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Abstract. To date, little is known about the impact of pro-
cesses which cause lateral carbon fluxes over continents, and
from continents to oceans on the CO2 – and carbon budgets at
local, regional and continental scales. Lateral carbon fluxes
contribute to regional carbon budgets as follows: Ecosys-
tem CO2 sink=Ecosystem carbon accumulation+Lateral car-
bon fluxes. We estimated the contribution of wood and food
product trade, of emission and oxidation of reduced carbon
species, and of river erosion and transport as lateral carbon
fluxes to the carbon balance of Europe (EU-25). The analysis
is completed by new estimates of the carbon fluxes of coastal
seas. We estimated that lateral transport (all processes com-
bined) is a flux of 165 Tg C yr−1 at the scale of EU-25. The
magnitude of lateral transport is thus comparable to current
estimates of carbon accumulation in European forests. The
main process contributing to the total lateral flux out of Eu-
rope is the flux of reduced carbon compounds, corresponding
to the sum of non-CO2 gaseous species (CH4, CO, hydrocar-
bons, . . . ) emitted by ecosystems and exported out of the
European boundary layer by the large scale atmospheric cir-
culation.

1 Introduction

Lateral carbon transport moves carbon away from where
CO2 is withdrawn from the atmosphere. This induces dif-
ferences between regional changes in carbon stocks and re-
gional CO2 fluxes (Tans et al., 1995; Sarmiento et al., 1992).

Correspondence to:P. Ciais
(philippe.ciais@cea.fr)

Lateral carbon transport contributes to the carbon budget of
ecosystems as follows:

Ecosystem CO2 sink=Ecosystem carbon accumulation

+Lateral carbon flux.

Comparing CO2 fluxes resulting from atmospheric inver-
sion models with bottom-up carbon flux estimates (Pacala
et al., 2001; Janssens et al., 2003; Peylin et al., 2005), one
may expect differences explained by lateral carbon transport.
Some bottom-up approaches (e.g. forest biomass inventories)
estimate carbon stock changes, while some directly measure
CO2 fluxes (e.g. eddy covariance flux towers). This paper
has three main goals. The first one is to describe the mech-
anisms of lateral carbon transport and some of their impli-
cations for regional carbon budgets. The second goal is to
quantify the flux of carbon displaced within and from the
European territory (here the EU-25), and to place it in the
context of atmospheric inversion results. The third goal is
to provide geospatial estimates of the CO2 fluxes associated
with lateral processes, whenever this is possible.

We consider three processes linking CO2 fluxes with lat-
eral carbon transport either within the EU-25 area or across
its boundaries. These processes are (1) the trade of food, feed
and wood products (Ciais, et al., 2006; Imhoff, et al., 2004),
(2) the emissions of reduced atmospheric carbon compounds
such as CO, CH4, terpenes, and isoprene by ecosystems and
human activities, which get transported by winds and oxi-
dized by chemical reactions in the global atmosphere outside
Europe (Enting et al., 1991; Folberth et al., 2005; Sunthar-
alingam et al., 2005), and (3) the river transport of carbon
from land to the ocean (Aumont et al., 2001; Meybeck 1987).
In addition, CO2 fluxes in coastal seas (Borges et al., 2006)
are estimated. This exchange of atmospheric CO2 by coastal

Published by Copernicus Publications on behalf of the European Geosciences Union.

http://creativecommons.org/licenses/by/3.0/


1260 P. Ciais et al.: Lateral fluxes carbon Europe

(a)

(4)

CO2

CO2

Transport by
trade circuits

Plant CO2 uptake
(C harvested in crop 
and wood products)

Storage in wood 
product pools

Oxidation of products(1)

Imports

Exports

(2)

(3)

(b)

CO2

Plant CO2
uptake

CO2 produced in PBL 
by oxidation of RCC

-(6)

RCC flux escaping to global 
atmosphere

(8)

(6)

RCC emissions of 
biogenic origin

RCC emissions of 
anthropogenic origin

(7)

Wet and dry RCC 
carbon deposition

(9)

CO2

(5)

(c)

(12)

(13)

(15)

(14)

(11)

CO2
CO2

CO2

Rock carbon weathering

Plant CO2 uptake

Outgassing in rivers

Burial in lake, dams
estuarine sediments

Outgassing in estuaries

Net 
transport 
to ocean

(10)

Fig. 1. Carbon cycle loops involving lateral transport. Numbers as-
sociated to each flux correspond to data in Table 2. The associated
sources/sinks of atmospheric CO2 are given by dashed lines, and
the fluxes of carbon are given by solid lines.(a) Lateral transport
by trade of crop and wood products.(b) Lateral transport by re-
duced carbon compounds (RCC) emissions and atmospheric chem-
istry and transport.(c) Lateral transport by river transport coupled
to rock weathering.

seas does notper seoriginate from a lateral carbon flux, but
it is considered here as a necessary flux component to recon-
cile large-scale CO2 flux atmospheric inversion results with
bottom-up inventory data. The first four sections below treat
each lateral transport process separately. The discussion sec-
tion summarizes the contribution of the different processes
to the carbon balance of Europe. By convention, all fluxes of
carbon gained by the continent are sinks for the atmosphere
and counted negatively, while carbon lost by the continent is
counted as a positive flux.

