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Villefranche sur Mer, France
3
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Abstract

The chemical and biological characteristics of the surface microlayer were determined

during a transect across the South Pacific Ocean in October-December 2004. Con-

centrations of particulate organic carbon (1.3 to 7.6-fold) and nitrogen (1.4 to 7), and

POC:PON ratios were consistently higher in the surface microlayer as compared to5

subsurface waters (5 m). The large variability in particulate organic matter enrichment

was negatively correlated to wind speed. No enhanced concentrations of dissolved

organic carbon were detectable in the surface microlayer as compared to 5 m, but

chromophoric dissolved organic matter was markedly enriched (by 2 to 4-fold) at all

sites. Based on pigment analysis and cell counts, no consistent enrichment of any10

of the major components of the autotrophic and heterotrophic microbial community

was detectable. CE-SSCP fingerprints and CARD FISH revealed that the bacterial

communities present in the surface microlayer had close similarity (>76%) to those in

subsurface waters. By contrast, bacterial heterotrophic production (3H-leucine incor-

poration) was consistently lower in the surface microlayer than in subsurface waters.15

By applying CARD-FISH and microautoradiography, we observed that Bacteroidetes

and Gammaproteobacteria dominated leucine uptake in the surface microlayer, while

in subsurface waters Bacteroidetes and Alphaproteobacteria were the major groups

accounting for leucine incorporation. Our results demonstrate that the microbial com-

munity in the surface microlayer closely resembles that of the surface waters of the20

open ocean. However, even short time periods in the surface microlayer result in differ-

ences in bacterial groups accounting for leucine incorporation, probably as a response

to the differences in the physical and chemical nature of the two layers.

1 Introduction

The air-water interface is a site of dynamic exchange processes of gaseous, liquid25

and particulate matter between the atmosphere and aquatic environments (Liss et al.,
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1997). The aquatic boundary layer, comprised of a series of sub-layers that are gen-

erally summarized as the sea surface microlayer (1–1000µm), plays a pivotal role in

these transfer processes. The enrichment of the surface microlayer in organic and

inorganic matter affects physical features of the air-sea interface such as the surface

tension, and thus air-sea fluxes (Frew, 1997). The potential contribution of biological5

activity in the surface microlayer to air-water exchange processes is far less known.

The partial pressure of CO2 in the top layer (2 cm) of the ocean was recently reported

to be linked to microbial community metabolism (Calleja et al., 2005). The consistently

enhanced rates of respiration in samples collected from the surface microlayer in differ-

ent coastal and offshore marine environments could support this notion (Garabétian,10

1990; Obernosterer et al., 2005; Reinthaler et al., 2007). The biogenic gases dimethyl-

sulfoxide (DMSO) and dimethylsulfoniopropionate (DMSP) were markedly enriched in

the surface microlayer as compared to subsurface waters during calm wind conditions

(Zemmelink et al., 2005). These observations could indicate that important biological

processes at the air-water interface differ from those in subsurface waters, however,15

their impact on air-sea fluxes remains to be determined.

Whether organisms inhabiting the surface microlayer act as sources or sinks for var-

ious components will strongly depend on the abundance and activity of the different

members of the microbial community. Reports on these biological features display

large variability among studies, with enrichments, depletions or no differences ob-20

served (Agogué et al., 2004, and references therein). This is most likely due to the

spatial and temporal variability in the development of the surface microlayer, but the

utilization of different sampling devices that collect layers of varying thickness could

also account for the differences observed. Another important issue to be addressed

is the specificity of the autotrophic and heterotrophic community inhabiting the surface25

microlayer. Phytoneuston has long been viewed as a unique group of organisms in-

habiting the surface film of aquatic environments (see review by Zaitsev, 1997), but this

idea has recently been challenged. Based on the tight relationship between the abun-

dance of different groups of the plankton community in subsurface waters and that in
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the surface microlayer, the upward transport of organisms by physical processes rather

than the in situ development has been suggested the source for their presence in the

surface microlayer (Joux et al., 2006).

Only recently have molecular tools allowed to addressing the question whether het-

erotrophic bacteria inhabiting the surface microlayer display a specific community struc-5

ture. The only two studies available up to date reveal contrasting conclusions (Agogué

et al., 2004; Franklin et al., 2005). Based on different sampling techniques and molec-

ular approaches, the bacterial community structure associated with the surface micro-

layer was found to be similar (Agogué et al., 2004) and distinctly different (Franklin et

al., 2005) to that from subsurface waters.10

The main objective of the present study was to evaluate by two complementary

molecular-based techniques whether the top layer of the ocean is inhabited by a distinct

bacterioneuston community. Our aim was to describe the bacterial community struc-

ture in relation to major biological and chemical features that characterized the surface

microlayer in contrasting marine environments across the South Pacific Ocean.15

2 Material and methods

2.1 Study sites

The BIOSOPE (BIogeochemistry and Optics South Pacific Experiment) cruise track

crossed the South Pacific Ocean from the Marquise Islands to Chile (Claustre et al.,

2007
1
). The surface microlayer was sampled at 6 stations ranging from oligotrophic20

to ultraoligotrophic in the center of the South Pacific Gyre (Fig. 1). The sampled sites

were located in the vicinity of the Marquise Islands (Station MAR), in High-Nutrient-

Low-Chlorophyll waters east of the Marquise Islands (Station HNL), in the center of

1
Claustre, H., Sciandra, A., and Vaulot, D.: Introduction to the special section: bio-optical

and biogeochemical conditions in the South East Pacific in late 2004 – the BIOSOPE cruise,
Biogeosciences Discuss., in preparation, 2007.
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the South Pacific Gyre (Station GYR), in the eastern part of the South Pacific Gyre

