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Une méthode de modification des modes complexes couplés en identification modale pour la vérification de la propreté vibroacoustique

Dans le cadre de l'analyse modale expérimentale en dynamique des structures, l'identification passe par la détermination des modes complexes. Si l'on s'intéresse à la représentation du comportement de la structure sur une plage de fréquence réduite, les déformées modales obtenues doivent vérifier la condition de "propreté" [1], qui traduit la possibilité de représenter ce comportement par un système réduit équivalent, du second ordre. L'extension de cette propriété au cas du couplage vibroacoustique se fait facilement. Les déformées modales complexes permettant de représenter correctement la dynamique couplée du système sont obtenues à partir des déformées identifiées, qui sont modifiées si elles ne vérifient pas les conditions de propreté. Le problème à résoudre est alors un problème de minimisation sous contrainte, qui a une solution analytique dans le cas de la structure dans le vide [1]. Dans le cas du couplage, on obtient un système matriciel non linéaire qui est explicité dans les travaux présentés ici. Sa résolution globale n'a pas encore été effectuée, mais on peut néanmoins en traiter la partie "diagonale" par blocs, par des techniques classiques faisant notamment intervenir la résolution d'équations de Riccati. Cette procédure permet d'améliorer sensiblement la propreté du système couplé, comme le montrent les simulations numériques et les résultats expérimentaux présentés dans ce papier. Une seconde procédure, appelée "sur-nettoyage", est présentée, et permet de vérifier toutes les conditions requises, mais en imposant en plus des conditions théoriquement non nécessaires. Ces deux procédures sont appliquées et comparées sur un cas-test numérique, et sur deux jeux de données de mesures vibro-acoustiques.

I. INTRODUCTION

Les comportements de systèmes vibro-acoustiques peuvent être à l'origine de situations où de forts couplages sont présents, qu'ils soient désirés comme dans le cas des instruments de musique, ou non pour un couplage entre le domaine fluide d'une cavité automobile et les vibrations de la caisse par exemple. Nous nous intéressons ici au cas de l'analyse modale vibro-acoustique de systèmes couplés, constitués d'une structure vibrante fermant un domaine acoustique fluide (vibroacoustique interne).

L'analyse modale vibro-acoustique [START_REF] Wyckaert | Vibro-acoustical modal analysis : Reciprocity, model symmetry and model validity[END_REF] permet d'identifier expérimentalement les modes couplés du système, de la même façon que l'analyse modale classique en dynamique des structures permet l'identification des modes d'une structure dont les vibrations sont supposées découplées du comportement du fluide. La synthèse modale consiste notamment à rechercher une représentation du comportement du système sur une bande de fréquence par un modèle expérimental construit sur une base réduite constituée d'un certain nombre des modes identifiés. Cette identification conduit généralement à la détermination des modes complexes de la structure, ces grandeurs étant souvent entachées d'erreurs dont les origines peuvent être multiples, du fait de l'approche expérimentale utilisée. Ces erreurs ont des ordres de grandeur variables suivant les techniques utilisées et l'expertise de l'opérateur, mais même de petites erreurs peuvent conduire à des reconstructions de système différentes.

Il existe une condition mathématique permettant d'assurer que le système étudié peut être représenté par un système discret, appelée condition de propreté des vecteurs propres complexes. Cette condition est très bien explicitée en référence [START_REF] Balmes | New results on the identification of normal modes from experimental complex ones[END_REF]. Lorsque les vecteurs ne vérifient pas la condition de propreté, l'auteur présente une méthodologie de modification de ces vecteurs afin que la condition soit vérifiée. Nous proposons ici d'étendre cette approche au cas de la vibroacoustique.

II. DESCRIPTION DU PROBLÈME ET DÉCOMPOSITION MODALE

A. Équations de mouvement

La discrétisation d'un problème de vibro-acoustique interne, basée sur une description en déplacement de la structure et en pression de la cavité, conduit au système matriciel suivant [START_REF] Morand | Fluid Structure Interactions[END_REF] :

M s 0 C T M f M ẍ p Ẍ + B s 0 0 B f B ẋ ṗ Ẋ + K s -C 0 K f K x p X = F s q F (1) 
où :

x est le vecteur déplacement généralisé de la structure p est le vecteur des pressions acoustiques -M s est la matrice de masse de la structure, obtenue par discrétisation de la forme bilinéaire Ωs ρ s uδudΩ, ρ s étant la masse volumique de la structure. Cette matrice est symétrique, définie, positive.

