron in the Southern ocean (Pakulski et al., 1996, Tortell et al., 1996). From a

punctual observation, it is difficult to generalize because within a given area, tempo-

ral and vertical variability have been shown (Sala et al., 2002; Van Wambeke et al.,

2002). In addition, the simple point of view of “one single” resource limiting factor has15

evolved: i) co-limitation often occurs: carbon – iron (Tortell et al., 1999; Church et al.,

2000; Kirchman et al., 2000), carbon – phosphorus (Sala et al., 2002, Van Wambeke

et al., 2002), carbon – nitrogen (Torréton et al., 2000) ii) among heterotrophs, organic

molecules might acts as nutrients for building biomass but also as energy resources;

this observation is at the origin of the concept of energy limitation (Kirchman, 1990,20

Donachie et al., 2001) and iii) direct versus cascade effects: are bacteria directly stim-

ulated, or do they benefit from a surplus phytoplankton production also affected by the

relieving of one key nutrient (Palkuski et al., 1996; Church et al., 2000; Cochlan, 2001;

Oliver et al., 2004; Obernosterer et al., 2007).

In the South Pacific Gyre, extreme isolation from terrestrial influence results in a25

permanent situation of hyperoligotrophy (Claustre et al., 2007
1
). Picoplanktonic organ-

1
Claustre, H., Sciandra, A., and Vaulot, D.: Introduction to the special section: bio-optical

and biogeochemical conditions in the South East Pacific in late 2004 – the BIOSOPE cruise,

Biogeosciences Discuss., in preparation, 2007.
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isms, both autotrophic and photoautotrophic, dominate community metabolism in this

area (Grob et al., 2007). Bacterial production is very low in the centre of the gyre and

relies upon autochthonous, photosynthetically derived organic matter as well as on

changes in solar radiations as shown by the diel variability of bacterial production (Van

Wambeke et al., 2007a, b
2
). Photo-autotrophic production is limited by nitrogen avail-5

ability within the centre of the Gyre and is particularly adapted to the very low amounts

of dissolved iron present (Bonnet et al., 2007). In contrast, iron limits phytoplanktonic

production within the Marquesas plateau. The purpose of this study was to determine

which factors limit bacterial growth in the South Pacific across longitudinal and vertical

gradients.10

2 Materials and methods

In order to identify the factors limiting heterotrophic bacterial production, two different

sets of experiments were performed, one under trace metal clean condition (TMC), and

the other under non trace metal clean conditions (non TMC).

TMC. These experiments were performed at four experimental sites. These stations15

represented different trophic regimes (Table 1): the mesotrophic area associated to

the plume of the Marquesas Island (141.14
◦
W, 8.19

◦
S) (MAR), the adjacent medium

nitrate, low chlorophyll waters (136.97
◦
W, 9.04

◦
S) (HNL), the hyperoligotrophic waters

associated with the central part of the South Pacific gyre (114.02
◦
W, 26.04

◦
S) (GYR)

and the oligotrophic eastern side of the gyre (91.39
◦
W, 31.89

◦
S) (EGY). The GYR20

site has been selected from ocean color images as having the lowest surface chloro-

phyll concentration in the world ocean. Details of these on-deck incubations are fully

described in Bonnet et al. (2007). Briefly, seawater was collected at 30-m depth us-

ing a Teflon pump and dispensed into acid-washed (Suprapur Merck HCL) transparent

2
Van Wambeke, F., Duhamel, S., Tedetti, M., and Claustre, H.: Heterotrophic bacterial

production in the South East Pacific: daily variability, Biogeosciences Discuss., in preparation,

2007b.
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polycarbonate bottles. Nutrients were added alone and in combination to final con-

centrations of 1µM NH
+

4 (from ammoniac reagent) + 2µM NaNO3, 0.3µM NaH2PO4,

2 nM FeCl3, 10µM C-glucose (Table 2). The bottles were incubated in an on-deck

incubator with circulating surface seawater at appropriated irradiance (50% ambient

light level). Three bottles for each treatment were randomly selected and sampled5

destructively at 24 h and 48 h. A large set of parameters were measured to follow nutri-

ent concentrations, phytoplankton response (cytometric counts, variable fluorescence,

chlorophyll, particulate primary production, Bonnet el al., 2007), bacterial abundance

and heterotrophic bacterial production.

Non TMC. We also investigated more systematically factors influencing leucine incor-10

poration rates using non TMC experiments, i.e. incubated water sampled from Niskin

bottles and manipulated in a classical laboratory. Nutrients were added in order to

obtain a final concentration of 1µM NH4Cl + 1µM NaNO3, 0.25µM Na2HPO4, 10µM

C-glucose (Table 2). Transparent polycarbonate flasks of 60 ml were used and in-

cubated on average 24 h in simulated in situ conditions (on deck incubator, neutral15

screens). For the longitudinal trend (141
◦
W to 72

◦
W, Fig. 1), seawater was sampled at

one single depth varying from 5 to 30 m according the CTD profile. The depths chosen

were always within the mixed layer, and corresponded to 50% incident light. We also

investigated factors limiting BP along vertical profiles at sites GYR, EGY and UPW. The

latter site corresponded to the upwelling area off the Chilean Coast (73.2
◦
W, 33.5

◦
S,20

Fig. 1). For those experiments, for each depth sampled, a series of five 60 ml poly-

carbonate flask (C, P, N, G, NPG) was incubated in a running seawater bath covered

with a neutral screen corresponding to the incident light level. The deeper depth sam-

pled was below the euphotic zone and was incubated in the dark in the incubator at

in situ temperature. In situ light conditions were then correctly reproduced (excluding25

UV effects), whereas a slight difference could be obtained with temperature: up to 3
◦
C

difference at GYR (for the 185 m sample corresponding to 1% incident light: 19
◦
C in

situ, 22
◦

during incubation), 2
◦
C at EGY and 2.2

◦
at UPW.

