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Abstract. We examine Cluster observations of a reconnec-
tion event atxGSM=−15.7RE in the magnetotail on 11 Oc-
tober 2001, when Cluster recorded the current sheet for an
extended period including the entire duration of the recon-
nection event. The onset of reconnection is associated with
a sudden orientation change of the ambient magnetic field,
which is also observed simultaneously by Goes-8 at geosta-
tionary orbit. Current sheet oscillations are observed both
before reconnection and during it. The speed of the flapping
motions is found to increase when the current sheet under-
goes the transition from quiet to active state, as suggested by
an earlier statistical result and now confirmed within one sin-
gle event. Within the diffusion region both the tailward and
earthward parts of the quadrupolar magnetic Hall structure
are recorded as an x-line passes Cluster. We report the first
observations of the Hall structure conforming to the kinks in
the current sheet. This results in relatively strong fluctuations
in Bz, which are shown to be the Hall signature tilted in the
yz plane with the current sheet.

Keywords. Magnetospheric physics (Magnetospheric con-
figuration and dynamics; Magnetotail) – Space plasma
physics (Magnetic reconnection)

1 Introduction

The magnetotail is a natural laboratory for magnetic recon-
nection. The antiparallel lobe fields set up the stage for the
simplest possible reconnection geometry; however, the re-
connection process need not choose the most simple form of
a large-scale two-dimensional x-line, and many observations
indicate that it indeed does not. To name some examples,
there are reports on off-centre and bifurcated current sheet
profiles (Hoshino et al., 1996; Asano et al., 2003; Runov
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et al., 2005; Thompson et al., 2006), current sheet flapping
motion (Lui et al., 1978; Sergeev et al., 2003, 2004), mul-
tiple x-lines (Deng et al., 2004; Eastwood et al., 2005), and
bursty bulk flows (Baumjohann et al., 1990) that can be inter-
preted as signs of localized reconnection events (Shay et al.,
2003) or transient reconnection events (Sergeev et al., 1987).

From the global point of view reconnection is an impor-
tant piece in the puzzle of magnetospheric dynamics. Tail
reconnection is recognized as the main energy source of sub-
storms (Baker et al., 1996): The substorm sequence com-
mences with a growth phase, during which magnetic flux
is added to the tail and the near-Earth current sheet grows
thinner. At substorm onset a neutral line forms in the tail,
most frequently at a radial distance of 20–30RE but some-
times also closer to the Earth (Nagai, 2006, and references
therein). Global MHD simulations support the view that the
reconnection site acts as a centre of Poynting flux focussing,
where the incoming electromagnetic energy is partly con-
verted to kinetic and thermal energy of the plasma and where
some of it is diverted earthward (Laitinen et al., 2005). How-
ever, debate continues on whether tail reconnection should
be regarded more as a “primus motor" or as a mediator and
whether the energy it releases comes from the energy storage
of the tail or as non-delayed Poynting flux from the magne-
topause (Pulkkinen et al., 2006).

As reconnection proceeds, closed magnetic field lines in
the plasma sheet are reconnected to form loops tailward of
the x-line. The loops form a plasmoid, which is released
when reconnection reaches open field lines (Hones et al.,
1984). Also multiple plasmoids have been observed (Bele-
haki et al., 1998). Earthward of the x-line the magnetic field
geometry is observed to change towards a more dipolar form.
A common ionospheric feature associated with near-Earth
reconnection is the westward auroral electrojet. It is a con-
sequence of the substorm current wedge of field-aligned cur-
rents, which is formed when some of the cross-tail current is
diverted to the ionosphere.
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Fig. 1. (a) Cluster and Goes-8 satellites in the magnetosphere
at 03:30 UT on 11 October 2001. In GSM coordinates their
locations were: Cluster at[−15.7, 10.5, 2.5] RE and Goes-8 at
[−6.2, 2.3, −0.7] RE . The magnetopause drawn is a sketch only.
Earth and the satellites are not to scale.(b) The relative locations
of the four Cluster spacecraft. Cluster 1 is black, C2 red, C3 green
and C4 blue. The figures are centered at the barycentre of the tetra-
hedron.

