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Abstract

Prochlorococcus, Synechococcus, picophytoeukaryotes and bacterioplankton abun-

dances and contributions to the total particulate organic carbon concentration (POC),

derived from the total particle beam attenuation coefficient (cp), were determined

across the eastern South Pacific between the Marquesas Islands and the coast of5

Chile. All flow cytometrically derived abundances decreased towards the hyper-

oligotrophic centre of the gyre and were highest at the coast, except for Prochloro-

coccus, which is not detected under eutrophic conditions. Temperature and nutrient

availability appeared important in modulating picophytoplankton abundance, accord-

ing to the prevailing trophic conditions. Although the non-vegetal particles tended to10

dominate the cp signal everywhere along the transect (50 to 83%), this dominance

seemed to weaken from oligo- to eutrophic conditions, the contributions by vegetal

and non-vegetal particles being about equal under mature upwelling conditions. Spa-

tial variability in the vegetal compartment was more important than the non-vegetal

one in shaping the water column particulate attenuation coefficient. Spatial variability15

in picophytoplankton biomass could be traced by changes in both Tchla and cp. Fi-

nally, picophytoeukaryotes contributed with ∼38% on average to the total integrated

phytoplankton carbon biomass or vegetal attenuation signal along the transect, as de-

termined by direct size measurements on cells sorted by flow cytometry and optical

theory. The role of picophytoeukaryotes in carbon and energy flow would therefore be20

very important, even under hyper-oligotrophic conditions.

1 Introduction

Global estimates indicate that about half of the earth’s primary production (PP) takes

place in the ocean (Field et al., 1998). Of a mean global marine PP of 50.7 Gt C y
−1

estimated through ocean-colour-based models (Carr et al., 2006), 86% would occur in25

the open ocean (Chen et al., 2003), where the photosynthetic biomass is dominated
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by three main picophytoplanktonic (<2–3µm) groups (e.g., Li, 1995): cyanobacteria of

the genera Prochlorococcus (Chisholm et al., 1988) and Synechococcus (Waterbury

et al., 1979), and eukaryotes belonging to diverse taxa (Moon-van der Staay et al.,

2001).

Although cyanobacteria, especially Prochlorococcus, tend to dominate in terms of5

numerical abundance, the picophytoeukaryotes can make a significant contribution

to the picophytoplanktonic PP (Li, 1994 and 1995; Worden et al., 2004) and carbon

biomass (Grob et al., 2007). Carbon being the universal currency in marine ecological

modelling, looking inside the pico-autotrophic “black box” to determine the distribu-

tion of carbon biomass among the different groups becomes fundamental to better10

understand the respective roles of these groups in the global carbon cycle. Recent

biogeochemical models have made a significant step forward on this subject by incor-

porating not only different plankton functional types, but also different groups within

these functional types (e.g., cyanobacteria, picophytoeukaryotes, nitrogen fixers) in or-

der to reproduce some of the ecosystem’s variability (e.g., Bisset et al., 1999; Le Quéré15

et al., 2005).

The measurement of the particulate attenuation coefficient (cp) has proven to be a

very powerful tool in determining particle load and particulate organic carbon (POC)

concentrations at the global (e.g., Gardner, 2006) as well as the regional scale (e.g.,

Claustre et al., 1999; Oubelkheir et al., 2005). High frequency measurements of cp20

signal can also be used to derive rates of change in particulate organic stocks like gross

and net community production (Claustre et al., 2007
1
). In situ cp profiles associated

with the simultaneous cytometric determination of the different phytoplanktonic groups

and bacterioplankton (Bacteria + Archaea) abundances have the potential to allow the

estimation of the contribution of these groups to the bulk cp, and hence to POC. Group-25

specific contributions to POC can therefore be estimated from their contributions to

cp. In the equatorial Pacific, for instance, picophytoeukarotic cells would dominate the

1
Claustre, H., Obernosterer, I., Lewis, M., and Huot, Y.: The metabolic balance of the South

Pacific Gyre, submitted, 2007.
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vegetal contribution to cp (Chung et al., 1996; DuRand and Olson, 1996; Claustre et al,

1999). These estimations require however that the mean cell size and refractive index

of each group are known or at least assumed (Claustre et al., 1999, and references

therein). Total and group-specific beam attenuation coefficients can be obtained at

relatively short time scales, but also have the advantage of being amenable to large5

scale in situ surveys on carbon stocks and cycling, and even to global estimation, since

bulk oceanic bio-optical properties can be retrieved from space (e.g., Gardner, 2006).

In the present work we tried to answer the following questions: (1) what is the contri-

bution of the different picoplanktonic groups to POC in the upper ocean? and (2) how

does the spatial variability in these group’s contributions influence the spatial changes10

in POC in the upper ocean? For this, we studied the waters of the eastern South Pacific,

which present an extreme gradient in trophic conditions: from the hyper-oligotrophic

waters of the central gyre to the eutrophic coastal upwelling waters off South America.

Using flow cytometry cell sorting we were able to isolate different picophytoplankton

populations in situ to obtain their actual cell sizes, which allowed us to improve esti-15

mations on the group-specific attenuation coefficients, and therefore on group-specific

contributions to POC.

2 Methods

A total of 24 stations were sampled between the Marquesas Islands (∼8.4
◦
S; 141.2

◦
W)

and the coast of Chile (∼34.6
◦
S; 72.4

◦
W) during the French expedition BIOSOPE (BIo-20

geochemistry and Optics SOuth Pacific Experiment) in austral spring time (26 Octo-

ber to 11 December 2004) (Fig. 1). Temperature, salinity and oxygen profiles were

obtained with a conductivity-temperature-depth-oxygen profiler (CTDO, Seabird 911

Plus). Nutrient concentrations (nitrate, nitrite, ammonium, phosphate and silicate) were
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determined onboard (see Raimbault et al., 2007
2
). Pigment concentrations from noon

profiles (local time) were determined using High Performance Liquid Chromatography

(HPLC). For HPLC analyses, water samples were vacuum filtered through 25 mm di-

ameter and 0.7µm porosity Whatman GF/F glass fibre filters (see Ras et al., 2007
3
),

where on average 97% of Prochlorococcus cells are retained (Chavez et al., 1995).5

The above implies a maximum error of 3% on the total divinyl-chlorophyll a concen-

trations (dv-chla, pigment that is specific only to this group) determined using this

technique. Daily integrated surface total irradiance was determined from on-board

calibrated measurements.