Bacterial abundance was determined by flow cytometry as described in Grob et
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al. (2007). Bacterial production was determined using
3
H leucine technique coupled

with the centrifuge method with full methodological description in Van Wambeke et

al. (2007a). Briefly, seawater samples or sub-samples from incubated flasks were

incubated in the dark for 1 to 2 hours after addition of 20 nM leucine. The terms “het-

erotrophic bacteria” and “heterotrophic bacterial production” are used in the whole text5

by simplicity but sensus stricto refers to heterotrophic prokaryotes and heterotrophic

prokaryotic production, respectively. Indeed, prokaryotes include Bacteria and Ar-

chaea; and it has been shown that some organisms in both groups are able to in-

corporate leucine (Kirchman et al., 2007).

Nutrients were analyzed following standard colorimetric methods directly on board10

(Raimbault et al., 2007). Chlorophyll a (Chl a) concentrations given for the enrich-

ment experiments were analyzed fluorimetrically as described in Bonnet et al. (2007)

whereas concentrations were measured systematically at each station during the tran-

sect using HPLC method (Ras et al., 2007). Particulate primary production was mea-

sured on board in running seawater baths covered with a 50% neutral screen. Incuba-15

tions periods lasted on average 5 h during morning time hours. Detailed methodology

and assumption used to convert hourly to daily rates are fully described in Duhamel et

al. (2007).

A significant stimulation was considered when the ANOVA comparison of distribution

of the triplicates treatments gave p<0.05.20

3 Results

3.1 Initial conditions prior to enrichment experiments

A large gradient of nutrient concentrations and chlorophyll a was observed along the

transect (Table 1). Nitrate concentrations ranged from undetectable values to 3.6µM

(station STB 18), whereas soluble reactive phosphorus was always detectable and25

above 120 nM (Moutin et al., 2007). Chl avaried almost by 2 orders of magnitude
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(0.02 mg m
−3

in the centre of the gyre to 14.8 mg m
−3

in the Chilean upwelling sys-

tem). Leucine incorporation rates ranged from 10 to 164 pmol L
−1

h
−1

. Higher values

of nutrients, Chla and leucine incorporation rates where obtained at the eastern part of

the transect, within the Chilean upwelling (stations STB20, STA21, site UPW). Stations

between STB6 and STB15 displayed lower Chla stocks and leucine incorporation rates5

(means ± sd 0.027±0.009 mg Chla m
−3

, 11.9±1.2 pmol L
−1

h
−1

, respectively). Vertical

profiles of dissolved iron indicated low (0.134±0.05 nM) and constant concentrations

from the surface to 400 m throughout most of the transect (site MAR to station STA21),

and increased notably from station STA21 to the Chilean coast, to reach 0.4 to 1.3 nM

in surface waters (see also Blain et al., 2007).10

3.2 TMC experiments

3.2.1 Heterotrophic versus autotrophic response

The extent of stimulation of phytoplankton and bacterial biomasses and productions

following various amendments varied according to the station and the element tested.

Roughly, phytoplankton was significantly stimulated by Fe addition at the MAR site,15

by Fe and N at the the HNL site, by N at the GYR site, and responded mainly to

Fe+N(FeN) additions at the EGY site (Fig. 2, Table 4). Leucine incorporation rate was

stimulated by Fe, but also N at the MAR site, glucose at the HNL site, N at the GYR

site and by Fe+N and by glucose addition at the EGY site.

Besides the information concerning the limiting factor(s), we obtained the general20

following rules: stocks (chlorophyll a, bacterial numbers), when increasing, always

increased less than the corresponding fluxes (primary production, leucine incorporation

rates, Table 4). In addition, chlorophyll stocks increased after 48 h up to a factor of 6

(FeN at the HNL site), whereas bacterial abundances never increased more than a

factor of 1.2 (“all” at the EGY site, GFe at the HNL site and “all” at the MAR site).25

Factors of increase of leucine specific activities were consequently very close to those

of the fluxes, whereas primary production per unit of chlorophyll, when increasing,
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increased, on average of two times less than photosynthesis rates (Table 4).

Out of these general trends, the intensity of the heterotrophic response differed from

the intensity of autotrophic response. For instance, at the GYR site, both photosyn-

thesis and heterotrophic production were stimulated after N additions (alone and com-

bined: N, FeN, “all”), but leucine incorporation rates increased up to 8 times more than5

primary production (GYR all, after 24 h, ×16 and ×2, respectively, Table 4). On the

opposite, in the treatments N and FeN at the HNL site and FeN in the treatments “all”

at the EGY site, primary production increased on average 1.6 times more than leucine

incorporation rates. It must be noticed that these latter cases corresponded to situa-

tions where phytoplankton and heterotrophic bacteria were not stimulated primarily by10

the same factor (i.e. N or Fe for phytoplankton and glucose for bacteria).

3.2.2 Iron Control on Heterotrophic Bacteria

At the MAR site, the most significant increase was obtained in the non-amended control

(×20 in 24 h), whereas Fe alone, macronutrients (N, P Si) or a combination of all the

nutrients (Fe, N, P, Si) lead to similar response (1.8 to 2.2 times higher than the control15

at the same time). There was no other additional effect after 24 h. At the HNL site, only

the glucose and glucose + Fe additions resulted in a significant increase of leucine

incorporation rates (×12 and ×22), visible 24 h after enrichment. At the GYR site,

Fe + N (FeN), and a combination of all the nutrients Fe + N + P (All) resulted in

a significantly higher leucine incorporation rates after 24 h (×11, ×16, respectively)20

and 48h (×17, ×23, respectively). Although the leucine incorporation rate was also

enhanced after N addition alone, the difference with the control was only significant

after 48 h (×9). Glucose (alone or in combination with Fe) did not result in a significant

increase of leucine incorporation rate, even after 48h. At the EGY site, however, only

glucose additions after 48 h enrichment had significant effect compared to the control25

(×3.5 in G and ×2.3 in GFe, Table 4, Fig. 2).