(Station EGY), and in the western (STB3) and eastern (STB17) part of the South Pacific

Ocean (Fig. 1, Table 1). Wind speed was recorded every 10 s. Sea surface microlayer

collection was done during calm wind conditions (<3 m s
−1

) and the mean wind speed

6h prior to sampling varied between 0.5 and 2.7 m s
−1

at the different stations.5

2.2 Surface microlayer sampling

We used a metal screen (Garrett, 1965) to collect the surface microlayer (250–400µm)

as described previously (Obernosterer et al., 2005). Sampling was done from a dinghy,

roughly 0.5 nautical miles upwind from the research vessel. To prevent the collection

of water adhering to the frame, the first 100 ml of water draining from the metal screen10

were rejected. Prior to collection, the metal screen was rinsed several times with the

respective sample water. Subsurface water was collected at 5 m using a 5-l Niskin

bottle. Samples collected in the surface microlayer and in subsurface waters were

transferred to 9-l polycarbonate (PC) carboys. Prior to sampling, the PC carboys were

rinsed with 1 N HCl, Milli-Q water and 3 times with the respective water samples.15

2.3 Particulate organic carbon (POC) and nitrogen (PON) and dissolved organic car-

bon (DOC)

For POC-analysis, duplicate 700–1000-ml samples were filtered onto combusted

(450
◦
C for 5h) Whatman GF/F filters. The filters were rinsed with ∼2 ml of Milli-Q water

to remove salts, then stored frozen (–20
◦
C) until analysis. POC and PON measure-20

ments were performed on a 2400 Perkin Elmer CHN analyzer. The error for duplicate

samples of POC and PON was, on average, 4% and 12%, respectively.

For DOC-analysis, GF/F filtered samples were preserved by adding 100µl H3PO4

(35%) to 20 ml subsamples. The samples were stored in combusted glass vials with

Teflon-lined screw caps in the dark at 4
◦
C until analyzed. DOC measurements were25

performed on a Shimadzu TOC-V-CSH (Benner and Strom, 1993). Prior to injection,
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DOC samples were sparged with CO2-free air for 6 min to remove inorganic carbon.

Hundred µl of sample were injected in triplicate and the analytical precision was ∼2%.

Standards were prepared with acetanilid. The error for duplicate DOC samples was,

on average, 1%.

2.4 Chromophoric Dissolved Organic Matter (cDOM)5

The absorption coefficients of cDOM were measured throughout the ultraviolet-visible

domain (280–735 nm) using the multiple pathlength, liquid core waveguide system Ul-

traPath (WPI Inc.), with a pathlength of 2 m. Samples were filtered immediately after

collection, in dim light, using 0.2µm Millipore filters pre-rinsed with Milli-Q water. Fil-

tered samples were then placed in the automatic sampler (maintained in the dark), and10

pumped into the sample cell of the Ultrapath instrument. Absorbance spectra were

measured with reference to a salt solution (35 PSU), prepared with High Pressure Liq-

uid Chromatographie (HPLC)-quality water and granular NaCl, to match the salinity and

refractive index of samples. Between measurements, the cell was flushed successively

with diluted detergent, high reagent grade MeOH, 2 M HCl, and Milli-Q water, and the15

cleanliness of the tube was controlled using a reference value for the transmittance of

the reference water. As the absorption coefficients of pure water vary with tempera-

ture (especially in the infra-red), we minimized the temperature differences between

the reference and the sample. The presence of microbubbles in the sample cell was

also avoided by using a peristaltic pump and a debubbler.20

2.5 Pigment analysis

Three to six liters of seawater were filtered onto GF/F filters (25 mm diameter) and the

filters were stored in liquid nitrogen until HPLC-analysis according to Van Heukelem

and Thomas (2001). A detailed description of the pigment extraction and analysis is

2814
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given in Ras et al. (2007)
2
.

2.6 Enumeration of heterotrophic bacteria, autotrophic prokaryotic and eukaryotic

cells by flow cytometry

Three-ml subsamples were fixed with 2% formaldehyde (final conc.), stored for 30 min

at 4
◦
C, then frozen in liquid nitrogen and stored at –80

◦
C until analysis. For flow cyto-5

metric analysis of heterotrophic bacteria, samples were stained with the nucleic acid

dye SYBR Green-I (Molecular Probes) at 0.025% (vol/vol) final concentration (Lebaron

et al., 2001). Counts were performed on a FACS-Calibur flow cytometer (Becton Dick-

inson, San Jose, CA) equipped with a 488 nm wavelength, 15 mW Argon laser. Stained

bacteria were excited at 488 nm wavelength and discriminated according to their right10

angle-light scatter (SSC, related to cell size) and green fluorescence at 530±15 nm

wavelength. Based on a plot of green versus red fluorescence we distinguished pho-

tosynthetic from non-photosynthetic prokayotes. Enumeration of autotrophic cells was

performed according to Marie et al. (2000). Synechococcus spp. was discriminated by

its strong orange fluorescence (585±21 nm ) and pico- and nanoeukaryotes were dis-15

criminated by their scatter signals of the red fluorescence (>670 nm). The coefficient of

variation among replicate samples is generally <5% (Agogué et al., 2004). To convert

bacterial abundance to bacterial biomass we applied a conversion factor of 12.4 fg C

cell
−1

(Fukuda et al., 1998).