2 Crop and forest products trade

2.1 Food and feed products

Cultivated lands are long-term net sinks of atmospheric CO2
because carbon incorporated into biomass is harvested and
removed from ecosystems to supply human or animal con-
sumption (Fig. 1a). The consumption of food or feed prod-
ucts releases CO2 back to the atmosphere, away from ecosys-
tems. Over the globe, the lateral transport of carbon in food
products is neutral for the atmosphere, given the fact that
storage of food products is negligible compared to harvested
fluxes. At the regional scale, croplands are net CO2 sinks
(as confirmed by year-round eddy-covariance measurements,
e.g. Anthoni et al., 2004) while populated areas where food
is consumed are net CO2 sources. At the continental level,
international trade of crop products also intervenes into the
net carbon balance.

We analyzed the agricultural statistics from FAO (2004)
to infer harvest, lateral carbon transport and subsequent CO2
land-atmosphere fluxes caused by food trading. We found
that cereals, essentially maize, wheat and barley, are respon-
sible for nearly all of the CO2 sink in European croplands.
In contrast, the CO2 source derived from food consumption
originates from a more diverse mix of crop products. From
the perspective of individual countries, the situation is con-
trasted (Fig. 2). The largest CO2 sink associated with the
trade of crop carbon is France (–9 Tg C yr−1), about 90%
of the total European sink for that process. The largest CO2
sources are Portugal, Belgium, Netherlands, Italy and Spain
(altogether 22 Tg C yr−1). Other countries are approximately
neutral. We found no relationship between harvest and the
net carbon balance in each country with regards to food trade.
At the continental level, Europe imports more carbon in food
and feed than it exports, thus being a net CO2 source to the
atmosphere of 24 Tg C yr−1, about 2% of EU-25 fossil fuel
CO2 emissions.

The patterns of CO2 fluxes induced by trade is mapped us-
ing geospatial information on (1) crop varieties (Ramankutty
et al., 1998), (2) human population and, (3) housed poultry,
pigs and cattle populations. Statistical data on feedstuff and
food product harvest and trade (FAO, 2004) is converted to a
geospatial dataset on a 1◦ by 1◦ grid, using the same method-
ology as in Ciais et al. (2006). Crop biomass data are con-
verted into dry biomass and into carbon using crop-specific
conversion factors (Goudriaan et al., 2001). The results are
shown in Fig. 3. Agricultural plains with intensive cultiva-
tion (northern France, southern England, Hungarian plains,
Po valley in Italy) are annual net sinks of CO2, with up-
take rates reaching up to 100 g C m−2 yr−1. Locally, this
CO2 sink is larger than the mean European forest uptake flux
(70 g C m−2 yr−1 in Janssens et al., 2003), which is not sur-
prising given the slightly higher NPP and harvest index (ratio
of yield to above-ground NPP) of crops compared to trees.

Biogeosciences, 5, 1259–1271, 2008 www.biogeosciences.net/5/1259/2008/
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Table 1. Component fluxes of the cycle of non-CO2 reduced carbon
compounds (RCC) over the European continent and its boundary
layer, an area bounded by 32 N and 73 N in latitude and –10 W and
40 E in longitude. Sources to the atmosphere are counted>0 and
sinks<0. Fluxes are estimated using a global chemistry transport
model. Units are Tg C yr−1.

RCC Reduced carbon compounds emissions Tg C yr−1

CH4 emissions 60.0
CO emissions 82.0
BVOC emissions 27.0
Other VOC emissions 15.5
Total 184.5

CO2 flux produced in PBL from RCC oxidation

Boundary layer 25.7
Free troposphere 19.3
Total 45.0

Wet and dry RCC carbon deposition over Europe

Surface dry deposition –12.0
Wet deposition –9.6
Total carbon deposited –21.6

Urban regions in Fig. 3, and intensive farming regions, emit
CO2 to the atmosphere at a rate of 50 g C m−2 yr−1.

There are uncertainties on these maps. Using statistics at
the country level may smooth out the fields. For instance,
feedstuff consumption by farm animals is distributed at the
country level according to animal population maps, while in
reality animals may have different regional reliance on feed-
stuff. National harvest of crop biomass is distributed evenly
according to the area of each crop variety, neglecting regional
differences in yields caused by soil fertility or climate gra-
dients. Finally, food consumption is assumed to be a CO2
source distributed according to human population, thereby
neglecting the transport of organic carbon to sewage water
and rivers.

