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Abstract. This paper presents a study of nearly field-aligned
outflowing ion beams observed on the Cluster satellites over
the polar cap. Data are taken at geocentric radial distances
of the order of 5–9RE . The distinction is made between
ion beams originating from the polar cusp/cleft and beams
accelerated almost along the magnetic field line passing by
the spacecraft. Polar cusp beams are characterized by nearly
field-aligned proton and oxygen ions with an energy ratio
EO+/EH+, of the order of 3 to 4, due to the ion energy repar-
tition inside the source and to the latitudinal extension of the
source. Rapid variations in the outflowing ion energy are
linked with pulses/modifications of the convection electric
field. Cluster data allow one to show that these perturbations
of the convection velocity and the associated ion structures
propagate at the convection velocity.

In contrast, polar cap local ion beams are characterized
by field-aligned proton and oxygen ions with similar ener-
gies. These beams show the typical inverted V structures
usually observed in the auroral zone and are associated with
a quasi-static converging electric field indicative of a field-
aligned electric field. The field-aligned potential drop fits
well the ion energy profile. The simultaneous observation of
precipitating electrons and upflowing ions of similar energies
at the Cluster orbit indicates that the spacecraft are crossing
the mid-altitude part of the acceleration region. In the po-
lar cap, the parallel electric field can thus extend to altitudes
higher than 5 Earth radii. A detailed analysis of the distri-
bution functions shows that the ions are heated during their
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parallel acceleration and that energy is exchanged between
H+ and O+. Furthermore, intense electrostatic waves are
observed simultaneously. These observations could be due
to an ion-ion two-stream instability.

Keywords. Ionosphere (Particle acceleration) – Magne-
tospheric physics (Magnetosphere-ionosphere interactions;
Polar cap ohenomena)

1 Introduction

The ionosphere has been shown to be an important source of
magnetospheric plasma. It acts as a source of hydrogen and
heavy ions (mainly O+) for the magnetosphere. The total
mass supply has been estimated to be of the order of 1 kg s−1.
For a recent review, see the papers of Yau and André (1997),
André and Yau (1997) and Moore et al. (1999). The outflow
of ions from the polar ionosphere takes a variety of forms:
the polar wind, ions upwelling from the cleft ion fountain,
polar cap outflows, upward ion conics and beams from the
auroral zone. The strength and composition of these iono-
spheric plasma outflows vary with geomagnetic activity, sea-
son, solar cycle, local time, and altitude. Since the first ob-
servation of ionospheric energetic ions in the magnetosphere
made by Shelley et al. (1972) in 1972, various acceleration
mechanisms have been proposed. They include transverse
ion acceleration, acceleration by parallel electric fields and
various wave-particle instabilities. The high-latitude iono-
sphere thus appears as a region of foremost importance and
interest, owing to its links with the distant magnetosphere
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and the tail, which are key regions for magnetosphere dy-
namics. At high latitude, energized precipitating ions are a
common feature of magnetically active periods (e.g. Sauvaud
et al., 1999; Korth at al., 2004).

The major source of upflowing ionospheric ions is the
cleft ion fountain (Lockwood et al., 1985; Thelin et al.,
1990), associated with the ionospheric projection of the po-
lar cusp/cleft (Thelin et al., 1990). After their ejection from
the dayside ionosphere, the ions are detected above the po-
lar cap as they undergo the anti-sunward electric convection
drift and escape along field lines. These cusp ion outflows
have been studied using data from different satellites (see re-
views by Andŕe and Yau 1997; Moore et al., 1999) but the
properties of the outflow and of the source region are still
under discussion.

Other polar cap ion outflows have been associated with op-
tical structures caused by electron precipitation. These ions,
originating from the polar cap ionosphere, are accelerated
outward along the magnetic field line in the region corre-
sponding to theta auroras or polar cap arcs (e.g. Shelley et
al., 1982; Peterson and Shelley 1984). These arcs, generally
parallel to the noon-midnight meridian, are indeed a common
feature of the polar cap region during periods when the IMF
points northward (e.g. Zhu et al., 1997). Although the polar
cap arcs have been widely studied in the last decades, few
studies focused on the detailed properties of associated ion
escapes.