2.7 Enumeration of nanoflagellates20

Plastidic and heterotrophic nanoflagellates were determined after staining with Primulin

according to Sherr et al. (1993). Twenty to one hundred ml of raw seawater were fixed

with 2% formaldehyde (final conc.) and filtered onto 0.8µm black PC membrane filters

2
Ras, J., Claustre, H., and Uitz, J.: Spatial variability of phytoplankton pigment distribu-

tions in the Subtropical South Pacific Ocean: comparison between in situ and modelled data,
Biogeosciences Discuss., in preparation, 2007.
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(25 mm filter diameter). The filter was subsequently rinsed with two 1-ml aliquots of

0.1 M Trizma HCl (pH 4.0). The filter was covered with Primulin (250 g ml
−1

, 0.1 M

Trizma-HCl) and incubated in the dark for 15 min. After removing the Primulin solution

by filtration, the filter was rinsed again with 0.1 M Trizma HCl, before being mounted

onto a glass slide. Heterotrophic and autotrophic nanoflagellates were subsequently5

visualized using UV and blue light excitation, respectively, using an epifluorescence

microscope (x 1000, Zeiss, Axiovert Mot plus).

2.8 Bacterial heterotrophic production

Bacterial production was determined by [
3
H] leucine incorporation applying the cen-

trifugation method (Smith and Azam, 1992). Briefly, 1.5 ml samples were incubated10

with a mixture of [4,5-
3
H]leucine (Amersham, specific activity 160 Ci mmol

−1
) and non-

radioactive leucine at final concentrations of 7 and 13 nM, respectively. Samples were

incubated in the dark at the respective in situ temperatures for 2–3 h. Linearity of

leucine incorporation over this time period was tested at the three stations. Incubations

were terminated by the addition of trichloracetic acid (TCA, Sigma) to a final concen-15

tration of 5%. To facilitate the precipitation of proteins, bovine serum albumine (BSA,

Sigma, 100 mg l
−1

final concentration) was added prior to centrifugation at 16 000 g for

10 min (Van Wambeke et al., 2002). After discarding the supernatant, 1.5 ml of 5%

TCA were added and the samples were subsequently vigorously shaken on a vortex

and centrifuged again. The supernatant was discarded, 1.5 ml of PCS liquid scintilla-20

tion cocktail (Amersham) added and the radioactivity incorporated into bacterial cells

was counted aboard with a Packard LS 1600 Liquid Scintillation Counter. The error as-

sociated with the variability between replicate measurements (i.e. difference between

two replicates/2) was on average 10%.
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2.9 Catalyzed reporter deposition – fluorescence in situ hybridization and microau-

toradiography (MICRO-CARD-FISH)

At three stations (MAR, GYR and STB17) the bacterial community structure and the

activity of the major bacterial groups was determined applying MICRO-CARD-FISH.

Raw seawater samples (50 ml) were incubated with [4,5-
3
H]leucine (Amersham, spe-5

cific activity 160 Ci mmol
−1

) at a final concentration of 20 nM in the dark at in situ

temperature for 2–4 h. The incubation was terminated by adding paraformaldehyde

(PFA, 2% final concentration), and controls were fixed with PFA (2% final concentra-

tion) prior to incubation with
3
H-leucine. Samples were stored at 4

◦
C in the dark for

12h before filtration onto 0.2µm PC filters (25 mm filter diameter, Nuclepore). The fil-10

ters were stored at –20
◦
C until treated by CARD-FISH using the protocols described in

Pernthaler et al. (2002) and Sekar et al. (2003). Filters were embedded in low-melting-

point agaraose (0.2% final concentration), dried, dehydrated (96% EtOH, 1 min) and

treated with lysozyme (Fluka, 10 mg ml
−1

, 100 mM Tris [pH 8], 50 mM EDTA) for 1h

at 37 ˚ C to allow cell wall permeabilization. The filters were subsequently washed in15

Milli-Q water and dehydrated in ethanol (96%) for 1 min.

We determined the relative contribution of the major bacterial groups using the

probes ALF968 (5’-GGT AAG GTT CTG CGC GTT-3’) for Alphaproteobacteria,

GAM42a (5’-GCC TTC CCA CAT CGT TT-3’) for Gammaproteobacteria, and CFB319a

(5’-TGG TCC GTG TCT CAG TAC-3’) for Bacteroidetes, and the probe EUB338 (5’-20

GCT GCC TCC CGT AGG AGT-3’) for the identification of Bacteria. The nega-

tive control (NON338, 5’-ACT CCT ACG GGA GGC AGC-3’) was used to determine

non-specific binding. Probe working solution was added at a final concentration of

2.5 ngµl
−1

and the hybridization was done at 35
◦
C for 2 h.

For the microautoradiographic development, we followed the protocol described by25

Cottrell and Kirchman (2000). Briefly, the previously hybridized filter sections were

placed onto slides coated with photographic emulsion (type NTB-2; Kodak, diluted 1:1

with Milli-Q water). The photographic emulsion was heated at 43
◦
C for 30–60 min be-
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fore utilization. The slides were then dried (for 15 min) on an ice-cold aluminum plate

and kept in a dark box during exposure at 4
◦
C. The slides were developed for 2 min

(Dektol developer [1:1 dilution with Milli-Q water], Kodak), rinsed with Milli-Q water for

10 s, fixed for 6 min (Fixer Tmax, Kodak) and again rinsed for 6 min in Milli-Q water.

After having dried the slides in a desiccator for 12 h, filter sections were peeled off5

and the cells were counterstained with a DAPI mix (4 parts Citifluor, 1 part Vectashield

(Vector Laboratories) with DAPI at a final concentration of 0.5µg ml
−1

). To determine

the appropriate exposure time for samples collected in the surface microlayer and sub-

surface waters, slides were developed after 12 h, 24 h, 36 h, 48 h, 72 h and 96 h at

Stations GYR and STB17. At both stations, the percent of DAPI-stained cells associ-10

ated with silver grains increased during the first 48 h and remained stable thereafter.

