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Abstract. We investigate the magnetic structure of a small
earthward-moving flux rope observed by Cluster in the
near-Earth plasma sheet through application of the Grad-
Shafranov (GS) technique to reconstruct the transverse mag-
netic field distribution perpendicular to the flux rope axis at
X=−14.75RE . We find that the principal axis of the flux
rope lies approximately along the dawn-dusk direction and
that the diameter of the flux rope is about 1.5RE . There is a
strong duskward core magnetic field in the center of the flux
rope. According to the AE index, there is no obvious sub-
storm associated with the magnetic flux rope. Recent stud-
ies indicate that the formation of the flux rope in the plasma
sheet can be understood in terms of simultaneous reconnec-
tion at multiple X-line points in the near-tail. The distribu-
tion of the transverse magnetic field on the cross section is
the asymmetric circles, which requires that the reconnections
at multiple X-line points occur. So our results also provide
additional evidence for the occurrence of multiple-X line re-
connection in the magnetotail.

Keywords. Magnetospheric physics (Magnetotail; Plasma
sheet) – Space plasma physics (Experimental and mathemat-
ical techniques; Magnetic reconnection)

1 Introduction

The magnetic flux rope is a common and very important
physical phenomenon which occurs throughout the Earth’s
magnetosphere and interplanetary space. When an east-west
oriented magnetic flux rope in the magnetotail passes by a
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satellite, characteristic north-then-south or south-then-north
Bz bipolar signals, together with high speed flows, are ob-
served: if the motion is toward (away from) the Earth, the
Bz bipolar signals will have south-then-north (north-then-
south) polarity. Hughes and Sibeck (1987) first pointed out
that the magnetic flux rope should be described as a three-
dimensional “rope” which has a helical magnetic field struc-
ture together with a strong core field, and arises from the
shear between the magnetic fields in the northern and south-
ern plasma sheet. In earlier studies, more attention has
been paid to magnetic flux ropes in the distant magneto-
tail at X<−60RE (e.g. Kivelson et al., 1993; Moldwin et
al., 1993). The launch of more and more satellites cover-
ing other regions of the magnetotail, such as Geotail, Cluster
and Double Star, has allowed observation of magnetic flux
ropes in the near-Earth magnetotail, at X>–30RE (Elphic et
al., 1986; Nishida et al., 1986; Slavin et al., 2003a, 2003b;
Zhang et al., 2007). Slavin et al. (2003a) argued that near-
Earth magnetic flux ropes are the result of near-Earth mag-
netic reconnection at multiple X-line points in a similar man-
ner to the formation of FTEs at the dayside magnetopause
(Lee, 1995). The field tension or the plasma jet produced
by lobe field reconnection pushes the flux rope earthward or
tailward. In the opinion of Slavin, magnetic flux ropes can be
regarded as the preliminary event to the onset of open field
reconnection in the NENL model of the substorm (Baker et
al., 1996).

The ideal model of a magnetic flux rope is based on the
bipolar magnetic signature and the strong core field typi-
cally observed by satellites crossing the real magnetic flux
rope. To illustrate the geometry, Fig. 1 shows the typical
magnetic field signature in a flux rope based on the ideal
model (Lepping et al., 1990). The line labelled “1” is the
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Fig. 1. Illustration of the magnetic signature in the magnetic flux
rope. Panel(a) demonstrates the cross section of an earthward mov-
ing magnetic flux rope. Panel(b) displays the magnetic field com-
ponents observed by satellite along line 1.

imagined trajectory of the satellite crossing the magnetic flux
rope. Figure 1a demonstrates the cross section of an earth-
ward moving magnetic flux rope and Fig. 1b displays the
magnetic field components observed by the satellite along
line 1. At the present time, there is still no description of
the complete configuration of the magnetic field in a real
magnetic flux rope in the magnetotail. Nevertheless, using
the four-point magnetic measurements of Cluster, however,
Shen et al. (2007) have developed a magnetic rotation anal-
ysis (MRA) approach which can investigate the geometrical
structure of the magnetotail flux rope. They find that, the
deduced magnetic structure of one near-Earth flux rope is
in agreement with the empirical model (Elphic and Russell,
1983) and that its characteristic spatial scale is about 1RE .