This paper presents observations of nearly field-aligned
outflowing ion beams made on board the Cluster satellites
over the polar cap. In this region, ions observed at any given
point could originate from different source regions. After
presenting briefly the instrumentation used in this study, we
make a clear distinction between ion beams originating from
the polar cusp and ion beams “locally accelerated”, and char-
acterize the particle and field properties associated with those
different kinds of beams. While the cusp appears to be a con-
tinuous source of ionospheric plasma, polar cap outflows are
triggered by precipitating electrons during periods of north-
ward IMF.

2 Instrumentation and observations

The four identical Cluster satellites have been launched in
2000 on an elliptical orbit (4.0×19.6RE) with an inclination
of 90◦. A detailed description of the Cluster mission can be
found in the paper of Escoubet et al. (2001).

We use data from the Cluster Ion Spectrometers (CIS) on
board the Cluster spacecraft 1, 3 and 4. The CIS instrument
is described in detail in R̀eme et al. (2001). It consists of
two different ion spectrometers, the Composition and Dis-
tribution Function analyser (CODIF), which can resolve the
major magnetospheric ions, and the Hot Ion Analyzer (HIA),
which has no mass resolution but higher angular and energy
resolutions.

The Plasma Electron And Current Experiment (PEACE)
(Johnstone et al., 1997) provides complementary electron
data. In addition, we use data from the Cluster Fluxgate Mag-
netometers (FGM) (Balogh et al., 2001) and wave data col-
lected by the STAFF instrument (Cornilleau-Wherlin et al.,
1997). Electric fields are obtained viaE=−V d×B, using
the FGM magnetic field data and the drift velocity measure-
ment from the Electron Drift Instrument (EDI) (Paschmann
et al., 2001).

The ACE and GEOTAIL data are used to monitor the so-
lar wind conditions. The propagation time for the solar wind
to attain the magnetosphere and then to communicate to the
ionosphere has been computed using the method described
by Jacobsen et al. (1995) with a varying position of the sub-
solar magnetopause (Sibeck et al., 1991).

A survey of Cluster CIS data has been performed to look
for accelerated outflowing ion beams. The region of inter-
est was the high-latitude magnetosphere, where the Cluster
satellites’ orbit is at radial distances between 5 and 9RE .
A series of events showing enhancement in the outflowing
ions’ energy have been selected. The energy of these H+ and
O+ ion beams varies from a few tens of eV to a few keV.
They have been grouped into two categories, correspond-
ing to different source regions and to different energization
mechanisms. In this study we do not distinguish single par-
ticle velocities and ion bulk velocities, because, for a given
ion species, the temperature is small compared to the bulk
velocity. Thus, the distinction between those two velocities
is hardly significant.

2.1 Polar cusp ion beams

Except during prolonged periods of northward IMF, a com-
mon feature above the polar cap is the observation of iono-
spheric ion beams originating from the cleft ion fountain.
Using Cluster data during summer and autumn 2001, Bog-
danova et al. (2004) have observed oxygen ion outflows from
the polar cusp in 80% of all cusp crossing. First heated in the
polar cusp region, these ions undergo an adiabatic convec-
tive flow, resulting in the observation of a cold, beam-like
distribution above the polar cap. Previous detailed studies
showed that O+ ions outflow is caused by their resonant heat-
ing, by broad-band, extremely low-frequency electric field
waves (BBELF turbulence), such as long wavelength Alfvén
waves, ion acoustic waves and electrostatic ion cyclotron
waves, or/and electromagnetic ion cyclotron waves (see a re-
view by Moore et al., 1999). The contribution of the differ-
ent waves to the acceleration process is still under discus-
sion (e.g. Bouhram et al., 2002). The altitude location of the
heating region was found to start at∼2000 km (Moore et al.,
1986). However, Dubouloz et al. (1998, 2001) and Bouhram
et al. (2002) showed that the ion acceleration perpendicular
to the magnetic field occurs at all altitudes extending up to
15 000 km. These ions, injected from a low altitude source
on the dayside, will move upward along the magnetic field

Ann. Geophys., 24, 1665–1684, 2006 www.ann-geophys.net/24/1665/2006/



R. Maggiolo et al.: A study of accelerated ionospheric ion beams above the polar cap 1667

Fig. 1. HIA spectrograms for three polar cap crossings where the Cluster spacecraft detect ions originating from the cleft ion fountain. For
each event, the top panel represents the pitch-angle distribution of the ions in the energy range of 10 eV to 1000 eV and the bottom panel is
the ion energy-time spectrogram. Note that the pitch-angle is computed in the spacecraft frame.

line and end up at different locations, depending on the ra-
tio between their velocity along the magnetic field line and
the velocity at which the magnetic field line moves above the
polar cap, i.e. the convection velocity.