-M f est la matrice de "masse" fluide, obtenue par discrétisation de la forme bilinéaire 1 ρ f c 2 Ωf p∇δpdΩ, c étant la célérité du son dans le milieu fluide, et ρ f la masse volumique du fluide. Cette matrice est symétrique, définie, positive. Ses composantes n'ont pas la dimension d'une masse physique, elle est appelée matrice de masse par analogie avec les vibrations de structure.

-K s est la matrice de raideur de la structure, obtenue par discrétisation de la forme bilinéaire Ωs σ ij (u)ǫ ij (δu)dΩ.

Cette matrice est symétrique, semi-définie, positive. -K f est la matrice de "raideur" fluide, obtenue par discrétisation de la forme bilinéaire q est le vecteur représentant les sources acoustiques (débits volumiques) placées dans la cavité. Dans la suite, on notera n s le nombre de degrés de liberté de la structure, n f le nombre de degrés de liberté du fluide, et n = n s + n f .

B. Réponse du système en régime harmonique par décomposition modale

Afin de résoudre le problème couplé, il est possible de procéder par décomposition modale. La nature non symétrique du problème fait qu'il est nécessaire de calculer les modes propres gauches et droits du problème. Cette résolution passe par la représentation d'état du système :

U Ż -AZ = F (2) 
où :

U = B M M 0 , A = -K 0 0 M Z = X Ẋ , F = F 0 (3) 
La résolution de ce problème aux valeurs propres est souvent peu efficace d'un point de vue numérique car il met en jeu des matrices non symétriques pour lesquelles les algorithmes d'extraction de valeurs propres ne sont généralement pas optimisés. Néanmoins, cette extraction est possible, et conduit à l'obtention des valeurs propres complexes s ν du système (à chaque valeur propre s ν du système est associée s ν qui est également valeur propre). La matrice des valeurs propres est notée :

S = diag(s ν ) 0 0 diag(s ν ) (4) 
A ces valeurs propres sont associés : -Les vecteurs propres de droite dy ν qui sont tels que U T gyS = A T gy ou gy T U S = gy T A (6)

(s ν U -A)dy ν = 0,
Les relations d'orthogonalité s'écrivent alors, en notant ξ la matrice de "masse modale", diagonale :

gy T U dy = ξ ou gy T Ady = ξS (7) 
La réponse harmonique du système projetée sur la base modale s'écrit alors, pour une pulsation d'excitation ω :

Z(t) = dy (ξ(jωE 2n -S)) -1 gy T F e jωt (8) 
où E 2n est la matrice d'identité de taille 2n. Cette relation peut s'écrire sur les vecteurs de taille n dans le domaine fréquentiel sous la forme :

X(ω) = dY ΞgY T F (9) 
avec :

Ξ = diag( 1 ξν (jω-sν ) ) 0 0 diag( 1 ξ ν (jω-sν ) ) (10) 

C. Particularités du couplage vibro-acoustique

Le couplage vibroacoustique caractérisé par l'équation (1) n'est pas auto-adjoint, mais les termes extra-diagonaux des matrices de masse et de raideur sont reliés entre eux. On montre facilement que les vecteurs propres de gauche sont reliés aux vecteurs propres de droite par une relation particulière [START_REF] Wyckaert | Vibro-acoustical modal analysis : Reciprocity, model symmetry and model validity[END_REF] :

Si dY ν = X ν P ν alors gY ν = X ν -Pν s 2 ν (11)
Ainsi, la résolution du problème aux valeurs propres de gauche n'est pas requise pour déterminer la base modale complète.