2.2 Forest products

We consider forest products from coniferous and non-
coniferous trees: industrial round wood, sawn wood, wood
panels and paper, as listed in the FAO (2004) database. Wood
product data in volumetric units are converted to carbon
weight units using a mean wood density of 500 kg m-3, and
a 0.45 carbon fraction in dry biomass, respectively. Sweden
and Finland export more carbon in wood than they import,
thus being net sinks of atmospheric CO2 of –3 Tg C yr−1 and
–4 Tg C yr−1 respectively (Fig. 2). Nearly all other countries
are net CO2 sources to the atmosphere with respect to wood
products trade. The largest sources are in Italy (6 Tg C yr−1),
Spain, the Netherlands and the UK. Countries that export
food products typically also export wood products (except
for Nordic countries) and vice versa. At the EU-25 level,
imports of wood products currentlysions exceed exports, in-

ducing a net source of CO2 of up to 7 Tg C yr−1. This value
is likely to be a maximum estimate because it assumes that
wood products are decomposed into CO2 instantly, neglect-
ing storage. Using the mean residence times of wood prod-
ucts of Liski et al. (2005), typically 30 years for spruce wood
and 40 years for oak sawn wood, we estimate that on a 10
years horizon, the trade of wood products results in a net
source of CO2 to the atmosphere of 2 Tg C yr−1 only, while
the remaining 5 Tg C yr−1 is temporarily stored in product
pools.

To map the CO2 fluxes from forest product trade, we con-
verted the country-level data (FAO, 2004) into a geospatial
dataset on a 1◦×1◦ grid using a remote-sensing driven NPP
model (Lafont, et al., 2002) and a forest cover map of Europe
(CORINE Land cover, 2000). The geographical distribution
of the CO2 source due to the decay of wood products is as-
sumed to follow population density (i.e. assuming that land-
fills are distributed like population density). The results are
shown in Fig. 3.

There are large uncertainties in these maps. First, forests
with high greenness (NDVI) wil not necessarily have the
largest biomass, nor wood production. For instance, the
NDVI vegetation index is well known to saturate at high Leaf
Area Index values, although Myneni et al. (2001) showed a
positive correlation between NDVI and biomass over a wide
range of forests. Further, the areas where CO2 is released by
decaying wood-products may differ in their geographic loca-
tion from the actual population density distribution (e.g. de-
pending on regional practice for using wood as a construction
material).

3 Reduced carbon compounds

3.1 Surface emissions

Ecosystems and anthropogenic activities emit non-CO2 re-
duced carbon compounds, hereafter called RCC. RCC are
the sum of CO, CH4, biogenic volatile organic compounds
(BVOC such as isoprene, terpene), and anthropogenic
volatile organic compounds (VOC). These species are reac-
tive and their atmospheric lifetimes vary over several orders
of magnitude, from 9 years for methane, down to a mere
few hours in the case of terpene. Although the oxidation
sequence of an RCC can be complex, the main end prod-
uct is CO2. The global RCC flux from ecosystems is small
compared to photosynthesis or respiration. It can, however,
become significant compared to the net carbon balance of
an ecosystem (Kesselmeier et al., 2005). If the objective of a
study is to determine theCO2 flux of Europeby inverse mod-
eling of CO2 concentration, then RCC emissions can right-
fully be ignored. On the other hand, if the objective is to
determine thecarbon flux of Europe, the RCC flux must then
be added as a correction to the CO2 flux calculated by inver-
sions.

Biogeosciences, 5, 1259–1271, 2008 www.biogeosciences.net/5/1259/2008/
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3.2 CO2 production in the atmosphere

The lifetime of atmospheric RCC compounds with respect to
their chemical sink in the atmosphere can easily exceed typi-
cal boundary-layer transport time scales. The carbon carried
by RCC can thus be released as CO2 away from surface emis-
sions (Fig. 1b). Table 1 shows that the total EU-25 emissions
of RCC are 185 Tg Cyr−1. A small fraction of these emis-
sions (14%) is transformed into CO2 in the boundary layer,
very shortly after emission (Fig. 1b and Table 1). We es-
timated the CO2 production from RCC using a global 3-D
chemistry transport model (Folberth, et al., 2005, Hauglus-
taine et al., 2004). This model accounts for two major ox-
idation channels of RCC: (1) the oxidation of primary CO
and of secondary CO from the oxidation of CH4 and Volatile
Organic Compounds (VOC), and (2) the direct oxidation of
peroxy-radicals carbon into CO2. An additional minor chan-
nel corresponds to the direct ozonolysis of alkenoid com-
pounds into CO2 and is also taken into account. The to-
tal ‘photochemical’ CO2 production from RCC in the atmo-
spheric column over Europe amounts to 45 Tg C yr−1and
57% of this flux (26 Tg C yr−1) occurs in the boundary layer,
as reported in Table 1. About 90% of the photochemical CO2
production comes from CO oxidation by hydroxyl radicals
(OH). A map of RCC deposition and emission is given in
Fig. 4.

3.3 Surface deposition of carbon and impact on the net car-
bon balance

A gain of carbon by the European surface occurs via the dry
surface deposition processes and the wet scavenging by pre-
cipitation (Fig. 1b). This sink amounts to 22 Tg C yr−1 (Ta-
ble 1). The net effect of RCC on theEuropean carbon flux
can be estimated by taking the difference between surface
emissions (carbon source) and the photosynthetic uptake of
CO2 from which the biogenic VOC emissions are derived
(carbon sink) plus the dry and wet RCC deposition flux (car-
bon sink) must be derived (Fig. 1b). We estimate a net carbon
loss to the atmosphere of 76 Tg C yr−1 (Table 2). The impact
of RCC compounds on theEuropean CO2 flux is different. It
is the difference between the photochemical flux of CO2 into
the boundary layer (oxidation of RCC) and the CO2 uptake
photosynthesis which fuels the biogenic RCC emissions. We
note a corresponding net CO2 sink of 61 Tg C yr−1 (Table 2).