All stations reported here were sampled at local noon time at 6 to 14 different depths10

from the surface down to 300 m (Fig. 1). The position of the deepest sampling depth

was established relative to the position of the bottom of the photic layer, Ze (m) de-

fined as the depth where the irradiance is reduced to 1% of its surface value. Five

stations of very different trophic conditions, here referred to as long stations, were also

sampled at high frequency (i.e., every 3 h) during 2 to 4 days: (1) mesotrophic (MAR,15

Marquesas Islands), (2) high nutrient-low chlorophyll (HNL, ∼9.0
◦
S and 136.9

◦
W), (3)

hyper-oligotrophic (GYR, ∼26.0
◦
S and 114.0

◦
W), (4) oligotrophic (EGY, ∼31.8

◦
S and

91.5
◦
W) and (5) eutrophic (UPW, highly productive upwelling region, ∼34.0

◦
S and

73.3
◦
W) (Fig. 1). The coastal-most station (UPX) was additionally sampled to com-

pare it with UPW’s upwelling condition (Fig. 1).20

Our results are presented in terms of oligo-, meso- and eutrophic conditions accord-

ing to surface total chlorophyll a concentrations (Tchla, chlorophyll a + divinyl chloro-

phyll a) of ≤0.1, >0.1 and ≤1, and >1 mg m
−3

, respectively (Antoine et al., 1996). This

division has been used to characterize the trophic status of the ocean from space and

we consider it as appropriate to describe the large spatial patterns investigated during25

2
Raimbault, P. and Garcia, N.: Nutrients distribution and new production estimation in the

southwest Pacific: Evidence for intense nitrogen recycling, in preparation, 2007.
3
Ras, J., Uitz, J., and Claustre, H.: Spatial variability of phytoplankton pigment distribution

in the South East Pacific, in preparartion, 2007.
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the BIOSOPE cruise.

2.1 Picoplankton analyses

Prochlorococcus, Synechococcus and picophytoeukaryotes abundances were deter-

mined on fresh samples on-board with a FACSCalibur (Becton Dickinson) flow cy-

tometer. For bacterioplankton counts (Bacteria + Archaea), samples fixed either with5

paraformaldehyde at 1% or glutaraldehyde at 0.1% final concentration and quick-frozen

in liquid nitrogen were stained with SYBR-Green I (Molecular Probes) and run in the

same cytometer within two months after the end of the cruise. Reference beads (Fluo-

resbrite YG Microspheres, calibration grade 1.00µm, Polysciences, Inc) were added to

each sample before acquiring the data with the Cell Quest Pro software (Becton Dick-10

inson) in logarithmic mode (256 channels). During data acquisition, between 5 and

300×10
3

events were registered in order to count at least 500 cells for each picoplank-

tonic group. The error associated to abundances determined using flow cytometry is

≤5%. The data were then analysed with the Cytowin software (Vaulot 1989) to sepa-

rate the picoplanktonic populations based on their scattering and fluorescence signals,15

according to Marie et al. (2000).

Surface Prochlorococcus abundance for weakly fluorescent populations was esti-

mated by fitting a Gaussian curve to the data using Cytowin. When their fluorescence

was too dim to fit the curve (e.g. surface and sub-surface samples at the center of

the gyre) their abundance was estimated from dv-chla concentrations by assuming an20

intracellular pigment content of 0.23 fg cell
−1

(see supplemental material http://www.

biogeosciences-discuss.net/4/1461/2007/bgd-4-1461-2007-supplement.pdf). This in-

tracellular dv-chla content corresponds to the mean value obtained for cells in the sur-

face layer (above ∼5% of surface light) by dividing the HPLC-determined dv-chla by the

cell number estimated from flow cytometry, considering all but the MAR data (Fig. 2). At25

the GYR station, Synechococcus and picophytoeukaryotes abundances above 100 m

were only available for the first morning profile (samples taken above 90 m for the other

GYR profiles are unfortunately not available). This profile showed that both groups’
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abundances were homogeneous over the first 100 m, so we assumed the abundances

measured at 90–100 m to be representative of the abundances within the 0–100 m

layer. All picoplankton abundances were then integrated from the surface to 1.5 Ze

rather than to Ze, because deep chlorophyll maxima (DCM) were observed between

these two depths at the center of the gyre.5

In order to establish a relationship between actual sizes and the mean forward

scatter cytometric signal normalized to the reference beads (FSC in relative units,

r.u.; see supplemental material http://www.biogeosciences-discuss.net/4/1461/2007/

bgd-4-1461-2007-supplement.pdf), in situ Prochlorococcus, Synechococcus and pi-

cophytoeukaryotes populations were sorted separately on board with a FACS Aria flow10

cytometer (Becton Dickinson). Each sorted population was then analysed with a Mul-

tisizer 3 Coulter Counter (Beckman Coulter) for size (µm) and with the FACS Calibur

flow cytometer for FSC. Several Synechococcus and picophytoeukaryotes populations

isolated in situ could be measured with the Coulter Counter. Prochlorococcus size, on

the other hand, could only be determined for one population because they were at the15

detection limit of the instrument. A similar analysis was performed on monospecific cul-

tures of various picophytoplankton species (without pre-sorting) to combine both in situ

and laboratory measurements to establish a log-log polynomial relationship between

FSC and size (Fig. 3a). We believe that even though the left-most end of the fitted

curve is driven by a sole data point, it is still very useful to the relationship because it20

represents the actual mean cell size of a natural Prochlorococcus population. Based

on this relationship established within the picophytoplankton size range we calculated

the upper size limit for the FSC settings we used during the whole cruise at 3µm.

Also using culture cells, we established a direct relationship between the mean cy-

tometric FSC signal and intracellular carbon content to estimate Synechococcus and25

picophytoeukaryotes carbon biomass (Fig. 3b). To obtain intracellular carbon contents,

a known volume of each culture population was filtered onto GF/F filters previously

precombusted at 400
◦
C, in triplicate. One blank filter per culture was put aside to be

used as controls. The number of phytoplankton and contaminating bacterioplankton
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cells retained in and passing through the filters were determined using flow cytom-

etry (see supplemental material http://www.biogeosciences-discuss.net/4/1461/2007/

bgd-4-1461-2007-supplement.pdf). The filters were then dried at 60
◦
C for 24 h, fu-

migated with concentrated chlorhydric acid for 6 to 8 h to remove inorganic carbon

and dried again for 6 to 8 h. Each filter was finally putted on a tin capsule and anal-5

ysed with a Carbon-Hydrogen-Nitrogen (CHN) autoanalyzer (Thermo Finnigan, Flash

EA 1112) (see supplemental material http://www.biogeosciences-discuss.net/4/1461/

2007/bgd-4-1461-2007-supplement.pdf). Carbon contents were estimated based on a

calibration curve performed using Acetanilida.

