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Abstract. Electrodynamic models and measurements with
satellites and incoherent scatter radars predict large field
aligned current densities on one side of the auroral arcs. Dif-
ferent authors and different kinds of studies (experimental
or modeling) agree that the current density can reach up to
hundreds of µA/m2. This large current density could be the
cause of many phenomena such as tall red rays or trigger-
ing of unstable ion acoustic waves. In the present paper,
we consider the issue of electrons moving through an iono-
spheric gas of positive ions and neutrals under the influence
of a static electric field. We develop a kinetic model of col-
lisions including electrons/electrons, electrons/ions and elec-
trons/neutrals collisions. We use a Fokker-Planck approach
to describe binary collisions between charged particles with
a long-range interaction. We present the essential elements
of this collision operator: the Langevin equation for elec-
trons/ions and electrons/electrons collisions and the Monte-
Carlo and null collision methods for electrons/neutrals col-
lisions. A computational example is given illustrating the
approach to equilibrium and the impact of the different terms
(electrons/electrons and electrons/ions collisions on the one
hand and electrons/neutrals collisions on the other hand).
Then, a parallel electric field is applied in a new sample run.
In this run, the electrons move in the z direction parallel to the
electric field. The first results show that all the electron distri-
bution functions are non-Maxwellian. Furthermore, runaway
electrons can carry a significant part of the total current den-
sity, up to 20% of the total current density.

Keywords. Ionosphere (Auroral ionosphere; Electric fields
and currents) – Space plasma physics (Transport processes)

1 Introduction

The existence of large field-aligned current densities in nar-
row auroral structures has been inferred over the last years by
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using satellites (Cerisier et al., 1987; Berthelier et al., 1988),
incoherent scatter radars (Rietveld et al., 1991) and numer-
ical models (Noël et al., 2000). Cerisier et al.(1987) inter-
preted a magnetic pulse recorded by the magnetometer on
board the AUREOL 3 low altitude satellite as the signature
of current densities as high as 500 µ A/m2 in a current sheet
20 m wide. Later on,Stasiewicz et al.(1996) reported small-
scale current densities observed on board the Freja satellite
of a few hundred µ A/m2. Recently the measurements made
from the ØRSTED satellite has enabled the detection of fine-
scale structures, as low as 75 m, in the high latitude field-
aligned current system. Very intense but thin sheets or nar-
row filaments of field-aligned currents (FAC) up to several
hundreds of µ A/m2 have been reported byStauning et al.
(2003). At higher altitudes of 1000 to 4000 km, the down-
ward Birkeland currents are carried by suprathermal elec-
trons at energies from 10 to 500 eV and fluxes greater than
109 electrons.cm−2.s−1 (Klumpar and Heikkila, 1982; Carl-
son et al., 1998).Klumpar and Heikkila(1982) suggested
that they are runaway electrons from the ionosphere pro-
duced by a downward field-aligned component of the electric
field.

Radar observations have also suggested the existence of
extremely intense current densities. A large increase in the
electron temperature measured in filamentary aurora with the
European incoherent scatter radar has also been interpreted
as a hint of the presence of intense FAC densities (Lanch-
ester et al., 2001). They modeled the observations with an
1-D electron transport and ion chemistry code. They con-
cluded that, to account for the observed changes in the elec-
tron temperature, a source of electron heating was required in
addition to local heating from energy degradation of precipi-
tating electrons. They showed that Joule heating in a strong
FAC of 400 µ A/m2 can account for the required heat source.
Strong enhancement in incoherent scatter radar spectra have
also been observed byRietveld et al.(1991) and interpreted
as unstable ion-acoustic waves triggered by large FAC densi-
ties. Threshold calculations for the two-stream instability for
typical ionospheric parameters lead to FAC densities carried
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by thermal electrons which have to be in excess of 1000
µ A/m2 (Rietveld et al., 1991). St Maurice et al.(1996) sug-
gested that large parallel current densities carried by thermal
electrons can be triggered in the ionosphere with horizontal
scale sizes of a hundred meters or less.

In order to explain the large FAC in the ionosphere,Noël
et al. (2000) has developed a two-dimensional model of
short-scale auroral electrodynamics that uses current con-
tinuity, Ohms’s law, and 8-moment transport equations for
the ions and electrons in the presence of large ambient elec-
tric field to describe wide auroral arcs with sharp edges in
response to sharp cut-offs in precipitation. Using an am-
bient perpendicular electric field of 100 mV/m away from
the arc and for which electron precipitation cuts off over a
region 100 m wide, they showed that parallel current den-
sities of several hundred µ A/m2 can be triggered together
with a parallel electric field of the order of 0.1 mV/m around
130 km altitude. In a rather similar model,Otto et al.(2003)
showed that ohmic heating due to intense FAC densities up
to 600 µ A/m2 can lead to the formation of tall red rays. The
resulting heating leads to an electron temperature in excess
of 10000 K in the upper F-region.