We subsequently used an exposure time of 48 h. The slides were examined under

a Olympus AX70 epifluorescence microscope and an image analysis system as de-

scribed in Cottrell and Kirchman (2003). For each slide, 20 fields were enumerated,

resulting in a minimum of 500 DAPI-stained cell counts. Mean values and the standard15

errors among the cell counts of 20 fields are presented. To determine the contribu-

tion of different bacterial groups to leucine incorporation, the number of probe-positive

cells associated with silver grains was divided by the number of DAPI-stained cells

associated with silver grains.

2.10 Capillary Electrophoresis – Single Strand Conformation Polymorphism (CE-20

SSCP)

At all stations CE-SSCP was performed on DNA extracts to obtain molecular finger-

prints of the surface microlayer and subsurface waters. Seawater samples (<3µm

size fraction, 0.5 l) were filtered onto 0.2µm PC filters (47 mm, Nuclepore) and filters

were kept frozen (-80
◦
C) until nucleic acid extraction. Nucleic Acid extraction was per-25

formed as described previously (Ghiglione et al., 2005). Primers used for polymeric

chain reaction (PCR) were the specific bacterial primers w49dir (5’ –A CGG TCC AGA

CTC CTA CGG G– 3’; Delbès et al., 2000) and w34rev (5’ –TTA CCG CGG CTG CTG

2818
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GCA C– 3’; Lee et al., 1996) synthesized commercially (Eurogentec). Primer w34

was fluorescently 5’-labelled with phosphoramidite (TET, Eurogentec). Primers were

designed to target a short sequence (around 200 pb), allowing a good resolution of

the CE-SSCP signal (V3 region of 16SrDNA, Escherichia coli positions 329–533, Bro-

sius et al., 1981). Amplifications were performed in 50µl, with 1µl of DNA, 0.3µM5

of each primer, 0.8 mM dNTPs, and 1X buffer (Promega), before adding 1.0 U of pfu

polymerase (Promega). Samples were amplified (Robocycler 96, Stratagene) with the

following program: 94
◦
C (3 min) for denaturation, 25 cycles at 94

◦
C (denaturation, 30 s),

61
◦
C (annealing, 25 s), 72

◦
C (extension, 30 s), before a final extension at 72

◦
C (10 min).

The amplicon size was checked on agarose gel (2%), and the PCR products were pu-10

rified using a PCR purification kit (Qiagen).

2.10.1 CE-SSCP electrophoresis

CE-SSCP was performed according to a previously described protocol (Ghiglione et

al., 2005) on the Genetic Analyser ABI310 (Applied Biosystems). Briefly, each sam-

ple was diluted between 2- and 40-fold in sterile Tris-borate-EDTA (TBE)(10 mM Tris,15

1 mM EDTA) to obtain 10 ng µl
−1

of PCR product. From this resulting dilution, 1µl

of PCR product was mixed with 0.1µl of an internal size standard (GeneScan-400

Rox, Applied Biosystems) and 18.9µl of deionised formamide (Applera), before heating

(94
◦
C, 10 min) and cooling in a water/ice bath (10 min). Samples were electrokinetically

injected (5 s, 12 kV) into a capillary (47 cm×50µm) filled with 5.6% GeneScan poly-20

mer (Applied Biosystems) gel containing 10% autoclaved glycerol in sterile TBE buffer

(90 mM Tris-borate, 2 mM EDTA [pH 8.0]). Samples migrated for 30 min (15 kV, 30
◦
C).

Phosphoramidite (TET)-labelled fragments were detected by a laser with a virtual filter

C (detection wavelengths 532, 537 and 584 nm). Data collection was performed with

the ABI Prism 310 collection software (Applied Biosystems).25
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2.10.2 CE-SSCP fingerprints analysis

Electrophoregrams were aligned with the GeneScan analysis software by fixing posi-

tions of the internal standard (GeneScan-400 Rox, Applied Biosystems) with a second-

order least-square curve (i.e. linear regression). Peak detection on environmental fin-

gerprints was realized using the first derivative of a polynomial curve fitted to the data5

within a window that was centred on each data point (GeneScan analysis software).

Peaks overlapping were observable on the obtained fingerprints, to avoid artefacts in

peak enumeration or in peak area estimation we used a high polynomial degree (10)

to increase peak sensitivity. The peak amplitude threshold was fixed at 50 and applied

for both Rox and TET fluorescent dyes.10

3 Results

3.1 Particulate and dissolved organic matter

The surface microlayer was markedly enriched in particulate organic matter, by factors

varying between 1.3 and 7.6 for POC, and between 1.4 and 7 for PON (Table 2). The

variability in particulate organic matter enrichment was largely explained by wind his-15

tory. The ratio of POC in the surface microlayer to that of subsurface waters (i.e. the

enrichment factor) was negatively correlated to the mean wind speed 6 h prior to sam-

pling (r
2
=0.97, n=6, Fig. 2). This was also the case for the PON enrichment factor

(r
2
=0.93, n=6). No relationship between the concentration of particulate organic mat-

ter in the surface microlayer and in subsurface waters was detectable. C/N ratios of20

particulate organic matter were by 1.1 to 1.6-fold higher in the surface microlayer than

at 5 m, indicating preferential accumulation of carbon-rich organic matter. Concentra-

tions of dissolved organic carbon did not display any particulate pattern (Table 2). By

contrast, cDOM was enriched in the surface microlayer by 2-fold at Stations MAR, HNL,

STB3 and GYR, and by 4-fold at Station EGY (Table 2).25
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3.2 Autotrophic and heterotrophic components of the sea surface microlayer

The components of the microbial community determined in the present study did not

exhibit any consistent pattern in terms of biomass or abundance in the surface micro-

layer as compared to subsurface waters (Fig. 3). Concentrations of chlorophyll a in the

surface microlayer exceeded those at 5 m at Stations MAR and EGY by factors of 1.25

and 1.5, respectively. At Stations HNL, GYR and STB17 concentrations of chlorophyll

a in the surface microlayer were similar or depleted compared to those at 5 m (Table 3).