Considering both size and carbon content derived from FSC, a conversion factor (in10

fgC µm
−3

) was established for Synechococcus and then applied to the mean cell size

estimated for Prochlorococcus to obtain the intracellular carbon content of that group.

Picophytoplankton carbon biomass was then calculated by multiplying cell abundance

and intracellular carbon content for each group.

2.2 Beam attenuation coefficients specific for each picoplankton group15

Profiles of the total particle beam attenuation coefficient at 660 (cp, m
−1

), a proxy for

POC (e.g. Claustre et al., 1999), were obtained with a C-Star transmissometer (Wet

Labs, Inc.) attached to the CTD rosette. Procedures for data treatment and validation

have been described elsewhere (Loisel and Morel, 1998; Claustre et al., 1999). In-

herent optical properties of sea water (IOP’s), such as cp, depend exclusively on the20

medium and the different substances in it (Preisendorfer, 1961). The vegetal (cveg)

and non-vegetal (cnveg) contribution (Eq. 1) to the particulate attenuation coefficient

can therefore be expressed as

cP = cveg + cnveg (1)

whereas the Prochlorococcus (cproc), Synechococcus (csyn), picophytoeukaryotes25

(ceuk) and larger phytoplankton (>3µm, clarge) contribution to the vegetal signal (Eq. 2)
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can be described by,

cveg = cproc + csyn + ceuk + clarge (2)

Bacterioplankton (cbact), heterotrophs (chet) and detritus (cdet = non living particles)

contribute to the non-vegetal component (Eq. 3) as follows,

cnveg = cp − cveg = cbact + chet + cdet = cbact + 2cbact + cdet = 3cbact + cdet (3)5

where chet is assumed to be approximately 2cbact (Morel and Ahn, 1991). This assump-

tion was adopted in order to be able to roughly estimate the fraction of total particulate

organic carbon corresponding to detritus (see below; Eq. 4).

Since particulate absorption is negligible at 660 nm (Loisel and Morel, 1998), beam

attenuation and scattering are equivalent, so we can estimate cproc, csyn, ceuk, clarge10

and cbact by determining the group-specific scattering coefficients bi (m
−1

) = Ni [si
Qbi ], where i = proc, syn, euk, large or bact. We used flow cytometry to retrieve

both picophytoplankton cell abundance (Ni , cells m
−3

) and mean cell sizes (through

FSC, see Sect. 2.1). Mean geometrical cross sections (s, m
2

cell
−1

) were calculated

from size, while Qbi (660), the optical efficiency factors (dimensionless), were com-15

puted through the anomalous diffraction approximation (Van de Hulst, 1957) assum-

ing a refractive index of 1.05 for all groups (Claustre et al., 1999). For Prochlorococ-

cus and Synechococcus we used mean sizes obtained from a few samples, whereas

for the picophytoeukaryotes we used the mean cell size estimated for each sam-

ple (see supplemental material http://www.biogeosciences-discuss.net/4/1461/2007/20

bgd-4-1461-2007-supplement.pdf). For samples where picophytoeukaryotes abun-

dance was too low to determine their size we used the nearest sample value. For

bacterioplankton we used a value of 0.5 µm, as used by Claustre et al. (1999). Finally,

once cveg, cbact and therefore chet are determined, cdet is obtained directly by difference

(Eq. 4).25

cdet = cnveg − cbact − chet = cnveg − cbact − 2cbact = cnveg − 3cbact (4)
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Contributions to cp by larger phytoplanktonic cells in the western and eastern part

of the transect were estimated by assuming that peaks larger than 3 µm in the

particle size distribution data obtained either with the Coulter Counter or with a

HIAC optical counter (Royco; Pacific Scientific) corresponded to autotrophic organ-

isms (see supplemental material http://www.biogeosciences-discuss.net/4/1461/2007/5

bgd-4-1461-2007-supplement.pdf). Coulter Counter data were only available for 1

(surface samples, ≤5 m) to 3 different depths. Thus, in order to obtain water column

profiles for MAR, HNL, EGY and UPW, the estimated clarge were extrapolated by as-

suming clarge = 0 at the depth where no peak >3µm was detected (usually below

50 m). When only surface data were available, clarge was assumed to be negligible at10

the depth where chlorophyll fluorescence became lower than the surface one. Group-

specific attenuation signals were integrated from the surface down to 1.5 Ze (water

column, c0−1.5 Ze) and from the surface to 50 m (surface layer, c0−50 m) to estimate their

contribution to integrated cp.

Finally, cp(660) was converted to particulate organic carbon (POC) by using the em-15

pirical relationship established by Claustre et al. (1999) for the tropical Pacific (Eq. 5),

which has proven to be valid as part of BIOSOPE (see Stramski et al., 2007
4
).

POC(mg m−3) = cp(m−1) × 500(mg m−2) (5)

To evaluate the ability of Tchla and cp to trace spatial changes in picophytoplankton

biomass along the transect we used local noon time data within the integration depth20

(0 to 1.5 Ze) from the stations where no large phytoplankton cells were detected with

the particle counters (Coulter or HIAC), i.e., stations 3 to 15 + GYR. We chose these

stations because we do not have intracellular carbon content data for larger cells to

include in the photosynthetic carbon biomass estimates.

4
Stramski, D., Reynolds, R., Babin, M., et al.: Relationships between the particulate organic

carbon concentration and optical properties of surface waters in the South East Pacific and

Atlantic Oceans, in preparation, 2007.
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3 Results

The sampled transect included South Pacific Tropical Waters (SPTW), with a clear

salinity maximum extending from the surface down to 150 m between HNL and GYR,

Eastern South Pacific Central Waters (ESPCW) characterized by salinities of 34.5 to

36 (Fig. 4h) and temperatures of 15 to 20
◦
C at the centre of the gyre (GYR to EGY) and5

colder and fresher waters at the Chilean coast (Claustre et al., 2007
1
). Limits between

oligo-, meso- and eutrophic conditions were set at 133, 89 and 74.5
◦
W according to

the measured surface chlorophyll a concentrations, as explained above. Under olig-

otrophic conditions nitrate concentrations were close to 0µM or undetectable between

the surface and 150–200 m, and still very low (∼2.5µM) between the latter depth and10

1.5 Ze (Fig. 4f). Expectedly, nutrient concentrations were higher under mesotrophic

conditions and highest near the coast (see Raimbault et al., 2007
2
), whereas phos-

phate was never a limiting factor (Moutin et al., 2007
5
).