Therefore if one wants to understand the electrodynamics
of the auroral arcs, the role of the ionosphere in the gener-
ation of intense parallel currents and the associated parallel
electric fields is a matter of particular interest. However, it
is well-known that if an electric field (not too weak) is ap-
plied to a collisional plasma, some electrons experience un-
limited “runaway” acceleration (Dreicer, 1959). The reason
is straightforward and well-known: the friction force acting
on an electron travelling with velocityv is a non-monotonic
function, having a global maximum at the thermal speed.
For an electron moving faster than this speed, the collision
frequency decreases with increasing velocity. Therefore, if
a sufficiently fast electron starts accelerating in the electric
field, the dynamical friction force decreases. A critical elec-
tric field, known as the Dreicer fieldEc, has been calculated
by Dreicer(1959). It is a measure of the electric field which
is required if the drift velocities are to increase and exceed
the most probable random speed in one free collision time.
However, using the Dreicer field is only an estimate of the
importance of kinetic effects because runaway still occurs
for E<Ec (Dreicer, 1959).

The acceleration of runaway electrons have been studied
in: solar flares (e.g. Moghaddam-Taaheri and Goertz, 1990),
Tokamaks (e.g. Liu et al., 1977) and red sprites (e.g. Bell et
al., 1995). In the ionosphere, the large field-aligned current
densities have only been modeled using fluid models (Noël
et al., 2000; Otto et al., 2003; Noël et al., 2005). How-
ever, the fluid models could be altered by runaway electrons.
Using typical ionospheric parameters,Otto et al.(2003) es-
timated the Dreicer field to be of aboutEc≈4×10−5 V/m
which is much higher than typical F-region electric fields,
from Ohm’s law, of about 10−6 V/m. On the other hand,
Noël et al.(2000) published a parallel electric field of about

5×10−4 V/m in the E region suggesting that a substantial
part of the electron distribution function could be freely ac-
celerated.Papadopoulos(1977) suggested that runaway elec-
trons from intense FAC could create non-Maxwellian elec-
tron distribution functions (EDF) that could in turn trigger
Langmuir turbulence in the ionosphere. In their hypothesis,
the thermal ionospheric electrons were accelerated by a par-
allel electric field due to anomalous resistivity. However, a
quantitative estimate of runaway electrons in the low altitude
ionosphere has never been done.

This study is a first step of a kinetic model of the highly
collisional low altitude ionosphere (E and low F-region). In
Sect.2, we will mainly focus on the description and the tests
of the collision operators which is of a crucial importance
for this study . Then, in Sect.3, we will consider the issue
of electrons moving through an ionospheric gas of positive
ions and neutrals under the influence of a static electric field
similar toNoël et al.(2000).

2 Description of the kinetic model

First, we are interested in charged particle collisions. In
this section we will present the methods that are used to
simulate these collisions. We want to investigate the in-
teractions between charged particles in a highly collisional
plasma. For this purpose, we use a Fokker-Planck approach
(see Sect.2.1.1), which describes binary collisions between
charged particles with long-range interactions. Effectively,
in our case, the long-range interactions are more dominant
than the short-range interactions, since the coulomb loga-
rithm ln3= ln(λd/p0)�1, whereλd is the Debye length and
p0 is the impact parameter (Rosenbluth et al., 1957). Under
typical ionospheric conditions, ln3 is around 15. We also
consider that the collisions are binary as the impact param-
eter (p0≈4×10−19 m) is smaller than the mean length be-
tween particles (de≈2×10−10 m).

2.1 Charged particle collision operator

2.1.1 The Fokker-Planck approach

We consider charged particles of species a interacting with
species b. Species a are electrons and species b are ei-
ther electrons or ions. All the particles collide, but the col-
lisions with long-range interactions, which correspond to
small pitch angle, play a more dominant role than those at
a closer range.

The classical Fokker-Planck equation including elec-
tron/electron (e/e) and electron/ion (e/i) collisions (Krall and
Trivelpiece, 1986) is:

∂fa

∂t
+ va .

∂fa

∂r
+

Fext

ma

.
∂fa

∂va
=
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∑
b

 ∂

∂va
.fa

〈1va〉b

1t︸ ︷︷ ︸+
1

2

∂

∂va

∂

∂va
..fa

〈1va1va〉b

1t︸ ︷︷ ︸
 (1)

friction diffusion
wherefa , the electron distribution function (EDF), is a func-
tion of position, velocity and time,va is the electron veloc-
ity andFext are the external forces (in our case the electric
force).