The results obtained in the framework of these trace metal clean experiments al-

lowed us to draw some conclusions: i) iron was never a single factor limiting bacterial
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production, and consequently ii) effects of N, P and glucose additions could be studied

more systematically along the transect by using “non TMC” technique, ii) 24 h incuba-

tions should be long enough to detect some stimulation, if occurring.

3.3 Non TMC experiments

3.3.1 Longitudinal variability of nutrient control on heterotrophic bacteria5

Additions of elements were realized in triplicate conditions only at the station STB18.

Results from this experiment were used to define a threshold for the significant effect

of any enrichment for other experiments which were not replicated (Fig. 3). Variabil-

ity within triplicates ranged from 5 to 39%, mean 22%. ANOVA test in this bioassay

resulted in a significant effect for G (p<0.005) and NPG (p<0.001) compared to the10

control. Considering the mean factor of enrichment reached with the different combi-

nations at this station (0.8, 1.3, 2.6 and 4.1 for P, N, G, NPG, respectively), we assumed

that a factor 2 of increase (compared to the non-amended control) should be a min-

imum threshold to confirm a positive effect when experiments were not performed in

triplicate.15

Along the horizontal transect in the mixed layer, P alone stimulated leucine incorpo-

ration rates only in 1 case over 23 tested (station STB4, ×2.2 higher than the control).

However, in that bioassay the addition of N (×3.4) and G alone (×2.6) also resulted in

an increase of leucine incorporation rates. Effects of N, glucose and NPG additions on

leucine incorporation rates showed three groups of responses (Fig. 4). In the western20

part, from the MAR site to station STB5, the leucine incorporation rate was greatly

stimulated simply by confinement during 24 h in a polycarbonate bottle. On average,

the leucine incorporation rates increased in the non-amended control by a factor of

43±20 (Fig. 4a). This is in agreement with the TMC experiments conducted at the

MAR site (Fig. 2). The median values of stimulation factors were ×1.4, ×1.1 and ×2.625

for glucose, N and NPG addition, respectively (Fig. 4b). The NPG stimulation factor

was higher than the threshold “2” on 3 occasions over the 6 stations tested, and N and
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G factor only once. In the second group of stations (STB6 to STB15, including the

GYR site), the leucine incorporation rates increased in a lower ratio (×1.1 to ×5.3) in

the non-amended control. The median values of stimulation factors for glucose, N and

NPG additions were ×1.4, ×4.2 and ×37.2, respectively. The N stimulation factor was

higher than the threshold of “2” on 8 over 9 stations tested, and G factor on 2 over 9,5

but in these 2 cases, N alone also stimulated leucine incorporation rates. For the last

group of stations (EGY to UPW2), the leucine incorporation rates also increased slowly

in the non-amended control (×2.1 to 2.7 in 24 h between station EGY and STA21, but

×4.1 and ×3.5 at stations UPW1 and UPW2). The median values of stimulation factors

for glucose, N and NPG additions were ×1.7, ×1.1 and ×3.4, respectively (Fig. 4b).10

The increase after glucose addition was higher than the threshold “2” in 2 of the 8 sta-

tions tested, and the increase after NPG addition was higher than the threshold “2” in

7 of the 8 stations tested.

3.3.2 Vertical variability of nutrient control on heterotrophic bacteria

There were also varying stimulation factors of leucine incorporation rates along vertical15

profiles. At the GYR site, leucine incorporation rates increased after N addition at

all depths tested, even if nitrate was significantly detected below 150 m (0.15µM at

185 m, 3.6µM at 245 m, Fig. 5). Glucose, however, has an higher effect than N at

185 m (×83 versus ×4) and 245 m (×495 versus ×190, respectively). At the EGY

site, the stimulation factor of leucine incorporation rates after 24 h addition of glucose20

progressively increased between 80 m and 250 m (×4 up to ×105). Stimulation by N

alone was non existent or low (×2.2 at 40 m, ×2.6 at 250 m), although nitrogen was

still undetectable below 40 m. Stimulation by NPG also increased from the surface

layer (×1.1–×2.9 below 30 m) to 250 m (×49). At the UPW site, only effects of G and

NPG were visible, being more or less constant and with poor increases (factors <4)25

below 10 m. At 5 m depth, none of the nutrients (alone or in combination) stimulated

significantly leucine incorporation rates.
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4 Discussion

4.1 Abundance or production for tracking limitation?

Because both abundance and leucine incorporation rates have been followed, one

question is arising: What is the best indicator for tracking factors limiting heterotrophic

bacterial growth? The increase in leucine incorporation rates, when present, is either5

due to stimulation of a greater percentage of active population, or the stimulation of the

specific growth rate of individual cells, or some combination of these two processes.