Figure 1 shows three examples of energy spectrograms
taken during polar cap crossings where Cluster spacecraft de-
tect ions originating from the vicinity of the cusp region. For
each event, the top panel represents the ion pitch-angle dis-
tribution and the bottom panel gives the energy-time spec-
trogram from HIA. Nearly field-aligned ions with energies
up to 1 keV are detected. The pitch-angle distribution is not
very narrow but it must be taken into account that the CIS an-
gular resolution is only 22.5◦. Furthermore, this pitch-angle
is measured in the satellite frame. It thus takes into account
the convection velocity. At times, a regular latitude energy
dispersion is observed (Fig. 1, first event) but these steady-
state conditions are rarely achieved and many events show
sporadic changes in the energy of outflowing ions along the
Cluster trajectories. Note that when H+ ion fluxes are above

the detection threshold of the instrument, we clearly distin-
guish two well-separated energy bands corresponding to O+

and H+ ions. Otherwise, we only detect one energy band
corresponding to oxygen ions. The energies of protons and
oxygen ions differ by a factor of about 4, with oxygen ions
being more energetic.

Neglecting the ion energy gain during their flight from the
ionosphere to the high altitude polar cap and assuming that
the ions originate from a narrow source, we could expect a
ratio of the energies of oxygen and protons near 16. Indeed,
ions with equal velocities will travel during the same time
and be convected by the same amount during that time. This
is clearly not the case, as exemplified by Fig. 1.

A different approach emphasizes the ion energy gain dur-
ing their travel from the ionosphere to the satellite. The ion
relative energy gain,1E/E, is a consequence of the num-
ber of equipotentials crossed under the effect of the magnetic
drifts. It is proportional to the ion time of flight, and thus, for
ions with identical initial energies, to the square root of their

www.ann-geophys.net/24/1665/2006/ Ann. Geophys., 24, 1665–1684, 2006



1668 R. Maggiolo et al.: A study of accelerated ionospheric ion beams above the polar cap

Fig. 2. Results of the backward particle simulations for the 12 November 2001 event. Top panel: Location of the mirror points in an altitude
– invariant latitude diagram. The black solid lines represents O+ ions trajectories for quiet conditions. The black dotted line represents H+

ions trajectories for quiet conditions. The points mark the mirror points of O+(black for quiet conditions, blue for particles experiencing a
short duration burst of convection and in red for particles experiencing a convection twice the regular quiet convection during their entire
path from the source to the satellite). The squares mark the mirror points of H+ with the same color code as for O+ ions. The energy of the
particles at the spacecraft and inside the source, and their computed times of flight are also indicated. Bottom panel: Corresponding particle
energies at the source versus latitude. The grey region schematically represents the ion energy distribution at the source. The shape of this
energy-latitude structure is defined by the backward computations and by using simple arguments about the connection between the source
and the satellite: if at lower latitudes than the computed latitudes there were particles with lower energies than that computed, then they
would be measured on board the spacecraft, which is not the case.

masses (e.g. Sauvaud and Delcourt, 1987). Assuming that
the O+ and H+ ions have the same small initial energy and
that the energy gains are large, the ratio of their final energies
should be close to the square root of their mass ratio.

To check the importance of the convection versus energy
gain scenario, we performed backward particle trajectory cal-
culations in 3-D models of the magnetic and electric field, as
described by Sauvaud and Delcourt (1987) and Delcourt et
al. (1988). Test particles were traced backward in time, using
the Tsyganenko (1989) model for the magnetic field, together
with the Volland (1978) model for the electrostatic potential
distribution in the ionosphere. The convection electric field
encountered by the ions during their transport is obtained by
assuming that the magnetic field lines are equipotentials. Par-
ticles are followed until they reach their mirror point, which
we assume to be the source region.

