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Abstract. On 3 July 2001, the four Cluster satellites tra-
versed along the dawnside magnetospheric flank and ob-
served large variations in all plasma parameters. The esti-
mated magnetopause boundary normals were oscillating in
the z-direction and the normal component of the magnetic
field showed systematic∼2–3 min bipolar variations for 1 h
when the IMF had a small positivebz-component and a
Parker-spiral orientation in thex, y-plane. Brief∼33 s inter-
vals with excellent deHoffman Teller frames were observed
satisfying the Waĺen relation. Detailed comparisons with 2-
D MHD simulations indicate that Cluster encountered rota-
tional discontinuities generated by Kelvin-Helmholtz insta-
bility. We estimate a wave length of∼6RE and a wave vec-
tor with a significantz-component.

Keywords. Magnetospheric physics (Magnetopause, cusp
and boundary layers; Plasma waves and instabilities) – Space
plasma physics (Magnetic reconnection; transport processes;
Turbulence)

1 Introduction

The entry of solar wind plasma into the magnetosphere dur-
ing quiet geomagnetic conditions and primarily northward
IMF has been a puzzle for some time. Solar wind plasma
penetration and transport has been proposed to arise from
double high-latitude reconnection (Song and Russell, 1992;
Russell et al., 2000; Onsager et al., 2001; Li et al., 2005;
Oieroset et al., 2005; Lavraud et al., 2005) and diffusive pro-
cesses such as ion mixing due to Kelvin-Helmholtz instabil-
ity (KHI) ( Fujimoto and Terasawa, 1994, 1995; Thomas and
Winske, 1993; Hasegawa et al., 2004). These models have
not been investigated in a quantitative fashion as to whether
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they can lead to the observed efficient filling of Earth’s mag-
netotail with cold, dense solar wind material.

Northward IMF conditions have long been associated with
the presence of the cold, dense plasma sheet (CDPS) (Fair-
field et al., 1981; Lennartsson, 1992). Borovsky et al.(1998)
demonstrated that the plasma sheet temperature and den-
sity are correlated to the solar wind properties on a time
scale of 1 to 2 h.Terasawa et al.(1997) andFujimoto et al.
(1998, 2000) reported a strong correlation between the CDPS
and northward IMF orientation during the hours prior to the
plasma sheet observations.

MHD simulations byOtto and Fairfield(2000) – motivated
by Geotail observations of the KHI (Fairfield et al., 2000) –
indicated that reconnection can occur inside the narrow cur-
rent layers generated by the KHI at the flank magnetopause.
Nykyri and Otto(2001, 2004) quantified this reconnection
process inside KH vortices in two dimensions using MHD
and Hall-MHD approximations. Their results indicate that
reconnection inside KH vortices can transport plasma of so-
lar wind origin into the magnetosphere with a transport ve-
locity of ∼1.5 km/s. This corresponds to a diffusion coef-
ficient of order 109 m2/s which is sufficient to produce the
LLBL at the flanks of the magnetopause during northward
IMF conditions on the observed timescales (Fujimoto et al.,
1998). Brackbill and Knoll(2001) used 3-D MHD simula-
tions in idealized perpendicular configuration and found that
KHI could cause reconnection on the KH time scale.

There are several ionospheric and ground observations
(Lee and Olson, 1980; Olson and Rostoker, 1978; Olson,
1986; Ohtani et al., 1999) associated with the KHI as well
as in-situ satellite observations (Fairfield et al., 2000; Niku-
towski et al., 2002; Nykyri et al., 2003; Hasegawa et al.,
2004), both from the dawn and dusk-side flanks boundary
layer. The most recent of these (Hasegawa et al., 2004) used
multi-point Cluster satellite observations at the duskside low-
latitude flank magnetopause atx∼–3RE . Hasegawa et al.
(2004) could demonstrate the non-linear rolled-up nature of
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the vortices. However they didn’t observe signatures of re-
connection.

In the present paper we use 4-point Cluster measurements
close to the equatorial (z∼4RE), near tail (x<–8RE , y<–
16RE), dawnside flank magnetopause on 3 July 2001. Dur-
ing this day Cluster spacecraft had several quasi-periodic en-
counters with magnetospheric and magnetosheath-type plas-
mas. We will mostly focus here on the interesting sub-
interval between 05:00–06:00 UT during which the IMF was
mostly in Parker-Spiral configuration with a small positive or
nearly zerobz-component. We will also discuss the overall
features and differences observed in comparison to the sub-
sequent interval 07:45–08:45 UT during which the IMF con-
ditions have changed but the large-scale plasma variations
occasionally show similar features as during the earlier inter-
val. Between 05:00–06:00 UT Cluster encounters a strongly
perturbed magnetopause with a continuous chain of bipolar
magnetic field variations. Cluster also recorded brief inter-
vals of plasma mixing for which deHoffmann-Teller (HT)
frames are well defined and the Walén relation is satisfied.
We interpret these to be signatures of reconnection embed-
ded in KH-vortices that havek-vectors out from the equato-
rial plane. Cluster observations on this day may indicate that
plasma transport from the magnetosheath into the magneto-
sphere due to reconnection driven by KHI may be possible
not only for strongly northward IMF but also for other IMF
orientations.

2 Instrumentation and data analysis tools

We use data from two instruments onboard Cluster. High res-
olution (22.4 vectors/second) and spin averaged (4 s) mag-
netic field measurements are obtained from the Flux Gate
Magnetometer (FGM) (Balogh et al., 1997, 2001) from all
four spacecraft. Ion plasma measurements were obtained us-
ing the Cluster Ion Spectrometry (CIS) instruments (Rème
et al., 2001). We make use of the temperature, velocity and
density from the Hot Ion Analyser (HIA) on board space-
craft 1 and 3, at spin resolution (∼4 s). The proton velocity
and densities for sc4 are obtained from the ion COmposition
and DIstribution Function analyser (CODIF) for every∼8 s.

Our data analysis tools use the deHoffman-Teller (HT)
analysis and the Walén relation (Sonnerup et al., 1995). The
boundary normals are calculated using Minimum Faraday
Residue (MFR) method (Khrabrov and Sonnerup, 1998).
Haaland et al.(2004) used this method and compared it
with other single- and multi-spacecraft methods for the mag-
netopause event on 5 July 2001. They found that multi-
spacecraft technique Constant Thickness Approach (CTA)
and a hybrid technique CTAM gave reasonably good agree-
ment (∼5◦) with MFR-method and with the MVABC (Min-
imum Variance Analysis of the Magentic field-method using
additional constraint that the normal component of the mag-
netic field,BN , is zero)-method. The MVAB method with-

out the constraint did not perform well during their event.
Here we could not use the MVABC method because the
magnetic field had significant normal components between
05:00–06:00 UT. We chose the MFR-method over the multi-
spacecraft techniques in order to automate the normal cal-
culations using a sliding window method. For many inter-
vals the transitions of the boundaries occur nearly simulta-
neously at all 4 spacecraft so that the multi-spacecraft tech-
niques would have failed.

The HT frame is a frame where the convection electric
field vanishes, thus indicating an approximately steady state
plasma configuration. The HT velocity,vHT , is determined
by minimising |(v−vobs)×Bobs|

2 in terms of the constant
transformation velocityv for a given dataset (Sonnerup et al.,
1995).