The Grad-Shafranov technique (Hau and Sonnerup, 1999)
has been used to study the magnetic structure of the magne-
topause (Hasegawa et al., 2004, 2005), of magnetic clouds
in the interplanetary medium (Hu and Sonnerup, 2002) and
of FTEs at the magnetopause (Sonnerup et al., 2004). For
quasi-two-dimensional structures, with the help of this tech-
nique, one can compute the magnetic field distribution of the
transverse section perpendicular to the invariant axis of the
object studied. The magnetic flux rope in the magnetotail
has the same observational character as FTEs and flux ropes
associated with interplanetary magnetic clouds. This allows
us to use here the Grad-Shafranov technique to reconstruct
the magnetic flux rope observed by Cluster at the magneto-
tail at X=−14.75RE . We highlight a particularly stable event
which allows accurate parameters to be computed.

2 Observation

On 11 October 2003, the four Cluster spacecrafts were oper-
ating in an elliptical polar orbit, with apogee in the magne-
totail. At 07:40 UT, the satellites were located at (−14.75,
8.96, 1.96)RE . The FGM (Balogh et al., 2001), CIS (Rème

et al., 2001) and PEACE (Johnstone et al., 1997) experiments
on board the satellites, respectively, provided 4-s averaged
magnetic field data, ion data and electron data in the interval
surrounding this time. Figure 2 shows the Cluster observa-
tions from 07:43 to 07:53 UT in GSE coordinates. From
top to bottom of Fig. 2, the following parameters are plot-
ted: electron density (Ne), electron temperature (Te), elec-
tron thermal pressure (Pe), ion density (Ni), ion tempera-
ture (Ti), ion thermal pressure (Pi), ion plasma beta (βi), ion
velocity components (Vx, Vy, Vz) and speed (Vt ), magnetic
field components (Bx, By, Bz) and total magnetic intensity
(Bt ). The implication ofBx<0 places Cluster in the Southern
Hemisphere and a temperatureTi=4 keV indicates that Clus-
ter is in the southern plasma sheet at this time. Based on the
Bz signature, two vertical solid lines mark the boundary of
the flux rope to be empirically reconstructed in our analysis.
As can be seen from theBz bipolar signal, at 07:46:47 UT
Cluster enters the flux rope from the plasma sheet.Bz de-
creases from 1.22 nT to−7.8 nT and then increases to 7.1 nT.
The peak-to-peak value ofBz is 14.9 nT. Along with thisBz

variation, there is a|By | enhancement, increasing from 4 nT
to 12 nT. Furthermore, theBy enhancement leads to a peak
in total magnetic field intensity, which is 2.5 times greater
than the adjacent plasma sheet magnetic field. Cluster exits
the flux rope at 07:47:52 UT and thenBy andBz restore their
original values in the plasma sheet.

Slavin et al. (2003a) point out that the flux ropes observed
by Geotail are usually accompanied by high speed flows and
explain the fact that the ion density in the flux rope is higher
than the value in the adjacent plasma sheet as due to com-
pression between the flux rope and the plasma ahead of it.
Their interpretation is that after the formation of the flux rope
by multiple X-line magnetic reconnection, one of the X-lines
in the plasma sheet first reconnects the open lobe fields in-
evitably (Schindler, 1974) to trigger the substorm. Then the
flux rope will move toward the Earth or toward the tail un-
der the push of field tension or the bulk flow produced by
lobe field reconnection. The plasma in our case, however,
does not show a character different from the adjacent plasma
sheet: no high speed flow and high ion density are observed.
The AE index is quiet, suggesting that no substorm occurs in
the interval corresponding to this case; therefore, according
to the NENL model of substorm (Baker et al., 1996), we can
infer that there is no lobe field reconnection after the forma-
tion of this flux rope. Thus, it is understandable that there is
no high speed flow in the case here. The observations of this
flux rope may suggest that not all multiple X-line magnetic
reconnection at the tail will lead to severe reconnection of
the lobe fields, as argued by Schindler (1974) as a trigger for
substorms.
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Fig. 2. Cluster observation of the flux rope from 07:43 UT to 07:53 UT on 11 October 2003 in the GSE coordinates. From the top to the
bottom of the Fig. 2, the following parameters are listed: electron density, electron temperature, electron thermal pressure, ion density, ion
temperature, ion thermal pressure, ion plasma beta, ion velocity components and speed, magnetic field components and total intensity.