In this article we examine Cluster observations of an event
which on the first glimpse appears as a classic example of a
tailward-retreating x-line, but on closer examination shows
several intriguing features: In Sect. 2 we introduce the event
and show that a large-scale orientation change of the ambi-
ent magnetic field takes place when the reconnection starts.
In the Discussion (Sect. 5) we suggest that this may reflect
a global change in the magnetotail geometry. In Sect. 3 we
find an x-line from the tailward edge of the diffusion region;
some possible explanations to this asymmetry are also given
in the Discussion. The event also includes strong flapping
motion of the current sheet and rapid fluctuations in the y-
and z-components of the magnetic field. Cluster was fortu-
nate enough to record the current sheet for a long period in-
cluding the whole duration of the reconnection event, which
allows us to compare the flapping motions at the same place

during quiet and active times. This is described in Sect. 4; in
addition, we show that the Hall fields conform to the kinks in
the current sheet, which explains at least some of the largest
reversals inBz within the diffusion region.

2 Large-scale features

2.1 An overview of the event

We examine the interval 03:00–04:00 UT on 11 October
2001, when Cluster observed a flow reversal and several cur-
rent sheet crossings in the duskside flank of the magneto-
sphere. Several other ground-based and geostationary in-
struments recorded signatures of moderate activity. We will
show that the reconnection onset occurred approximately at
03:25 UT; at that time the Cluster tetrahedron was located
at [x, y, z]=[−15.7, 10.5, 2.5] RE in GSM coordinates. The
positions of the spacecraft are shown in Fig. 1. Data from the
Cluster magnetic field instrument FGM (Balogh et al., 2001)
and ion spectrometer CIS (Rème et al., 2001) are used in this
study.

Panels (a–d) in Fig. 2 show the solar wind conditions dur-
ing the event period and during the preceding hour. The data
are from the ACE spacecraft at the L1 libration point, but
they have been time-shifted by 65 min. The plots thus show
the time evolution of the parameters at Earth assuming that
the solar wind propagated unchanged from L1 at a speed of
380 km/s. This approximation is reasonable because the so-
lar wind was quite steady during the period (panels b and c).
The moderate velocity and density combine to a relatively
small dynamic pressure of about 1 nPa (panel d). The mag-
netic field (panel a) had an almost constant magnitude of 5 nT
during the entire period and was directed duskward most of
the time. Its z-component fluctuated around zero. Therefore
the reconnection event was not preceded by enhanced energy
loading into the magnetosphere. This is confirmed by the
ground magnetometer (panel e) and geostationary energetic
electron (f) data, which do not show any sign of a substorm
growth phase preceding the reconnection onset time.

Figure 3 shows the magnetic field and proton velocity
components measured by Cluster 4 from 03:00 to 04:00 UT.
An eye-catching signature of reconnection are the two fast
plasma flows, first tailward at 03:25–03:31 and then earth-
ward at 03:36–03:43. Proton distribution functions (not
shown) confirm that during the periods of fastest flow
(03:28–03:30 and 03:39–03:41, when|v| exceeds 700 km/s),
the velocity moments reflect well collimated bulk flows. The
flow reversal suggests that this is a classic example of an x-
line that moves tailward past the spacecraft.

Eastwood et al. (2005) pointed out that such a flow reversal
may also be observed at an earthward moving o-line between
two x-lines. They reported an event where they established
the direction of motion of the flow reversal line by time-
ordering of the associatedBz reversals at different satellites.

Ann. Geophys., 25, 1025–1035, 2007 www.ann-geophys.net/25/1025/2007/
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Fig. 2. (a–d) Solar wind conditions at 02:00–04:00 UT on 11
October 2001: components of the interplanetary magnetic field
and solar wind velocity in GSM coordinates, and solar wind dy-
namic pressure. (e) Change in the northward (X) component
of the magnetic field at three Canadian magnetometer stations:
Poste de la Baleine (PBQ), Gillam (GILL) and Fort Churchill
(FCHU). (f) LANL geosynchronous electron data: differential
flux (cm−2 s−1 sr−1 keV−1) of electrons recorded by the geosyn-
chronous satellite 1990-095, which passed midnight meridian at
02:20 UT. The energy ranges of the curves are, from top to bottom:
50–75 keV, 75–105 keV, 105–150 keV, 150–225 keV, 225–315 keV
and 315–500 keV.