Figure 2 gives the results obtained for ions detected during
the 12 November 2001 event on spacecraft 3 at 5:35:30 UT,
i.e. between two sporadic enhancements of the ion energy.
The computations have been made for ion energies covering
the energy range of the ions detected at the Cluster altitude
and for ion pitch-angles computed in the plasma frame. It is

immediately apparent that O+ and H+ ions, with the mea-
sured final energies (47 to 77 eV for O+ and 16 to 26 eV
for H+), do not come from the same invariant latitude. The
source region extends over a broad latitudinal range from
about∼79◦ for oxygen ions to∼85◦ for protons. Similar
results are obtained for the 18 November 2002 event.

This is in agreement with the results obtained with Inter-
ball AP (Dubouloz et al., 2001) and with low altitude mea-
surement from Polar by Valek et al., 2002, who identified
ionospheric outflow in the vicinity of the cusp, in a region
extending about 5◦ poleward of the cusp equatorward bound-
ary and also report that the velocity and temperature of those
outflowing ions decrease poleward of the cusp equatorward
boundary. It must be stressed that Interball data during the
events presented by Dubouloz et al. (2001) also display the
same kind of energy-latitude distribution for ions close to the
source.

Similarly, we find that the source provides the lowest en-
ergy particles (protons) from the highest latitudes. Figure 2
shows that O+ and H+ do not have the same energy at the
source, oxygen ions being more energetic than protons (29
to 54 eV for O+ and 13 to 22 eV for H+). Furthermore, the
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Fig. 3. 12 November 2001. From top to bottom: Energy-time spectrogram from HIA for all ions, spacecraft 1. GSE components and
modulus of the convection electric field as given by EDI, spacecraft 1. Energy-time spectrogram from CODIF for O+ ions, spacecraft 4.
Energy-time spectrogram from HIA for all ions, spacecraft 3. GSE components and modulus of the convection electric field as given by EDI,
spacecraft 3.
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Fig. 4. 12 November 2001. Top panel: Energy-time spectrogram from HIA for all ions. Bottom panel: Energy variation for O+ ions
corresponding to the convection velocity given by EDI.

Fig. 5. Schematic description of the effect of a pulse of the convection electric field on the particle path. E1 and E2 refer to the particle
energy: E1 >E2. Solid lines: regular velocity filter effect. Dashed line: effect of a pulse of convection velocity.

ion energy gain during their transport (18 to 23 eV for O+

and 3 to 4 eV for H+) is low compared to the ion initial en-
ergy. The computations thus indicate that the energy gain
scenario is not at the root of the measured energy ratio be-
tween oxygen ions and protons. This ratio is rather related
to the characteristics of the source region, i.e. to its spatial
extent and to the energy repartition of the heated ionospheric
ions inside the source. The grey region in the bottom panel
of Fig. 2 schematically represents the ion energy repartition

at the source which is suitable to explain the Cluster obser-
vations. This energy variation is in agreement with measure-
ments of upflowing ionospheric ions done inside the cusp at
lower altitudes (Valek et al., 2002).

As shown previously, many events are associated with sud-
den variations of the ion energy. For these types of events,
which have been observed on board the Cluster spacecraft
(Bouhram et al., 2004; Nilsson et al., 2004), either isolated
or multiple bumps in the ion energy are registered. As clearly

Ann. Geophys., 24, 1665–1684, 2006 www.ann-geophys.net/24/1665/2006/
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Fig. 6. IMF Bz component and solar wind pressure as provided by GEOTAIL for the polar cap crossings displayed in Fig. 1.
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Fig. 7. 28 September 2001. From top to bottom: Energy-time spectrogram from CODIF for O+ ions, spacecraft 3. GSE components of the
convection electric field as given by EDI, spacecraft 3. Energy-time spectrogram from CODIF for O+ ions, spacecraft 1. GSE components
of the convection electric field as given by EDI, spacecraft 1. Energy-time spectrogram from CODIF for O+ ions, spacecraft 4. The scale
used to plot the x component of the electric field differs from the others, in order to better show its variation associated with the ion structures.
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Fig. 8. Time evolution of the energy of the ion structures as deduced
from 3 satellite measurements for the 28 September 2001 event.
Points correspond to the structure number 1 and the diamond-
shaped symbols to the structure number 2 (the number refers to the
structures’ label as given in Fig. 7). The line represents the time of
flight of O+ ions, deduced from a dipolar model.

evidenced by the last two events of Fig. 1, both inside and
outside these energy enhancements, ions show the narrow en-
ergy distribution characterizing a cold beam. The ion temper-
ature is of the order of∼10 eV. Furthermore, the ion energy
before and after the events is nearly the same.