Cette relation peut aussi être écrite de la façon suivante :

Si dY = X P alors gY = X P ∆ (12) où ∆ = -S -2 .
Dans ces conditions la masse modale peut s'écrire plus simplement :

ξ ν = 1 s ν X T ν (M s s 2 ν -K s )X ν - 1 ρ f s 2 ν P T ν (M s s 2 ν -K s )P ν (13) 

III. CONDITION DE PROPRETÉ DES VECTEURS PROPRES COMPLEXES

A. Cas des vibrations de structure

La notion de propreté des vecteurs propres complexes est très bien détaillée en référence [START_REF] Balmes | New results on the identification of normal modes from experimental complex ones[END_REF]. A partir d'un certain nombre de modes complexes identifiés, cette relation traduit l'aptitude du système à être complètement représenté (sur la bande de fréquence d'interêt) par un système réduit équivalent limité construit à partir des seuls modes identifiés. Si un ensemble de vecteurs propres ne vérifie pas cette relation, c'est que le système ne peut être représenté de cette manière, ou que l'identification est entachée d'erreurs ayant conduit à une mauvaise identification des vecteurs complexes. Dans ce dernier cas, Balmès propose une méthodologie de modification des vecteurs afin qu'ils vérifient la relation de propreté, tout en étant aussi proches que possible des vecteurs initiaux. Dans le cas de la structure pure, la relation de propreté s'écrit, si les modes sont normalisés par ξ ν = 1 :

dY dY T = 0 (14) 
Dans le cas où les vecteurs propres ne vérifient pas cette relation, on cherche dY , approximation de dY , tel que :

1) dY dY T = 0 2) dY -dY minimale
Il a été démontré qu'une solution de ce problème était :

dY = E n -δδ -1 dY -δdY (15) 
où δ est une matrice de multiplicateurs de Lagrange, qui est obtenue par résolution de l'équation de Riccati suivante :

dY dY T -δdY dY T -dY dY T δ + δdY dY T δ = 0 (16)

B. Cas d'un problème non auto-adjoint

L'obtention de la condition de propreté dans le cas d'un problème non auto-adjoint est immédiate, à partir de l'expression de la réponse forcée (8), ou de l'inversion des relations d'orthogonalité (7), dans le cas où la normalisation est telle que ξ = E 2n :

U -1 = dygy T (17) 
Soit :

B M M 0 -1 = 0 M -1 M -1 -M -1 BM -1 = dY gY T dY SgY T dY SgY T dY S 2 gY T (18) Et : A -1 = dySgy T (19) 
Soit :

-K 0 0 M -1 = -K -1 0 0 M -1 = dY S -1 gY T dY gY T dY gY T dY SgY T (20) 
Il est ainsi clair que la relation de propreté dans le cas d'un système non auto-adjoint s'écrit :

dY gY T = 0 (21) 
Si cette condition est vérifiée, les matrices caractéristiques du système peuvent être directement déterminées par les relations suivantes :

M = dY SgY T -1 (22) K = -dY S -1 gY T -1 (23) B = -M dY S 2 gY T M (24) 
Dans le cas particulier du couplage vibro-acoustique, les vecteurs propres gauches sont déduits des vecteurs propres droits, par la relation (12). La condition de propreté (21) peut ainsi s'écrire en fonction des seuls modes de droite : Dans cette partie, on suppose connue la matrice modale de droite dY contenant les vecteurs propres de droite identifiés mais ne respectant pas la condition de propreté :

XX T X∆P T P X T P ∆P T = 0 ( 
dY = X P (26) 
Le vecteur propre de gauche est alors obtenu par la relation (12). On cherche alors le vecteur dY , approximation de dY , vérifiant au mieux la condition de propreté vibroacoustique (25), et minimisant la norme dY -dY . On note W et Q les composantes associées au déplacement de structure et à la pression acoustique du vecteur recherché :

dY = W Q (27)

A. Mise en équation du problème de minimisation complet

On cherche à résoudre le problème de minimisation sous contrainte suivant :

Trouver W et Q minimisant W -X et Q -P sous la contrainte W W T W ∆Q T QW T Q∆Q T = 0 (28) où X et P sont deux matrices complexes n s × 2n et n f × 2n, connues, et ∆ une matrice diagonale complexe 2n × 2n connue.
La résolution de ce problème passe par la définition du Hamiltonien H, faisant intervenir 4 matrices de multiplicateurs de Lagrange réelles δ i (i=1 à 4), que l'on peut écrire sous forme symbolique :