Generally, bacterial abundance indeed responds less than production to enrichments

(Kirchman, 1990; Pomeroy et al., 1995; Carlson and Ducklow, 1996; Graneli et al.,

2004). Bacterial abundances indeed showed a response up to ×2 after additions,10

whereas leucine incorporation rates increased up to 23 times (Table 4), confirming this

previous results. Unbalanced growth is often the explanation for the strong changes

generally observed with the thymidine or the leucine technique, compared to that of

abundances (Carlson and Ducklow, 1996). Biovolumes have not been quantified sys-

tematically in this study, but preliminary observation of slides after fluorescent in situ hy-15

bridization (results not shown) revealed enhancements of average biovolumes. These

preliminary results also suggest a shift in some bacterial populations, which is also

sometimes observed after long-term periods of confinement and enrichments (Pinhassi

et al., 2006). Rapid growth of gamma-proteobacteria after FeN and “all” additions (Van

Wambeke, unpub. results) was effectively observed at the GYR site. Finally the num-20

ber of heterotrophic flagellates also increased, suggesting that bacterial predation was

also enhanced after some stimulation of heterotrophic bacteria (GYR site, N enrich-

ments, Table 4), and consequently regulated bacterial abundances. In conclusion, the

leucine incorporation rates were thus better indicators than abundances for tracking

factors limiting bacterial growth. Nevertheless, responses could have been different25

in terms of intensity or delay with other tracers of heterotrophic activity (Carlson and

Ducklow, 1996; Donachie et al., 2001).
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4.2 Direct versus indirect limitation

There has been much debate about direct (suppression of a real limiting factor) or in-

direct (stimulation of phytoplankton by the added component which induces a surplus

of DOM production fuelling heterotrophic bacteria) effects of iron and other macronu-

trients limitation on heterotrophic bacteria (Table 4).5

The timing and magnitude of responses of phytoplanktonic parameters (primary pro-

duction, chlorophyll biomass) compared to that of heterotrophic bacteria in the experi-

ment performed under TMC have helped to argue for possible direct or indirect effect of

nutrient additions. If iron alone induced a positive stimulation of leucine activity within

the Marquesas plateau (MAR site), addition of other nutrients N+P+Si (“all”) without10

Fe stimulated leucine activity at the same level (factor 2 compared to the control at the

same time, Fig. 2). In addition, chlorophyll biomass increased compared to the control,

by a factor equivalent to that of leucine activity in 24 h, and even more after 48 h (factor

3, Table 4). It is thus probable that the effect of Fe on leucine activity was indirect.

The major effect obtained at the MAR site is however obtained in the non-amended15

control (×20 at the MAR site in the “trace metal clean” conditions, Fig. 2), compared to

the response of phytoplankton in this control (Chla did not increase significantly in the

control, Table 4). It is possible that sufficient amounts of labile DOC were present, al-

lowing a rapid bacterial growth without any enrichment, which implies that heterotrophic

bacteria were not limited at all after a 24 h confinement at the MAR site. In contrast,20

phytoplankton at the MAR site was under a high Fe stress, which was clearly visible

from analysis of photochemical efficiency of photosystem II (Bonnet et al., 2007). The

capacity of bacteria to grow on bulk DOC was also seen in the vicinity of MAR site, up

to 125
◦
W, as a strong growth in the non-amended controls was observed up to station

STB5 (Fig. 4a). Interpretation of growth in a non-amended control is difficult because25

the use of batch experiments last for a few days. This implies to take into account bottle

effect: underestimation of the levels of the trophic web, and possible destruction of frag-

ile cells during handling that fuels labile organic resources for heterotrophic bacteria.
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However, all the other experiments have been performed in the same conditions, and

the non-amended control did not increase that much. Possible other explanations are

the change in the top-down control of bacteria or non steady state of bacterial growth

at the time of the sampling at these stations. Day-to-day changes in in situ primary

production, as well as in situ specific leucine incorporation rates have been observed5

during occupation of the MAR site (Van Wambeke et al., 2007a) and argue for this

second hypothesis.

At the GYR site, the addition of iron did not result in any significant increase of pho-

tosynthesis rates (Table 4). Although dissolved iron was low and constant along most

of the transect (∼0.1 nM in surface), it was shown that phytoplankton was acclimated10

to iron deprivation in the centre of the gyre (Bonnet el al., 2007). N addition alone

(nitrate + ammonium) or in combinations (FeN, “all”) have all stimulated chlorophyll

and primary production (24 and 48 h) and specific primary production (48 h). Leucine

incorporation rates increased also after the addition of N, as soon as 24 h, although

there was no significant stimulation by glucose, alone or in combination with iron. This15

suggests that, in the gyre, stimulation of bacterial production by nitrate + ammonium

addition is direct. However, if nitrogen limitation is a direct effect, and considering re-

sponses of BP after other combination of enrichments, co-limitation occurred rapidly. At

the GYR site, N (nitrates + ammonium), FeN (Fe + N) and all (Fe + N+ P) treatments

stimulated exactly to the same degree phytoplankton properties (chlorophyll, primary20

production), whereas the leucine incorporation rate was stimulated more progressively

in these three treatments. This suggests that a labile organic carbon source could also

limit BP after relieving the N limitation. This result is confirmed by the “non TMC” ex-

periments, which show that the stimulation was greater after the addition of N + P +

glucose than after the addition of N alone (nitrates + ammonium) in most of the waters25

tested within the center of the gyre (Fig. 3, see STB6 and Fig. 4b, see STB6 to STB15).

This thus suggest that in the area between 122
◦
W and 95

◦
W, labile carbon rapidly be-

comes a co-limiting factor after N for bacterial production. Within the deep chlorophyll

maximum (DCM), however, glucose is the first limiting nutrient, not N (Fig. 5). A similar
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switch from a mineral nutrient within surface layer to organic C limitation within DCM

has been evidenced in the Mediterranean Sea (Sala et al., 2002; Van Wambeke et al.,

2002).

The rapidity of the response of heterotrophic versus autotrophic response after re-

lieving the N limiting nutrient in the South Pacific gyre could have consequences on5

the metabolic balance of this environment. Recently, it has been shown that 5–10%

of deep sea water mixed with water from the nutrient-limited mixed layer of the North

Pacific Gyre provided a set of nutrient enrichment sufficient to significantly enhance

the net community production after 5 days (Mc Andrew et al., 2007). Thus, the ques-

tion arises here if, in our nitrogen enrichment experiments made at the GYR site, au-10

totrophic process were also notably favoured in regard to respiration. Oxygen bud-

gets were not measured in our experiments, but as our stimulation factors were much

greater with leucine incorporation rates than particulate primary production, our results

would suggest the opposite (i.e. enrichment would favour heterotrophy at the GYR site).