Using CIS ion measurements and the EDI electric field
deduced from the measured drift velocity, we were able to
relate the increases in the ion energy to local changes in
the polar cap electric field. Figure 3 displays such Cluster
measurement during a polar cap crossing over the Southern
Hemisphere taken on 12 November 2001. During this cross-
ing, the spacecraft were located at invariant latitudes rang-
ing from –87◦ to –78◦ and at radial distances between 8.5
and 6.0RE . The spacecraft are approximately travelling in
the dusk to dawn direction. They detect several successive
ion energy variations, as evidenced in Fig. 3, which displays
the corresponding HIA ion energy-time spectrograms and the
variations in the three GSE components of convection elec-
tric field (for spacecraft 4 CODIF data for O+ ions are plot-
ted). During this time interval, spacecraft 1, 3 and 4 detect 6
energy structures similar in terms of energy variation and du-
ration at different locations. Some of them are clearly associ-
ated with short duration increases of the convection electric
field; see, for example, the sudden increase in the convec-
tion electric field for spacecraft 3 during the first 3 structures,
from about 1 mV/m to 1.8 mV/m. However, the following
enhancements in the outflowing ion energy are not clearly
related to fluctuations of the local electric field. Thus, these
local variations of the electric field cannot directly explain

Fig. 9. Cluster spacecraft location at their encounter with the ion
energetic structures. The number refers to the structures’ label as
given in Figs. 3 and 7. It must be taken into account that the ratio of
the X and Y axes differs from one panel to another.

the observed changes in the outflowing ions. Furthermore, as
displayed in Fig. 4, even when the local electric field is en-
hanced, the expected local variation of the ion perpendicular
velocity is too low to explain the observed ion energy varia-
tion. This indicates that the fluctuations in the outflowing ion
energy are preferentially due to a modification of the drift
path, which brings to the satellite ions travelling at higher al-
titudes, i.e. having a higher parallel velocity (e.g. Delcourt et
al., 1996). This is illustrated in Fig. 5, which very schemat-
ically illustrates the effect of a convection pulse on the ion
trajectories above the polar cap.

Such changes in the convection pattern are expected to be
linked to changes in the orientation of the IMF and/or to so-
lar wind pressure pulses. Figure 6 displays the IMF condi-
tions as deduced from GEOTAIL measurements during the
3 events presented Fig. 1. These events are associated with
various IMF conditions but we verified from EDI measure-
ments that the overall convection was anti-sunward inside the
polar cap. Note that for 18 November 2002,Bz is always
negative. In contrast, during the 28 September 2001 event
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Table 1. The structure’s velocity computed from the Cluster fleet.

Date Structure S/C Velocity (km/s)

12 Nov 2001 1 1–4 7.5
2 1–4 5.3
3 1–4 4.9
4 1–4 8.8
5 1–4 6.5
6 1–4 9.3
Mean convection velocity 7.5

Date Structure S/C Velocity (km/s)

28 Sep 2001 1 1–3 10.0
1–4 10.6
3–4 12.9

2 1–3 13.0
1–4 12.8
3–4 12.9

Mean convection velocity 11

there are some northward incursions of the IMF and for the
12 November 2001 event the IMF is southward only briefly.
The analysis of ten cases shows the tendency that the more
the IMF Bz component fluctuates, the more the ion energy
varies, although no one-to-one correlation between the IMF
fluctuations and the acceleration structures can be found. In
contrast, no clear association between the variation of the so-
lar wind pressure and the variation of the ion energy detected
by the Cluster spacecraft has been found. A quite similar
result was reported by Bouhram et al. (2004), who studied
similar events and found that 70% of them were associated
with several turnings of the IMFBz component and steady
solar wind bulk parameters. Note that the behaviour of the
steady-state ionospheric convection is generally well under-
stood but that its response to the changing IMF is still under
discussion. The main debate concerns the time scale of these
changes; a nearly simultaneous response to IMF variations
or a response propagating at low velocity from the dayside
in the antisunward direction (e.g. Ridley et al., 1999; Lock-
wood and Cowley, 1999).