4 Riverine carbon transport

4.1 Processes controlling the transport of atmospheric car-
bon by rivers

Rivers (streams, lakes, river main stems, floodplains and
estuaries) transport carbon laterally from the land to the
ocean, and vertically as CO2 degassing to the atmosphere
and as carbon burial in sediments (Fig. 1c). Rivers trans-
port carbon in dissolved and particulate organic forms
(DOC, POC) and under inorganic forms (DIC, PIC and
dissolved CO2). The source and sink processes of river
carbon in natural conditions are: (1) wetlands and peat
drainage, (2) soil leaching and erosion, and (3) chemical
weathering of soil minerals. This carbon is originally taken
up from the atmosphere by photosynthesis (CO2+H2O–
>CH2O+O2), or by direct carbonate rock weathering
(CO2+H2O+MCO3→2HCO−

3 +M2+) or silicate rock
weathering (2CO2+H2O+MSiO3→2HCO−

3 +M2++SiO2).
During the weathering of silicate rocks 100% of river DIC
originates from the atmosphere, but during weathering of
carbonate rocks, only half of the DIC originates from the
atmosphere, and half derives from fossil carbonates stored in
rocks. Therefore the nature and age of river carbon species is
very different (Meybeck 1993, 2005). Particulate inorganic
carbon (PIC) is derived from mechanical erosion. While
being transported downstream to the coast, PIC is gradually
trapped in lowlands, floodplains, lakes, estuaries and on the
continental shelf. This relocation of PIC does not generally
affect the CO2 cycle. Also, under specific arid conditions
and high pH, some DIC may precipitate on its way to the sea
as calcite in soils and sediments.

Factors controlling river export of atmospheric carbon
(DOC+POC+atmospheric derived DIC) are first river runoff,
then rock type via the occurrence of carbonates, and finally
the presence of wetlands and large lakes. A preliminary com-
parison of river carbon fluxes in northern, central and south-
ern Europe shows strong regional contrasts. Northern catch-
ments show high DOC export, but most POC is trapped in
lakes which cover 5–20% of these basins (Meybeck et al.,
2005). The age of this DOC derived from wetlands and
peat bogs typically ranges from 100 to 6000 years. South-
ern catchments show DIC derived from the atmosphere as
the dominant form of river carbon. Central European catch-
ments are intermediate, with carbon fluxes depending on
river runoff and rock type.

4.2 Human perturbation of river carbon transport

Human intervention in river catchments may substantially
modify river carbon transport (Fig. 5b). The exploitation of
peat bogs generally increases DOC contents in head waters
(Fig. 5a–b). Increased soil erosion by agricultural practices
increases the POC inputs. Untreated organic waste water
(Fig. 5b–c) and eutrophication of rivers and lakes (Fig. 5b,

www.biogeosciences.net/5/1259/2008/ Biogeosciences, 5, 1259–1271, 2008
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Table 2. Carbon fluxes and CO2 fluxes caused by lateral transport processes. The European “continent” is defined as including its atmo-
spheric boundary layer and its inner estuaries. A flux lost by the European continent is counted>0, and a carbon gain is counted<0. An
uncertainty index of each estimate is given in the right hand column (low uncertainty +++, high uncertainty +). The numbers in parenthesis
associated to each flux correspond to those shown in Fig. 1. By convention, sources for atmosphere are shown as positive values whereas
sinks are shown as negative values.

Estimated flux (Tg C yr−1) Quality index

Crop and forest products trade

Ecosystem CO2 sink located in crop+wood product (1) –250 +++
Imports of crop + wood products (2)a 110 +++
Export of crop + wood products (3)b –81 +++
Storage in wood products (4) 5 +
Net CO2 release by oxidation of products=–(2)+(1)+(3)–(4)c 274 ++
Total net CO2 flux of river transport 24 ++
Total net carbon flux of river transport 24 ++

Atmospheric reduced carbon compounds

RCC total emissions (5) 185 ++
RCC emissions of biogenic origin (6)d 87 ++
RCC emissions of anthropogenic origin (7) 98 ++
CO2 flux produced in PBL from RCC oxidation (8) 26 ++
RCC flux escaping to the global atmosphere=(5)–(8) 159 ++
Wet and dry RCC carbon deposition=(9) –22 +
Ecosystem CO2 sink required to compensate for (6)d –87 +
Total net CO2 flux of river transport –61 +
Total net carbon flux of river transportd 76 +

River carbon transport

Ecosystem CO2 sink which is transported by rivers (10) –160 +
Rock C weathering which is transported by rivers (11) –16 +
CO2 outgassing in rivers (12) 90 ++
Carbon burial in lakes, dams, estuarine sediments (13) –33 ++
Net transport to estuaries (14)f 53 +++
CO2 outgassing in estuaries (15) 10 to 20 +
Total CO2 outgassing=(12)+(15)e 100 to 110
Net carbon transport to ocean=(14)–(15)f 43 to 33
Total net CO2 flux of river transport –60 to –50
Total net carbon flux of river transport –113