Nevertheless, the leucine incorporation rate is not respiration, and possible changes in15

leucine conversion factors, as well as in bacterial growth efficiencies with time could not

be ruled out. Indeed, the relieving of a factor limiting heterotrophic bacteria enhances

bacterial growth efficiency (Carlson and Ducklow, 1996). Also, our experiments lasted

only 48 h, whereas significant chlorophyll biomass and net community production oc-

curred only after 4–5 days in the Mc Andrew et al. (2007) experiments. Finally, the rates20

at which autotrophic and heterotrophic cells developed in our experiment might have

been influenced by enzymatic properties of uptake systems for ammonium and nitrate

which differs inside these two groups, heterotrophic bacteria being favoured by ammo-

nium addition, whereas only nitrate were provided by deep sea water enrichments in

Mc Andrew et al. (2007) approach.25

4.3 Carbon versus energy limitation of heterotrophic bacteria

Because the organic molecule tested is also often an energy-rich molecule easily en-

tering catabolic pathways (e.g. glucose), one could wonder if this carbon source is
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tracking carbon resource limitation or energy limitation (Table 4). Glucose was the only

organic molecule tested in our study, and we examined its potential use by compari-

son of time-integrated bacterial carbon demand during the course of bioassays, and

compared it to the amount (10µM C) of glucose added. Integrated BP during 24 h was

calculated based on values of leucine incorporation rates measured before and after5

24 h of glucose addition, assuming an exponential rate between these 2 measure-

ments, and a leucine conversion factor of 1.5 kg per mole leucine incorporated (Van

Wambeke et al., 2007a). Then, bacterial carbon demand was calculated assuming

that glucose is taken-up by bacteria with a 20% efficiency. This comparison suggests

that all the glucose added can be used within 24 h in the NPG combinations, and some10

use of the in situ DOC is also possible. Free glucose (not combined) is extremely rare

in this area (Sempéré et al., 2007
3
), suggesting that this molecule plays an important

role in energy restoration once added. DOC is probably highly refractory, due to strong

UV radiation effects. Indeed, it has been shown that growth of heterotrophic bacteria

at the GYR site after a one day UV exposure of DOM is partly inhibited (Sempéré et15

al., 2007
3
). It is probable that the limitation in N and energy prevents the synthesis

of enzymes able to degrade the bulk accumulated DOC present in this area. Indeed,

in addition to changes in populations (Pinhassi et al., 2006), induction of some genes

after the relieving of some limiting nutrients has been observed (Arietta et al., 2004).

Bacteria were described as energy limited in the South Pacific (Kirchman, 1990), and20

in the Eastern North Pacific (Cherrier et al., 1996), but resource limited in the Sargasso

Sea (Carlson and Ducklow, 1996). In addition, conflicting interpretation are sometimes

given to the same observation, for instance when comparing enhancement of bacterial

activity after amino acids addition or with glucose + ammonium addition (Kirchman,

1990; Carlson and Ducklow, 1996; Donachie et al., 2001). It is probably impossible to25

be categorical on the question of energy-only versus resource-only limitation in nature

3
Sempéré, S., Tedetti, M., Charrière, B., Panagiotopoulos, C., and Van Wambeke, F.: Molec-

ular distribution and bacterial availability of dissolved sugars in the south East Pacific, Biogeo-

sciences Discuss., in preparation, 2007.
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and varying conclusions given probably rely on the quality of organic matter present

and the parameter tracking heterotrophic activity.

In the centre of the South Pacific Gyre, nitrogen was a common primarily factor lim-

iting phytoplankton and bacteria. Competitive advantages for N between bacteria and

phytoplankton might thus exist and vary with irradiance levels, which had not been5

considered in this study. Indeed, it has also been suggested that the factors limiting

bacteria could change at a daily scale (Shiah, 1999; Kuipers et al., 2000). DOC pro-

duced by phytoplankton release could be a major source of carbon and energy for

bacteria. The huge needs of nitrogen and energy source for heterotrophic bacteria, as

well as their strong plasticity to grow again once limitation is relieved, are probably the10

key factors explaining the strong coupling between phytoplankton and bacteria as seen

on diel cycles (Van Wambeke et al., 2007b
2
).

5 Conclusions

A large set of enrichment experiments was performed here along a 8000 km transect,

sometimes along vertical profiles, allowing a broad generalization of the observed15

trends over a large spatial scale of the South Pacific Ocean in an austral summer

situation. Our enrichment experiments have shown that iron was never the single nu-

trient limiting bacterial production. In the vicinity of the Marquesas Islands, our results

showed stimulation by iron alone and nitrogen alone suggesting that stimulation by iron

was an indirect effect. Nitrogen was the first factor limiting heterotrophic bacterioplank-20

ton within the surface layers in the centre of the south Pacific Gyre, rapidly followed by

a co-limitation with labile carbon. However, at the bottom of the euphotic zone within

the deep chlorophyll maximum there is a switch to carbon limitation. Overall the surface

layers around the borders of the South Pacific Gyre (Marquesas plateau, upwelling off

Chile), labile carbon was the primarily factor limiting heterotrophic bacterial production.25

Because the weak horizontal advection in the centre of the South Pacific Gyre and

because intense seasonal convective mixing is excluded (Raimbault et al., 2007), this
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suggests that this situation of nitrogen limitation could be permanent throughout the en-

tire year. However, nitrogen was a common primarily factor limiting both phytoplankton

and bacteria, which probably had consequences on their relationships at short time

scales. The heterotrophic bacterioplankton of the South Pacific Gyre lives in a very

dynamic situation which is difficult to determine adequately, and current methods and5

tools for detecting limiting factors on short incubation time are urgently needed.
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Table 1. Initial conditions of “trace metal clean” experiments. BN: bacterial abundances. PP:

primary production.