Similar time-ordering unfortunately cannot be used in the
present event. There is no distinguished majorBz reversal,
and the time-ordering of flow reversal at different satellites
cannot be established, most likely because the spatial scale
of the flow reversal region is much larger than the separation
of the spacecraft. However, considering the lack of observa-
tion of other outflow jets than the two even though Cluster
stays in the current sheet, and the clear Hall signature at the
observed flow reversal (discussed in Sect. 3), the scenario of
a tailward moving x-line is best consistent with the observa-
tions.

From theBx component it is seen that Cluster reached the
centre of the current sheet already before the start of the re-
connection event, experienced several crossings during the
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Fig. 3. Upper part: the components of magnetic field and proton ve-
locity measured by Cluster 4, 03:00–04:00 UT on 11 October 2001,
in GSM coordinates; magnetic field from FGM and proton veloc-
ity from CIS-CODIF. Lower part: the magnetic field components
measured by Goes-8 during the same interval.

event and remained within the current sheet even after it. The
start of the tailward flow and the end of the earthward flow
can be therefore interpreted as the start and end of reconnec-
tion – in this sector of the tail – and not just the satellites
moving into or away from the current sheet. Thus, the obser-
vation suggests that the duration of the reconnection event
was about 18 min. In addition, there are some current sheet
crossings both before and after the reconnection event.Bz

is weak but positive before the event, which probably means
that the reconnection started on closed field lines.

The current sheet profiles during some of the crossings of
this event were reconstructed by Runov et al. (2005). The
profiles were single-peaked and in one case off-centered; cur-
rent sheet bifurcation was not detected.

The lower part of Fig. 3 shows the magnetic field at geo-
stationary orbit in the pre-midnight sector, recorded by Goes-
8. First there was a sudden change of about 15 nT inBy

at 03:26–03:28. Then about 12 min later, at 03:40, Goes-8
recorded dipolarization. The time corresponds to an acceler-
ation of earthward flow at Cluster, a short disturbance at Fort
Churchill and the commencement of a longer deflection at
Poste de la Baleine. The flux of energetic electrons (Fig. 2f)
starts to increase soon after the onset of reconnection and
shows a more rapid rise after the dipolarization at Goes-8.

www.ann-geophys.net/25/1025/2007/ Ann. Geophys., 25, 1025–1035, 2007
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Fig. 4. The orientation of the ambient magnetic field at the Cluster
site. (a) Definition of the anglesα andβ. The axes represent the
GSM coordinate system.(b) The orientation of the ambient mag-
netic field as a function of time, obtained from minimum/maximum
variance analysis. The lines are the averages of the results from
the four spacecraft and the error bars show their standard devia-
tion. Those data points where the standard deviation exceeds 20◦

are omitted.

This suggests that there was an intensification of reconnec-
tion about 12 min after its first onset.

2.2 Ambient field direction

Figure 3 shows a very clear anticorrelation betweenBx and
By until about 03:25. Similarly the x and y components of
proton velocity exhibit a clear anticorrelation during the out-
flows. After the event the correlation is not so clear.

Figure 4 examines more closely how the orientation of the
ambient magnetic field changes. The two anglesα andβ that
describe the orientation are illustrated in the upper panel:β

is the angle between the ambient field and thexy plane, and
α is the angle between the x-axis and the projection of am-
bient field in thexy plane. In the lower panel the angles are
calculated as a function of time using maximum/minimum

variance analysis (MVA). For each data point, a five minutes
long data interval was used to calculate the MVA eigenvec-
tors. The angles were calculated from the eigenvector having
the smallest angle with the x-axis; in most cases this was the
maximum variance eigenvector. The result is consistent with
the average direction of the field itself during intervals when
Cluster stays away from the central current sheet. However,
long enough such intervals only occur before the start of re-
connection and therefore MVA is needed to follow the time
evolution of the ambient field direction.