The friction and diffusion coefficients on the right hand
side of equation 1 are used in the Langevin equation (see
Sect.2.1.2). These coefficients have been given byRosen-
bluth et al.(1957) andMacDonald et al.(1957):

〈1va〉b

1t
= 0ab

∂

∂va
Hab (2)

〈1va1va〉b

1t
= 0ab

∂

∂va

∂

∂va
Gab (3)

where:

0ab =
1

4πε2
0

[
ZaZbe

2

ma

]2

ln 3 . (4)

The coefficientsGab and Hab, which govern the diffusion
and dynamic friction, are scalar functions of the vector ve-
locity v:

Hab(va) =
ma + mb

mb

∫
f (vb)

|va − vb|
dvb (5)

Gab(va) =

∫
|va − vb|f (vb)dvb (6)

where:ma is the electron mass,mb is the mass of the target
particles,e is the elementary charge,va is the electron ve-
locity, vb is the velocity of target particles andf (vb) is the
velocity distribution function of the target particles.
If the distribution functions of target particles are isotropic,
only three coefficients need to be considered (Manheimer
et al., 1997):

– 〈1va‖〉b

1t
the friction coefficient

– 〈(1va⊥)2
〉b

1t
the angular diffusion coefficient

– 〈(1va‖)2
〉b

1t
the longitudinal diffusion coefficient

The assumption of isotropic scatterers is a reasonably good
approximation, since all electron collisions tend to isotropize
the EDF. The thermal part of the EDF isotropizes particularly
rapidly, and e-e scattering of any electron (even a fast one)
is normally dominated by scattering off thermal electrons.
Manheimer et al.(1997) considered the question of the lim-
its of validity of this approximation for very anisotropic situ-
ations. They conclude that this approximation retains quanti-
tative accuracy in situations where the EDF is single-peaked.
We can infer that:
〈1va‖〉b

1t
= − 4π

ma + mb

mb

0ab

va

v3
a

∫ va

0
v2
bf (vb)dvb (7)

〈1va1va〉b

1t
=

D11 0 0
0 D11 0
0 0 D33

(8)

where: D11 is the half angular diffusion coefficient and
D33 is the longitudinal diffusion coefficient

D11 =
1

2

〈(1va⊥)2
〉b

1t

D11 = 4π0ab [
1

va

∫ va

0
v2
bf dvb

−
1

3v3
a

∫ va

0
v4
bf dv+

2

3

∫
∞

va

vbf dvb] (9)

D33 =
〈(1va‖)

2
〉b

1t

D33 = 8π0ab[
−

1

9v3
a

∫ va

0
v4
bf dvb +

1

3

∫
∞

va

vbf dvb

]
(10)

The analytical expressions for the diffusion coefficients
with Maxwellian distribution functions are well known
(Barghouthi and Barakat, 2005 and references therein).
However, since we expect a non-Maxwellian EDF, we
perform a numerical integration of these coefficients at each
time step.

In the following, we also assume that:
– The ion distribution function is a stationary non-drifting
Maxwellian, since the i/e relaxation time is longer than the
e/i relaxation time (τi/e≈104 τe/i).
– The plasma is considered to be quasi-neutral.

2.1.2 The Langevin equation

In order to use the collision operators defined in the previous
section and to calculate the new velocity for each electron at
each time step, it is necessary to go from the Fokker-Planck
equation to the Langevin equation. This equation is equiva-
lent to the Fokker-Planck equation. To first order accuracy in
1t , the 3-D Langevin equation takes the following form:

1ve =
Fext

m
1t +

〈1ve‖〉b

1t
1t + Q (11)

where: 〈1ve‖〉b

1t
is the friction coefficient,Fext is the electric

force,m is the electron mass andQ=

Q1
Q2
Q3

is a random veloc-

ity vector that corresponds to the variation of the velocity in
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the three direction due to the diffusion. It is chosen from the
distribution (Manheimer et al., 1997):

φ(Q) =
1

(2π1t)3/2D11D
1/2
33

exp(−
Q2

3

2D331t
−

Q2
1 + Q2

2

2D111t
)(12)

whereD11 corresponds to1
2

〈(1va⊥)2〉b
1t

(Eq. 9) and D33 to
〈(1va‖)

2
〉b

1t
(Eq.10). The friction tends to slow down the elec-

trons whereas Q scatters them.