3 Grad-Shafranov method

The GS reconstruction method (Hau and Sonnerup, 1999) is
based on the following three assumptions:

1. The object to be reconstructed should have approxi-
mately a 2.5-dimension structure, i.e. the spatial vari-
ation in one direction (invariant Z axis of the ob-
ject) should be much slower than those at the trans-
verse section (X-Y plane) perpendicular to that direc-
tion (∂

/

∂z≈0). Thus, the emphasis of our study can be
focused on the physical parameters in the X-Y plane.

2. A frame must exist, usually the deHoffmann-Teller
frame (HT frame) (deHoffmann and Teller, 1950), in
which the object to be studied is approximately tempo-
rally stationary (∂

/

∂t≈0). This HT frame moves with
the velocityV HT relative the satellite.

3. In the HT frame, the inertial effect of the plasma can
be neglected. If the plasma velocity in the HT frame
is much smaller than the Alfv́en speed and the acoustic
speed, this assumption can be satisfied.

Under the above three assumptions the equation of motion of
the plasmas in X-Y plane can be expressed as

∇tP = (J × B)t . (1)

www.ann-geophys.net/25/1471/2007/ Ann. Geophys., 25, 1471–1476, 2007
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Here the X-Y plane is the transverse cross section in the
reconstruction coordinate (the orthogonal coordinate deter-
mined from the invariant Z axis and the direction of –V HT ).
The subscript “t” denotes the transverse components of the
parameter in the XY plane.

The magnetic vector potentialA=A(x, y)z can be intro-
duced. Under the assumption of∂

/

∂z≈0, the magnetic field
vector is expressed as

B = [∂A
/

∂y, −∂A
/

∂x, Bz(A)]. (2)

With the Biot-Savart law and Eq. (2), the Eq. (1) reduces to
the Grad-Shafranov (GS) equation:

∇2
t A = −µ0

d

dA
Pt (A), (3)

wherePt=P+B2
z /2µ0, P is the plasma’s thermal pressure

andB2
z /2µ0 is the magnetic pressure of the axis field com-

ponent. BothP andBz are the functions of A alone. The
magnetic field and plasma data measured by the Cluster ar-
ray when it crosses the structure are taken as the initial values
required to solve the GS equation and obtain the distribu-
tion of magnetic potentialA (magnetic fieldB) in the XY
plane. From Eq. (2) we can deduce·∇A=0, so the field line
in the flux rope is the contour line of A. The details of the
GS method have been given by Hau et al. (1999) and Hu et
al. (2002).

The GS method requires that the satellite crosses the struc-
ture and measures the components of the magnetic field, the
components of the plasmas velocity, the temperature and
density of the plasma. The next steps compute the recon-
struction:

1) Determine the HT frame velocity from the magnetic
field and the plasma data, measured by minimizing the resid-
ual electric field (Khrabrov and Sonnerup, 1998). In the HT
frame the electric field almost vanishes, so from the equation
∇×E=∂B

/

∂t we have∂B
/

∂t=0. That is to say the mag-
netic structure in the flux rope is stationary. If the plasma
velocity in the HT frame is small enough to be neglected, we
may regard that the satellite crosses the magnetic flux rope
approximately with the velocity−VHT .