The Waĺen relation is calculated in the HT frame as
v−vHT =±C vA and implies that in the HT-frame the plasma
flow velocity is Alfvénic (Sonnerup et al., 1995). The
Alfv én velocity,vA=B/

√
(µ0npmp), is corrected by factor

C=
√

(1−α), whereα=(T‖−T⊥)npkBµ0/B
2 is the pressure

anisotropy correction (e.g.Sonnerup et al., 1981). The Waĺen
relation is satisfied for Alfv́en waves, rotational discontinu-
ities, but also approximately for intermediate and switch-off
slow shocks. The latter two are often associated with mag-
netic reconnection.

3 Solar wind conditions and overview of the event

Figure 1 shows an overview plot of Cluster plasma observa-
tions by sc1 (top 3 panels) and solar wind conditions mea-
sured by ACE (bottom 2 panels) at L1. The top panel shows
the omni-directional ion spectrogram (energy flux). The
second panel shows the ion number density and the third
panel shows the ion temperature. The second lowest panel
shows solar wind RAM pressure (red) and solar wind veloc-
ity (blue), and the bottom panel represents IMF components.
The ACE data has been lagged 68 min to take into account
the finite propagation speed of the solar wind from L1 to
Cluster location.

The solar wind properties can be roughly divided into
two types of intervals: Between 03:00–08:00 UT the in-
terplanetary magnetic field has a Parker-spiral orientation
in x, y-plane with small, mostly positivebz-component un-
til 07:40 UT. After 07:40 UT IMFbz turns negative, and
after 08:00 UT alsobx turns negative, forming an ortho-
Parker spiral. Solar wind dynamic pressure is varying be-
tween 1.5–3.7 nPa and speed between 380–440 km/s. Clus-
ter spacecraft are traversing the tail flank close to the equato-
rial dawnside (r∼[−9,−17,4]RE) and have several encoun-
ters with high density and low temperature magnetosheath-
like, and tenuous and hot magnetospheric-like plasma. Prior
to 04:30 UT Cluster is in the tenuous magnetospheric-type
plasma with ion energies typically between 1000–10 000 eV.
As solar wind pressure gradually doubles from 1.5 nPa to
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Fig. 1. Overview plot of Cluster spacecraft 1 (sc1) and ACE (lagged) magnetic field and plasma data on 3rd of July 2001 between 03:00–
10:00 UT. The panels from top to bottom show i) omni-directional energy flux spectrogram for ions, ii) ion density, iii) ion temperature iv)
proton velocity and dynamic pressure at ACE, vii) and magnetic field at ACE. Red arrows mark the start of the intervals when magnetosheath
energy ions are observed in tenuous plasma.

3 nPa the magnetopause is pushed inwards and Cluster en-
counters higher density magnetosheath plasma, with ion en-
ergies of order∼200–3000 eV. The pressure then slightly
decreases and Cluster moves back into the magnetosphere.
Similar encounters are observed again at∼05:00 UT when

there is another pressure enhancement. Between 05:00–
06:37 UT the pressure is fairly constant showing a gradual in-
crease of order 20 percent followed by a drop at≈05:45 UT
but throughout this interval there are several quasi-periodic
encounters of magnetosheath (MSH) and mixed boundary

www.ann-geophys.net/24/2619/2006/ Ann. Geophys., 24, 2619–2643, 2006
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.

Fig. 2. Omni-directional energy flux spectrogram for ions at sc1 at three intervals (start of the interval corresponding to

the red arrows at Figure 1): 5:30-6:00 UT (top panel), 6:30-7:00 UT (middle), 7:45-8:30 UT (bottom panel).

26

Fig. 2. Omni-directional energy flux spectrogram for ions at sc1 at three intervals (start of the interval corresponding to the red arrows at
Fig. 1): 05:30–06:00 UT (top panel), 06:30–07:00 UT (middle), 07:45–08:30 UT (bottom panel).

layer type of plasma (ion energies are magnetosheath-like but
density much lower than magnetosheath values). For exam-
ple the sub-interval between 05:37–05:56 UT (first red ar-
row) has patches of relatively tenuous (n=1/cm3; for higher
resolution see top left panel of Fig. 5) plasma with mag-
netosheath energy ions (top panel of Fig. 2). A pressure
pulse moves the magnetopause inward over the spacecraft
at ≈06:37 UT, which can be seen as an encounter of MSH-
type plasma. At this time the energy fluxes of ions at
E>≈2000 eV drop significantly (see second red arrow in
Fig. 1 and close up in middle panel of Fig. 2). After this, the
spacecraft are mostly in the magnetosphere up to≈07:40 UT.
At this time the IMFbz rotates southward and 15 min later is
followed by the solar wind pressure enhancement and rota-
tion of bx-component so that the IMF inx, y-plane forms
an ortho-Parker spiral. The increased pressure pushes the
magnetopause closer to Cluster so that the spacecraft are
swept into the magnetosheath at 07:47 UT. Interestingly, the
patches of tenuous plasma with magnetosheath energies ob-

served between 08:00–08:15 UT (see third red arrow in Fig. 1
and a close up in third panel of Fig. 2) resemble those of the
earlier interval between 05:37–05:56 UT although the solar
wind conditions have changed. Violation of the frozen in
condition is needed to mix the plasma of these two regions.
So the question is: what are the physical processes generat-
ing these mixed layers of plasma for these two different so-
lar wind conditions? Between 08:15–08:45 UT Cluster has
several encounters with magnetosheath plasma after which
it moves into the magnetosphere for the remainder of the
interval. On its next outbound leg on 4/5 July 2005 Clus-
ter had another long encounter with the magnetopause at a
similar location (Paschmann et al., 2005). Their determina-
tions of the magnetopause orientation for 96 individual mag-
netopause crossings indicated evidence of surface waves.

Figure 3 shows Cluster tetrahedron formation in 4 differ-
ent views at 05:00 UT on 3 July 2001:x, y-plane (top left),
30 degree rotation aboutz- and x-axis (top right), 60 de-
gree rotation aboutz-axis and 30 degree rotation aboutx-axis
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Fig. 3. Cluster constellation at 05:00 UT on 3 July 2001 from 4 different views in GSM coordinates:x, y-plane (top left), 30 degree rotation
aboutz- andx-axis (top right), 60 degree ration about z-axis and 30 degree rotation aboutx-axis from (bottom left), view from−y-axis
(bottom right). Black, red, green and blue colors represent sc1, sc2, sc3 and sc4, respectively.

from (bottom left), view from−yGSM-axis (bottom right).
One can see that spacecraft four (sc4 hereafter) is located
furthest to the−yGSM-direction, sc1 and sc4 are almost at
the samez-plane and sc3 is located closest to the equatorial
plane.

Figure 4 shows Cluster plasma (left) and magnetic field
(right) observations in GSM coordinates between 03:00–
10:00 UT (see caption for details). In addition, the spacecraft
distances from sc3, projected along the boundary normal di-
rection are given. Sc1 is separated 90 km, sc2 is−627 km,
and sc4 is separated 1260 km along the normal direction from
sc3. One can see that Cluster is located very close to the
dawnside magnetospheric flank atr=[−9,−16.7,4]RE .

The plasma data (from the left-side panel composer)
shows from top to bottom plasma density, three velocity
components, total velocity and plasma temperature. Densi-
ties and ion temperatures are shown for sc1 and sc3 only,
while velocities are for sc1, sc3 and sc4. There is a longer

time scale oscillation in plasma temperature and density
but one can also clearly see that there are several quasi-
periodic shorter time-scale encounters with magnetosheath-
type higher density, lower temperature plasma and with
more tenuous and hot magnetospheric-type plasma. In the
vx component of plasma velocity one can see the same
larger time-scale oscillation with most negativevx-values of
−350 km/s corresponding to larger density, cooler tempera-
ture regions which we interpret as encounters with magne-
tosheath. However, within these large scale oscillation there
are also smaller-scale velocity variations. The velocity com-
ponentsvy and interestingly alsovz show both bipolar varia-
tions.