2.1.3 The conservation of energy and linear momentum

The Fokker-Planck equation (1) conserves momentum and
energy. However, the numerical implementation of e/e and
e/i scattering can lead to small deviation from energy and
momentum conservation. The diffusion coefficient of the
Langevin equation implies the choice of a random velocity
Q in a distribution. On average, these increments will con-
serve the energy and momentum. However, we use a finite
number of particles N and as a consequence an error of

√
N

can always occur. Since the drift velocity is small compared
to the thermal velocity, the error is negligible. However, we
make corrections to restore the conservation laws. We calcu-
late the energy before and after the scattering, and then, we
renormalize the velocity for each electron (Manheimer et al.,
1997):

ve,new =

√
Wj

W ′

j

ve (13)

whereWj is the total kinetic energy of the electrons before
the collisions andW ′

j is the the total kinetic energy after the
collisions.

2.2 The electron/neutral collisions: Monte-Carlo method

Since we want to model collisions in the ionospheric E-
region, we must include electron/neutral (e/n) collisions. The
simulation procedure must give us the time interval between
each pair of collision and the change in the electron velocity
due to each collisions (Winkler et al., 1992). For a collision
with a collision frequencyν that is independent of the rela-
tive velocity, the probability that a test particule will suffer
no collision for a time interval t is given by:

P(t) = exp(−ν t) (14)

If the collision frequencies were constant, the time interval
between collisions would be generated by using:

t = −
1

ν
log(R) (15)

where R is a random number with a uniform probability be-
tween 0 and 1 (Lin and Bardsley, 1977).

However for the collisions that we are considering, the to-
tal cross section of interaction is speed-dependent, and the

collision frequency is consequently a function of energy. The
time interval therefore depends on the continually changing
relative velocity of the colliding particles, so that the simple
expression for the probability that the time between two col-
lisions has the value t given by Eq. (15) is no longer valid. To
correct the speed dependence difficulty, we use a “null col-
lision” approach, described in the next section and a Monte-
Carlo method.

2.2.1 Time of free flight: “null collision” approach

The time of free flighttf (Skullerud, 1968; Lin and Bardsley,
1977) is:

tf = −
ln(rf )

νtot

(16)

where:
– rf is a random number chosen from a uniform distribution
in the range between 0 and 1 (i.e. [0,1])
– and,

νtot = ν + νnull = constant (17)

where,ν is the total e/n collision frequency (elastic and in-
elastic) andνnull is the null collision frequency. The null col-
lision frequency is chosen in such a way to keepνtot constant,
i.e. νtot is the maximal collision frequency in the considered
energy range.

The classicalνtot is the sum of all the collision frequencies
e.g. elastic and inelastic collision frequencies. We introduce
a null collision frequency since the electron velocity varies
as a function of time.

2.2.2 Types of collisions

The probability of each collision is:

P coll
el =

νel

νtot

(18)

P coll
in =

νin

νtot

(19)

P coll
null =

νnull

νtot

(20)

with P coll
el + P coll

in + P coll
null = 1, whereνel , νin and νnull

are the elastic, inelastic and total collision frequency,
respectively.

TheP coll
el , theP coll

in and theP coll
null are the probabilities to

have an elastic, inelastic and no collision, respectively.
We model the elastic and inelastic collision frequency:

νel = nn σel ve (21)

νin = nn σin ve (22)

wherenn is the neutral density,σel , σin are the tabulated elas-
tic and inelastic collision cross-sections andve is the electron
velocity.
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Elastic and inelastic cross-section as a function of electron
velocity are given byHubner et al.(1992). We assume that
the neutrals are at rest. When an electron undergoes an elastic
collision, its energy is conserved. So, we only diffuse the
electron velocity in space (Yousfi et al., 1994):

vx = v(− sinχ sinη sinφ + sinχ cosη cosθ cosφ

+ cosχ sinθ cosφ) (23)

vy = v(sinχ sinη cosφ + sinχ cosη cosθ sinφ

+ cosχ sinθ sinφ) (24)

vz = v(− sinχ cosη sinθ + cosχ cosθ) (25)

where:

– η=2πrη whererη is a random number chosen between
0 and 1. This results inη being uniformly distributed in
the range of[0, 2π ].

– The angle of deflectionχ is assumed to be isotropic and
chosen in the range[0, π]

– The anglesθ andφ are the polar and azimuthal angle in
the laboratory frame of the incident velocity vector,v,
respectively.

For an inelastic collision, the electrons will lose some of
their energy. To determine the amount of lost energy, we
tabulate the most likely reactions. Each reaction is energy
dependent, therefore a knowledge of the energies that are in-
volved is required. For loss of energy, we can calculate the
corresponding loss of velocity,vl . The new velocity of the
electron will be:

|vnew| = |vold | − |vl | (26)

where:

– vnew is the electron velocity after the collision

– vold is the electron velocity before the collision

– vl is the velocity loss due to inelastic collision. It is tab-
ulated inGerjuoy and Stein(1955) andGilmore(1965).

The electrons are then scattered in space using the same
method as for the elastic collisions (23, 24, 25).