The group specific pigments chlorophyll b (Chlorophytes) and chlorophyll c (Chromo-

phytes) revealed a similar trend as chlorophyll a with pronounced enrichments only

at Station EGY (by 2.8- and 1.9-fold, respectively). Concentrations of divinyl chloro-10

phyll aindicated an enrichment of Prochlorococcus in the surface microlayer at Stations

MAR (by 1.8-fold) and EGY (by 1.3-fold), similar to that of Synechococcus based on cell

abundances (by 1.2- and 1.4-fold, respectively)(Tables 3 and 4). Pico- and nanoeukary-

otes displayed similar abundances in the surface microlayer and in subsurface waters.

Plastidic and heterotrophic nanoflagellates were more abundant (by 1.2- to 4-fold) in15

the surface microlayer in 3 out of 5 surface microlayer samplings. Phaeopigments were

below the limit of detection in the surface microlayer and in subsurface waters of all sta-

tions. No marked enrichment of heterotrophic bacterial abundances was detectable in

the surface microlayer (mean 1.04, range 1.01–1.08), except for Station EGY where

abundances exceeded those at 5 m by 1.3-fold (Table 4).20

3.3 Bacterial community structure

The CE-SSCP fingerprints revealed overall close similarity (>76%) of the bacterial

community structure between the surface microlayer and subsurface waters (Fig. 4).

The Euclidian distance dendrogram is based on the comparison of the presence or ab-

sence of peaks (thereafter referred to as ribotype), and the relative peak height among25

the CE-SSCP fingerprints. Minor, but noticeable differences between the surface mi-

crolayer and subsurface waters were detectable at Stations EGY and STB17, owing to
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the presence of two distinct ribotypes in the surface microlayer. At Station HNL, a few

minor ribotypes distinguished the CE-SSCP profile from the surface microlayer to that

of subsurface waters.

At Stations MAR, GYR and STB17 we compared the relative contribution of major

bacterial groups in the surface microlayer and subsurface waters, using in situ hy-5

bridization. The percent DAPI-stained cells identified by the general probe EUB varied

between 19–54% and 45–65% in the surface microlayer and in subsurface waters, re-

spectively (Fig. 5). The generally lower percentage of DAPI-stained cells identified as

Eubacteria in the surface microlayer, most pronounced at Station MAR, probably re-

flects the lower heterotrophic bacterial activity in this layer as compared to subsurface10

waters (see below). The sum of the relative contributions of Alpha-, and Gammapro-

teobacteria and Bacteroidetes roughly equaled (mean±SD, 99±14%) the percent EUB

positive cells. Overall, no differences in the relative contribution of the major bacterial

groups were detectable between the surface microlayer and subsurface waters (Fig. 5).

At Station MAR, Alpha-, and Gammaproteobacteria and Bacteroidetes had similar rel-15

ative contributions in both layers. At Station GYR Bacteroidetes were the dominant

phylogenetic group (33 to 39% of DAPI-stained cells), and at STB17 Bacteroidetes (16

to 19% of DAPI-stained cells) and Gammaproteobacteria (20 to 22% of DAPI-stained

cells) dominated in terms of abundance the heterotrophic bacterial community.

3.4 Contribution of major bacterial groups to bulk leucine incorporation20

By contrast to the heterotrophic bacterial abundance, distinct differences in bacterial

heterotrophic production, as determined by
3
H-leucine incorporation, were detectable

between the two layers. Bacterial leucine incorporation in the surface microlayer ac-

counted for 5% to 80% (n=6) of that at 5 m and the inhibition of bacterial heterotrophic

production in the surface microlayer was most pronounced at low wind speeds (Fig. 6).25

An exception to this pattern was Station HNL, where leucine incorporation in the sur-

face microlayer was enhanced by 20% as compared to subsurface waters. Only a small

fraction of DAPI-stained cells incorporated leucine in the surface microlayer (4–13%)
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in comparison to subsurface waters (19–33%), further indicating the inhibition of the

bacterial activity in the surface microlayer.

Different bacterial groups were responsible for bulk leucine incorporation in the sur-

face microlayer as compared to subsurface waters at Stations GYR and STB17 (Fig. 7).

At Station GYR, Bacteroidetes clearly dominated leucine uptake in the surface micro-5

layer (43% of DAPI-stained cells associated with silver grains), while in subsurface

waters both Alphaproteobacteria and Bacteroidetes (26% and 36%, respectively, of

DAPI-stained cells associated with silver grains) had similar contributions to leucine up-

take. At Station STB17, Gammaproteobacteria and Bacteroidetes dominated leucine

uptake in the surface microlayer (28% and 25% respectively, of DAPI-stained cells as-10

sociated with silver grains), while the three bacterial groups studied contributed equally

to leucine uptake in subsurface waters (13% to 16% of DAPI-stained cells associated

with silver grains)(Fig. 7).