NO3 NH4 PO4 SiOH4 Fe Chla PP BN leu inc rate

µM µM µM µM nM mg m
−3

mgC m
3

d
−1

×10
5

ml
−1

pmol L
−1

h
−1

MAR 1.97 0.32 0.37 0.97 0.13 0.18 nd 9.6 26

HNL 1.82 0.04 0.31 0.91 0.14 0.11 9.1 8.9 27

GYR ld ld 0.11 0.55 0.1 0.03 1.8 4.1 18

EGY 0.04 0.008 0.17 1.02 0.1 0.07 6.5 7.5 15
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Table 2. Summary of enrichment conditions. Fe: iron, NH4: ammonium, NO3: nitrates, Si:

orthosilicic acid, PO4: phosphates, GLU: glucose.

* “trace metal clean” conditions of manipulation,

** Si addition resulted in a slight contamination in Fe of about 0.1 nM,

*** non “trace metal clean” conditions of manipulation

experiment code Fe NH4 NO3 Si PO4 C-GLU Incubation

sampling

MAR* C 24–48 h

Fe 2 nM in situ

N 1 µM 2 µM 2 µM** 0.3 µM simulated

all 2 nM 2µM 2µM** 0.3µM 50% light screen

HNL* C 24–48 h

Fe 2 nM in situ

N 1µM 2µM 2µM** 0.3µM simulated

FeN 2 nM 2µM 2µM** 0.3µM 50% light screen

G 10µM C

GF 2 nM 10µM C

GYR* C 24–48 h

EGY* Fe 2 nM in situ

N 1µM 2µM simulated

FeN 2 nM 1µM 2µM 50% light screen

all 2 nM 1µM 2µM 0.3µM

G 10µM C

GF 2 nM 10µM C

routine C 24 h

bioassays*** P 0.25µM in situ

N 1µM 1µM simulated 50%

G 10µM light screen

NPG 1µM 1µM 0.25µM 10µM
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Table 3. Initial conditions prevailing in sea water samples used for routine bioassays. SST: sea

surface temperature (used in running sea water baths during incubations), Chla: Chlorophyll a,

Leu inc rate: incorporation rates of leucine into proteins, ld: below detection limits. * refers to

data acquired on another CTD cast sampled in an interval of few hours on the same site.

station depth Longitude Latitude date SST NO3 NH4 PO4 Chla Leu inc rate

m
◦

W
◦

S
◦

C µM µM nM mg m
−3

pmol L
−1

h
−1

MAR 5 141
◦

14 08
◦

19 29-Oct 1.68* 0.33* 0.168 50.9

STB1 10 134
◦

05 11
◦

44 3-Nov 27.8 0.70 (5m) 0.03 313 0.112 30.9

STB2 15 132
◦

06 13
◦

33 4-Nov 27.4 ld 0.01 208 0.088 29

STB3 15 129
◦

55 15
◦

32 5-Nov 27.1 0.046 0.004 193 0.055 21.4

STB4 15 127
◦

58 17
◦

14 6-Nov 26.5 ld ld 213 0.050 21

STB5 20 125
◦

33 18
◦

44 7-Nov 25.7 ld ld 163 0.038 15.9

STB6 25 122
◦

53 20
◦

27 8-Nov 24.5 ld 0.008 178 0.018 11.9

STB7 20 120
◦

22 22
◦

03 9-Nov 24.3 0.046 ld 143 0.022 13.4

STB8 30 117
◦

53 23
◦

33 10-Nov 23.4 ld ld 128 0.026 12.4

GYR 30 114
◦

00 25
◦

58 12-Nov 22.1 ld 0.02* 128 0.028 10.8

STB11 30 107
◦

17 27
◦

46 20-Nov 21.3 ld ld* 123 0.032 12.4

STB12 30 104
◦

18 28
◦

32 21-Nov 21.2 ld 0.001* 133 0.022 11.2

STB13 25 101
◦

28 29
◦

13 22-Nov 20 ld 0.003* 123 0.023 10.6

STB14 20 98
◦

23 30
◦

02 23-Nov 19.8 0.048 ld* 138 0.027 10.5

STB15 15 95
◦

25 30
◦

47 24-Nov 18.7 ld 0.015* 153 0.048 13.9

EGY 15 91
◦

27 31
◦

49 26-Nov 18.1 0.006* 0.006* 178 0.074 17

STB17 15 86
◦

47 32
◦

23 1-Dec 17.3 2.65* 0.116* 313* 0.116 20.3

STB18 15 84
◦

04 32
◦

40 2-Dec 17.4 3.64 0.119* 388 0.147* 16.6

STB19 15 81
◦

12 33
◦

01 3-Dec 17.2 2.76 0.132* 373 0.066 17.5

STB20 5 78
◦

07 33
◦

21 4-Dec 17.6 0.095 268 0.274 51.5

STA21 5 75
◦

49 33
◦

36 5-Dec 16.8 0.071 358 0.218 54.6

UPW1 5 73
◦

22 33
◦

59 6-Dec 15.9 1.481* 145.4

UPW2 5 73
◦

21 33
◦

55 7-Dec 0.289 508 1.394 163.7
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Table 4. Table 4. Summary of the factors of increase obtained after 24 and 48h incubations

in “trace metal clean” experiments. Results are expressed as the ratio of the value obtained

divided by the value obtained in the non-amended control at the same time. For the lines

corresponding to non-amended controls (C), the italic, underlined values indicate the factor of

increase relative to the control at time zero. Enrichment codes correspond to Table 1. The

parameters and their units before comparison are: chlorophyll a (Chl a, mg m
−3

), bacterial

abundance (BN, cells ml
−1

), heterotrophic nanoflagellate abundances (HNAN, cells ml
−1

),
14

C-

primary production (PP, mg C m
−3

d
−1

), leucine incorporation rates (Leu pmol L
−1

h
−1

), primary

production per unit Chla (spec PP, mgC mg Chla
−1

d
−1

) and leucine incorporation rate per

cell (spec Leu, ×10
−21

mol cell
−1

h
−1

). Empty places: parameter not sampled. * Indicates

a response significantly different at p<0.05. ** Indicates a response significantly different at

p<0.0001
a

For HNAN statistical comparison was unavailable (only one sample, no triplicates).