H = W -X + α Q -P +δ 1 ⊗ W W T + δ 2 ⊗ QW T +δ 3 ⊗ W ∆Q T + δ 4 ⊗ Q∆Q T (29) 
L'écriture des conditions de minimisation du Hamiltonien, conduisent après développement au système d'équations matricielles suivant :

               0 = W Q - X P + 1 2 δ 1 + δ T 1 δ T 2 δ 2 0 W Q + 1 2 0 δ 3 δ T 3 δ 4 + δ T 4 W ∆ Q∆ 0 = W W T W ∆Q T QW T Q∆Q T ( 
30) Notons que l'on retrouve bien l'expression fournie par Balmès dans le cas de la structure seule :

W -X + δW = 0 (31) 
où δ est réelle et symétrique. De cette équation est déduite l'expression de X en fonction de δ :

W = (E n -δδ) -1 (X + δX) (32) 
δ est alors déterminé en écrivant la condition de propreté qui fournit l'équation de Riccati à résoudre (16).

Le système (30) est un système d'équations matricielles, non linéaires, qui nécessite pour sa résolution l'utilisation d'algorithmes numériques lourds à mettre en oeuvre. Nous n'avons pas tenté de résoudre numériquement ce problème, mais avons utilisé des stratégies permettant d'obtenir des solutions non optimales au sens du problème (28), mais néanmoins plus proches de la solution optimale que ne le sont les vecteurs complexes de départ. Ces stratégies sont présentées dans la suite.

B. Nettoyage de la partie diagonale de la condition de propreté

Une première approche permettant le nettoyage partiel de la solution est de procéder uniquement au nettoyage de la partie diagonale de la condition de propreté (25). Ainsi, on obtient deux problèmes (structure et fluide) qui sont découplés. Une première stratégie permettant d'obtenir des vecteurs complexes approchant la relation de propreté consiste donc à résoudre les deux problèmes indépendamment, c'est-à-dire à chercher W et Q, approximations de X et P , vérifiant :

1) W W T = 0 2) X -W minimale 3) QQ T = 0 4) P -Q minimale
La résolution de ce problème de minimisation sous contrainte ne pose pas de difficulté pour la partie structurale, une des procédures possibles de résolution étant celle décrite par Balmès. En ce qui concerne la partie fluide, la présence du terme ∆ empêche l'exploitation directe de ces résultats, mais en remarquant que Q∆Q T = (Q∆ 1/2 )(Q∆ 1/2 ) T , on peut appliquer la procédure proposée au vecteur

Q = Q∆ 1/2 = jQS -1 .
Cette première stratégie de modification des vecteurs propres complexes conduit à une amélioration sensible des résultats, mais n'est pas complètement satisfaisante dans la mesure où la partie "extra-diagonale" de la relation de propreté n'est pas prise en compte.

C. Sur-nettoyage des vecteurs propres complexes

La solution explicite du problème d'optimisation sous contrainte obtenue par Balmès étant valable pour tout problème mettant en jeu une condition du type xx T = 0, on peut utiliser pour vecteur d'optimisation :

x =   X P P ∆   (33) 
Alors :

xx T =   XX T XP T X∆P T P X T P P T P ∆P T P ∆X T P ∆P T P ∆ 2 P T   (34) 
Ainsi, on retrouve bien les 4 termes intervenant dans l'écriture de la condition de propreté vibro-acoustique (25), mais l'optimisation impose alors des contraintes supplémentaires au problème, qui sont P P T = 0 et P ∆ 2 P T = 0, conditions non requises a priori par la solution du problème. De plus, le processus d'optimisation va supposer P et P ∆ indépendants, ce qui revient à modifier les valeurs propres complexes en plus des vecteurs propres complexes.

Néanmoins, nous verrons dans la suite que cette procédure conduit à de bons résultats sur les cas-tests traités.

V. ILLUSTRATION : NETTOYAGE DE VECTEURS PROPRES COMPLEXES VIBRO-ACOUSTIQUES PAR LES PROCÉDURES PROPOSÉES

Dans les trois cas-tests proposés ici, la procédure utilisée est identique :

1) A partir d'une données de fonctions de réponses en fréquences, des modes complexes sont identifiés par la technique de lissage de fonction de transfert [START_REF] Fillod | Research method of the eigenmodes and generalized elements of a linear mechanical structure[END_REF] Ainsi toute la matrice a été nettoyée, mais l'algorithme a en plus imposé des conditions supplémentaires non requises en théorie.