On the right hand side the first four panels show the
magnetic field components and magnitude measured by
four spacecraft and the lowest panel shows the three com-
ponents of the current density that are calculated from
J=

1
µ0

∇×B, whereB is linearly interpolated between four
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Fig. 4. Cluster plasma (left) and magnetic field observations (right) on 3 July 2001 between 03:20–10:00 UT. Black, red, green and blue colors
represent sc1, sc2, sc3 and sc4 and their measurements, respectively. The first two panels in the upper right corner have Cluster constellation
(asterisk marks the position at the beginning and diamond at the end of the interval) inx, y- andx, z-planes in GSM coordinates relative to
sc3 (in units of 1000 km/s). The last two panels in the upper right corner show Cluster location inx, y- andx, z-planes (GSM in units ofRE)
with the approximate magnetopause and bow shock locations presented as parabolas. The boundary normal (N) and tangent (L) directions
are shown as red and blue arrows (computed using sc1 data with MFR-method that is applied to the entire plotted interval), respectively.
The plasma data shows from top to bottom ion density, three velocity components, total velocity and plasma temperature. On the right hand
side the first four panels show the magnetic field components and magnitude and the lowest panel shows the three components of the current
density (black, blue and red colors correspond tox-, y- andz-components, respectively).

Cluster spacecraft. Thus, current layers with scales smaller
than spacecraft separation are not resolved.

One can distinguish regions of negativebx∼–15 nT to
−20 nT although in solar wind thebx is positive until
∼08:00 UT. These correspond to encounters of the magne-
tosheath field. When the IMF with positivebx and negative
by is draped around the magnetopause, a layer of negative
tailward magnetic field component along the magnetospheric

boundary (and thus a negativebx) is formed on the dawn-
side. Another interesting feature is the strongbz-component
of up to−20 nT in the magnetosheath, which also could be
generated due to the draping of IMF. The strength of this
draped magnetic field along the shear flow layer determines
whether this boundary becomes Kelvin-Helmholtz unstable
or not. Nykyri et al. (2003) showed that magnetic recon-
nection and Kelvin-Helmholtz instability can show similar
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Fig. 5. Cluster plasma (left) and magnetic field observations (right) inLMN coordinates determined by data of sc1 with MFR method on
3 July 2001 between 05:00–06:00 UT. Figure uses same format as Fig. 4, but instead of plasma temperature, the total pressure (ion plus
magnetic) is shown in bottom left panel.

signatures in satellite data at the low-latitude boundary layer:
both cause deformations of the boundary causing variations
in the boundary normals and generating bipolar variations in
the normal component of the magnetic field. If the Kelvin-
Helmholtz has developed into its non-linear stage it can twist
the magnetic field in the plane of thek-vector of the instabil-
ity resulting in anti-parallel magnetic field components and
subsequently to reconnection (Nykyri and Otto, 2001, 2004)
in the thin current sheets. If the satellite passes through such
a region it should observe a good deHoffmann-Teller frame
and Waĺen relation (Nykyri et al., 2003).

4 Cluster observations between 05:00–06:00 UT during
small positivebz, Parker-Spiral IMF

Figure 5 has the same layout as Fig. 4 (except instead of
plasma temperature, the total pressure is shown) and shows
Cluster plasma (left) and magnetic field (right) observations
in local boundary normal coordinates(L, M, N) of sc1 be-
tween 05:00–06:00 UT calculated with MFR method. The
normal direction,N , is [0.37,−0.90,0.22] and mostly in neg-
ativeyGSM-direction.L andM are mutually orthogonal (and
also orthogonal toN ) and tangential to the boundary such
thatL is [0.71,0.12,−0.70] and is directed mostly sunward,
mostly in positivexGSM-direction; M is [0.60,0.41,0.68]

www.ann-geophys.net/24/2619/2006/ Ann. Geophys., 24, 2619–2643, 2006
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and completing the right-handed coordinate system point-
ing mostly to the positivezGSM-direction. The eigen val-
ues [λ1, λ3, λ3] are [8.1,6.7,1.2], respectively, indicating that
while the normal directionN is well defined, the vectorsL
andM may be interchanged becauseλ1≈λ2. During this in-
terval the lagged ACE data shows mostly small positivebz

of ∼4 nT and Parker Spiral orientation. This IMF orienta-
tion leads to the anti-parallel magnetic field components in
x, y-plane tangential to the shear flow boundary. The strong
magnetosheath flow has a stabilising effect on the tearing-
mode in this plane, so that reconnection supposedly cannot
operate in this plane where magnetosheath flow is larger than
the local Alfvén speed. But because the magnetic field is so
strong in this plane the KHI may not grow either. This is
also shown in MHD simulations byChen et al.(1997): in the
same scale the tearing mode and Kelvin-Helmholtz cannot
operate in the same plane. In the plane perpendicular to this
the magnetic fields have anti-parallel components ( because
of the draping thebz is negative in MSH andbz is positive in
MSP), so that tearing mode may operate in this plane.

Plasma density in the top left panel shows variations at sc1
and sc3 between lower density and higher density regions.
During the first 30 min these encounters occur for about ev-
ery 10 min and for latter 30 min for every 5 min. Plasma ve-
locity oscillations show a more rapid variation. During the
first encounter of magnetosheath plasma (∼05:02 UT) the
density is not constant but shows variations within this re-
gion:sc3 has two encounters with lower density plasma be-
fore it returns to the lower density region for a longer time
at ∼05:13 UT. Also, for sc3 the transition back to the lower
density region after 05:10 UT is more gradual than for sc1.

Throughout this one hour interval, the normal component
of the plasma velocityvN shows bipolar and mono-polar
variations. The velocityvM typically has the largest values of
order−300 km/s in the high density regions which would be
characteristic for magnetosheath plasma. The intervals with
small positive to zero tangential velocities typically correlate
with low density regions and are characteristic for magneto-
spheric plasma.

Although the variations between magnetosheath and mag-
netospheric plasma become more frequent after 05:30 UT, a
filamentary region of magnetospheric plasma embedded in
magnetosheath plasma, at∼05:19:30 UT, is seen by sc1 and
sc3. At this time there is also a rapid change of magnetic
field normal component,bN , indicative of a very thin cur-
rent sheet. ThebN shows systematic bipolar variations with
a periodicity 1–4 min throughout this one hour interval with
very rapid variations between 05:15–05:32 UT and longer
period in interval 05:40–05:55 UT. At 05:39–05:55 UT the
leading edge of the bipolar signature shows a very fast tran-
sition whereas the trailing edge shows a smoother transi-
tion. The magnetic fieldbM -component shows different
types of regions between 05:00–06:00 UT: a negativebM -
layer from−20 to−15 nT corresponding to draped magne-
tosheath magnetic field along the boundary; a strong positive

bM -layer of 20 to 30 nT corresponding to magnetospheric
magnetic field; and some intermediate states of−10 to 10 nT.
The lowest panel on the right-hand side shows the current
components:JN (black),JM (red),JL (blue).

The total pressure,nikTi+B2/(2µ0) (lowest left panel),
shows variations typically of 0.2 nPa, such that after
05:40 UT the enhanced normal components ofb coincide
with decreases in the total pressure.