2.3 Test of the collision operator

In this section, we present numerical results as a test case of
our collisions operators. The test involves the relaxation of
an initially square distribution. We know that a square distri-
bution has to relax towards a Maxwellian because of e/e and
e/i collisions. We usene=ni=5×1010 m−3, Te=Ti=1500 K.
We use 3×104 particles to represent the electrons. The elec-
trons are scattered at intervals1t=10−4 ν−1

0 whereν0 is the
e/i collision frequency equal to 60 s−1 .
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Fig. 1. The coefficient of friction due to e/e and e/i collisions are
shown in blue and red, respectively. The coefficients are plotted as
a function of normalized electron velocity. The total coefficient of
friction is shown in black. The dashed-dotted line shows where e/e
and e/i coefficients of friction are equal. The dotted line depicts the
limit where the electric force is equal to the frictional force.

2.3.1 Time-evolution of the distribution function

In order to test the Fokker-Planck operator, the e/e and e/i
collisions are the only physical processes considered in this
simulation. We will study the time-evolution of an ini-
tial non-Maxellian rectangular EDF in velocity space. In

the Fig.1, we plot the frictional coefficients
(

<1ve‖>i

<1t>
and

<1ve‖>e

<1t>

)
in function of the electron velocity. The fric-

tional term is much more important for weak velocities.
The maximum of the friction coefficient is obtained when
v=vthi=5.8×10−3 vthe.

In Fig. 2, panel a, we present the EDF as a function of
time. At early times (0.1−0.5ν−1

0 ), the distribution function
becomes rounded but is still non-Maxwellian. Representing
the logarithm of the distribution function as a function of the
squared velocity, a Maxwellian distribution function would
be represented by a straight line. The distribution does not
change very much at low energy however the tail begins to
sprawl at higher energy. The maximum of the squared veloc-
ity increases from 2.4v2

the over to 3v2
the betweent=0.5 and

t=10ν−1
0 . This means that the maximum electron energy in-

creases from 0.3 eV to 0.4 eV. The frictional and diffusion
coefficients (Eqs.7 to 9) decrease rapidly with particle speed
v (Fig. 1), so we expect the system to approach equilibrium
faster for the electrons that are in the low-energy range, and
slower for those in the high-energy tails.

At t=0.5ν−1
0 , the EDF is close to the final Maxwellian

in the thermal range but the high energy tail remains non-
Maxwellian. At time,t=1ν−1

0 , the EDF is Maxwellian over
the entire energy range.
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kinetic energy as a function of normalized time(c) The entropy as a function of normalized time (c).
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In Fig. 2, panel b, we show that the total kinetic energy is
conserved. This can be seen as a horizontal line as a function
of time.

In Fig.2, panel c, we present entropy as a function of time.
We observe that the entropy increases strongly up to 0.6ν−1

0
and then stabilizes. This is due to the fact that the modifica-
tions that are occurring in the tail of the distribution are too
small to influence the entropy.

The second numerical simulation that we undertook was
to examine the effects of the neutral collision operator on the
EDF. This was achieved by only considering e/n collisions.
We assumed the neutral species to beN2 with a number
density of 1015 m−3. The numerical results are shown in
Fig. 3.

One may see that the time to get a Maxwellian is longer
than in the case of e/e and e/i collisions. We can consider that
the relaxation time is 3ν−1

0 , since the EDF is rounded and
does not evolve significantly aftert = 3ν−1

0 (Fig.3, panel a).

The e/n collision frequency is
ν−1

0
3 as a consequence, the

relaxation time should be of the order of 3ν−1
0 . We should

also notice that the “final” distribution is isotropic but not
Maxwellian. Indeed, the e/n collisions tend to isotropize
the distribution but there are no frictional forces thereby
preventing the EDF from becoming Maxwellian.

The energy panel (Fig.3, panel b) shows that energy is no
longer conserved. The inelastic collisions act to decrease the
energy but the inelastic collision frequency is so small that
the reduction of the total kinetic energy is weak.

The entropy (Fig.3, panel c) also increases quickly up
to 3ν−1

0 . For times larger that this, the entropy increases
slowly. So, this fact confirms that 3ν−1

0 is the relaxation
time to the equilibrium.

The results presented in this section show that our choice
of collision operator is justified. Furthermore, the time
scales seem very reasonable as the relaxation time for the
e/i and e/n collisions are of the order of 1ν−1

0 and a few
ν−1

0 , respectively. We can also keep in mind that the loss of
energy is due only to the inelastic e/n collisions.