4 Discussion

The thickness of the surface microlayer sampled, and thus its definition for a given15

study, depends on the sampling device applied. The metal screen we used in the

present study collects the upper 250–440µm water layer (Garrett 1965), while the lay-

ers collected by the glass plate (Harvey and Burzell 1972) and the rotating drum (Har-

vey 1966) are thinner (60–100µm). For specific microbiological studies membranes

are used to collect the upper 1 to 40µm (Kjelleberg et al., 1979). These differences20

are mainly due to the physical mechanisms to sample the uppermost layer of aquatic

systems, with some devices being more selective than others. Based on a large data

set of chemical (Momzikoff et al., 2004) and biological (Agogué et al., 2004) parameters

collected both with the metal screen and the glass plate in the coastal Mediterranean

Sea, no significant differences in the enrichment factors between the two samplers25

were observed. Kuznetsova et al. (2004) report a more efficient collection of surface

microlayer dissolved and particulate material by the screen than by the drum, despite
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the thinner layer sampled by the latter. These studies demonstrate that the collection

of the surface microlayer to study the parameters considered herein are most likely not

biased due to dilution with subsurface waters, despite the larger thickness of the layer

sampled. Our choice of the screen sampler is driven by the efficient, non-selective

sampling of a relatively large water volume for chemical and biological analyses.5

The marked accumulation of particulate organic matter at the sea surface observed

in the present study was not accompanied by any pronounced enrichment in photo- or

heterotrophic organisms. This suggests that detrital particles, including colloidal aggre-

gates, transparent exopolymeric particles (TEP), and submicron particles most likely

constitute an important fraction of the surface microlayer biofilm. The higher C:N ratios10

of particulate organic matter observed in the present and previous studies (Nishizawa,

1971; Taguchi and Nakajima, 1971) further support this notion. The enrichment in

particulate organic matter was strongly controlled by wind history, but independent of

particulate organic matter concentrations in subsurface waters, suggesting that physi-

cal processes, such as turbulent mixing, transport by rising bubbles or buoyant particles15

were important for the surface microlayer formation. The most pronounced accumu-

lation of particulate organic matter was observed at Station EGY where calm wind

conditions (≤2 m s
−1

) prevailed over roughly 18 h prior to surface microlayer collection.

It was interesting to note that at this site the C:N ratio of particulate organic matter in

the surface microlayer was similar to that in subsurface waters (Table 2). Station EGY20

was the only site where a pronounced enrichment in cell abundance and biomass of

autotrophic and heterotrophic organisms was observed (Tables 3 and 4). These ob-

servations could indicate the transport of fresh material to the ocean surface, but they

could also reflect photo- and heterotrophic biomass production in the surface micro-

layer when calm wind conditions exist over an extended time period. The latter idea is,25

however, not supported by results from the present study, as the inhibition in bacterial

heterotrophic production in the surface microlayer was most pronounced at calm sea

conditions (Fig. 6). This suggests that wind-induced physical processes determine not

only the amount, but to some extent also the characteristics of the particulate organic
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matter that accumulates at the air-water interface.

The chemical characteristics of surface microlayer dissolved organic matter (DOM)

appear to contrast the observations on particulate organic matter. Recent studies per-

formed in the open Atlantic and the western Mediterranean Sea report a pronounced

enrichment in dissolved free amino acids and a substantially lower C:N ratio in the DOM5

from the surface microlayer as compared to that from subsurface waters (Kuznetsova

et al., 2004; Reinthaler et al., 2007
??

). Interestingly, Reinthaler et al. (2007)
??

con-

cluded that the bioreactivity of the surface microlayer DOM was low, despite the high

contribution of amino acids to DOC and DON. Selective accumulation, and also in situ

production were both suggested to account for the enrichment in amino acids in the10

surface microlayer (Kuznetsova et al., 2004; Reinthaler et al., 2007
??

). The consis-

tently higher concentrations of chromophoric DOM (cDOM) in the surface microlayer

observed in the present and previous studies (Carlson, 1983) are clearly indicative for

the selective accumulation of DOM at the air-water interface. Removal of cDOM by

photomineralization and photobleaching is most likely rapid in the surface microlayer,15

the observation that cDOM is consistently enriched strongly suggests the continuous

supply from bulk seawater by selective scavenging.

In the present study, bacterial heterotrophic production was clearly reduced in the

surface microlayer as compared to subsurface waters. Previous studies support

(Sieburth et al., 1976; Carlucci et al., 1986) or contrast (Dietz et al., 1976; Bell and Al-20

bright, 1982; Bailey et al., 1983; Williams et al., 1986; Agogué et al., 2004; Reinthaler

et al., 2007
??

) this observation. A more consistent pattern among studies is ob-

served on rates of bacterial (<0.8µm fraction) or microbial community respiration in

the surface microlayer, generally exceeding those in subsurface waters by several-fold

(Garabétian, 1990; Obernosterer et al., 2005; Reinthaler et al., 2007
??

). These con-25

trasting responses most likely reflect the different characteristics of the surface micro-

layer. The enrichment in organic and inorganic matter renders the surface microlayer

a potentially favorable habitat for heterotrophic bacteria, at the same time it is exposed
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to drastic changes in temperature, pH, salinity and also to high intensities of solar ra-

diation, in particular ultraviolet radiation. Based on the short incubation time, bacterial

heterotrophic production provides an instantaneous response to the conditions in the

surface microlayer. By contrast, respiration measurements require 12h-24h incuba-

tions in the dark and they more likely reflect the potential of organic matter originating5

from the surface microlayer in sustaining bacterial metabolism.

Bacterial growth rates could further indicate the activity of the bacterial community

in the surface microlayer. Bacterial growth rates are commonly calculated on the basis

of total bacterial cell abundance even though several independent approaches have

shown that only a fraction of the bacterial community can be considered active (Gasol10

et al., 1999; Lebaron et al., 2001; Zubkov et al., 2001). The microautoradiographic

observations performed in the present study allowed us to estimate the fraction of ac-

tive cells, accounting for roughly 10% and 25% of DAPI-stained cells in the surface

microlayer and subsurface waters, respectively. Assuming that this percentage repre-

sents the active part of the bacterial community, growth rates in the surface microlayer15

(0.6 d
−1

) exceeded those in subsurface waters (0.3 d
−1

) by a factor of two. Could this

indicate that only a few bacterial groups are active in the surface microlayer accounting

for most of the bacterial heterotrophic production in this particular environment?