24 h 48 h

spec spec spec spec

Chl A BN HNAN
a

PP Leu PP Leu Chl A BN HNAN
a

PP Leu PP Leu

MAR C 1.5 1.1 20.1 17.6 2.0 17.4

Fe 1.6 1.1 1.8* 1.7* 3.0* 2.1*

N 1.7 1.1 2.1* 1.8* 1.7 1.5

all 2.2* 1.2 2.2* 2.0* 8.7** 2.3*

HNL C 1.4* 1.1 1.2 1.1 4.2 0.8 3.8 1.3* 1.2 1.3 0.8 2.6 0.6* 2.2

Fe 1.4* 1.0 1.1 2.8* 3.1 2.0** 3.3 3.6** 0.9 1.2 5.5** 4.6 1.5* 5.0

N 1.9* 1.0 1.8 3.9** 2.3 2.1** 2.2 4.5** 1.0 2.1 5.7** 2.7 1.1 2.7

FeN 1.9* 0.9 1.7 4.3** 2.9 2.3** 3.1 6.1** 1.0 2.0 9.5** 8.7 1.4 9.1

G 1.1* 1.4 11.9* 10.5* 1.1 1.4 6.3 5.5

GF 1.2* 1.2 21.7* 18.8* 1.1 1.4 19.1* 16.3*

GYR C 1.1 0.9 1.1 0.4** 0.8 0.4** 0.9 0.7 1.1 0.5* 1.0 0.7*

Fe 1.5* 1.0 1.0 1.1 1.4 0.6* 1.4 1.0 1.0 0.7 0.5 0.7

N 2.2** 1.0 1.1 2.1* 4.6 0.9 4.7* 3.1** 1.4 4.2** 8.9* 1.4*

FeN 2.3** 1.0 1.1 2.4** 11.0* 1.1 11.0* 4.0** 1.6 5.4** 16.9* 1.4*

all 2.1** 1.0 2.0 2.0* 16.0* 0.9 15.9* 3.3** 1.8 4.5** 23.4* 1.4*

G 1.0 1.1 3.0 3.1 1.4 3.5

GF 1.0 1.0 3.4 3.5 1.5 4.9

EGY C 1.9* 1.1 1.1 0.7** 3.1 0.4** 2.2 1.8* 1.1 1.1 0.8* 3.5 0.4** 2.5

Fe 0.9 1.0 1.2 1.0 1.4 1.1 1.4 1.4 1.1 1.6 1.3* 1.5 1.3* 1.3

N 1.2 1.0 1.3 1.1 1.3 0.9 1.3 1.6* 1.0 1.9 1.9** 1.2 1.2* 1.2

FeN 1.2* 1.0 1.2 1.5** 1.1 1.0 1.1 2.6** 1.0 2.0 3.8** 1.9 1.5** 1.8

all 1.3 1.0 1.6 1.8** 0.9 1.4* 1.0 3.0** 1.2 2.4 4.5** 2.0 1.5** 1.7

G 1.0 1.2 1.4 1.4 1.0 1.4 3.5* 3.4*

GF 1.0 1.1 1.8 1.7 1.0 1.7 2.3* 2.4*
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Table 5. Review of some factors enhancing some bacterial variables among different oceanic

environments (Leu, Tdr: production based on Leucine and thymidine technique, BN: bacterial

numbers, BS: bacterial size, EEA: ectoenzymatic activities, O2: respiration, BGE: bacterial

growth efficiencies, DIV: diversity). DCM deep chlorophyll maximum, PE-DOM : filtrate of heat

killed plankton extract (>335µm), Me+Vit: trace metals + vitamins, glu: glucose, DFAA: dis-

solved free amino acids. Co refers to colimitation. *in situ fertilization experiments. When

carbon is limiting, and when the information was available, the terms in italic (resource, not

clear and energy) refer to the authors’ conclusions about energy versus resource limitation.

area date parameter

followed

nutrients tested limitation by effect direct

vs cascade

Gulf of Mexico to Mississippi. river plume Jan June 1993 Leu, BN, O2 NH4, PO4, Me,+Vit,

glu

P Pomeroy et al 1995

Sargasso Sea off Bermuda July Oct 92,

March July 93,

Jan 94

Leu, Tdr, BN,

BS

NH4, PO4, glu, DFAA,

algal lysate

C (resource) Carlson and Ducklow 1996

Med Sea, Western, Ionian, Levantine June & Sep 99 Leu NO3, PO4, glu co C-P, P Van Wambeke et al. (2002)

Med Sea, Catalano-Balearic Basin, surface,

DCM

June 95, June

Sep 96

Leu, BN NO3, PO4, glu P, co C-P Sala et al. (2002)

C, N

Med Sea, Ionian, Cretan, Levantine Basins Jan Feb 1995 Tdr, BN PO4, NH4,Fe, EDTA P Zohary and Robarts (1998)

Med Sea, Levantine (Cypprus Gyre) Leu, BN PO4
∗

P direct Thingstad et al. (2005)

Subarctic Pacific, gulf of Alaska Sep 1987, May

Aug 1988

Tdr, Leu, BN NH4, DFAA, glu, pro-

tein, alkylamines

C (energy) Kirchman (1990)