A partir des vecteurs propres nettoyés, la reconstruction des matrices est alors possible. Les matrices reconstruites sont indicées D pour la reconstruction directe, G pour la reconstruction à partir du nettoyage diagonal, et S pour le sur-nettoyage.

On obtient finalement pour les matrices de masse :

M D =
3.2954 -0.0005 -1.6777 0.0138

M G = 3.2947 -0.0005 -1.6781 0.0138 M S = 3.2987 -0.0005 -1.6825 0.0138 (43) 
Les matrices de raideurs reconstruites sont : 

K D = 992.
Et les matrices d'amortissement valent :

B D = -1.5495 -0.0056 -0.6357 -0.0072 B G = 2.1676 -0.0031 -1.4051 -0.0004 B S = 3.2946 -0.0080 -0.8763 -0.0015 (45) 
On s'aperçoit que les trois reconstructions fournissent quasiment les mêmes matrices de masse et de raideur, en particulier pour les valeurs diagonales des matrices. Par contre, elles ne vérifient pas la topologie du système vibro-acoustique décrit par l'équation [START_REF] Balmes | New results on the identification of normal modes from experimental complex ones[END_REF]. En ce qui concerne la reconstruction de la matrice d'amortissement, son principal défaut concerne la valeur négative de l'amortissement B f identifiée dans les trois cas. Par contre, le nettoyage a permis de faire passer le terme B S d'une valeur négative dans le cas de la reconstruction directe à une valeur positive si les vecteurs complexes sont nettoyés. Notons cependant que le point de départ est constitué de vecteurs complexes bruités, et donc non forcément représentables par un système physique du second ordre. L'objectif du nettoyage est en fait de trouver le système physique ayant le comportement le plus proche du système caractérisé par la base modale complexe identifiée.

Une remarque importante est que la procédure de reconstruction des matrices (en particulier pour la matrice B) ainsi que la relation de propreté sont très sensibles au bruit sur les vecteurs complexes, puisque de faibles écarts sur ces vecteurs propres conduisent à de fortes différences sur les matrices.

Une fois ces matrices identifiées, et afin de comparer l'efficacité de la reconstruction, il est possible de calculer les fonctions de réponse en fréquence de chacun des systèmes reconstruits, et de les comparer au point de départ, c'est-à-dire à la recomposition modale des deux modes complexes bruités initiaux. Le tracé de la fonction de transfert structure-structure (mais prenant en compte le comportement couplé du système) est présenté sur la figure [START_REF] Balmes | New results on the identification of normal modes from experimental complex ones[END_REF], sur laquelle on peut observer que la technique de reconstruction directe ne permet pas de retrouver une évolution fréquentielle convenable (notamment en phase), tandis que les deux techniques de nettoyage donnent satisfaction, surtout la seconde technique, dite "sur-nettoyage" qui permet de reconstruire une FRF très proche de l'originale, ce qui est le but de l'opération. Rappelons cependant que les matrices ainsi déterminées n'ont pas une forme complètement en accord avec la topologie du système vibro-acoustique. Une campagne de mesure a été menée sur une guitare, en utilisant la technique d'excitation par marteau de choc. Un accéléromètre a été placé sur la table d'harmonie et un microphone mesure la pression acoustique au niveau de l'évent de l'instrument. Ce couplage diffère de la formulation proposée ici puisqu'il met en relation directe l'air de la cavité et le milieu extérieur. Néanmoins, en première approximation, on peut assimiler l'existence du milieu ouvert par une condition limite de pression nulle, qui est compatible avec la formulation utilisée. Dans la référence [START_REF] Foltête | Analyse modale expérimentale de systèmes vibro-acoustiques : application aux modes A0 et T1 de la harpe[END_REF], une technique de reconstruction des matrices utilisant la technique des moindres carrés a été proposée, fonctionnant très bien sur le cas de la guitare proposé ici, mais ne donnant pas satisfaction dans le cas de la harpe, qui est présenté plus loin dans cet article.