3 Simulation model

Our goal was to investigate the dynamical behavior of the
electron under the influence of an applied static electric field.
At each time step, we calculate the EDF as a function of al-
titude. The parameters used in the model were chosen to
be consistent with typical ionospheric values at 200 km al-
titude. Since our simulation is 1-D in space and 3-D in ve-
locity, the lower boundary was chosen so that the perpen-
dicular conductivities could be neglected. The perpendicular
conductivities are dominant below 200-km altitude. We do
not take into account the magnetic field since the electrons

ef
hn−1(v)

ef
2h

(v)

ef
h1 (v)

ef
hn (v)

E

Z

v

v

v

v

ions

neutrals

electrons with
velocity vector

Fig. 4. Schematic illustration of the model for a plasma in the pres-
ence of an electric field aligned in the z-direction. The electric field
decreases with height. The particles’ velocities are 3-D even though
the model is spatially 1-D. When a particle hits one of the bound-
aries, it is re-injected into the system according to the electron ve-
locity distribution functionf hi

e (vx , vy , vz). These boundary condi-
tions are described in details in Sect.3.1.

are strongly magnetized and can be regarded as firmly at-
tached to a given magnetic field line. This is a good approx-
imation as long as the electron Larmor radius is very small
compared to any macroscopic length scale. We also neglect
the perpendicular electric field that may exist at these alti-
tudes. It is well known that when a perpendicular electric
field, of more than 50 mV/m is present, the ion velocity dis-
tribution function (IDF) becomes non-Maxwellian (Hubert,
1982 and Winkler et al., 1992). As a first approximation, the
non-Maxwellian IDF can be represented by a bi-Maxwellian.
In order to quantify the possible effects on the coefficients D
we have calculated the resulting friction and diffusion coef-
ficients (not shown here). For velocities higher than the ion
thermal velocity (about 10−2Vthe) the coefficients remain the
same. The major effect of a non-Maxwellian IDF is a de-
crease of the diffusion and the friction coefficients below
10−2Vthe. The friction coefficient being reduced, we can
expect that more runaway electrons will be created. There-
fore our results should underestimate the number of runaway
electrons. A schematic representation of our model is pre-
sented in Fig.4.

The 1-D simulation region of length (H=100 km) is di-
vided into spatial cells of length h. The length of each
cell was chosen so that it was less than a mean free path
(h=2.5 km). The plasma in each cell is assumed to be
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Fig. 5. A diagram of the computational scheme used in the paper.

uniform. Initially, particles are distributed randomly in each
cell and in velocity space in terms of given plasma condi-
tions such as density profile and temperature profile. We use
Te=2000 K, Ti=1000 K, the density is decreasing linearly as
we move from the bottom of the box to the top. The electron
and ion density varies from 1011 to 5×1010 m−3 while the
neutral density varies from 2×1015 to 3×1013 m−3. For the
sake of simplicity we consider only one species of ion and
neutral. The ion and neutral species being respectivelyO+

and N2. We apply a parallel electric field (z aligned), which
decreases from 3×10−5 to 0 V/m . The electric field was
chosen fromNoël et al.(2000), their Fig. 6.

The electrons are scattered by electron/electron, electron/ion
and electron/neutral collisions and the new velocity is cal-
culated using the Langevin equation with a time step,
1t=10−4 ν−1

0 (ν0=78 s−1). After the calculation of the new

electron velocities, the electrons positions are found using:

z = z0 + vz, new 1t . (27)

We only take into account motions along the z-direction. All
the parameters are assumed to be homogenous in the perpen-
dicular plane. We calculate the new EDF that needs to be
taken into account in the Fokker-Planck equation. For each
time step, the EDF is computed for each altitude and called
f (z, v, t+1t). The EDF is obtained by computing the his-
togram for all velocities of the particles present in [z, z+h].
We can then use the EDF to compute the friction and diffu-
sion coefficients. In Fig.5, we present a schematic of the
computational scheme that was employed.

3.1 Boundary conditions

When a particle reaches the boundaries (z=0 or z=H) i.e.
when it leaves the simulation region, we inject a new particle
to conserve the overall density within the simulation box. We
choose the velocity of the injected particle with the reparti-
tion function given by:

G(v, z, t) =

∫ v

vmin
vf (v, z, t)dv∫ vmax

vmin
vf (v, z, t)dv

(28)

In the case that the particle reaches z=H, the new parti-
cle is injected in the range [0, h]. The new velocity is
choosen according toG(v, z, t) wheref (v, z, t) corresponds
to f (v, 0, t). In the other case, where the particle reaches
z=0, the new particle is injected in the range [H, H-h] with
a new velocity chosen withG(v, z, t) where f (v, z, t) is
f (v, H, t). The new altitude in the predetermined range is
chosen randomly.