The curves in Fig. 4b show the average of the results from
the four spacecraft, and the error bars in theα curve repre-
sent their standard deviation. The bars are omitted from the
β curve for clarity, but they would be similar in magnitude
as those forα. The deviations reflect short-timescale vari-
ations in the magnetic field direction near the current sheet
centre, due to tilted orientations of the current sheet during
oscillations. However, the purpose of Fig. 4b is not to bring
out all these variations but rather to assess the slow change
in the background field on as global a scale as possible. Five
minutes long data intervals were used in order to average out
the effects of individual flappings.

Until 03:24 the four spacecraft give well consistent re-
sults: Theα angle is rather large, about 30 degrees, and
stays roughly constant with some minor variations.β is very
small, which means that the ambient field is quite accurately
in the xy plane. Between 03:24–03:29 the results from the
four spacecraft are wildly varying and inconsistent with each
other. This is because Cluster stayed in the central current
sheet and did not see the ambient lobe field. After 03:29 the
analysis produces again meaningful results, but the differ-
ences between the different spacecraft are now considerably
larger reflecting the sub-Cluster-scale variations in the mag-
netic field. Despite the resulting inaccuracy one can see that
α is now smaller and still decreases during the event.

One more caveat must be mentioned regarding the inter-
pretation ofα between 03:31–03:36. During this time the
Hall fields may affect the analysis: earthward of the x-line
they tend to makeα smaller, and they persisted in that sense
for most of the period. However, overall one can conclude
that before the onset of reconnection the ambient magnetic
field was oriented approximately radially, but became almost
aligned with the x-axis during the event.

The geosynchronous satellite Goes-8 was located roughly
between Cluster and Earth in the same local time sector dur-
ing the event (Fig. 1a). As shown in Fig. 3, Goes-8 recorded
a sudden jump in theBy component, contemporaneous to the
initial decrease in theα angle in Fig. 4. The orientation of the
magnetic field in thexy plane at the Goes-8 location changed
about 15 degrees in the same sense as at the Cluster loca-
tion. This suggests that a large-scale configuration change
took place in the magnetotail. Since the tail field orientation
change coincides with the beginning of tail reconnection, as
timed from the start of the tailward flow, it is probable that

Ann. Geophys., 25, 1025–1035, 2007 www.ann-geophys.net/25/1025/2007/
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they are causally connected. This question will be discussed
further in Sect. 5.1.

2.3 Choosing the natural coordinate system

The preceding analysis indicates that the GSM coordinate
system is not very good for studying the event: a more natu-
ral coordinate systemx′y′z′ would be one in which the out-
flows and ambient lobe fields are aligned with thex′ axis.
As the ambient magnetic field direction changes during the
event, the choice is ambiguous. To get another hint, we ex-
amine the proton bulk velocity. We find the smallest coor-
dinate rotation angleα that removes thevx-vy correlation in
the time period 03:25–03:43, which is the shortest time in-
terval including both the observed outflows. The results are
given in the right column of Table1. The result stays the
same even if the period 03:31–03:35, when the velocity mo-
ments are not relevant, is removed from the data. The table
also gives angles of no correlation based on magnetic fields
measurements. These have been calculated using the pre-
reconnection interval 03:00–03:25.

It is interesting that although the orientation of the ambi-
ent lobe fields changes considerably during the reconnection
event, the direction of both outflows is quite accurately that
of the original ambient fields. This suggests that the local
reconnection geometry may stay in the original orientation
while global field orientation is already changing towards the
x-direction. We thus choose to align our basic coordinate
system with the pre-reconnection ambient field, and rotate
the GSM system 29 degrees clockwise around the z-axis to
accomplish that. Because the ambient field is very close to
thexy plane, we leave thez′ axis to be the same as the z-axis.

3 X-line

Figure 5 gives an expanded view of the early and middle
phases of the reconnection event. The bottom panel shows
the components of the magnetic curvature vector. Its x-
component is negative, that is, the curvature is tailward un-
til about 03:31:20, when strong earthward curvature is sud-
denly observed. After this initial spike the calculated curva-
ture stays around zero for several minutes; this is because the
entire Cluster constellation stays mostly on one or the other
side of the current sheet centre, as evidenced by theBx com-
ponents in panel (a). Each time when Cluster crosses the cur-
rent sheet a “spike” of earthward curvature is observed. Our
interpretation is that these spikes reflect a constant earthward
curvature at the centre of the thin current sheet. Qualitatively
the curvature data indicate that an x-line passed Cluster at
03:31:20.