2) Find a working frame (x′, y′, z′) in which we search
for the reconstruction frame. An important issue in search-
ing for the reconstruction frame is to find the correct orien-
tation of the invariant Z axis of the magnetic flux rope. We
perform minimum-variance analysis (MVA) on the measured
magnetic field vectors (Sonnerup and Cahill, 1967) to obtain
three orthogonal directions corresponding to the maximum
variance direction, the intermediate variance direction and
the minimum variance direction of magnetic field vectors, re-
spectively. The maximum, intermediate and minimum vari-
ance direction are taken as they′, z′ andx′ axis of the work-
ing frame. At the beginning of the analysis thez′ axis is
assumed to be the invariant Z axis of the magnetic flux rope
(the initial test Z axis in the reconstruction frame), as Lep-
ping et al. (1990) have done.

3) Search for the reconstruction frame in the working
frame (x′, y′, z′). The initial test X axis direction of the re-
construction frame is taken as the projection of−VHT into
the plane perpendicular to the initial test Z axis. The ini-
tial test Y completes the right-hand orthogonal triad. In this
initial reconstruction frame, we integrate the measuredBy

along the X axis to obtainA(x, 0):

A(x, 0) =

x
∫

0

∂A

∂ε
dε =

x
∫

0

−By(ε, 0)dε, (4)

wheredε=−V HT ·xdt is the distance that the satellite travels
during the time intervaldt . At the same time we compute
the transverse pressurePt (x, 0)=P(x, 0)+B2

z (x, 0)/2µ0 at
the corresponding location x. Hu et al. (2002) point out that
the invariant Z axis orientation of a magnetic flux rope is
determined by finding the direction, for which the data plot
of Pt (xi, 0) versusAi(xi, 0) displays minimal scatter when
comparing the plot in the first half of the trajectory (entry into
the flux rope) to the plot in the second half of the trajectory
(exiting the flux rope). We apply this criteria to evaluate if
the invariant Z axis of the magnetic flux rope (the Z axis of
the reconstruction frame) we found is correct.

4) Beginning with the initial test Z axis of the reconstruc-
tion frame in step 2, we continue to alter the direction of the
test Z axis in the hemisphere withz′≥0 in the working frame
and repeat the step 3 until we find the correct Z axis of the
reconstruction frame satisfying the criteria given in step 3.
In the proper reconstruction frame we computePt (x, 0) and
A(x, 0) and then obtain a functionPt (A) at y=0, using the
polynomial fitting. The resultingP t(A) is then differenti-
ated to obtain d

dA
Pt (A) at y=0. Because the magnetic field

lines in the flux rope form the contour plot ofA, the result-
ing d

dA
Pt (A) is applied in the whole transverse section (X-Y

plane).
5) We then solve the GS equation to obtain the distribution

of the magnetic potential A (magnetic fieldB) in the trans-
verse section. We choose a rectangular region including the
trajectory of the satellite and solve the GS equation using the
Taylor expansion in this region:

A(x, y+1y) = A(x, y)+(∂A
/

∂y)x,y(±1y)

+
1

2
(
∂2A

∂y2
)x,y(±1y)2, (5)

Bx(x, y±1y)=Bx(x, y)+(
∂2A

∂y2
)x,y(±1y), (6)

where A(x, y), (∂A
/

∂y)x,y=Bx and
∂2A

∂y2 =− ∂2A

∂x2 −µ0
d

dA
Pt (A) are all the known functions

of x at a given y. They can be obtained by the integration
from y=0 where all the parameters are measured by Cluster.
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4 Results and discussion

During the observation period, the largest distance between
the four Cluster satellites (C1, C2, C3, C4) is 200 km, so the
data from C1, C2, C3 and C4 show almost the same profile.
Therefore, the G-S method based on multi-satellite measure-
ments (Sonnerup et al., 2004) is not applied to this case. We
only use the data from C1 to perform the reconstruction. A
relatively good constant HT frame velocity (138.51,−63.85,
47.34) km/s is found with the correlation coefficient between
V HT ×B and V ×B being cc=0.931. Due to the low ion
density, the Alfv́en velocity is much higher than the plasma
velocity in the HT frame, so this case can be investigated
with the G-S method. The direction of the invariant (Z)-axis
of the flux rope in GSE coordinates is (−0.3892,−0.8591,
0.3323), which is mainly located at the dawn-dusk direction.
Furthermore, we get the X and Y axis of the reconstruction
frame to be directed along (−0.9129,−0.3118,−0.2632)
and (0.1225,−0.4058,−0.9057), respectively.