The hyper-oligotrophic centre of the South Pacific Subtropical Gyre (SPSG), i.e.,

the clearest waters of the world’s ocean (Morel et al., 2007), was characterized by15

extremely low surface Tchla concentrations (<0.03 mg m
−3

; see Ras et al., 2007
3
)

and undetectable nutrient levels (see Raimbault et al., 2007
2
), greatly differing from

the Marquesas Islands’ mesotrophic conditions and the typical High Nutrient – Low

Chlorophyll situation (i.e., HNL) encountered at the borders of the gyre, and the up-

welling conditions observed at the coast.20

3.1 Picoplankton numerical abundance

All groups’ abundances tended to decrease towards the centre of the gyre. Prochloro-

coccus was highest at the western (up to 300×10
3

cells ml
−1

around 50 m, associated

with SPTW) and eastern (up to 200×10
3

cells ml
−1

in the 50 to 100 m layer) bor-

5
Moutin, T., Karl, D., Duhamel, S., et al.: Phosphate availability and the ultimate control of

nitrate input by nitrogen fixation in the Pacific Ocean, in preparation, 2007.
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ders of the oligotrophic region (Fig. 4a). Peaks in Synechococcus (up to 190×10
3

cells ml
−1

; Fig. 4b), picophytoeukaryotes (10–70×10
3
cells ml

−1
; Fig. 4c) and bacterio-

plankton abundances (up to 2×10
6

cells ml
−1

; Fig. 4d) were registered near the coast.

Deep Prochlorococcus (100–150×10
3

cells ml
−1

between 50 and 200 m; Fig. 4a) and

picophytoeukaryotes (∼2×10
3

cells ml
−1

between 150 and 200 m; Fig. 4c) maxima5

were recorded at the centre of the gyre following the pattern of Tchla concentrations

(∼0.15 mg m
−3

; Fig. 4e), above the deep chlorophyll maximum (DCM) for the former

and within the DCM depth range for the latter (Figs. 4c and e). Synechococcus reached

lower depth ranges than the rest of the groups everywhere along the transect (Fig. 4b).

In terms of chlorophyll biomass, the importance of the DCM at the centre of the gyre10

is highlighted when comparing the surface-to-DCM average ratios for the different long

stations: 0.67±0.13 at MAR, 0.44±0.04 at HNL, 0.12±0.02 at GYR and 0.27±0.02 at

EGY.

Water column integrated picoplankton abundance (0 to 1.5 Ze) was strongly dom-

inated by bacterioplankton along the whole transect (83±7% of total picoplanktonic15

cells), followed by Prochlorococcus when present (up to 27% under oligotrophic con-

ditions), the contributions by Synechococcus (0.1 to 3.7%) and picophytoeukaryotes

(0.2 to 3.1%) being almost negligible. When not considering MAR, Prochlorococcus

showed an evident positive relationship with surface temperature (Fig. 5a), which was

representative of the general eastward decrease in water temperature within the inte-20

gration depth (0 to 1.5 Ze) along the transect (see Claustre et al., 2007
1
). Picophy-

toeukaryotes and Synechococcus abundances did not follow the surface temperature

trend. Bacterioplankton, on the other hand, followed Prochlorococcus pattern under

oligotrophic conditions (Fig. 5b).

Prochlorococcus integrated abundance was negatively correlated to Tchla, whereas25

bacterioplankton and Synechococcus (strongest correlation) were both positively cor-

related to this variable (Table 1). Bacterioplankton abundance covaried with phyto-

plankton biomass (Table 1). Except for Synechococcus and picophytoeukaryotes, no

statistically significant correlations were observed between picoplanktonic groups (Ta-
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ble 1).

3.2 Picoplankton contributions to cp, a proxy for POC

Mean pico- and large phytoplankton cell sizes used to estimate the group-

specific attenuation cross sections are summarized in Table 2 and compared

with values from the literature. No peaks >3µm were detected between5

Station 3 and 15, including GYR. The largest size difference was observed

for the picophytoeukaryotes (Table 2). For this group, the attenuation co-

efficients were determined by changes in both size (decreasing towards the

coast; see supplemental material http://www.biogeosciences-discuss.net/4/1461/

2007/bgd-4-1461-2007-supplement.pdf) and abundance, when considering a constant10

refractive index. As a result, for instance, an average decrease in mean cells size

of 0.22µm (0.0056µm
3
) from MAR to HNL (see supplemental material http://www.

biogeosciences-discuss.net/4/1461/2007/bgd-4-1461-2007-supplement.pdf) counter-

acts the higher cell abundance in the latter to modulate ceuk along the transect (Fig. 6

and Fig. 7). Cyanobacteria and bacterioplankton attenuation coefficients, on the other15

hand, varied only according to their abundances (see Sect. 2.1).

Along the transect, the shape and magnitude of the vertical cp profiles were mainly

determined by the non-vegetal compartment, with cp and cnveg presenting the same

vertical pattern at all long stations (Fig. 6). At MAR and HNL, cp was rather homo-

geneous in the top 50 m and declined below this depth, whereas cnveg decreased20

systematically with depth (Figs. 6a and b). At GYR cp and cnveg subsurface max-

ima were both observed around 100 m, these two variables being highest around 40 m

at EGY (Figs. 6c and d). Both cp and cveg tended to be lower under hyper- and olig-

otrophic conditions at the centre of the gyre and were highest at UPW (Fig. 6). Both

Prochlorococcus (when present) and picophytoeukaryotes usually presented subsur-25

face maxima in their attenuation coefficients (e.g., at GYR around 125 m for the former

and between 150 and 250 m for the latter; Fig. 6c) except at UPW, where ceuk tended to

decrease below 30 m (Fig. 6e). UPX profiles were included to highlight the differences
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observed with UPW, the other upwelling station (Figs. 6e and f).