Coastal seas

Uptake of atmospheric CO2 by coastal seas –68 ++
Grand total including coastal seas
Net European CO2 flux –165 to –155 +
Net European carbon flux –81 +

a Imported carbon corresponds to a plant uptake of CO2 outside Europe, thus not being included in (1)
b Exported carbon corresponds to a plant uptake of CO2 inside Europe, thus being included in (1)
c Assumes that the decomposition of crop and wood products generates CO2 which is emitted to the atmosphere
d Assumes that 100% of biogenic RCC emissions comprising terpenes, methanol, methane, are formed by plant carbon derived from photo-
synthesis, causing a compensating sink of CO2.
e Established for an area of 8.16 Mkm2, including the Barentz sea and Black Sea river catchments.
f Although this carbon is not lost by the continent to the atmosphere as CO2, but lost to estuaries in the case of (14) and to coastal oceans in
the case of (14)–(15), it is counted as source (>0) in the table.

Biogeosciences, 5, 1259–1271, 2008 www.biogeosciences.net/5/1259/2008/
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d) are additional sources of very labile DOC and POC. The
ages of these carbon species are highly variable (a few days
for river algal carbon to 1000 years for peat DOC). The CO2
evasion from freshwaters strongly depends on the reactivity
of the organic carbon carried by rivers. During the 1970’s,
when rivers were receiving untreated waste water, river res-
pirationR exceeded river productionP (Gross primary pro-
duction), resulting in eutrophication and in a net CO2 source
to the atmosphere (Kempe, 1984). Nowadays, due to waste
water treatment, the same river may have multiple changes
of P/R ratio from headwaters to estuary, as observed for the
Scheldt and Seine rivers (Meybeck et al., 2005).

As part of human activity, river damming and irrigation
control the carbon fluxes to oceans. Reservoirs store up to
99% of particulate river material (V̈orösmarty et al., 2003)
including POC and may degrade DOC and retain part of DIC
as calcite precipitation. Irrigation canals continuously trans-
fer river carbon to agricultural soils. In Southern Europe, the
export of riverine carbon to the ocean has decreased in most
rivers (e.g. by 40% for the Ebro). However, the impact of
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water withdrawal for irrigation on river carbon fluxes to the
Mediterranean Sea or the Portuguese coast is unknown be-
cause the last gaging and water quality stations are located
upstream of the major irrigation areas (e.g. deltas of Ebro,
Rhone, Axios) as noted by Ludwig et al. (2004).

4.3 CO2 fluxes from rivers and freshwater systems

In the EU-25, freshwater systems are net sources of CO2 to
the atmosphere. Except for a few cases occurring season-
ally, CO2 super-saturation in the water generally prevails in
streams (Hope et al., 2001; Billet et al., 2004), lakes (Cole
et al., 1994), rivers (Kempe, 1982; Jones and Mulholland
1998; Abril et al., 2000; Cole and Caraco 2002), and estu-
aries (Frankignoulle et al., 1998; Abril and Borges 2004).
Such high CO2 concentrations in continental waters corre-
spond to either to CO2 derived from soil respiration, followed
by runoff and riparian transport, or to CO2 derived from ox-
idation of terrestrial organic carbon in the aquatic system it-
self, by microbial respiration and photochemistry (Granéli et
al., 1996; Jones and Mulholland, 1998; Abril and Borges,
2004; Gazeau et al., 2005). Temperate rivers in western Eu-
rope show a positivepCO2 vs. DOC relationship (Fig. 6)
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Fig. 6. Relationship betweenpCO2 and DOC in selected European
river systems. British lowland rivers from Neal et al., 1998, Belgian
lowland rivers (Scheldt watershed) from Abril et al., 2000, Large
French rivers from Abril and Commarieu (Unpublished) (Garonne
and Dordogne), and from Aucour et al., 1999 and Sempéŕe et al.,
2000 (Rĥone), Scottish Upland peat streams from Hope et al., 2001.
The dotted line marks the atmosphericpCO2.

as a result of anthropogenic loads increasing the DOC, en-
hancing aquatic respiration, and increasingpCO2 (Neal et
al., 1998; Abril et al., 2000). In contrast, northern headwa-
ters (e.g. Scottish peatlands) show lowpCO2 values and very
high DOC content. This is due to the more recalcitrant nature
of DOC leached from old peat soils, and to the rapid evasion
of CO2 to the atmosphere in these fast flowing waters (Hope
et al., 2001; Billet et al., 2004). In lakes, DOC is negatively
correlated with water residence time, showing the predomi-
nant role of microbial and photochemical oxidation (Tranvik,
2005). In some temperate eutrophic rivers, a seasonal and
sometimes annual uptake of atmospheric CO2 is observed
(Fig. 6). Atmospheric carbon fixed by aquatic primary pro-
duction is then transported downstream as organic carbon.
The Loire River, for instance, transports large quantities of
algal carbon which are mineralized in the estuarine turbidity
maximum, leading to high CO2 degassing (Meybeck et al.,
1988; Abril et al., 2004). In fact, many European macrotidal
estuaries behave as “hotspots” for CO2 degassing, owing to
the quantity of organic carbon they receive and to the long
residence time of waters and suspended sediments (Frankig-
noulle et al., 1998; Abril et al., 2002; Abril and Borges 2004).
The relative scarcity ofpCO2 data in continental waters, and
the high spatial and temporal variability, renders a bottom-up
estimate at the EU-25 scale rather uncertain. In addition, the

surface areas of some ecosystems are uncertain and the high-
est CO2 fluxes occur in ecosystems with the smallest surface
areas (estuaries and rivers).