To facilitate understanding the reconstruction results, we
rotate the reconstruction frame 180◦ around the X axis to
make the Z axis locate at (0.3892, 0.8591,−0.3323), point-
ing dawnward, and the Y axis at (−0.1225, 0.4058, 0.9057),
pointing northward. Figure 3 presents the reconstruction re-
sults for this case. The northern plasma sheet is at the top
of the figure and the Earth is on the left. The closed black
curves are the contour plots of the magnetic potentialA in
the cross-sectional X-Y plane, which are just the magnetic
field lines projected onto the cross section. The filled colour
inside the curves displays the distribution of the field com-
ponentBz along the principal axis. TheBz value for the dif-
ferent colour is defined by the color bar at the right of the
figure. The plus sign at the center of the figure denotes the
maximum of the axis field, which isBz=−12.3 nT.

As we can see,Bz points toward the inside of the paper and
its value decreases gradually from the center to the outer side
of the implied flux rope. From the strong core field, which
exists inside the flux rope, we can infer that the magnetic
flux rope is produced by component reconnection, because
anti-parallel reconnection cannot produce a magnetic struc-
ture containing a core field like the magnetic flux rope. The
black arrows along the Y axis in the figure are the measured
magnetic vectors (not including the axis fieldBz). From the
directions of the transverse and core fields, we may see that
the flux rope is “left-handed”. We can also see that the scale
length in the X axis is larger than that in the Y axis and that
the earthward side of the flux rope is broader than the tail-
ward side in the Y direction. The distribution of the mag-
netic field in the cross section is therefore not exactly axially
symmetric, as the ideal model demonstrates. The reason for
the shape of this case may be that the flux rope is compressed
by the field and plasma in the northern and southern plasma
sheet when it moves toward the Earth. The diameter of the
flux rope is about 1.5RE , so the plasma and magnetic flux
carried by this flux rope compared to the whole inner mag-
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Fig. 3. The reconstruction results of the flux rope on 11 October
2003. The closed black curves are the contour plots of the magnetic
potential A on the cross section X-Y plane, which are just the mag-
netic field lines projected onto the cross section. The filled color
inside the curves displays the distribution of the field component
Bz along the principal axis. The plus at the center of the figure de-
notes the maximum of the axis fieldBz. The black arrows along the
Y axis in the figure are the measured magnetic vectors (not include
the axis fieldBz).

netosphere may be insignificant. Nevertheless, the signifi-
cance of the flux rope in the magnetotail is that its formation
indicates the occurrence of simultaneous multi-X line recon-
nection in the near-tail.

5 Summary

We have applied the Grad-Shafranov technique to recon-
struct the magnetic field distribution on the transverse sec-
tion of a magnetic flux roper in the magnetotail with no con-
straint to its geometry. Particularly stable conditions allow us
to accurately model the flux tube parameters. We find that the
principal axis of the flux rope is almost along the dawn-dusk
direction and the diameter of the flux rope is about 1.5RE .
The magnetic field distribution in the transverse section of
the earthward moving flux rope does not correspond to the
symmetric circles demonstrated by the ideal model. There
is a very strong core field in the flux rope, which may imply
that component reconnection is responsible for the forma-
tion of this flux rope. The appearance of the flux rope in the
magnetic tail can be seen as evidence that multiple-X line
reconnection occurs in the magnetotail. The AE index indi-
cates that there is no substorm occurring ahead of this case,
so that multiple-X line reconnection in the plasma sheet does
not necessarily appear to trigger the substorm.
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Hasegawa, H., Sonnerup, B. U.Ö., Dunlop, M. W., et al.: Re-
construction of two-dimensional magnetopause structures from
Cluster observations: verification of method, Ann. Geophys., 22,
1251–1266, 2004,
http://www.ann-geophys.net/22/1251/2004/.

Hasegawa, H., Sonnerup, B. U.Ö., Klecker, B., Paschmann, G.,
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