Total and group-specific integrated attenuation coefficients (0 to 1.5 Ze) tended all to

decrease from the western side towards the center of the gyre and increased again

towards the coast (Fig. 7a). The integrated non-vegetal attenuation coefficient (detritus

+ bacterioplankton + heterotrophic organisms) was quite variable, constituting ≥70%5

of c0−1.5 Ze in most of the transect, reaching the highest (83%) and lowest (50%) contri-

butions at GYR and UPW, respectively (Fig. 7b). Detritus being estimated by difference

(Eq. 4), cdet and cveg’s contributions to c0−1.5 Ze followed a general opposite trend, pre-

senting similar values near the meso-oligotrophic limits (∼128 and 87
◦
W) (Fig. 7b).

Detritus contribution to c0−1.5 Ze was always ≤50%, the lowest values being associated10

with highest vegetal contributions (Fig. 7b). Interestingly, between the two extreme

trophic conditions encountered at GYR (hyper-oligotrophic; see Claustre et al., 2007
1
)

and UPW (eutrophic), c0−1.5 Ze and integrated cveg increased ∼2- and 6-fold, respec-

tively, whereas integrated cnveg and cdet were only ∼ 1.2- and 1.1-fold higher at the

upwelling station (Fig. 7a). Furthermore, in terms of contribution to c0−1.5 Ze, cveg was15

∼3 times higher at UPW, cnveg and cdet representing only about half of the percentage

estimated at GYR (Fig. 7b).

Mean integrated Prochlorococcus (when present) and picophytoeukaryotes contri-

butions to c0−1.5 Ze for the whole transect were equivalent (9.7±4.1 and 9.4±3.8%,

respectively), although the latter were clearly more important under mesotrophic con-20

ditions in both absolute values (Fig. 7a) and relative terms (Fig. 7b). Synechococcus

attenuation coefficients were too low (Fig. 7a) to contribute significantly to cp (only

1.0±1.0% on average), so we did not include them in Fig. 7b. Bacterioplankton atten-

uation coefficients varied little along the transect and were always lower than all phyto-

plankton combined (Fig. 7b). Large phytoplankton attenuation coefficients were lower25

than that of the picophytoplankton (cyanobacteria and picophytoeukaryotes combined)

in the western part of the transect and higher or similar near the coast (Fig. 7a), their

contributions to cp following the same trend (included in cveg’s contribution, Fig. 7b).

When comparing c0−1.5 Ze to c0−50 m and their integrated group-specific attenuation
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coefficients, it becomes clear that not considering data below 50 m leads to very differ-

ent results in most of the transect and especially at the centre of the gyre (Figs. 7a and

c). For instance, whereas at UPW c0−1.5 Ze and c0−50 m were equivalent, the former is

2- and the latter 13-fold higher than the corresponding GYR integrated values (Figs. 7a

and c). Similarly, there was a 2-fold difference in cveg’s contributions to c0−1.5 Ze and5

c0−50m at the centre of the gyre (Figs. 7b and d).

3.3 Phytoplanktonic carbon biomass stocks and spatial variability

To avoid the use of carbon conversion factors from the literature, in the present work we

used two different approaches to estimate the picophyoteukaryotes carbon biomass:

(1) from intracellular carbon content (Figs. 7b; see Sect. 2.1) and (2) calculating ceuk10

contribution to cp, the latter assumed to be equivalent to POC (see Sect. 2.2). Both ap-

proaches gave very similar results, indicating that the premise that all picophytoeukary-

otic organisms have the same refractive index (∼1.05) is valid for the sampled transect,

even if we know that this group is usually constituted by diverse taxa (Moon-van der

Staay et al., 2001). The above provides strong support for the use of optical techniques15

and theory to determine picophytoeukaryotes contribution to POC, under the sole con-

dition of using actual mean cell sizes. Intracellular carbon contents used to estimate

picophytoplankton biomass are given in Table 2.

Regarding spatial variability, both Tchla (r=0.67) and cp (r=0.53) were equally well

correlated to the dominant picophytoplankton carbon biomass, i.e., Prochlorococcus20

+ picophytoeukaryotes (Fig. 8). Synechococcus biomass, on the other hand, was

negatively correlated to Tchla (Fig. 8a) and positively to cp (Fig. 8b). However, despite

of the differences observed between this cyanobacterium and the other two groups,

correlation coefficients calculated for total picophytoplankton biomass (i.e., dominant

+ Synechococcus; not shown) were not significantly different from those calculated25

for the dominant groups (Fig. 8). Synechococcus had no influence on the general

relationships because of its negligible biomass (Fig. 8). Tchla and cp were therefore

useful in tracing total picophytoplanktonic carbon biomass.
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At the centre of the gyre (∼120.36 to 98.39
◦
W or Station 7 to 14 + GYR) the photo-

synthetic biomass (dominated by picophytoplankton) constituted ∼18% of the total in-

tegrated POC (Fig. 7b). Even more interestingly, ∼43% of this photosynthetic biomass

would correspond to the picophytoeukaryotes (Fig. 9). Let us now assume that the

contribution to integrated cp by all phytoplanktonic groups is representative of their5

contribution to POC, as proven for the picophytoeukaryotes (see above). Under this

assumption picophytoeukaryotes would constitute 51% of the total phytoplankton car-

bon biomass (large phytoplankton included) at MAR, about 39% at HNL and GYR and

43% at EGY. At UPW, however, where mean integrated POC estimated from cp (see

Sect. 2.2) was ∼6 g m
−2

(right axis on Fig. 7a), picophytoeukaryotes would only consti-10

tute 5% of the photosynthetic biomass (Fig. 9a). When considering the whole transect,

picophytoeukaryotes mean contribution to the total photosynthetic carbon biomass was

∼38%.

Contributions to POC by Prochlorococcus and Synechococcus were ∼1.7 and 1.5

times higher when estimated from carbon biomasses rather than attenuation coeffi-15

cients (not shown). Using these higher values for cyanobacteria and assuming that

the contribution by large phytoplankton is equivalent to clarge’s contribution to cp, pico-

phytoeukaryotes mean contribution to the total photosynthetic carbon biomass along

the transect would be ∼30%, representing ∼28 instead of 43% at the centre of the

gyre (Fig. 9a). These contributions are slightly lower than the ones estimated through20

the optically-based approach, with almost all data points being below the 1-to-1 line

relating both estimates (Fig. 9b).