The deHoffmann-Teller frame between 05:00–06:00 UT
is rather good with slope of 0.91 and correlation coeffi-
cient (cc.) of 0.95. The corresponding HT-frame veloc-
ity in GSM coordinates isvHT=[−278,−118, −108]. In
LMN-coordinates the HT-velocity is∼[−135, −291, −20].
If we use theM component of the HT-velocity and a 2.5 min
period of bipolar magnetic field oscillations, we can calcu-
late the wave length for this moving structure:λ=vHTM ∗

T =291 km/s *2.2 min=6RE . This is a huge wavelength
compared to spacecraft separation of order 1900 km, which
also explains why transitions are so rapid and why different
spacecraft encounter these transitions almost (but not quite)
simultaneously.

4.1 Boundary normal oscillations

Figure 6 shows trajectory of sc1 (moving to positivez-
direction) between 05:00–06:00 UT with deHoffman Teller
frame velocity vectors (red) and boundary normal directions
(black) calculated with MFR-method. The top panel has the
deHT velocities and boundary normals calculated using 33 s
window and the bottom plot uses a 2 min window. In both
cases the window is moved over the data set by approxi-
mately 8 s (∼ two data points). Both of the boxes are ro-
tated into the average normal (of the one hour interval) di-
rection such that the black vectors show the deviation from
the average normal direction. One can see that in both plots
the boundary normals oscillate strongly. The 2-min win-
dow shows more clearly a quasi-periodic behaviour. The
HT-velocity is typically tailward but also earthward directed
frames are observed. The most drastic feature is the bound-
ary normal oscillation inz-direction which could indicate
that thek-vector of the waves has a component out from the
equatorial plane. We noted earlier that the strong tangential,
draped magnetic field along the boundary would stabilise the
KHI modes that havek-vectors in equatorial plane. How-
ever, any mode withk-vector out from this plane could grow.
Equivalent plots for sc1 and sc4 show similar behaviour (not
shown).

In order to test the quality of the normal direction, Fig. 7
shows the details of boundary normal analysis between
05:30–06:00 UT at sc1 (top), sc3 (middle) and sc4 (bottom)
(see format in caption).

Because there is an ambiguity of 180 degrees in the nor-
mal direction we have assumed that they-component of the
normal is always negative (outward pointing normal) and
if the method returns a normal with positivey, the normal
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components are multiplied by−1. If the real normal were to
have positive values iny-direction due to the highly rolled up
wave, the change between the outward pointing normal and
inward pointing normal measured by one spacecraft would
supposedly be gradual and there should bey-normal com-
ponents close to zero before they-component changes sign.
One can see in Fig. 7 that the magnitude of they-component
measured by sc1 is smaller than 0.1 in 8 points during this
30 min interval, so that the normal components following
these points could change sign. For sc1 such a region is pos-
sibly seen close to 05:30:30 UT where they-component has
a small value and in next pointx- andz-components rapidly
change sign. Also at 05:40:10 UTy-component has a small
value and in next instantz-component rapidly changes sign.
For many points the normal variation measured by sc1 from
one point to the next is reasonably smooth and multiplying
these points by−1 would make the changes more abrupt, so
that we believe that the oscillations inz- andx-components
for sc1 are a fair representation of the boundary oscillation
during this 30 min interval. For sc3 and sc4 there are also
points where they-component could become positive, but
many of the rapid transitions inx- andy-component appear
to be real. The angle between the average normal and in-
dividual normals show variations between 05:45–06:00 UT
with a average period of∼1.2–1.5 min for sc1, sc3 and sc4.
We may remind that the bipolar variations of the magnetic
field also show an average period of 2 min between 05:45–
06:00 UT with a faster periodicity of∼1–1.5 min between
05:17–05:32 UT.

4.2 Automated search for reconnection intervals

Figure 8 shows several parameters that are used to identify
possible reconnection intervals measured by Cluster space-
craft between 05:30–06:00 UT (see format description in
caption). The yellow columns show intervals where the fol-
lowing criteria are simultaneously satisfied: magnitude of
Walén relation slope of 0.70–1.1 and magnitude of correla-
tion coefficient (cc.)>0.95, and deHoffmann-Teller frame
slope of 0.9–1.1 and cc.>0.95. Sliding (with one data point
overlap) window of 33 s is used for sc1 and sc3, and a 1 min
window for sc4. We note here that the automated search is
only a pre-selection for candidate intervals for reconnection
so that we must later carefully examine the scatter plots of
the Waĺen relation and HT frames for these intervals.

The average deHoffmann-Teller velocity is about 300 km/s
which is roughly 75 percent of the solar wind speed. The
slopes of the Walén relations show positive and negative val-
ues.Paschmann et al.(2005) also found cases with positive
and negative slopes of Walén relations during magnetopause
crossing of 4th and 5 July 2001. They argue that positive
slopes indicate crossings sunward and negative slopes tail-
ward of an X-line, respectively. One can also notice intervals
with accelerated and decelerated deHoffmann-Teller frames.
For all spacecraft this accelerations/decelerations typically
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Fig. 6. Sc1 observations between 05:00–06:00 UT of the boundary
normal vectors (black) and deHoffman Teller frame vectors (red)
along spacecraft trajectory when using 0.55 min nested intervals
(top) and 2 min nested intervals (bottom). The view is along the
average normal direction, such that the black vectors indicate a de-
viation from the average normal. Equivalent plots for sc3 and sc4
show similar type of behaviour of the boundary normals and de-
Hoffman Teller frame vectors.

occur in the region of lower Alfv́en Mach number (Alfv́en
Mach number is shown for sc1 and sc3 and sc4 in the third
panel), which typically should be the case for reconnection:
the reconnection is usually switched off if the plasma flow
velocity is larger than the local Alfv́en speed.
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Fig. 7. Sc1 (top), sc3 (middle) and sc4 (bottom) observations between 05:30–06:00 UT of thex- (green),y- (red) andz- (black) components
of the boundary normals calculated with MFR -method (top panel), eigenvalue ratios (λ2/λ3) of the MFR-analysis (middle panel), angle
between average normal and individual normal (bottom panel). The normal calculated using 30 min of data for sc1 is [0.36,−0.91,0.21] (in
GSM) with eigenvalue ratio of 4.0 and is very similar for the other 2 spacecraft (marked in upper left corner in each plot). It is pointing
mostly toward the negativey-direction, which is consistent with the spacecraft crossing the dawnside magnetopause. The yellow columns
show intervals where the reconnection criteria (explained later) is satisfied.
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Fig. 8. Sc1 (top), sc3 (middle) and sc4 (bottom) observations of various plasma parameters between 05:00–06:00 UT. Top panel shows
observations of the slopes of the Walén relation (black), slopes of the deHoffmann-Teller frame (green) and magntitude of correlation
coefficient of the Waĺen relation (red). The second panel shows components of the deHoffmann-Teller frame velocity:vhtt (black),vhtx
(green),vhty (red),vhtz (blue) and total plasma velocityvt (magenta). Third panel shows the Alfvén Mach number, the fourth panel shows
parallel (solid line) and perpendicular(dotted line) temperature and the fifth panel shows the value of the anisotropy factorα.
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Between 05:30–06:00 UT sc1 observes 4 candidate inter-
vals (a thicker yellow column indicates that there are sev-
eral nested 33 s intervals within the column) for reconnec-
tion. Sc3, which is furthest equatoward, observes 5 candi-
date intervals for reconnection and sc4 doesn’t observe any
intervals (probably due to the longer interval of calculation
and time resolution). Two of the intervals for sc1 and sc3
have negative slopes of Walén relation, and positive slopes
are observed during 2 intervals for sc1 and during 3 inter-
vals for sc3. We will next remove intervals, that satisfy the
search criteria but that have the data points clustered along
the diagonal in Waĺen relation or in HT frame. A detailed ex-
amination of the 33 s intervals marked with yellow in Fig. 8
confirms that only two (intervals starting at≈05:40 UT and
05:48 UT) of the sc1 intervals are good, and only the last
two of the sc3 intervals are good. It is also interesting that
the total plasma velocity slightly decreases during the inter-
vals when reconnection condition is satisfied well for sc1 and
sc3. This is possible if the tension from the reconnected field
lines is in the opposite sense than the magnetosheath flow
speed. We will return to this in next section when discussing
the simulation results.