Our results from the fingerprints and the in situ hybridization show that the sur-

face microlayer is not inhabited by a particular bacterioneuston community. The use20

of the two complementary approaches, a PCR-based (i.e. CE-SSCP) and a PCR-

independent method (i.e. CARD-FISH), strongly support this conclusion. Given the

low bacterial growth rates determined in the present study, and the relatively short time

period over which the surface microlayer persists, an in situ development of a specific

bacterioneuston community is unlikely. Physical processes are mainly responsible for25

the formation of the surface microlayer, with upward transport of particulate material

being a predominant process. The minor differences that we observed in the finger-

prints between the two layers is most likely owing to the selective enrichment of the

surface microlayer by specific ribotypes. Likely candidates are bacteria attached to

2826

http://www.biogeosciences-discuss.net
http://www.biogeosciences-discuss.net/4/2809/2007/bgd-4-2809-2007-print.pdf
http://www.biogeosciences-discuss.net/4/2809/2007/bgd-4-2809-2007-discussion.html
http://www.egu.eu


BGD

4, 2809–2844, 2007

Bacterial community

structure in the

surface microlayer

I. Obernosterer et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

◭ ◮

◭ ◮

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

EGU

particles that are transported to the air-sea interface. The structure of the bacterial

community attached to particles in the water column differs from that of free-living bac-

teria (Acinas et al., 1999; Riemann and Winding, 2001; Ghiglione et al., 2007) and

Bacteroidetes were found to have an important contribution to the bacterial commu-

nities associated with aggregates (DeLong et al., 1993; Ploug et al., 1999; Simon et5

al., 2002). Marine aerosol particles have also been observed to be enriched in bacte-

ria, and their transport in the atmosphere has been suggested a potentially important

dispersal mechanism (Aller et al., 2005).

Our conclusion on the close similarity between the bacterial community structure in

the surface microlayer and subsurface waters is supported by results from samples10

collected in the same way from the coastal Mediterranean Sea (Agogué et al., 2004),

but they contrast the conclusion of a study conducted in the coastal North Sea (Franklin

et al., 2005). These authors utilized hydrophilic membranes to collect surface micro-

layer bacteria, and based on 16S rRNA clone libraries they observed a lower bacterial

diversity in the surface microlayer as compared to subsurface waters (Franklin et al.,15

2005). The potentially selective adsorption of bacteria onto hydrophilic membranes

as discussed in Agogué et al. (2004), could at least partly account for the different

conclusions obtained by these studies.

In contrast to the similarity between the two layers in terms of community structure

and abundance of major bacterial groups, differences in the composition of the ac-20

tive community were detectable. This was particularly pronounced at Station STB17

where Bacteroidetes and Gammaproteobacteria dominated the active community in

the surface microlayer, while the three bacterial groups investigated contributed equally

to the active community in subsurface waters (Fig. 7). Even though these bacterial

groups contain each a diverse assemblage of sub-groups, they have been attributed25

specific characteristics, based on different experimental approaches. There is for in-

stance increasing evidence that members of the Bacteroidetes group play an impor-

tant role in the degradation of complex polymeric substances (Cottrell and Kirchman,

2000; Kirchman, 2002; Cottrell et al., 2005). Gammaproteobacteria are suggested
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“opportunistic” due to the ability of several members belonging to this group to rapidly

respond to nutrient enrichment (Pinhassi and Berman. 2003). Pronounced growth

of Gammaproteobacteria was detectable in nitrogen-amended incubations at Station

GYR (Van Wambeke et al., 2007). The dominance of Bacteroidetes and Gammapro-

teobacteria in the active community in the surface microlayer could reflect the rapid5

response of members of these bacterial groups to changes in the growth conditions,

such as the enrichment and composition of organic and inorganic matter. These re-

sults suggest that even short time periods in the surface microlayer result in differences

in bacterial groups accounting for leucine incorporation, probably as a response to the

differences in the physical and chemical nature of the two layers.10

In the open ocean, the organic matter accumulating at the air-sea interface orig-

inates predominantly from phytoplankton primary production. The vertical flux of

phytoplankton-derived organic carbon to the ocean surface has, to the best of our

knowledge, never been evaluated. The potential importance of an upward flux of or-

ganic matter has been illustrated by studies on buoyant particles. TEP-rich microaggre-15

gates, for example, have been reported to ascend at velocities as fast as 0.1–1 m d
−1

to the ocean surface (Azetsu-Scott and Passow, 2004). The accumulation of organic

matter at the sea surface impacts its physical structure, thus the gas transfer rates.

The biological and photochemical mineralization of surface microlayer organic matter

could have further important consequences for the air-sea gas exchange (Calleja et20

al., 2005; Obernosterer et al., 2005). To better understand and determine these latter

processes, clearly novel techniques allowing in situ measurements of biological and

photochemical fluxes at the air-water interface are required.
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Table 1. Date and local time of the day of the surface microlayer collection and general charac-
teristics of the study sites. Phytoplankton biomass (chl a) is integrated over the euphotic zone.
Mean wind speed for 6 h prior to the surface microlayer collection is given. Ze – depth of the
euphotic zone.