Corroborative evidence is provided by the Hall fields. Fig-
ure 6 illustrates the point by comparing statisticallyBy′ ver-
susBx′ . Until 03:30 UT no Hall signature is visible. Between
03:30 and 03:31 the data show a clear quadrupolar variation

Table 1. The angle of coordinate rotation in thexyGSM plane that
removes the correlation betweenBx′ andBy′ before the event, in-
terval 03:00–03:25 UT, or betweenvx′ and vy′ during the event,
interval 03:25–03:43 UT.

s/c B before v during

C1 28◦ 27◦

C2 30◦ n/a
C3 29◦ 34◦

C4 28◦ 30◦

in By′ (panel a). The sense of the variation is such that near
the current sheet centreBy′ andBx′ anticorrelate, which cor-
responds to the tailward side of x-line of the Hall structure.
Then at 03:31:00 the Hall signature disappears for about 20 s
(panel b). At 03:31:20 a clear Hall signature appears again
(panel c), but its sense has been reversed and corresponds
now to the earthward side of reconnection line.

During the next three minutes (panel d in Fig. 6) the statis-
tical picture is somewhat cluttered because the current sheet
undergoes flapping motions with strongly tilted orientations.
It will be shown in the next subsection that the Hall structure
is tilted with the current sheet during many of the crossings.
At those instants the Hall signature is found mainly inBz′ ,
and is thus not revealed by Fig. 6. Also, some of the correla-
tion visible in panel (d) may be due to the orientation change
of the lobe fields as discussed in the previous section. How-
ever, to the extent that any Hall signature is observable, it
retains its earthward of x-line -sense during this period.

At 03:35–03:36 a clear and strong quadrupolar Hall sig-
nature is again observed (Fig. 6e). This coincides with the
first rapid earthward acceleration of protons (Fig. 5d). Af-
ter 03:36 a strong correlation betweenBx′ andBy′ remains
and persists also after the time interval shown, but it is due to
the ambient field orientation change discussed in Sect. 2.2.
We thus interpret the interval 03:30–03:36 as the time that
Cluster spent in the diffusion region, because during this in-
terval it was between the outflow jets and recorded Hall sig-
natures. Only one x-line passing was observed at about 3:31,
but the possibility of multiple x-lines cannot be completely
ruled out.

4 Current sheet crossings

4.1 Before, during and after reconnection

Repeated rapid current sheet crossings have been observed
frequently in the tail. A study bySergeev et al. (2004)
showed that they are due to oscillations that propagate mainly
towards the flanks from the centre of the tail. The interval
03:00–04:00 UT also shows such oscillations, which are par-
ticularly intense during the reconnection event.

www.ann-geophys.net/25/1025/2007/ Ann. Geophys., 25, 1025–1035, 2007
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On three occasions an oscillation passes all the four Clus-
ter spacecraft so that the orientation and normal velocity of
the moving current sheet can be determined by multi-point
timing analysis. The crossing pairs are marked in Fig. 3,
pair 4 also in Fig. 5. Table 2 shows the timing results. The
validity of the current sheet normal directions was checked
by MVA and by comparing them to the current density vec-
tors given by the curlometer method (Dunlop et al., 2002).

The normal velocities are remarkably similar within each
pair of crossings. Around 03:09 when the current sheet is
in a relatively quiet state, it passes Cluster first upward and
later downward with a velocity of about 60 km/s. The next
double crossing (number 4) occurs during reconnection, in
the thin current sheet of the diffusion region, and has speeds

of about 170 km/s. The crossings 6 then take place when
the reconnection has ceased but the current sheet is still in a
disturbed state. Now the current sheet motion is a bit slower
than during reconnection, about 120 km/s. These findings
are in good accordance with the statistical result of Sergeev
et al. (2004), who state that the average propagation speed is
57 km/s in quiet current sheets and 145 km/s in active sheets.