Using 1-min intervals for sc1 and sc3 with the same
criteria yields one interval for both spacecraft satisfying
the reconnection criteria. However, a closer examination
of sc1 interval at 05:36:30–05:37:30 UT indicates that the
HT-frame components are clustered along the diagonal.
For sc3 a detailed examination of Walén relation and HT-
frame at 05:48:52–05:49:52 UT show a good HT-frame with
vHT=[−358,−174,−189], slope=0.95, and a Walén relation
with slope of 0.80 and cc.=0.98. Clusters along diagonal
could arise from the partial crossing of the rotational discon-
tinuity. That is, if the interval corresponds to the crossing
of the partial boundary layer, then the HT frame would be
good and accelerated/decelerated, and the flows would be
Alfv énic. However, because the interval does not include
the rotation of the field, the components of the local Alfvén
velocity don’t change much and form “clusters” along the di-
agonal. Also, the Walén test is applicable only to plasma on
connected field lines, otherwise the test will give meaning-
less results.

Figure 9 represents Walén relation (left) and deHoffmann-
Teller frame (right) measured by sc1 between 05:48:00–
05:48:33 UT (top), sc3 between 05:48:58–05:49:31 UT
(middle), and sc4 between 05:48:54–05:49:34 UT (bottom).
The slopes of Walén relation are 0.86,0.73 and 0.99 for sc1,
sc3 and sc4, respectively. The corresponding correlation co-
efficients are 0.98,0.98 and 0.96 such that sc4 shows a larger
variance in the spread of the points. We note that this sc4
interval is not picked in the automated test (shown in Fig. 8)
because the 1-min interval does not satisfy the search criteria
for sc4. Here we have used only 6 data points for sc4 in order
to compare with sc1 and sc3 results. The deHoffmann-Teller
frames are good for all 3 spacecraft and HT-velocities are
pointing tailward, southward and dawnward. Sc1 measures

the highest HT-velocity ofvHT=[−479,−201, −276], and
sc3 and sc4 measure roughly 100 km/s lower HT-velocities.
All of these HT-frame velocities are higher than that of the
overall structure between 05:30–06:00 UT, for which sc1
measures HT-velocity ofvHT=[−292, −122,−115]. We in-
terpret that sc3 and sc4 are encountering the same reconnec-
tion layer – although crossing it slightly differently.

The fact that reconnection is observed by only one or two
of the spacecraft simultaneously indicates that while the re-
connection region may be as long as 1 to 2RE they certainly
must be rather thin (<1000 km) and for the identified cases
be aligned mostly tangential to the boundary flow otherwise
all spacecraft should see them. This, however, may be only
a subset of all reconnection events because if they cross the
spacecraft at a steeper angle the crossing would only take a
few seconds and they wouldn’t be identified.

Finally, we note that the Walén test is very sensitive to
plasma number density measurements. Inaccuracies in this
measurement would result in a change of the slope while
the correlation coefficient would remain roughly unchanged.
HIA instrument tends to underestimate the number densities
in the magnetosphere, and CODIF instrument tends to under-
estimate number densities in the magnetosheath. This will
tend to underestimate the slopes of the Walén relation for the
HIA intervals, and will tend to overestimate the slopes for the
CODIF intervals. So perhaps more HIA intervals would sat-
isfy the search criteria for reconnection. Also, in the Walén
test we have here only considered protons, so in the presence
of the heavier ions this test would fail or get worse.

5 MHD simulation of KHI with the initial conditions
from Cluster observations

Results in this section are obtained with 2.5-dimensional
MHD simulations (Otto, 1990; Nykyri, 2002). The ba-
sic equations are solved with a finite differences leapfrog
scheme (Potter, 1973; Birn, 1980), which is of second-order
accuracy in space and time.

The density, pressure, velocity, and magnetic field on the
magnetospheric and magnetosheath sides at the initial shear
flow plane are chosen according to Cluster observations of 3
July 2001 between 05:00–06:00 UT.

The initial state of the simulation uses a Galilei transfor-
mation for the velocity such that the simulation frame is mov-
ing with half the magnetosheath velocity. In this manner the
KH vortex is moving slower in the simulation frame, with the
advantage that the time step limit for the integration of the
MHD equation is larger than in a frame which is at rest with
the magnetosphere. Boundary conditions for the simulations
are periodic along thex-direction, and boundary conditions
in y are open to inflow and outflow of plasma.

The values for the normalization of the simulation units
are summarized in Table 1. All quantities are normalized to
characteristic values for the system, i.e., length scalesl to a
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Fig. 9. Walén relation (left) and deHoffmann-Teller frame (right) measured by sc1 between 05:48:00–05:48:33 UT (top) sc3 between
05:48:58–05:49:31 UT (middle) and sc4 between 05:48:54–05:49:34 UT (bottom).
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Table 1. Simulation normalization.

Magnetic fieldB0 27 nT
Number densityn0 7 cm−3

pressurep0 0.29 nPa
Current density 22 nA m−2

Length scaleL0 1000 km
Velocity vA 222 km s−1

Time τA 4.5 s

typical lengthL0; densityρ to ρ0=n0m0 with the number
densityn0 and the ion massm0; magnetic fieldb to B0; ve-
locity v to the typical Alfv́en velocityvA=B0/

√
µ0ρ0; pres-

sure toP0=B2
0/(2µ0); current density toJ0=B0/(µ0L0);

and timet to a characteristic Alfv́en transit timeτA=L0/vA.
The system size is 40 units inx, corresponding to a wave-
length of about 6RE . The simulation employs 549×429
gridpoints in thex- andy-directions.

Figure 10 shows simulation geometry. In the middle panel
the black lines represent Earth’s magnetic field lines and red
lines indicate the draped IMF for Parker spiral configura-
tion. The initial shear flow plane is constructed by using the
typical observed magnetic field orientations between 05:00–
06:00 UT on magnetospheric and magnetosheath sides of the
boundary which are projected along the observed sheath ve-
locity. In this plane the magnetospheric and magnetosheath
fields are in∼165 degree angle, such thatα∼68 andβ∼53.
In the shear flow plane the magnetic fields are anti-parallel,
such that the magnetospheric field is∼25 nT and orientated
anti-parallel to sheath flow, and the magnetosheath field is
∼–19 nT pointing along the sheath flow. The magnetic fields
perpendicular to shear flow plane (positive z-direction) are
∼10 nT and∼–14 nT in magnetospheric and magnetosheath
side respectively.

Simulations in this geometry (not shown) indicate that the
growth of KHI is stabilized by the strong tangential magnetic
field because1vsh·k=2<1vA·k=2.91.

The observations showed a strong variation of thez-
component of the boundary normal. Also the deHoffmann-
Teller frame velocities and the actual plasma velocity had a
significantz-component. These observations indicate a pos-
sibility of a KH mode withk-vector out from the equatorial
plane. Figure 11 shows simulation result att=91.32=410 s
in the plane that is projected along thek-vector that is tilted
by −35 degrees from the initial shear flow plane. This cor-
responds to a counter-clockwise rotation about they-axis of
the initial shear flow plane such that the velocity shear across
this plane is reduced tovshcos(35), but also the average tan-
gential magnetic field along thek-vector is reduced so that
1vsh·k=1.64>1vA·k=1.6.