Subtropical north Pacific, St ALOHA Dec 96-April 98 glucose uptake,

EEA

NH4, NO3, leu, his, glu co N-C (not

clear)

Donachie et al. (2001)

Eastern North Pacific, California current June Oct 1992 O2, BN, BGE PE-DOM,glu, NH4,

urea, PO4, dfaa

C (energy) Cherrier et al. (1996)

Eastern North Pacific, California current June 96, June

97

Leu, BN Fe not clear Hutchins et al. (1998)

Eastern equatorial Pacific, IRONEX II May 1995 Leu, BN Fe
∗

Fe not clear Cochlan 2001

South East Pacific, Tuamotu atolls Nov 95, March

96

Tdr NH4, PO4, glu N, C, P, co C-N Torréton et al. (2000)

Ocean around atolls C direct

South eastern Pacific Gyre (this study) Nov–Dec 2005 Leu, BN Fe, NH4+NO3, PO4,

glu

N direct This study

Antarctic, Gerlashe Strait Oct 1995 Fe Fe direct Palkulski et al. (1996)

Southern ocean, Atlantic sector austral summer

97/98

Leu, BN NH3 PO4 glu C Tortell et al. (1996)

Southern ocean, Atlantic sector, EISENEX Nov 2000 Leu, Tdr, BN,

EEA, DIV

Fe
∗

Fe not clear Arrieta et al. (2004)
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Fig. 1. Transect of the BIOSOPE cruise from the Marquesas Islands to Chile. In red, stations

where “trace metal clean” enrichment experiments were processed, in black, stations used for

“non metal clean” bioassays. Numbers indicates short-term stations, for which only numbers

have been indicated to simplify presentation, not the complete code as in Table 3. For instance

1 is STB1 and 21 is STA21.
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Fig. 2. Evolution of leucine incorporation rates on bioassay experiments made under “trace

metal clan” conditions. Means ± sd of triplicate bottles sampled after 24 and 48 h of incubations.

For MAR and HNL enrichments were O: initial conditions, C: control nonenriched, F:+iron,

N:+ nitrates+ammonium+phosphates+silicates, all: nitrates+phosphates+silicates+iron,

G:+glucose, GF:glucose + iron. For GYR and EGYR N was only nitrate+ammonium, FN

was nitrate+ammonium+iron and all nitrates+ammonium+phosphates +iron. *:response sig-

nificantly different from the control at the same time, ANOVA test, p<0.05.

3825

http://www.biogeosciences-discuss.net
http://www.biogeosciences-discuss.net/4/3799/2007/bgd-4-3799-2007-print.pdf
http://www.biogeosciences-discuss.net/4/3799/2007/bgd-4-3799-2007-discussion.html
http://www.egu.eu


BGD

4, 3799–3828, 2007

Bacterial production

limitation in the

South Pacific Gyre

F. Van Wambeke et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

◭ ◮

◭ ◮

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

EGU

STB 1

0

1000

2000

3000

T P N G NPG

STB 18

0

50

100

150

200

250

T P N G NPG

STB 6

0

500

1000

1500

2000

2500

T P N G NPG

L
e

u
c
in

e
 i
n

c
o

rp
o

ra
ti
o
n

 r
a

te
 (

p
m

o
l
l-1

h
-1

)

STB 1

0

1000

2000

3000

T P N G NPG

STB 18

0

50

100

150

200

250

T P N G NPG

STB 6

0

500

1000

1500

2000

2500

T P N G NPG

L
e

u
c
in

e
 i
n

c
o

rp
o

ra
ti
o
n

 r
a

te
 (

p
m

o
l
l-1

h
-1

)

STB 18

0

50

100

150

200

250

T P N G NPG

STB 18

0

50

100

150

200

250

T P N G NPG

STB 6

0

500

1000

1500

2000

2500

T P N G NPG

STB 6

0

500

1000

1500

2000

2500

T P N G NPG

L
e

u
c
in

e
 i
n

c
o

rp
o

ra
ti
o
n

 r
a

te
 (

p
m

o
l
l-1

h
-1

)

Fig. 3. Typical results obtained from “non metal clean” bioassays. C: control, P: + phosphates,

N: + nitrites + nitrates, G: + glucose, NPG: all 4 elements. Error bar represents variability

within duplicate leucine measurements in a single flask. At station STB18, triplicate flasks

were incubated. Station STB1: no stimulation, STB6: slight stimulation with N, big stimulation

with NPG, STB18: stimulation with glucose. 3826
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Fig. 4. Mean results on bioassays realized in sub surface waters, varying from 5 m (MAR,

UPW areas) to 30 m (GYR area). (a) Box-plot distribution of the factor of enrichment in the

non enriched control after 24 h incubation under in situ-simulated conditions. (b) Box-plot dis-

tribution of enrichment factors obtained after 24 h incubation in presence of nitrate+nitrite (N),

glucose (G) and phosphates+nitrates+nitrites+glucose (NPG). Enrichment factor is the leucine

incorporation rate after 24 h amendments compared to the leucine incorporation rate in the non-

amended control at the same time. MAR – St 5 group (site MAR and stations STB1 to STB5,

n=6), St 6-St 15 group (stations STB6 to STB8, site GYR, stations STB11 to STB15, n=9),

EGY-UPW (site EGY, stations STB17 to STA21, UPW1, UPW2, n=8). The middle line in the

box is the median value. Horizontal lines (set to 2) refer to the level below which the effect of

enrichment is considered insignificant.
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Fig 5

Fig. 5. Distribution of in situ chlorophyll a, leucine incorporation rates, nitrates and phosphates

concentrations along vertical profiles, at sites GYR, EGY and UPW and responses to bioas-

says. Bioassays are expressed in terms of stimulation factor after N, G and NPG additions

(leucine activity divided by leucine activity in the control at the same time). Only stimulation

factors greater than 2 were plotted.
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