Although only three double crossings are suitable for tim-
ing analysis, they do not represent isolated waves. The first
double crossing is followed by a series of smaller oscilla-
tions with a period of about 1.5 min, as can be seen from
theBx data in Fig. 3. In the thinner current sheet during re-
connection the oscillations are quite irregular, but seem to
have a period of about 1 min (Fig. 5). Cluster 2 records all

Ann. Geophys., 25, 1025–1035, 2007 www.ann-geophys.net/25/1025/2007/
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Fig. 6. By′ versusBx′ in six consecutive time intervals during the
reconnection event, illustrating the Hall effect. The colours refer to
different spacecraft: data from Cluster 1 is in black, C2 in red, C3
in green and C4 in blue.

Table 2. The normal vector and the normal velocity of the cur-
rent sheet in three pairs of crossings, marked in Fig. 3. The nor-
mal vector components are given in GSM ([x, y, z]) and rotated
([x′, y′, z′]) coordinates. The results have been obtained by timing
analysis.

[nx , ny , nz] [nx′ , ny′ , nz′ ] vn (km/s)

1a [.22, −.02, .97] [.20, −.09, .97] 56
1b [.09, .86, −.50] [−.33, .80, −.50] 60

4a [.32, .94, .10] [−.18, .98, .10] 177
4b [.49, .67, .56] [.10, .82, .56] 157

6a [.05, .32, .95] [−.11, .30, .95] 118
6b [−.24, .97, .01] [−.68, .73, .01] 117

these oscillations about 10 s after the other three spacecraft,
and as Cluster 2 is located about 1000 km duskward of the
other satellites (Fig. 1b), this indicates that the oscillations
are travelling duskward with an order-of-magnitude velocity
of 100 km/s. Together with the observed period this leads to
the order-of-magnitude estimate of 1RE for the wavelength
of the oscillations.

4.2 Bz′ variations from tilted Hall fields

They′ andz′ components of the magnetic field show rather
strong small-scale fluctuations during the entire event. Many
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Fig. 7. The magnetic field components measured by Cluster during
the crossing 4b in Fig. 5. The data have been time-shifted so that the
Bx′=Bl sign changes coincide; the time axis gives real time for C1.
In the two lowermost panels the coordinates have been rotated to
show the Hall effect inBm. Colouring of the lines as in Figs. 5a–c
and 6.

of the strongest fluctuations inBz′ coincide withBx′ sign
changes and consist of a negative peak followed immediately
by a positive one. Figure 7 examines in detail one such cross-
ing, 4b in Table 2 and Fig. 5. The data from Cluster 2, 3 and
4 are time-shifted so that theBx′ sign changes coincide.

The first three panels show the magnetic field components
during the crossing in the coordinatesx′y′z′, same as in
Fig. 5. Bipolar variation is seen in bothBy′ andBz′ . Then
another rotation of 43◦, in a left-handed sense around the
x′ axis, was applied to the coordinate axes. The angle was
chosen to remove correlation between the second and third
magnetic field components, denotedBm andBn in these new
coordinateslmn. Table 3 gives the orientations of these axes
in GSM coordinates. Then axis is approximately aligned
with the current sheet normal given by timing analysis (cf.
Table 2); the cosine of their angle is 0.97.Bm andBn are
shown in the two last panels of Fig. 5.

www.ann-geophys.net/25/1025/2007/ Ann. Geophys., 25, 1025–1035, 2007



1032 T. V. Laitinen et al.: Global and local disturbances in the magnetotail during reconnection

Table 3. The unit base vectors of the two specialised coordinate
systemsx′y′z′ andlmn, given in GSM coordinates.

xGSM yGSM zGSM

x̂′ 0.875 –0.485 0
ŷ′ 0.485 0.875 0
ẑ′ 0 0 1

l̂ 0.875 –0.485 0
m̂ 0.355 0.640 –0.682
n̂ 0.331 0.596 0.731

In the new coordinate system there is almost no variation
in Bn until 03:34:35, which confirms that the chosen coor-
dinate system is well fitted to the crossing. The Hall signa-
ture was recognizable already inBy′ , but inBm it is stronger
and clearer. Note especially the data of Cluster 3 (green)
after crossing the current sheet centre:|Bm| increases di-
rectly proportionally to|Bl | until Bl reaches about−10 nT.
When Cluster 3 travels farther into the southern lobe,|Bm|

decreases and vanishes whenBl reaches about−20 nT. The
other three satellites stay closer to the current sheet centre,
and consequently their measuredBm values stay negative
considerably longer after the crossing.