In Fig. 11 the magnetic field (arrows) andz-component of
the current density,jz (color coded), are plotted on the top
left panel, and velocity (arrows) and density (color coded)

on top right panel. The black lines are magnetic field lines
projected on the shear flow plane. The wave is moving into
negativex-direction (down the page) and the higher density
side indicates the magnetosheath side. One can see a non-
linear KH wave with two oppositely directed elongated thin
current sheets adjacent to each other with ongoing reconnec-
tion atx, y∼[0.−7]. The MHD code uses current dependent
resistivity, such that resistivity is switched on when threshold
current of 1.1J0 is exceeded.

The reconnection has first occurred in the layer of nega-
tive current between anti-parallel magnetosheath and mag-
netospheric fields and has generated two oppositely moving
flux tubes. The other reconnected flux tube is moving down-
stream with the wave and other one is connected upstream.
In these flux tubes both magnetospheric and magnetosheath
plasma are present.

The second reconnection occurs in the layer of positive
current in the low density region between twisted magneto-
spheric fields. Reconnection has generated a magnetic island
moving downstream, and the upstream moving flux tube has
both ends connected to the Earth’s magnetic field, so that
these flux tubes only have magnetospheric plasma in them.

We note that the KH dynamics for this magnetic field con-
figuration is different from the dynamics of KH evolution
with initially strongly parallel magnetic fields (Nykyri and
Otto, 2001). In this case KHI twists the parallel fields and
generates reconnection in the high density part of the vortex.
Here the initially anti-parallel fields are made parallel by the
KHI in the high density part of the vortex, preventing recon-
nection at that location.

The bottom left panel has a cut through aty=2 at mag-
netospheric rest frame, corresponding to measurements of
a virtual spacecraft as the wave passes by it. The bottom
right panel has Cluster sc1 and sc3 data between 05:46:30–
05:51 UT in boundary normal coordinates of sc1. In both
plots the magenta colored columns represent intervals where
good Waĺen relations were observed. The boundary nor-
mal and tangent used in this plot are calculated with MFR
method between 05:42–05:54 UT from sc1 data. The normal
is [0.49,−0.86,−0.1], and the tangent is [0.49,0.37,−0.78].
In both plots the top panel shows plasma number density
(solid line) and plasma temperature (dashed line). Second
panel shows total pressure, third panel has normal (solid)
and tangential (dashed) component of plasma velocity, and
fourth panel shows normal (solid) and tangential (dashed)
component of the magnetic field. In simulation data we
have multiplied the normal (y)-direction with −1 and ro-
tated the simulation data with−10 degrees about thez-axis
in order to better compare withNL-coordinates of the data.
Although this is a two-dimensional simulation result, many
features qualitatively agree with Cluster observations. Both
plots show similar type of variation of sheath-like (high den-
sity, low temperature) and magnetospheric-like (low den-
sity high temperature) regions, and the location of the in-
tervals satisfying the reconnection criteria are also in good
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.

Fig. 10. Simulation geometry.

agreement. The minimum total pressure is obtained at the
center of the vortex (not shown), but here the cut is at the
magnetospheric side of the wave, so that the pressure vari-

ation is smoother. The normal component of the magnetic
field and velocity show a clear signature in the simulation
data betweenx=[1,4] by changing from 3 nT to−15 nT and
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Fig. 11.MHD simulation result of the KH wave att=410 s. The magnetic field andjz are plotted on the top left panel and velocity and density
at top right panel. The black lines are magnetic field lines. The bottom left panel has a cut through aty=2, corresponding to a measurements
of a virtual spacecraft as the wave passes through it. The bottom right panel has Cluster sc1 and sc3 data between 05:46:30–05:51 UT in
boundary normal coordinates of sc1. The data panels show from top to bottom plasma density and temperature, total pressure, normal (solid
line) and tangential (dashed) component of plasma velocity, normal and tangential component of the magnetic field. The intervals satisfying
reconnection criteria are marked with vertical magenta columns.

from −120 km/s to−350 km/s, respectively. In Cluster data
this signature is present between 05:48:36–05:48:48 UT, but
the magnitudes are off:vN drops from 40 km/s to−70 km/s

andbN from 4 nT to−4 nT. This signature occurs in both
plots in the vicinity of the higher density filament, although
in Cluster data the magnitude of this density filament is three
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Fig. 12. Walén relation (left) and deHoffmann-Teller frame (right) “measured” by virtual spacecraft during cut aty=2 betweenx=[3,10]
(top), and betweenx=[−5,−1] (bottom).

times lower than in the simulation. Based on the simulation
such a filament and normal components are arising due to the
rolled up nature of the Kelvin-Helmholtz wave. Signature
is reversed betweenx=[5,9] whenvN andbN change from
−350 km/s to 130 km/s and from−15 nT to 7 nT, respec-
tively. In data the corresponding transition is again smoother
andvN andbN change back to their original values. There
are also slight differences between sc1 and sc3 observations,
because sc1 locates earthward (inx, y-plane) of sc3 and it
is also located≈1200 km in +z-direction from sc3. In con-
text of top left panel of Fig. 5 we argued that the continuous
chain of bipolar variations of the normal component (with
rapid leading edge and smoother trailing edge) is indicative
of a wave. A smooth trailing edge of thebN can be seen be-

tween 05:49:06–05:51 UT (in Fig. 5 and in Fig. 11), where
bN changes from 4 nT to−8 nT. This signature is also clearly
present in the simulation data betweenx=[9,20], which sup-
ports our argument on the origin of the systematic bipolar
variations of thebN . Also in favor of the KHI, the the to-
tal pressure depression occurs betweenx=[5.5–7], during
interval when normal component of the magnetic field in-
creases to its maximum and the Walén relation is well sat-
isfied. In case of a FTE, a total pressure maximum should
occur (Paschmann et al., 1982). Also, the tangential com-
ponents show similarities between data and observations al-
though the magnitudes in magnetosheath side (high density
side) are slightly off. This is because we have normalized
the simulation velocities into a Alfv́en speed that uses the
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Fig. 13.The left panel shows ion distribution function at parallel/perpendicular-plane (right panel has perpendicular cut) from HIA instrument
onboard sc1 at 05:47:55 UT.

average density of the magnetosheath and magnetospheric
side (7/cm3) and magnetospheric magnetic field of (27 nT).
Therefore the Alfv́en speed and thus velocity in the magne-
tosheath side is higher by factor of≈1.6.

It is now interesting to consider virtual spacecraft observa-
tions of the discontinuities generated in the simulation box by
the KHI. Figure 12 has the same format as Fig. 9, showing
the Waĺen relations and HT-frames at different locations in
the simulation box att=410 s in magnetospheric rest frame.