Les modes complexes ont donc été identifiés à partir des mesures, et les techniques de nettoyage ont été appliquées, pour comparer ensuite les FRF obtenues dans chaque cas considéré. Les résultats sont présentés sur la figure [START_REF] Wyckaert | Vibro-acoustical modal analysis : Reciprocity, model symmetry and model validity[END_REF], où l'on s'aperçoit que l'inversion directe du système conduit à des matrices erronées (notamment pour l'amortissement), tandis que le nettoyage permet d'améliorer de façon très efficace la reconstruction des fonctions de transfert. 

Ce jeu de matrices permet de représenter correctement les FRF obtenues à partir des modes identifiés, en respectant la relation de propreté, mais pas exactement la topologie des matrices vibro-acoustiques. La prochaine étape dans ce travail consistera donc à déterminer une méthodologie permettant de respecter à la fois la relation de propreté vibro-acoustique et la topologie des matrices reconstruites.

C. Cas-test 2 : exploitation de données expérimentales issues d'une campagne de mesure sur une harpe

Ce dernier cas-test porte sur un jeu de mesures portant sur une harpe, pour laquelle la table d'harmonie était excitée avec un pot vibrant, et les mesures effectuées par vélocimétrie laser sur la table d'harmonie pour la partie structure, et par microphone situé dans un évent pour la partie acoustique. Ce cas avait posé problème lors de la reconstruction par la technique des moindres carrés, comme indiqué dans la référence [START_REF] Foltête | Analyse modale expérimentale de systèmes vibro-acoustiques : application aux modes A0 et T1 de la harpe[END_REF].

La mise en oeuvre des procédures de nettoyage proposées ici permet d'obtenir de bons résultats en ce qui concerne la reconstruction des FRF obtenues à partir des modes complexes identifiés, comme illustré sur la figure [START_REF] Morand | Fluid Structure Interactions[END_REF]. (47) Le système, s'il donne satisfaction, possède le même inconvénient que celui obtenu avec les mesures de la guitare : il ne respecte pas la topologie de la formulation utilisée pour le couplage vibro-acoustique.

VI. CONCLUSION

Dans ce papier, nous avons étendu la notion de propreté des modes complexes au cas du couplage vibro-acoustique. La condition de propreté a été écrite dans ce cas, son expression différant de celle existant en dynamique des structures car le système est ici non auto-adjoint. Une technique efficace de "nettoyage" des vecteurs complexes existant pour la structure, son extension au cas du couplage vibro-acoustique a été tentée, conduisant à un problème de minimisation sous contrainte. Bien que ce problème n'ait pas été résolu à ce jour, nous avons proposé ici deux approches permettant un nettoyage partiel (ou trop contraignant) des vecteurs complexes. Ces deux approches ont été appliquées sur un cas-test numérique et sur deux cas-tests expérimentaux, et dans tous les cas ont permis de retrouver les bonnes fonctions de réponse en fréquence après nettoyage des vecteurs, tandis que dans tous les cas testés la reconstruction directe des matrices caractéristiques mène à un système dont le comportement est très éloigné du système initial. En ce sens, les procédures proposées sont efficaces. Malheureusement, les matrices reconstruites ne vérifient pas toujours la topologie des matrices constitutives de la formulation vibro-acoustique, ce qui nous fournit le prochain objectif de l'étude : améliorer les procédures de modification présentées ici afin d'obtenir un système matriciel vérifiant la topologie spécifique du couplage vibro-acoustique.
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  1 ρ f Ωf ∇p∇δpdΩ. Cette matrice est symétrique, définie, semi-positive. -C est la matrice de couplage vibro-acoustique, associée à la forme bilinéaire Sc pδu n dS. Cette matrice est rectangulaire si le nombre de degrés de liberté du fluide est différent du nombre de degrés de liberté structuraux.

-B s et B f représentent respectivement les pertes structurales et acoustiques. Cette formulation suppose qu'il n'y a pas de perte au niveau de la surface de couplage entre les deux milieux et que les dissipations peuvent être modélisées par des effets visqueux. -F s est le vecteur représentant les forces généralisées exercées sur la structure.