We searched for Hall effects also from all the other cross-
ings 2–5 marked in Fig. 5. We used both correlation-
minimizing rotations around thex′ axis only and MVA coor-
dinates. Clear Hall effects were found from all the crossings
except 3a and 3b, in which the Hall fields were only barely
recognizable. The double crossing 3 was more difficult to
treat than the others, because three of the spacecraft crossed
the current sheet only half-way and the return to the southern
side was immediate (Cluster 3 did not cross at all).

In a majority of the crossings the coordinate transforma-
tion that brought out the Hall fields in the second (m) com-
ponent ofB also made variation in the third (n) component
of B relatively small. This was the case in crossings 2, 3a,
4b and 5. In 3b and 4a there remain variations inBn that are
about as large as the Hall effect inBm. We thus conclude
the following: during the reconnection event under examina-
tion Cluster stays several minutes in the diffusion region and
sees there strong wave-like oscillations of the current sheet,
which propagate duskward. Hall fields can be recognized
in connection with the crossings, and they are in an orienta-
tion tilted along the current sheet. This explains most of the
largest fluctuations inBz′ , but in addition to flapping and Hall
fields there is considerable irregular small-scale variation in
the magnetic field.

Fig. 8. A schematic illustration of how the orientation of the mag-
netic field in the tail may have changed due to the reconnection
event. An x-line and outflows are also drawn. The figure shows a
view looking down on thexy plane.

5 Discussion and conclusions

5.1 A global configuration change in the tail due to recon-
nection?

As was shown in Sect. 2, the orientation of the ambi-
ent lobe fields near the current sheet in the magnetotail
changed about 15◦ soon after the onset of reconnection. The
change was recorded by both Cluster and Goes-8 in the pre-
midnight magnetotail, and at the Cluster site the change con-
tinued gradually during the entire reconnection period. The
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deflection thus signifies a large scale configuration change in
the tail. At the time there were no other satellites that could
provide magnetometer data from the magnetotail, so we do
not know whether this configuration change was truly global
and affected also the post-midnight part of the tail. Figure 8
that illustrates the configuration change has been drawn as-
suming symmetry in the y-direction.

Solar wind data from the ACE and WIND satellites show
that this change was not caused directly by the solar wind;
in particular, the IMF y-component stays almost constant at
+4...+5 nT during the entire event. The solar wind veloc-
ity and the dynamic pressure also show only slight variations
(see Fig. 2). IMF z-component changed from positive to neg-
ative around 03:20 UT, but the change was gradual and too
slow to be considered as the direct cause of the observed fast
orientation change. The change was therefore most proba-
bly associated with the reconnection that started at the same
time.

Simultaneous ground signatures were also observed by
three Canadian magnetometer stations. A southward deflec-
tion of about 150 nT was recorded at Gillam and Poste de
la Baleine at 03:27 UT – at the same time when Goes-8 ob-
served the deflection inBy – and a couple of minutes later
also at Fort Churchill (Fig. 2e). The magnetic signature was
a clear indication of a westward electrojet. Gillam and Poste
de la Baleine have the same magnetic latitude but are sep-
arated by 25◦ in longitude, Gillam being the more western
station, while Fort Churchill is 2.3◦ to the north from Gillam.
The disturbance was thus propagating northward but did not
advance to the stations north of Fort Churchill. Nor was it
observed on more eastern or western stations. According
to the Tsyganenko 96 model Fort Churchill was near to the
magnetic footpoint of Cluster and Poste de la Baleine near to
that of Goes-8. The question is thus left open, whether this
phenomenon was tail-wide or limited to the sector in which
Cluster and Goes-8 were.