3.2 Results

In Fig. 6, we present the EDF for three different altitudes
at different times (0, 1, 10, 25, 50 and 90ν−1

0 ). The three
different altitudes correspond to the bottom, middle and top
of the simulation box (2.5, 50, 100 km). In Fig.6, panel a,
the drift velocity, defined asvd=

∫
vf (v)dv, increases from

vd=0vthe at t=0ν−1
0 to vd=0.15vthe at t=90ν−1

0 . The EDF
slowly shifts towards positive velocities as time increases. It
may also be noticed that the slope of the EDF decreases as the
electrons are heated by Ohmic disspation. The EDF remains
symmetric with respect to the maximum of the EDF: each
tail sprawls symmetrically.

As time increases, electrons from the low altitude sub-
boxes can reach the middle altitudes. Fig.6, panel b, shows
the EDF at z=50 km. The drift velocities arevd=0vthe at
t=0ν−1

0 andvd=0.20vthe at t=90ν−1
0 . This clearly shows

that the electrons have been accelerated from the lower alti-
tudes. In addition, the tails begin to sprawl as a function of
time due to two effects:
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different altitudes correspond to the bottom, middle and top
of the simulation box (2.5, 50, 100km). In Fig. 6, panel a,
the drift velocity, defined asvd =

∫
vf(v)dv, increases from

vd = 0 vthe at t = 0 ν−1
0 to vd = 0.15 vthe at t = 90 ν−1

0 .
The EDF slowly shifts towards positive velocities as time
increases. It may also be noticed that the slope of the EDF
decreases as the electrons are heated by Ohmic disspation.
The EDF remains symmetric with respect to the maximum
of the EDF : each tail sprawls symmetrically.

As time increases, electrons from the low altitude sub-
boxes can reach the middle altitudes. Fig. 6, panel b, shows
the EDF at z=50km. The drift velocities arevd = 0 vthe

at t = 0 ν−1
0 and vd = 0.20 vthe at t = 90 ν−1

0 . This
clearly shows that the electrons have been accelerated from
the lower altitudes. In addition, the tails begin to sprawl as a
function of time due to two effects:

– Ohmic dissipation tends to enlarge the EDF symmetri-
cally and,

– The runaway effect acts on electrons having positive ve-
locities, thus creating a slight asymmetry between the

two tails of the EDF. The tail in the semi-spacev > 0
is larger than the one inv < 0. This is apparent at
t = 90 ν−1

0 .

The distortion of the EDF due to the runaway effect can be
clearly seen at the upper most altitude (Fig. 6 panel c). The
drift velocity increases fromvd = 0 vthe at t = 0 ν−1

0 to
vd = 0.25 vthe at t = 90 ν−1

0 . Freely accelerated electrons
from the lower altitudes create a high energy tail of the EDF.
After 25 ν−1

0 , the distribution is clearly non-Maxwellian. For
t > 50 ν−1

0 , the tails are very asymmetric. This confirms the
presence of runaway electrons.
The EDF are quite different along the box, but they are all
non-Maxwellian. The runaway electrons can be seen more
easily at higher altitudes.
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Fig. 6. Velocity distribution functions as a function of normalized
squared velocity. The distribution functions corresponding to three
different altitudes (from the bottom to the top panel respectively 2.5,
50 and 100km) are shown for different times (0, 1, 10, 25, 50 and
90ν−1

0
) using different colors

In Fig. 7, panel a, we present the total current density as a
function of time for the same altitudes shown in Fig. 6. We
can see that for every altitude, the current density increases
very rapidly at the beginning but slows as time proceeds and
eventually becomes constant. At higher altitudes, the first
stage is longer as it takes more time for the electrons of the
bottom altitude to reach the top of the box. The final current
density is around 700 µA.m−2 for each altitude, which is
similar to those reported by Noël et al. (2000).

Then, we are interested in the runaway current density. In
order to differentiate between the current carried by thermal

Fig. 6. Velocity distribution functions as a function of normalized squared velocity. The distribution functions corresponding to three
different altitudes (from the bottom to the top panel respectively 2.5, 50 and 100 km) are shown for different times (0, 1, 10, 25, 50 and
90ν−1

0 ) using different color.

– Ohmic dissipation tends to enlarge the EDF symmetri-
cally and,

– The runaway effect acts on electrons having positive
velocities, thus creating a slight asymmetry between
the two tails of the EDF. The tail in the semi-space
v>0 is larger than the one inv<0. This is apparent
at t=90ν−1

0 .

The distortion of the EDF due to the runaway effect can
be clearly seen at the upper most altitude (Fig.6 panel c).
The drift velocity increases fromvd=0vthe at t=0ν−1

0 to
vd=0.25vthe at t=90ν−1

0 . Freely accelerated electrons from
the lower altitudes create a high energy tail of the EDF. Af-
ter 25ν−1

0 , the distribution is clearly non-Maxwellian. For
t>50ν−1

0 , the tails are very asymmetric. This confirms the
presence of runaway electrons.
The EDF are quite different along the box, but they are all
non-Maxwellian. The runaway electrons can be seen more
easily at higher altitudes.