4 Discussion and conclusion

4.1 Picoplankton abundance

Macroecological studies indicate that 66% of the variance in picophytoplankton abun-25

dance can be explained by temperature (the dominant factor), nitrate and chlorophyll
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a concentration (Li, 2007). It has also been established that higher Prochlorococcus

abundances are observed in more stratified waters, whereas Synechococcus and pi-

cophytoeukaryotes are more abundant when mixing prevails (e.g. Blanchot and Rodier,

1996; Shalapyonok et al., 2001). Here we showed that across the eastern South Pacific

Ocean temperature, especially for Prochlorococcus and bacterioplankton, and nutrient5

availability appear important in modulating picophytoplankton abundance, their influ-

ence varying according to the prevailing trophic conditions (Fig. 4 and Fig. 5).

As expected (e.g., Gasol and Duarte, 2000), integrated bacterioplankton abun-

dances covaried with phytoplankton biomass (Table 1). Picophytoeukaryotes were the

only group to vary independently from Tchla, suggesting that the factors controlling10

picophytoplankton population, such as sinking, sensibility to radiation, grazing, viral

infection, etc (Raven, 2005) acted differently on this group. Thus, the ecology of pi-

cophytoeukaryotes needs to be studied in further detail. Across the eastern South

Pacific, surface bacterioplankton concentrations were similar to those found by Grob

et al. (2007) at 32.5
◦
S. However, in the deep layer of the hyper-oligotrophic part of15

the gyre (200 m) this group was 2.5 times more abundant than published by Grob et

al. (2007). Given the correlation between bacterioplankton and Tchla (Table 1), the lat-

ter could be attributed to the presence of deep Prochlorococcus and picophytoeukary-

otes maxima that were not observed by Grob et al. (2007). Such deep maxima are a

recurrent feature in the oligotrophic open ocean (Figs. 4a and c; Table 3). Along the20

transect, picophytoplankton abundances were usually within the ranges established in

the literature for oligo-, meso- and eutrophic regions of the world’s ocean (see Table 3).

It is worth noticing that our estimates for surface Prochlorococcus abundance were, to

our knowledge, the lowest ever estimated for the open ocean (see Table 3), although a

possible underestimation cannot be ruled out.25

The presence of the mentioned groups under extreme poor conditions suggests a

high level of adaptation to an environment where inorganic nutrients are below de-

tection limit. Although little is known on picophytoeukaryotes metabolism, several

cyanobacteria ecotypes have been shown to grow on urea and ammonium (Moore
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et al., 2002). Ammonium uptake at the centre of the gyre was low but still detectable

(Raimbault et al., this issue). Considering that heterotrophic bacteria would be respon-

sible for ∼40% of this uptake in marine environments (Kirchman, 2000), the possibility

of surface picophytoplankton growing on this form of nitrogen at the centre of the gyre

cannot be discarded.5

4.2 Picoplankton contribution to cp

The larger increase of integrated cveg as compared to cnveg observed between extreme

trophic conditions (see Sect. 3.2) indicates that across the eastern South Pacific spatial

variability in the vegetal compartment was more important than the non-vegetal one in

shaping the water column optical properties, at least the particulate attenuation coef-10

ficient. As expected (e.g., Chung et al., 1996; Loisel and Morel, 1998; Claustre et al.,

1999), cp and cveg tended to be lower under hyper- and oligotrophic conditions at the

centre of the gyre and were highest at UPW. Here, the highest cp and cveg were associ-

ated with mature upwelling conditions characterized by the highest primary production

(Moutin et al., 2007
5
) and Tchla (Fig. 4e), and low nutrient concentration (Fig. 4f; Raim-15

bault et al., 2007
2
).

Although the non-vegetal particles tended to dominate the cp signal, and therefore

POC, regardless of trophic condition (Fig. 7b; e.g., Chung et al., 1998; Claustre et

al., 1999; Oubelkheir et al., 2005), this dominance seems to weaken from oligo- to eu-

trophic conditions (Claustre et al., 1999; this study). Here we showed that under mature20

upwelling conditions (UPW) the contribution by vegetal and non-vegetal particles may

even be equivalent (Fig. 7b), in contrast with the invariant ∼ 80% cnveg contribution

estimated by Oubelkheir et al. (2005) for different trophic conditions. We therefore em-

phasize the importance of using complementary data to interpret bio-optical measure-

ments since, for instance, the ∼2.3-fold difference in cveg’s contribution to cp observed25

between our UPW results and those published by Ouberkheir et al. (2005) seems to

be related to the state of development of the upwelling event (mature versus early).

At the hyper-oligotrophic centre of the gyre, ceuk contribution to c0−1.5 Ze was equiv-
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alent to the one possibly overestimated (because of the larger cell size assumed) by

Claustre et al. (1999). The above highlights the importance of making good size es-

timates when decomposing the total attenuation signal since, for example, a differ-

ence of 1.02µm in size leads to a 10-fold difference in the scattering cross-section

calculated for picophytoeukaryotes (Claustre et al., 1999; Oubelkheir et al., 2005).5

In the present work, picophytoplankton populations were isolated on board by flow-

cytometry cell sorting in order to measure their actual sizes using a particle counter

(see Sect. 2.1). It is the first time to our knowledge that such direct measurements

have been done in the field. By establishing a relationship with FSC to estimate ac-

tual picophytoplankton cell size (Fig. 3a), we confirmed that picophytoeukaryotes were10

more important contributors to cp than cyanobacteria under both meso- and eutrophic

conditions (Claustre et al., 1999). Differences in cell size (Table 2) would also explain

the much lower Synechococcus contribution to cp observed in the hyper-oligotrophic

centre of the gyre compared to that published by Claustre et al. (1999) for the tropical

Pacific (16
◦
S, 150

◦
W).15

4.3 Phytoplankton carbon biomass stocks and spatial variability

One of the most important observations of the present study is that spatial variability in

open ocean picophytoplankton carbon biomass can be traced by changes in both Tchla

and cp (Fig. 8). While chlorophyll concentration has widely been used as a proxy for

photosynthetic carbon biomass, the use of cp is more controversial. For instance, al-20

though cp seems to be a better estimate of phytoplankton biomass than Tchla in Case

I waters (Behrenfeld and Boss, 2003) and within the mixed layer of the eastern Equa-

torial Pacific (Behrenfeld and Boss, 2006), chlorophyll concentration would work better

in subtropical stratified waters (Huot et al., 2007
6
). Our results indicate that Tchla and

cp would be equally useful estimates of photosynthetic carbon biomass in the open25

6
Huot, Y., Babin, M., Bruyant, F., et al.: Does chlorophyll a provide the best index of phyto-

plankton biomass for primary productivity studies?, submitted, 2007.
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ocean, where it is mainly constituted by picophytoplankton (≤3µm). cp measurements

being much less time-consuming than determining chlorophyll concentration, the for-

mer seems a good alternative for large scale open ocean surveys.