The Tsyganenko 2001 model predicts that the angle be-
tween the magnetic field and x-axis at the Goes-8 location
should be 22◦. This is consistent with the measured angle
before the deflection at 03:27. At the Cluster location T01
predicts an ambient field angle of about 15◦, which is con-
sistent with the MVA result at 03:30, immediately after the
initial deflection but before the subsequent gradual change.
Thus, before the onset of reconnection the tail widens at the
Cluster site more than the model predicts, but during the re-
connection event the field both at the Cluster and Goes-8 sites
becomes more aligned with the x-axis than in the model.

What may have caused this tail configuration change? It
was not compression by solar wind or penetration of IMF
y-component. Dipolarization also occurs at Goes-8, but only
about 12 min later, so this was something different. The onset
of reconnection (timed from the start of the tailward flow at
Cluster), the configuration change at Cluster and at Goes-
8, and the commencement of a westward electrojet in the

ionosphere were all practically simultaneous: time-ordering
cannot be established from the observations.

We hypothesize that a large-scale instability involving
field-aligned currents coupling to the ionosphere is respon-
sible for the onset of reconnection and the simultaneous con-
figuration change. Either release of stress associated with the
current disruption or the tailward motion of the x-line then
led to the field rotation from radial to one aligned with the
Sun–Earth line. Reconnection also caused flux to pile up in
the earthward side causing the field dipolarization.

5.2 X-line at the edge of the diffusion region

In Sect. 3 we showed that Cluster was in the diffusion re-
gion between the outflow jets during 03:30–03:36 and that
an x-line passed Cluster at about 03:31, that is, much sooner
than halfway in the diffusion region. There are at least four
possible reasons to this:

1. The x-line was near the edge of the diffusion region. In
that case the x-line ”leads” the tailward motion of the
reconnection and ”drags” the diffusion region behind.
Protons become demagnetized for a relatively long time
in those regions through which the x-line has passed.

2. The diffusion region is symmetric but spreads out as the
reconnection site grows older. Cluster recorded the tail-
ward half of the diffusion region soon after the onset of
reconnection, but when it was in the earthward half the
diffusion region grew so much wider that it took much
longer before its earthward edge reached Cluster.

3. The reconnection region moves tailward at a changing
speed or stepwise. In this event, it moved first quickly
but then just happened to stop for a few minutes when
the x-line had passed Cluster. The reconnection region
may have stopped another time at 03:36–03:39, which
would explain the apparent two steps in the earthward
acceleration (see Fig. 3).

4. The diffusion region had multiple x-lines, but only the
most tailward one happened to be clearly observable in
the magnetometer recordings. The other x-line(s) may
have passed when Cluster was away from the current
sheet centre.

Decisive discrimination between these hypotheses would re-
quire observing the reconnection site at two or more different
x values on its way tailward.

5.3 Hall fields conform to current sheet kinks

During the event the current sheet exhibits strong flapping
motions that propagate toward the flank of the tail. The os-
cillations are rather irregular in amplitude but have a period
of about 1.5 min before the onset of reconnection and 1 min
during reconnection. The speed of the oscillations changes
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Fig. 9. A schematic illustration of duskward-propagating kinks in the current sheet. The ambient magnetic field direction is shown in green,
while the Hall fields are in blue. The Hall fields stay adjacent to the current sheet and conform to its kinks.

when the current sheet turns from quiet to disturbed state:
before reconnection onset the current sheet passes Cluster at
a speed of about 60 km/s, during reconnection at 170 km/s
and after reconnection at 120 km/s. The current sheet normal
has a largey′ component during most of these crossings, in-
dicating that the current sheet is strongly tilted away from the
xy plane.

There are many quite large-amplitude fluctuations inBz′

during this reconnection event, especially within the diffu-
sion region (Fig. 5). That kind of fluctuations are often in-
terpreted as signatures of plasmoids or flux ropes, or said to
signify filamentation of the cross-tail current associated with
current disruption model (see, e.g., Lui et al., 2005). How-
ever, it was shown in Sect. 4.2 that in this event most of the
largest fluctuations are caused by Hall fields. They appear
as variations inBz′ , instead of only inBy′ , because in many
crossings the current sheet is in a strongly tilted orientation.
This also indicates that examination ofBy is not always suffi-
cient to establish the presence or absence of Hall fields. Fig-
ure9 illustrates how the quadrupolar Hall structure conforms
to the waves propagating in the current sheet.
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