4.4 River carbon transport and the European carbon bal-
ance

The lateral transport of river carbon was compiled using
the main European rivers database (Meybeck and Ragu,
1996) and extrapolated for the European seas catchment
(8.16 106 km2) and the EU-25 on the basis of runoff, land
cover and rock types similarities. Estuarine filters are in-
cluded in this calculation (Abril and Meybeck, in prepara-
tion). Southern, central and northern European rivers show
marked diversity in export rates and carbon species (Ta-
ble 3). Table 2 compares the order of magnitude of the
lateral carbon transport in rivers with the outgassed CO2
flux. Fluxes of CO2 from freshwater sub-ecosystems in peat-
land streams, lakes, rivers, and estuaries are compiled from
publishedpCO2 distributions, using typical gas transfer ve-
locities and information on surface areas of sub-ecosystems
(Abril and Meybeck, in preparation). Because river transport
is based on non-tidal river sampling and is calculated for the
entrance of estuaries (Table 3), CO2 degassing in freshwa-
ters and in estuaries are distinguished in Table 2. Overall,
European rivers transport laterally 53 Tg C yr−1 to estuar-
ies, and they emit 90 Tg C yr−1 of CO2 to the atmosphere
(Table 2). A majority of the degassing occurs at northern
latitudes. Despite their lower CO2 flux density, lakes con-
tribute up to 35% of the total CO2 freshwater degassing (ex-
cluding wetlands and estuaries) owing to their large surface
area (183 103 km2 in total) despite their lower CO2 flux
density. CO2 degassing from European estuaries has been
previously estimated to 30–60 Tg C yr−1 (Frankignoulle et
al., 1998). This range is probably an overestimate for two
reasons: (1) the surface area of European estuaries used by
Frankigoulle et al., (112×103 km2) was much higher than
recent estimates (36×103 km2) from the Global Lakes and
Wetlands Database of Lehner and Döll (2004), and (2) the
investigated estuaries were mainly macrotidal, wherein net
heterotrophy and CO2 degassing were favored (Abril and
Borges 2004; Borges et al., 2006). Little or no CO2 data
are available for fjords, fjärds, deltas and coastal lagoons.
Scaling up the available CO2 flux estimates to the surface
area of coastal wetlands and estuaries from Global Lakes
and Wetlands Database gives a CO2 source estimate of 10–
20 Tg C yr−1. This value is similar to the estimate of organic
carbon transported by European rivers up to the estuarine fil-
ter of 20 Tg C yr−1(Table 3).
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Table 3. Fluxes and origin of river carbon fluxes reaching the continental shelf after estuarine filters. Irrigation is not taken into account. By
convention a negative sign is given to fluxes representing C initially withdrawn from the atmosphere by plant CO2 uptake.

Drainage area
(103 km2)

Water flow
(km3 yr−1)

River carbon
(Tg C yr−1)

Carbon yield
(g C m−2 yr−1)

DOC
(%)

POC
(%)

DICa

(%)

Northern Europe
(>50◦ N)

2528 806 –13.6 –5.4 54.3 4.4 41.1

Temperate Europe
(42–50◦ N)

4699 1188 –24.5 –5.2 23.3 9.0 67.6

Southern Europe
(<42◦ N)

936 360 –10.2 –10.8 9.2 11.5 79.2

Total Europe 8163 2355 –48.3 –5.9 29.1 8.3 62.6

a percent of total carbon in DIC of atmospheric origin.

5 Coastal seas

Coastal seas receive nutrient and organic matter inputs from
estuaries, and exchange water and matter with the open ocean
waters across marginal slopes. For European coastal seas,
the gross water fluxes across marginal slopes are 250–2000
times larger than the fresh water input (Huthnance, 2008).
Carbon in coastal waters also depends on the carbon con-
tent, which strongly decrease between estuaries and the open
ocean. Nevertheless, the inputs of carbon from the open
ocean to the coastal seas are significant because of the much
higher water fluxes involved. In the North Sea, the inputs of
DOC and DIC through the northern boundary of the North
Atlantic Ocean are, respectively, 45 and 140 times higher
than from estuaries. The input of the same species from the
Baltic Sea is roughly equivalent to those from estuaries. The
input of DOC and DIC from the English Channel are, respec-
tively, 3 and 13 times higher than the inputs from estuaries
(Thomas et al., 2005).