Although when present Prochlorococcus largely dominates in terms of abundance,

the picophytoeukaryotes would constitute on average ∼38% of the total integrated phy-5

toplankton carbon biomass (Prochlorococcus + Synechococcus + picophytoeukary-

otes + large phytoplankton) estimated from ceuk’s contribution to cveg (Fig. 8; see

Sect. 3.3). Furthermore, under oligotrophic conditions this group constituted ∼43%

of the photosynthetic carbon biomass. Picophytoeukaryotes contributions obtained by

estimating cyanobacteria biomass from intracellular carbon content were probably un-10

derestimated compared to cveg (Fig. 8b) because of the conversion factor used for

Prochlorococcus (Table 2). We believe that establishing a relationship between intra-

cellular carbon content and FSC for this cyanobacterium, as we did for Synechococcus

and picophytoeukaryotes, would lead to contributions similar to those estimated using

attenuation coefficients. It is worth noticing that higher or lower cyanobacteria carbon15

biomasses would only modify the y-intercept of the biomass relationships with Tchla

and cp (Fig. 8), but not their slope or their strength.

When normalized to 1µm
3
, maximal growth rates estimated for picophytoeukaryotes

are higher than for Prochlorococcus (Raven, 2005, and references therein). Consider-

ing that the former are ∼16 times larger than the latter in terms of mean cell volume,20

the amount of carbon passing through the picophytoeukaryotes could be very impor-

tant. For the same reason, this group could also be the most important contributor to

export fluxes in the open ocean, since picophytoplankton share to this carbon pathway

seems to be much more important than previously thought (Richardson and Jackson,

2007; Barber, 2007). The role of this group in carbon and energy flow would therefore25

be crucial.

Picophytoeukaryotes carbon biomass in the open ocean seems to be much more im-

portant than previously thought. Across the eastern South Pacific, this group’s biomass

is almost equivalent to that of Prochlorococcus under hyper-oligotrophic conditions and
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even more important under mesotrophic ones. The role of picophytoeukaryotes in bio-

geochemical cycles needs to be evaluated in the near future. Further attention needs

to be focused on this group.
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Table 1. Correlation matrix for log integrated (0 to 1.5 Ze) picoplankton abundances (P roc

= Prochlorococcus, Syn = Synechococcus, Euk = picophytoeukaryotes and Bact = bacterio-

plankton; x 10
11

cells m
−2

) and log total chlorophyll a (Tchla; mg m
−2

). Picophytoplankton =

Proc + Syn + Euk; picoplankton = P roc + Syn + Euk + Bact.

Proc Syn Euk Bact Tchla

Proc 1.00 n.s n.s n.s –0.42
∗

Syn – 1.00 0.68
∗∗

n.s 0.82
∗∗

Euk – – 1.00 n.s n.s

Bact – – – 1.00 0.46
∗

Picophytoplankton – – – – 0.58
∗

Picoplankton – – – – 0.61
∗∗

Upper right values show correlation coefficients with their corresponding level of significance:

** significance level <0.0001; * significance level <0.05; n.s., not statistically significant.
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Table 2. Picoplankton mean cell size (µm), volume (µm
3
) and intracellular carbon content (fgC

cell
−1

).

Group Mean cell size (µm) Mean cell volume (µm
3
) Intracellular carbon content (fgC cell

−1
) Reference

Prochlorococcus 0.68±0.08 0.17 29±11
∗∗∗

1

0.74 0.21 – 2

0.7 0.18 – 3

0.63±0.2 0.13 29 4

Synechococcus 0.86±0.1
∗

and 1.16±0.02
∗∗

0.33 and 0.82 60±19
∗

and 140±9
∗∗

1

0.90 0.38 2

1.2 0.90 3

0.95±0.31 0.45 100 4

Picophytoeukaryotes 1.74±0.13 (range = 1.37 to 1.99) 2.76 730±226 (range = 257 to 1266) 1

1.26 1.05 – 2

2.28 6.21 – 3

2.35 6.8 1500 4

Large phytoplankton 3.3 (MAR) to ∼20 (UPW) 18.8 to 4189 – 1

10 to 22 523.6 to 5575.28 – 2

6 to 13 113.1 to 1150.35 – 5

Bacterioplankton 0.5 0.07 – 1, 3

0.56 0.09 – 2

0.46±0.14 0.05 – 4

0.52 to 0.63 0.07 to 0.13 – 6

0.15 to 0.73 0.002 to 2 – 7

1
This study

2
Chung et al., 1998; Equatorial Pacific

3
Claustre et al., 1999; tropical Pacific Ocean

4
Zubkov et al., 2000; North and South Atlantic Subtropical Gyres

5
Oubelkheir et al., 2005; Mediterranean Sea

6
Ulloa et al., 1992; Sargasso Sea

7
Gundersen et al., 2002; Bermuda Atlantic Time Series (BATS)

∗
For most of the transect and

∗∗
for UPX, the most coastal station.

∗∗∗
Obtained using the conversion factor 171±15 fgCµm

3
derived from Synechococcus (see

Sect. 2.1).
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Table 3. Prochlorococcus, Synechococcus and picophytoeukaryotes abundances

(×10
3

cells ml
−1

) registered during spring time in different regions of the world’s ocean under

varying trophic conditons.