In Fig. 7, panel a, we present the total current density as a
function of time for the same altitudes shown in Fig.6. We
can see that for every altitude, the current density increases
very rapidly at the beginning but slows as time proceeds and

eventually becomes constant. At higher altitudes, the first
stage is longer as it takes more time for the electrons of the
bottom altitude to reach the top of the box. The final cur-
rent density is around 700 µA.m−2 for each altitude, which
is similar to those reported byNoël et al.(2000).

Then, we are interested in the runaway current density.
In order to differentiate between the current carried by ther-
mal electrons and the current carried by runaway electrons
we need to compute the runaway current density. This is
done by using Fig. 1. In Fig. 1, to the left of the dotted line
corresponding tove<2.37vthe=0.7 eV the frictional force is
dominant therefore the electric force can be neglected. For
velocities larger than 2.37vthe corresponding to the region
on the right of the dotted line, the electric force dominates.
As a consequence, the electrons are accelerated for velocities
larger than 2.37vthe. These electrons are called the runaway
electrons and the current that they carry is the runaway cur-
rent density.

We use this critical velocity (corresponding to 0.7 eV) to
determine whether or not the electron is a runaway and in or-
der to calculate a runaway current density. In Fig.7. panel
b, we can see that the runaway current density increases
with time at each altitude: the electric field accelerates the
electrons and so the runaway current density increases. We
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Fig. 7. The left column of panels represents the total current density as a function of normalized time. The middle column represents the
runaway current density as a function of normalized time. The right column of panels shows the ratio of the runaway current density over
the total current density as a function of normalized time. For the three columns, the top panels correspond to 100 km altitude, the middle
panels to 50 km and the bottom panels to 2.5 km.

observe that the maximum runaway current density is about
100 µ A/m2. The ratio of runaway current density to the total
current density is also of interest (see Fig.7, panel c). In this
plot, we represent the evolution of the ratio of the runaway
current density to the total current density as a function of
time for each altitude. We see that the ratio of runaway con-
tinues to increase particularly at high altitudes. The runaway
electron can carry up to 20% of the total current density.

4 Summary and conclusion

The primary goal of this paper was to study electrons mov-
ing through a simplified ionospheric gas composed of ions
and neutrals under the influence of a static electric field. To
achieve this goal, a model representing the collisions be-
tween the charged particles and neutrals was developed. The
model consists of two parts. The first part involves a ki-
netic description based on the Langevin equation, whose co-
efficients are determined using the Fokker-Planck equation.
This part of the model, considering e/e and e/i collisions,
gives the new electron velocities and the new EDF.

The second part is a Monte-Carlo method using a “null
collision” approach. This part of the model deals with the
elastic and inelastic electrons/neutrals collisions. These col-
lisions cause the energy loss of the electrons. These colli-
sions also tend to isotropize the EDF.

We have presented two examples. The first one without
electric field shows that the relaxation of the EDF towards a
Maxwellian is realized with respect to the theoretical relax-
ation time. It also provides a good illustration of the different
impacts of electrons/electrons and electrons/ions collisions
in relation to electrons/neutrals collisions. The second exam-
ple is a simplified model of the auroral ionosphere between
200 km and 300 km altitude. A decreasing parallel electric
field from the bottom of the box to the top is applied with
a maximum value of 0.03 mV/m. This value has been cho-
sen in order to reproduce the results published byNoël et al.
(2000). It is shown that a significant distortion of the EDF
due to the runaway effect occurs on a time scale of about
20ν−1

0 , corresponding to 0.25 s. In other words, the EDF
are non-Maxwellian all along the simulation box although
the distortion of the EDF is more pronounced at higher alti-
tudes. The maximum current density calculated in this run is
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700 µA.m−2 which agrees withNoël et al.(2000). Runaway
electrons can carry up to 20 % of the total current density.
Our results suggest that the conclusions of the fluid models
could be significantly altered by kinetic effects such as the
runaway effect.

This paper focussed mainly on the collision operators used
to model the ionosphere. We have used these operators in a
simple 1-D model of the ionosphere. In the future, the elec-
tric field will be computed self-consistently. In addition, a
2-D model is under study in order to include a perpendicu-
lar electric field and the perpendicular motion of the charged
particles. We also plan to simulate altitudes below 200 km
where the current closure takes place. Then we will be able
to include the magnetic field. Since the ion distribution is
assumed to be stationary in our model, the time-evolution of
the ion mean temperature, density and drift velocity need to
be computed. We plan to do this using the fluid equations
with the electron parameters (ne, Te) calculated from our ki-
netic model.
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