The top panel of Fig. 12 shows Walén relation (slope=0.99
and cc.=0.99) and HT frame (slope=0.99 and cc.=0.99) dur-
ing a cut aty=2.0, x=[3.,10.]. This corresponds to a cross-
ing of a rotational discontinuity at the magnetospheric (low
density) side. This interval is marked with second magenta
colored column in Fig. 11 and corresponds to sc3 interval
in Fig. 9. The HT frame velocity (vHT =[−296,−30,−240])
has accelerated in−z-direction (the HT frame velocity for
the entire wavelength (not shown) betweenx=[−20,20] is
[−300,−47,−119]). The Waĺen relation slope has same
sign as in Fig. 9 and it is positive because at the loca-
tion of the crossing thevN andbN have same signs, which
can be confirmed in data and simulation comparison in
Fig. 11. The X-line is located tailward and duskward from
the location of this rotational discontinuity. One can also
see that the field line tension of these flux tubes is di-
rected in the opposite direction than the magnetosheath flow
speed, consistent with observed decrease in total velocity
in Fig. 8. Sc4 locates≈1600 km along normal direction
from sc3. The bottom panel of Fig. 9 indicates that (if we
can trust 5 data points) it observes similar result consistent
with sc3 data. The corresponding cut in simulation box
(not shown) aty=0.4 (1.6×1000 km separation from sc3)
betweenx=[4,7] shows excellent Walén relation (slope=1.0
and cc.=1.0) and HT frame (slope=0.98 and cc.=0.99) with
VHT=[−284,−37,−222].

The bottom panel of Fig. 12 shows the Walén relation
(slope=0.88 and cc.=0.97) and HT frame (slope=1.0 and
cc.=1.0) for a cut aty=2 ,x=[−5,−1]. This corresponds to a
crossing of a reconnected flux tube, that originates from the
layer of negative current. Due to the twisting of the boundary
by KHI the magnetic field geometry is here more complex
than in Fig. 3 byPaschmann et al.(2005). The Waĺen slope
is here positive although the X-line is sunward and duskward
from the reconnected flux tube. Here also, the tension of the
reconnected flux tube is oppositely orientated from the aver-
age magnetosheath flow, consistent with observed decrease
in total velocity in Fig. 8. This flux tube shows a HT-frame
velocity of vHT=[−214,−62,−102]. Although the location
and timing of this interval matches the observed reconnec-
tion interval by sc1 (the first magenta column in Fig. 11),
the HT frame velocity is much lower than that of the first
panel of Fig. 9. The reason for this can be seen in Fig. 13.
The left panel shows an ion distribution function in the par-
allel/perpendicular plane from the HIA instrument onboard
sc1 at 05:47:55 UT. Sc1 detects a main magnetosheath-type
distribution function together with an additional field-aligned
ion beam withv‖=500 km/s. Moment calculations of such
a distribution function are affected by the existence of such
multiple populations, which in turn affects the HT frame ve-
locities, i.e., which will be larger here. Such a distribution
function (not shown) is also observed by sc1 at∼05:40 UT
and by sc3 at∼05:56 UT, during intervals when reconnection
criteria was met. One can see in Fig. 8 that during these three
intervals the plasma parameters and coefficients are very sim-
ilar. Because such a double population is observed at three
different times, and during at least two successive distribu-
tion functions (separated by 12 s), their co-existence is likely
real rather than due to a time-aliasing effect. These beams
could be particle signatures of reconnection. In MHD simu-
lations such kinetic effects are not present.
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Fig. 14. Plasma (left) and magnetic field (right) observations between 07:54–08:24 UT in the boundary normal coordinates of sc3. Figure
uses same format as Fig. 5.

The automated search in Fig. 8 returned intervals when
negative slopes of the Walén relation were observed, but
the closer examination of these showed that the points were
slightly clustered along diagonal. In the simulation box the
negative slopes can be found when crossing the boundary be-
tween not mutually connected fieldlines from low density to
intermediate density: at simulation timet=91.32 (top panel
of Fig. 11) the cut aty=3.2 , x=[16.,19.], gives a slope of
−0.49. Cluster sc1 observed an interval with negative Walén
slope at 05:45 UT and sc3 at 05:44 UT. If we take the same
cut in the simulation box slightly earlier att=88.66, corre-
sponding to a time when reconnection has first occurred at
the layer of negative current, the Walén slope is−0.9. In
this case the reconnection has not yet occurred in the layer

of positive current. However, in both of these cases both the
Walén relation and HT-frame look slightly clustered. Dur-
ing the observations of negative slopes, the Cluster space-
craft could be crossing a boundary between magnetic field
lines where the other flux tube is originating from X-line at
the layer of negative current and other from layer of posi-
tive current. Because of the periodic boundary conditions of
the simulation box one can either say that these X-lines and
current layers are either tailward or earthward of the space-
craft. Same should also apply for the real magnetopause if
Kelvin-Helmholtz wave trains travel along it.
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Fig. 15. Walén relation (left) and deHoffmann-Teller frame (right) between 07:54–08:24 UT measured by sc3.

6 Cluster observations between 07:50–09:00 UT during
ortho-Parker spiral, small negativebz

After 07:45 UT the IMF rotates southward followed by a ro-
tation of bx such that inx, y-plane the IMF has an ortho-
parker spiral orientation. The bottom panel of Fig. 2 shows
that between 08:00–08:15 UT there are patches of magne-
tosheath energy ions in regions of tenuous plasma similar to
what was observed between 05:30–06:00 UT. There is also
mixed (magnetospheric and magnetosheath energies) plasma
present between≈08:06–08:09 UT. At 08:00 UT the IMF
is dominantly pointing southward, so that reconnection can
operate in the sub-solar region but also between the magne-
tosheath and magnetospheric fields at the flank. Figure 14
(same format as Fig. 5) shows plasma (left) and magnetic
field (right) observations between 07:54–08:24 UT in the
boundary normal coordinates of sc3. At∼08:10 UT all 4
spacecraft are observing a strong bipolar signature in the
normal component of the magnetic field together with a lo-
cal total pressure enhancement, consistent with a flux trans-
fer event like structure (Paschmann et al., 1982). Compared
to the continuous train of bipolar variations of the normal
component observed between 05:00–06:00 UT, this seems to
be a more isolated structure. The Walén relation (left) and
deHoffmann-Teller frame (right) between 07:54–08:24 UT

measured by sc3 for this interval is shown in Fig. 15. The
Walén relation is poor and, compared to the interval be-
tween 05:30–06:00 UT that had an excellent HT-frame (slope
∼0.93 and cc.∼0.96.), the HT-frame slope is only 0.83 and
correlation coefficient 0.91. Figure 16 is a zoom onto the
FTE, indicating that the spacecraft are crossing different re-
gions of the FTE. The boundary normal obtained with MFR-
method (for sc3) withλ1/λ2=2.2 is pointing almost entirely
toward positivez-direction with a small negativex- andy-
component (upper right corner). Sc1 is also observing a
strongly northward normal. Figure 17 is showing the Walén
test and HT-frame measured by sc3 for this interval. Even
for this shorter interval the Walén relation is poor, which in-
dicates that this is not a rotational discontinuity. Perhaps this
bipolar signature could be caused by the pressure enhance-
ment after 08:00 UT (Fig. 1). Variations of the solar wind
dynamic pressure can generate a wavelike motion along the
magnetospheric boundary and cause bipolar signatures of the
normal component of the magnetic field (Sibeck et al., 1989;
Sibeck, 1992; Otto, 1995). One possibility also might be the
deviation from one-dimensionality or stationarity that are re-
quired for the relation to strictly hold. Other possibility is
that this is a flux rope reconnected some time in the past, but
it is not clear why the Walén test would fail to succeed in
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Fig. 16. Plasma (left) and magnetic field (right) observations between 08:10:12–08:12:45 UT in the boundary normal coordinates of sc3.
Figure uses same format as Fig. 5.

this case. Sonnerup et al.(2004) suggest that such a FTE
could be a “fossil” structure originating from reconnection
site that has become inactive. For this shorter interval sc3
observes better but not very good HT-frame with slope of
0.89 and cc. of 0.95. Also sc1 has a poor Walén relation
for this interval, but contrarily to sc3 it observes a good HT-
frame with slope of 0.95 and cc. of 0.98 moving with a veloc-
ity of vHT=[−241, −93, −32] km/s. Although the intervals
05:30–06:00 UT and 08:00–08:15 UT have similar plasma
characteristics showing magnetosheath population inside the
magnetopause, the source region for plasma entry seems to
be different. Between 05:30–06:00 UT Cluster encountered
thin current layers with ongoing reconnection due to KHI,
whereas during 08:00–08:15 UT the spacecraft encountered

a flux rope like signature either due to the pressure pulse or
from a possibly remote reconnection site. Furthermore, the
HT-frame velocities were very different for the two cases.
We propose that (if not due to the pressure pulse) this iso-
lated flux rope is a result of reconnection between northward
pointing magnetospheric field and southward pointing IMF
field along the dawn flank boundary, or maybe in the more
dayside regions.