  Pour ces valeurs numériques, les valeurs propres complexes sont s 1 = -0.1065 + 10.1630j et s 2 = -0.1920 + 19.6811j, et la matrice modale de droite est :Remarquons que pour être cohérent avec les notations utilisées auparavant, la matrice dY devrait avoir 2 lignes et 4 colonnes, où les deux dernières colonnes sont constituées des vecteurs conjugués. Nous avons volontairement omis cette partie de la matrice afin d'alléger les notations et de simplifier la lecture du document.Ces vecteurs sont alors bruités numériquement, avec un bruit aléatoire de ±10% sur les parties réelle et imaginaire de chaque composante, de densité de probabilité uniforme. Dans le cas traité ensuite, les vecteurs initiaux sont après bruitage (on indice D les grandeurs associées à la reconstruction directe) :

							. Ces	
	modes complexes, composés de valeurs propres com-	
	plexes et de vecteurs propres complexes, sont utilisés	
	comme point de départ des calculs effectués ensuite.	
	2) Les modes complexes identifiés sont utilisés pour re-	
	construire directement les matrices caractéristiques du système à l'aide des relations (22) à (24). Ces matrices sont alors employées pour calculer la réponse fréquen-	dY D =	-0.0243 + 0.0278j 0.0582 -0.0614j 11.4021 -11.4469j 9.9273 -11.2118j	(37)
	tielle du système reconstruit, qui est comparée à la	Ce niveau de bruit est important, mais il permet de tester
	réponse fréquentielle initiale. Ce cas de reconstruction	la robustesse de la procédure présentée ici. La propreté de ce
	est appelé "Direct", les différences entre les fonctions	jeu de vecteurs est alors :
	de réponse en fréquence (FRF) étant dues aux termes associés à la non-vérification de la relation de propreté : dY gY T = 0 dans les équations (18) et (20).		dY D gY T D =	-0.0011 0.0003 -0.1394 -0.2883	(38)
	3) Les vecteurs complexes de départ sont nettoyés par la	La mise en oeuvre de la technique de nettoyage n˚1 permet
	procédure de nettoyage "diagonal", puis les matrices ca-	d'obtenir les vecteurs "nettoyés" suivants (on indice G les
	ractéristiques sont reconstruites, et utilisées calculer	grandeurs relatives à cette technique de nettoyage) :
	les FRF du système, qui sont comparées aux réponses	
	fréquentielles initiales. Ce cas de reconstruction est appelé "Diagonal". 4) Les vecteurs complexes de départ sont nettoyés par la procédure de "sur-nettoyage", puis les matrices carac-téristiques sont reconstruites, et utilisées pour calculer	-0.0246 + 0.0275j 11.3037 -11.5944j -10.1147 + 11.0071j -0.0605 + 0.0592j et dans ce cas la propreté devient : dY G =	(39)
	les FRF du système, qui sont comparées aux réponses fréquentielles initiales. Ce cas de reconstruction est		dY G gY T G =	0 -0.0642 5.0 × 10 -16 5.3 × 10 -5	(40)
	appelé "Sur-nettoyage".				On observe bien que seule la partie diagonale de la matrice
	A. Cas-test 1 : simulation numérique			a été nettoyée. La mise en oeuvre de la technique de nettoyage n˚2 permet
	Pour ce premier cas-test, nous utilisons des données simu-	d'obtenir les vecteurs "nettoyés" suivants (on indice S les
	lées, en partant d'un système du second ordre à deux degrés de	grandeurs associées à cette technique de nettoyage) :
	liberté dont la topologie respecte celle d'un problème vibro-	
	acoustique couplé : 3.234 -1.465 1.275 × 10 -2 0	ẍ p		0.0242 -0.0277j -11.7433 + 11.1237j 10.2244 -10.8952j 0.0606 -0.0591j et dans ce cas la propreté devient : dY S =	(41)
		+	1.123 0	0 3.185 × 10 -3	ẋ ṗ	(35)	dY S gY T S =	-9.8 × 10 -17 -3.3 × 10 -16 -1.3 × 10 -14 -2.3 × 10 -14	(42)
		+	1000 1.465 0 1.65	x p	= 0		
	dY =	-0.0266 + 0.0263j 12.1474 -11.8894j 10.3920 -10.2175j 0.0597 -0.0598j	(36)