Unlike macrotidal estuaries which emit CO2 to the atmo-
sphere throughout the year (see Sect. 4.4), coastal seas usu-
ally exhibit a distinct seasonal cycle of air-sea CO2 fluxes.
They shift from a CO2 source to a sink, depending on bio-
logical activity. The coastal air-sea fluxes are hence predomi-
nantly controlled by the net ecosystem productionNEP. This
is illustrated in Fig. 7 for the Southern Bight of the North
Sea. This region acts as a sink of CO2 in April–May during
the phytoplankton blooms, and as a source during the rest of
the year due to the degradation of organic matter. However,
on an annual basis it is a net sink of atmospheric CO2 due
to the seasonal decoupling of organic matter production and
degradation, with a probable export of organic matter to the
adjacent areas.

BesidesNEP, air-sea CO2 fluxes in coastal seas are also
modulated by CaCO3 precipitation/dissolution, decoupling
of carbon production and degradation within the water col-
umn in presence of stratification, temperature and salinity

Fig. 7. Annual cycle (June 2003–May 2004) of net ecosystem pro-
duction (NEP in m g C m-2 d-1), air-sea CO2 fluxes (FCO2 in
m g C m-2 d-1) and the partial pressure of CO2 (pCO2) in the
Southern Bight of the North Sea (adapted from Schiettecatte et al.,
2006).

changes, Revelle factor, exchange of water with adjacent
aquatic systems, water residence times (Borges et al., 2005,
2006). Figure 8 shows the annually integrated air-sea CO2
flux of various European coastal seas. The spatial hetero-
geneity is clearly apparent. Seasonal patterns also differ from
one coastal sea to another (Borges et al., 2005, 2006). In gen-
eral, we estimate that the European coastal seas are a net CO2
sink of atmospheric of 68 Tg C yr−1, with an uncertainty of
20%. This value is equivalent to 60% of the continental wide
European carbon sink of 111±279 Tg C yr−1 (Janssens et
al., 2005).
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Figure 5 – Compilation of annually integrated air-sea CO2 (gC m-2 yr-1) fluxes in 

European coastal seas (stars and black numbers) (adapted from Borges et al. 2006) and 

adjacent open ocean grid nodes from the Takahashi et al. (2002) climatology (red circles 

and numbers). 

 

 Fig. 8. Compilation of annually integrated air-sea CO2 (g C m−2 yr−1) fluxes in European coastal seas (stars and black numbers) (adapted
from Borges et al., 2006) and adjacent open ocean grid nodes from the Takahashi et al. (2002) air-sea flux climatology (red circles and
numbers).

6 Discussion

6.1 Lateral carbon transport at diverse scales

The carbon budget of a continent is more complex than just
the sum of photosynthesis, respiration, combustion, and an-
thropogenic fluxes. Key processes transport carbon away
from ecosystems where it was fixed by photosynthesis, with
resultant increased variability in estimates for temporal stor-
age and transformation. Carbon can be transported hori-
zontally over long distances (100–1000 km), but eventually
becomes oxidized and is released back to the atmosphere
as CO2, thus closing the cycle initiated by photosynthe-
sis. This is illustrated in Fig. 1 for three lateral transport
processes: crop and wood product trade, reduced carbon
compounds atmospheric transport and river carbon fluxes.
Within the EU-25 territory, lateral transport creates and ac-
centuates regional imbalances between CO2 sinks and CO2
sources. At the continental level, the transport of carbon by
rivers, by trade and by the atmospheric RCC fluxes results
in a net CO2 sink, balanced by a source elsewhere in the
world. In atmospheric CO2 flux inversions, ignoring the pat-
terns of CO2 fluxes due to lateral transport may bias the in-
ferred continental-scale flux. When comparing different ap-
proaches to quantify regional carbon budgets, methods based
on carbon stock changes (forest biomass and soil carbon in-
ventories) will have to be corrected from lateral fluxes in or-
der to be compared with methods based on CO2 flux observa-
tions (eddy covariance, atmospheric inversions). At the con-
tinental scale, the correction of carbon stocks changes into
CO2 fluxes, is of the same magnitude as the mean CO2 flux
estimate itself (Table 2)! At the local scale, due to imbal-

ance between respiration and photosynthesis, this correction
can be very large as well, especially over croplands and man-
aged forests from which carbon is harvested. At the regional
scale, the impact of the trade of food and wood products on
CO2 fluxes is diverse. Northern countries tend to be larger
sinks and southern countries larger sources of CO2, due to
food and wood trade.

The main implication of lateral carbon fluxes in the context
of carbon trading is that measurement of vertical CO2 fluxes
exchanged with the atmosphere do not exactly match mea-
surement of ecosystem stock changes. The question is thus
to assess the fate of this missing carbon entrained in lateral
transport circuits. Carbon transported in food trade will be
oxidized in a year, and should not be counted as a sink glob-
ally. A fraction of carbon transported in wood trade will form
a long-term sink into long-lived products. Should this carbon
sink be credited to the host country or to the country of origin
for the wood? For instance, a given carbon credit could be
attached to the exported wood. A fraction of the carbon trans-
ported by rivers originates from rocks, being part of the slow
geological carbon cycle. This background flux should cor-
respond to no carbon credit. The remainder of river carbon
originates from ecosystems, but can have different lifetimes
through the river filters, being either degassed to the atmo-
sphere within less than a year, or sequestered in long-lived
organic sediments. Our calculations suggest that a minimum
fraction of 70% of the ecosystem carbon transported by Eu-
ropean rivers is returned rapidly to the atmosphere (Table 2).