7 Discussion and conclusions

The presented results indicate that during 3 July 2001, Clus-
ter spacecraft had several crossings between hot and tenuous
magnetospheric plasma and cold and dense magnetosheath

www.ann-geophys.net/24/2619/2006/ Ann. Geophys., 24, 2619–2643, 2006



2640 K. Nykyri et al.: Cluster observations of reconnection triggered by KHI

Walen Relation

-100 0 100 200 300 400 500
VAlfven

-200

-100

0

100

200

300

V
 -

 V
h

t

-4 -2 0 2 4
Eht

-4

-2

0

2

4

6

E

Variance Interval 490.200-492.667 Cluster 3rd of July 2001

 = X component
 = Y component
 = Z component

___ = linear least squares fit, f=ax+b

Coefficients: a =  0.204 +-  0.026
b =   -2.8 +-    7.1

Correlation coefficient:  0.592

 = X component
 = Y component
 = Z component

___ = linear least squares fit, f=ax+b

Coefficients: a =  0.893 +-  0.029
b =   -0.0 +-    0.1

Correlation coefficient:  0.945

Vht:  -211.16   -71.63   -15.28

Fig. 17. Walén relation (left) and deHoffmann-Teller frame (right) between 08:10:12–08:12:45 UT determined from sc3 measurements.

plasma. As the spacecraft traversed at the dawnside mag-
netospheric flank they observed for 1 h systematic bipolar
variations of the normal component of the magnetic with a
period of 1–4 min. The leading edge of the bipolar varia-
tion showed a more rapid transition indicative of very thin
magnetic boundaries, whereas the trailing edge transition
was slower. This signature is presumably caused by Kelvin-
Helmholtz instability (KHI) operating at the dawnside mag-
netospheric flank.

At the first instant the occurrence of the KHI seems
surprising because of the prevailing solar wind conditions.
Namely the IMF formed a Parker-spiral with a smallbz-
component, which generates a strong tangential magnetic
field along the shear flow layer when draped around the mag-
netopause, and thus stabilises the KH in this plane. We tested
the observed configuration with 2-D MHD simulations, and
indeed the KH was stable in the shear flow plane.

In Cluster data we found evidence of quasi-periodic
boundary normal oscillations showing most variations inz-
direction. The deHoffmann-Teller frame velocities had a sig-
nificant z-component, and also the actual plasma velocity
had az-component. These observations support the exis-
tence of a KH mode withk-vector out from the equatorial
plane. We estimated the KH wavelength to be 6RE from

the deHoffmann-Teller frame velocity and from the∼2.2 min
period of the bipolar variation of the normal component of
the magnetic field and taking into account thatk-vector is
out from the equatorial plane. Based on these observations
we constructed 2-D MHD simulations with thek-vector out
from the shear flow plane, and in this geometry, the KHI
can grow and can generate reconnection in two locations (see
Fig. 11) within the Kelvin-Helmholtz wave:

A) at the boundary between anti-parallel magnetosheath
and magnetospheric field, where the twisting of the bound-
ary by KHI enables reconnection. Without slight twisting of
the boundary this would not be possible because shear flow
stabilizes the tearing mode.

B) in the low density part of the wave in a layer of positive
current, which is generated when KH twists the magneto-
spheric field.

In the Cluster data sc3 and sc4 observations show evi-
dence of the type B)-reconnection. Also, location of the sc1
reconnection interval matches the crossing of the flux tube
originating from type A) reconnection site. Our simulations
were able to reproduce many of the observed signatures in
the satellite data: the bipolar variation of the normal compo-
nent of the magnetic field and velocity; the density, temper-
ature and pressure variation; the properties and location of
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the intervals satisfying good Walén relation and HT-frame.
Although both the KH wave and FTE show bipolar varia-
tions of the normal component of the magnetic field, one can
distinguish between them by looking at the total pressure:
Paschmann et al.(1982) showed that in case of a FTE the
total pressure is strongly enhanced, whereas in case of the
KH-wave, the total pressure is decreased during the enhanced
normal component of the magnetic field (see Fig. 11).

Also the timing of the intervals matches the spacecraft
separation and location within the wave: For example, sc4
locates furthest toward the magnetosheath, where the tan-
gential distance across the magnetospheric current layer is
shorter (it can only be picked by testing a short 40 s interval
for sc4 (5 data points for sc4)). Sc3, which locates more on
the magnetospheric side of the vortex observes a good Walén
relation and HT-frame for a one minute! In simulation box
this corresponds to a distance of 1.1RE .

These observed reconnection intervals must be only a sub-
set of all reconnection events because if they cross a space-
craft at a steeper angle the crossing would only take a few
seconds and they would not be identified. Also, the current
layers earthward of the type A) reconnection site are much
thinner and almost impossible to observe with the current
data resolution.

After the IMF turned southward Cluster also observed
magnetosheath plasma inside the magnetosphere and an iso-
lated flux rope like signature, but the analysis showed that
this might have been a ’fossil’ flux tube, which did not sat-
isfy the Waĺen relation.

The present results indicate that KHI with ak-vector with
a z-component can trigger reconnection at the dawnside
flank magnetopause during a Parker-spiral orientated IMF
with a smallbz-component. In Cluster data we found mag-
netosheath energy ions in the tenuous magnetospheric-like
plasma during the intervals when reconnection criteria was
met, so that some mixing due to this mechanism may oc-
cur. However, it is presently unclear whether reconnection in
this configuration leads to significant plasma transport into
the magnetosphere in contrast to the cases where reconnec-
tion occurs in the high density region due to the twisting
of the initially parallel fields by the KHI (Nykyri and Otto,
2001). Based on the simulation result of Fig. 11, it seems
that magnetosheath plasma may get into the magnetospheric
field lines only due to the type A)-reconnection. However,
transport may also occur in the opposite direction due to
the type B) reconnection (magnetospheric plasma is captured
within higher density part of the vortex).

In our future work we will compare in detail the observa-
tions of this day with 3-D MHD simulations in appropriate
geometry. In 3-D simulations we will study the significance
of plasma transport due to this mechanism and its effective-
ness in formation of the cold dense plasma sheet. Particu-
larly important would be to study the statistical occurrence
of the KHI in the dawn and duskside flanks for Parker-spiral
(PS) and ortho-Parker spiral (OPS) IMF orientations. For

PS (OPS) orientation the dawnside (duskside) flank is more
unstable than the dusk (dawn) flank for the KHI in the shear
flow plane which may result in asymmetries in the cold dense
plasma sheet formation. However, as demonstrated in this
paper it is possible (for the stable configuration in shear flow
plane) for the modes withk-vectors out from the shear-flow
plane to grow. Therefore, it is first essential to understand
the 3-D dynamics (and resulting magnetic field topology) of
reconnection generated by KHI for these configurations in
dawn and dusk-side flanks.
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