Station Date Time of the Day Ze (m) chl a Wind speed

(mg m
−2

)
1

(m s
−1

)

MAR 29/10/2004 10:00–11:00 78 21 2.6
HNL 01/11/2004 13:30–14:30 90 17 2.6
STB3 05/11/2004 15:00–16:00 134 16 1.9
GYR-2 12/11/2004 12:00–13:00 160 11 1.9
GYR-4 14/11/2004 13:30–14:30 142 7 2.0
EGY 28/11/2004 09:00–10:30 94 15 0.5
STB17 01/12/2004 13:30–14:30 96 15 1.4

1
Data are from Ras et al. (2007)

2
.
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Table 2. Concentration of particulate organic carbon (POC) and nitrogen (PON), dissolved
organic carbon (DOC) and chromophoric dissolved organic matter (cDOM) in the sea surface
microlayer (SML) and in sub-surface waters (SSW). n.d.- not determined.

MAR HNL STB3 GYR-2 EGY STB17

POC (µM)
SML 10.3 11.5 14.8 7.3 25.7 23.0
SSW 5.4 8.8 4.0 2.8 3.4 4.7

PON (µM)
SML 1.0 1.0 1.2 0.5 4.2 2.8
SSW 0.7 1.0 0.5 0.3 0.6 0.8

POC:PON
SML 10.8 11.5 12.7 14.6 6.2 8.3
SSW 7.6 8.5 7.9 8.4 5.2 6.0

DOC (µM)
SML 80 85 94 81 105 88
SSW 85 92 88 78 99 88

cDOM (Abs350nm m
−1

)
SML 0.072 0.097 0.051 0.036 0.073 n.d.
SSW 0.037 0.050 0.027 0.016 0.014 n.d.
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Table 3. Concentrations of chlorophyll a (chl a), b (chl b), c (chl c) and Divinyl chla in the sea
surface microlayer (SML) and subsurface waters (SSW). BD – below limit of detection.

MAR HNL GYR-4 EGY STB17

chl a (µg l
−1

)
SML 0.201 0.075 0.013 0.095 0.12
SSW 0.168 0.128 0.021 0.064 0.11

chl b (µg l
−1

)
SML 0.017 0.011 0.001 0.011 0.124
SSW 0.017 0.020 0.001 0.004 0.110

chl c (µg l
−1

)
SML 0.047 0.003 0.001 0.015 0.024
SSW 0.033 0.016 0.002 0.008 0.023

Divinyl chl a (µg l
−1

)
SML 0.048 0.042 0.003 0.010 BD
SSW 0.027 0.049 0.004 0.008 BD
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Table 4. Abundance of the major components of the microbial community in the sea surface
microlayer (SML) and subsurface waters (SSW). n.d. – not determined; b.d. – below limit of
detection. * – data are based on flow cytometric analysis; ** – data are based on microscopic
observations.

MAR HNL STB3 GYR-2 GYR-4 EGY STB17

Synechococcus spp.* (× 10
7

l
−1

)
SML 5.8 1.2 0.3 0.1 0.02 0.7 0.2
SSW 4.9 1.4 0.3 0.1 0.04 0.5 0.2

Pico/Nanoeukaryotes* (× 10
6

l
−1

)
SML 3.9 5.1 0.8 0.5 0.4 3.0 3.9
SSW 3.6 5.7 1.4 0.6 0.4 2.6 3.7

Plastidic Nanoflagellates** (× 10
5

l
−1

)
SML 19.9 21.5 5.3 0.4 0.4 n.d. n.d.
SSW 16.6 22.2 3.5 0.1 0.6 n.d. n.d.

Heterotrophic bacteria* (× 10
8

l
−1

)
SML 9.6 8.9 6.5 3.8 3.6 9.0 8.4
SSW 9.4 8.7 6.1 3.7 3.5 7.0 7.8

Heterotrophic nanoflagellates** (×x 10
5

l
−1

)
SML 7.6 5.4 1.1 1.8 2.4 n.d. n.d.
SSW 4.2 2.7 1.7 B.D. 2.4 n.d. n.d.
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Fig. 1. Cruise track and sampled stations of the BIOSOPE (BIogeochemistry and Optics South
Pacific Ocean Experiment) project. Stations where the sea surface microlayer was collected
are indicated by stars.
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Fig. 2. Relation between the ratio of particulate organic carbon (POC) and nitrogen (PON) in
the surface microlayer (SML) to that in subsurface water (SSW) and the mean wind speed 6 h
prior to sampling.
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Fig. 3. Relation between (a) pigment concentration and (b) the abundance of autotrophic and
heterotrophic cells in the surface microlayer (SML) and in subsurface waters (SSW). Data of
all pigment analyses and all cell counts are pooled. See Tables 3 and 4 for individual pigment
analysis and cell abundances, respectively. Dashed line indicates the 1:1 line.
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Fig. 5. Relative contribution of Eubacteria and major bacterial groups to total DAPI-stained
cells in the surface microlayer (SML) and in subsurface waters (SSW) at Stations MAR (a),
GYR (b) and STB17 (c). The control probe NON was on average 2% of DAPI-stained cells.
Mean values ± SE are given.
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Fig. 6. Relation between the ratio of bacterial heterotrophic production in the surface microlayer
(SML) to subsurface waters (SSW) and the mean wind speed 6 h prior to sampling.
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Fig. 7. Bulk
3
H-leucine incorporation and relative contribution of bacterial groups to leucine-

incorporation in the surface microlayer (SML) and in subsurface waters (SSW) at Stations MAR

(a), GYR (b) and STB17 (c). For
3
H-leucine incorporation, mean values ± variation of duplicate

incubations, and for the relative contribution of bacterial groups mean values ± SE are given.

2844

http://www.biogeosciences-discuss.net
http://www.biogeosciences-discuss.net/4/2809/2007/bgd-4-2809-2007-print.pdf
http://www.biogeosciences-discuss.net/4/2809/2007/bgd-4-2809-2007-discussion.html
http://www.egu.eu