6.2 Lateral carbon fluxes at the continental level

At the continental level, food and forest product trade fluxes
result only in a small net source of CO2 to the atmosphere
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(24 Tg C yr−1 in Table 2). This is because the gross fluxes of
import implying a CO2 source, and the one of export imply-
ing a CO2 sink where the exported biomass is grown, are ap-
proximately in balance. We found that the gross flux of car-
bon released to the atmosphere in the form of RCC is large
(185 Tg C yr−1), about 15% of the annual fossil fuel CO2
emissions in EU-25. The impact of RCC on the net carbon
balance of Europe is complex (Table 2) because a fraction
of the RCC emissions is rapidly oxidized into CO2 in the
boundary layer, while another fraction is re-deposited at the
surface. Overall, we estimate that RCC cause a net carbon
source of 76 Tg C yr−1 over the continent but correspond to
a net CO2 sink of 61 Tg C yr−1. This difference in sign il-
lustrates the fact that C fluxes differ significantly from CO2
fluxes. The riverine transport of atmospheric carbon from
ecosystems into the estuaries must be fueled at steady state
by a corresponding plant CO2 uptake of 160 Tg C yr−1. The
magnitude of this CO2 uptake is large when compared to the
net carbon storage of European ecosystems of 111 Tg C yr−1,
Janssens et al. (2003). A large fraction (76%) of carbon
transported by rivers is outgassed to the atmosphere in wa-
terscapes or buried in lakes, dam and estuarine sediments,
while the rest is delivered to inner estuaries. At the level of
estuaries, a further outgassing of CO2 will occur. Overall, we
estimate that the river transport of carbon implies a net CO2
sink over ecosystems at the continental scale (60 Tg yr−1 in
Table 2) while almost the same amount gets exported to the
oceans in a dissolved or particulate form (Table 2). The rea-
son why the land CO2 sink does not match exactly the export
flux exported to the ocean is because a small fraction of the
river carbon is coming from rocks (Table 2).

6.3 Coastal seas and lateral carbon fluxes

We included coastal seas in the analysis, because they re-
ceive a “lateral” carbon flux from the continents and because
coarse-resolution atmospheric inversions encompass coastal
seas in their estimate of what is usually called the European
CO2 flux. European coastal seas are net sinks for atmo-
spheric CO2, in the range of 100 Tg C yr−1. This coastal
CO2 sink is comparable in magnitude to the terrestrial car-
bon uptake by ecosystems (111±279 Tg C yr−1 , Janssens
et al., 2003). Coastal seas are CO2 sinks despite the fact that
they receive a flux of carbon from rivers of 53 Tg C yr−1

(Table 3). This is because the fluxes exchanged with the
adjacent open oceans are controlling the budget of coastal
seas. The CO2 fluxes of coastal seas are significantly differ-
ent from those in the adjacent open ocean (from Takahashi et
al., 2002). The latter is commonly used in atmospheric CO2
inversion models, which likely will lead to a significant (but
not yet quantified) bias in the flux estimates derived by these
models. In particular, large biases are expected for terrestrial
regions adjacent to extensive coastal seas, such as the Gulf
of Biscay and the North Sea.

7 Conclusions

The lateral carbon fluxes induced by crop and forest prod-
uct trade, atmospheric oxidation and atmospheric transport
of RCC and river transport are important contributors to the
carbon budget of EU-25, at the regional and continental level.
At the continental level, we estimate that lateral transport
fluxes amount to 165 Tg C yr−1, including the carbon sink of
coastal seas. Most of this lateral flux consists of RCC emit-
ted to the atmosphere and exported out of Europe by winds.
The RCC emission requires a CO2 photosynthetic uptake of
equivalent magnitude, hence being larger than the biomass
accumulation in forests deduced from inventories. Including
this CO2 photosynthetic uptake which is used to make RCC,
doubles the imbalance between photosynthesis and ecosys-
tem respiration of European forests. In this work, we only
attempted to estimate lateral transport processes at the con-
tinental level, but these fluxes should also be taken into ac-
count at the site and regional levels, for instance to reconcile
eddy covariance estimates of the CO2 fluxes and biometric
measurements of changes in biomass and soil carbon stocks.
This work also demonstrates that a substantial amount of car-
bon is displaced in proportion to the NPP, roughly about 10%
of the NPP of the EU-25 territory.

Lateral carbon transport may also explain why inverse
modeling estimates of the CO2 sink are nearly always sys-
tematically higher than forest inventory numbers of carbon
stock changes. Maps of CO2 sinks required to match lateral
transport fluxes should be accounted for in inversion studies,
for instance by prescribing an adapted a priori flux structure.
In future work, investigations of lateral carbon fluxes should
also reflect changes in economic and land use drivers in the
context of implications for future climate change.
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