Trophic condition Prochlorococcus Synechococcus Picophytoeukaryotes Reference

Hyper-oligotrophic 16–18
∗

150–160 (125 m)

1.2–1.6
∗

0.8–1.4 (125 m)

0.76–1.3
∗

1.8–2.3 (175 m)

1 (GYR)

Oligotrophic 35–40
∗

200–250 (50–75 m)

6.9–8.6
∗

20 (50 m)

4.5–4.9
∗

14 (60 m)

1 (EGY)

240 (0 to 100 m) 1.5 (0 to 100 m) 0.8–1 (0 to 100 m) 2

30
∗

200 (120 m)

0.7
∗

1–1.5 (50–125 m)

0.5
∗

2 (140–150 m)

3

100–150
∗

100 (120 m)

3–30
∗

1 (120–160 m)

0.6–2
∗

1–2 (80–120 m)

4

115
∗

150–200 (50–100 m)

0.2–1 (0 to 100 m) 0.25–0.5
∗

Up to 3 (100 m)

5

60 (0 to 100 m) 2.5 (0 to 50–100 m) 2–4
∗

2 (100 m)

6

HNL 200 (surf)

270 (30–60 m)

10–28 (surf)

25 (50 m)

5–9 (0 to 80 m) 1

150–300 (0 to 80 m) 3–5 (0 to 80 m) 0.6–1 (0 to 100 m) 3

200 (0 to 50 m)

100 (80 m)

8 (0 to 100 m) 3 (0 to 100 m) 7

200 (30 and 60 m) 15 and 13 (30 and 60 m) 6 and 5 (30 and 60 m) 8

Mesotrophic 50–60 (0 to 80 m) 17–20 (0 to 60 m) 3–5 (0 to 80 m) 1 (MAR)

30–200
∗

1–40 (100 m)

5–44
∗

0.2–3 (100 m)

3–18
∗

0.4–4 (100 m)

6

Eutrophic – 60–200 5–10 1 (UPW)

– 50–250 10–60 9

– Up to 150 Up to 80–90 10

∗
Surface data

1
This study

2
Campbell and Vaulot, 1993; Subtropical North Pacific (ALOHA)

3
Vaulot et al., 1999; Subtropical Pacific (16

◦
S; 150

◦
W). These authors considered their surface Prochlorococcus

abundances as “severely underestimated”.
4

Zubkov et al., 2000; North and South Atlantic Subtropical Gyres,
5

Veldhuis and Kraay; 2004; Eastern North Atlantic

Subtropical Gyre,
6

Grob et al., 2007; Eastern South Pacific,
7

Mackey et al., 2002;
8

Landry et al., 2003;
9

Worden et

al., 2004; Southern California Bight, North Pacific,
10

Sherr et al., 2005; Oregon upwelling ecosystem, North Pacific
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Fig. 1. BIOSOPE transect. In this study we include data from stations 1–8, 11–15 and 17–21,

MAR, HNL, GYR, EGY, UPW (W) and UPX (X).
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Fig. 2. Prochlorococcus intracellular dv-chla content (fg cell
−1

) as a function of the percentage

of surface irradiance at MAR (•) and the rest of the transect (◦). Dashed line indicates the

average surface intracellular dv-chla content established at 0.23 fg cell
−1

.
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Fig. 3. . Log-log relationships established between the flow cytometric forward scatter signal

(FSC), expressed in units relative to reference beads (relative units, r.u.), and mean cell size

(a) and intracellular carbon (C) content (b). In (a), mean cell sizes measured on natural pop-

ulations isolated in situ (empty circles) as well as on populations from culture (filled circles)

are included. Mean intracellular carbon contents in (b) were obtained from culture cells. Car-

bon measurements were performed on triplicate with ≤5% of standard deviation
∗∗

indicates

p<0.0001.
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Fig. 4. Prochlorococcus (a), Synechococcus (b), picophytoeukaryotes (c) and bacterioplank-

ton (d) abundances (×10
3

cells ml
−1

), total chlorophyll a concentration in mg m
−3

(e), nitrate

concentrations in µmol L
−1

(f), total particulate attenuation coefficient in m
−1

(g) and salinity

(h). Vertical black lines indicate from left to right the limits between meso- (M), oligo- (O),

meso- (M) and eutrophic (E) conditions. Horizontal black dashed line corresponds to the depth

of the 1.5 Ze. Black dashed square in (a) indicates where Prochlorococcus abundances were

estimated from dv-chla concentration.
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Fig. 5. Prochlorococcus (a), and bacterioplankton (b) integrated abundances (0 to 1.5 Ze,

×10
11

cells ml
−1

) as a function of temperature along the transect. Vertical lines indicate the

limits established between meso- (M), oligo- (O) and eutrophic (E) conditions.
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Fig. 6. Mean Prochlorococcus (cproc), Synechococcus (csyn), picophytoeukaryotes (ceuk), bac-

terioplankton (cbact). Insets contain the vegetal (cveg), non-vegetal (cnveg), and total particulate

attenuation coefficients (cp) in m
−1

. For MAR (a), HNL (b), GYR (c), EGY (d), UPW (e) and

UPX (f). Note that UPW and UPX scales are equal to each other and different from the rest.

For MAR, HNL, GYR and EGY all scale are the same except for GYR’s cp, cveg and cnveg.

Horizontal bars represent standard deviations.
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Fig. 7. Integrated Prochlorococcus (cproc), Synechococcus (csyn), picophytoeukaryotes (ceuk),

nanophytoplankton (clarge), bacterioplankton (cbact), heterotrophs (chet) and detritus (cdet) at-

tenuation coefficients for the 0 to 1.5 Ze layer (a) and 0 to 50 m (c) and cproc, ceuk, cdet, vegetal

(cveg) and non-vegetal (cnveg) contributions to the corresponding total integrated attenuation

coefficients (b and d). Black dashed lines in (a) and (c) correspond to the total integrated

particulate organic carbon concentration (— POC, g m
−2

) estimated from cp using Claustre

et al. (1999) relationship (see Sect. 3.4). M, O and E stand for meso-, oligo- and eutrophic

conditions (top of each panel). H, G, EG and W indicate HNL, GYR, EGY and UPW stations.
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Fig. 8. Log-log relationships for Prochlorococcus (P roc), Synechococcus (Syn), picophy-

toeukarytos (Euk), Proc + Euk (Sum) carbon biomass (mg m
−3

) with total chlorophyll a con-

centration in mg m
−3

(a) and total particulate attenuation coefficient in m
−1

(b). Only data from

Stations 3 to 15 and GYR and between the surface and 1.5 Ze are included (see Sect. 2.2).

Correlation coefficients (r) were calculated for Sum and Syn carbon biomass with Tchla (a) and

cp (b).
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Fig. 9. Picophytoeukaryotes contribution to the photosynthetic carbon biomass as derived from

ceuk’s contribution to cveg by applying Eq. (5) (bio-optical method) and as obtained using intra-

cellular carbon contents in Table 3 to estimate picophytoplankton carbon biomass (a). When

comparing the results obtained using both approaches, it can clearly be seen that the con-

tributions estimated using the intracellular carbon (C) content approach are lower than those

estimated using the bio-optical approach, with almost all data points being below the 1-to-1 line

relating both estimates (b).
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