During the pass of 28 September 2001, spacecraft 1, 3
and 4 detected two successive enhancements in the outflow-
ing ion energy at different locations (Fig. 7). The satel-
lites were in a string-of-pearls configuration, nearly travel-
ling from noon to midnight at an invariant latitude between
79◦ and 85◦ and at a radial distance between 5.5 and 6.5RE .
Here C4 is the leading spacecraft, and C1 and C3 are lagged
with respect to C4, by about 11 min and 33 min, respectively.
Figure 7 depicts the corresponding CODIF O+ energy-time
spectrograms and the local electric field components, except
for spacecraft 4 for which no electric field data from EDI is
available. The bumps in the ion energy are short in dura-
tion, less than 5 min, and the ion energy varies from a few

tens of eV to a few hundreds of eV. As expected for a struc-
ture propagating from the dayside towards midnight, the en-
ergy increase is first detected on board satellite 3 and later
on board satellites 1 and 4. The electric field data taken on
board spacecraft 1 and spacecraft 3 indicate that the energy
structures in the ion spectrogram are associated with local
modifications of the X component of the convection elec-
tric field, with almost no associated modification of the total
electric field. Indeed, each of the two structures is associated
with a decrease of the order of 1 mV/m of the X component
of the convection electric field which passes from positive to
negative values. However, the main component of the elec-
tric field, Ey , is almost unchanged. This modification of the
local electric field, which corresponds to a diverging electri-
cal structure, may be due to a change in the local electrody-
namics linked to the ion cloud propagating from the dayside.
For the cusp events presented here, electron data reveal sub-
tle changes that are beyond the scope of this paper.

The high separation distance between the satellites during
this event allowed us to study the evolution of the ion struc-
tures. The later the spacecraft crosses the structures, the less
energetic they are. This observation is valid for both struc-
tures shown in Fig. 7. Figure 8 displays the time evolution of
the ion mean energy as deduced from 3 Cluster spacecraft.
We compare it to the time needed for O+ ions of different
energies to travel from an altitude of 1RE to an altitude of
6RE . Those ions were chosen in order to have a pitch-angle
of 90◦ at the altitude of 1RE . Time evolutions for both struc-
tures are in good agreement and we conclude that the de-
crease in the energy of the structures is probably due to the
fact that during its motion above the polar cap, the flux tube
is emptied of its particles. The first particles able to reach the
Cluster altitude are the more energetic ones. As time passes,
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Cluster detects lower energy particles whose time of flight
from the source to the spacecraft is higher.

The ion measurements simultaneously performed on
board satellites 1, 3 and 4, presented in Figs. 3 and 7, allow
to compute the velocity of the ion energy structure along the
satellites’ separation line, assuming that the spacecraft detect
the same structures. During the 28 September 2001 event, the
spacecraft motion and separation are approximately along
the convection path (Fig. 9A). This made it possible to com-
pare the velocity of the structures with the convection ve-
locity given by EDI. For the 12 November 2001 event the
spacecraft orbits were less convenient. However, spacecraft 1
and 4 are approximately located at the same zgse. Thus we
computed the structures’ velocities in the xygse plane and
compared them with the convection velocity deduced from
Cluster 1 (see spacecraft position in Fig. 9B). Here the B
field is roughly perpendicular to the xygse plane and thus the
convection velocity is approximately contained in this plane.
The results are summarized in Table 1.

The velocity of the ion energy structures and the convec-
tion velocity are very similar, indicating that the energy en-
hancements propagate at nearly the convection speed. For the
28 September 2001 event we can also conclude that the asso-
ciated modification of the local electric field is embedded in
the overall convection pattern and propagates at the convec-
tion velocity. Concerning the 12 November 2001 event, we
do not have a good enough correlation between the electric
field measurements performed on board different spacecraft
to reach a firm conclusion about the velocity of the electric
field structures.

These observations indicate that the variations in the ion
energy are consistent with a modification of the particle path
from the source to the spacecraft, due to a burst in the convec-
tion electric field possibly triggered by changes of the IMF.

For the events presented here the energy structures last
a few minutes (∼ less than 5 min), which corresponds to
∼2000 km, and the energy variation is very sharp, about a
factor 4 within 1 or 2 min. To produce such thin structures
we can consider different types of modifications of the con-
vection pattern:

i) A large-scale pulse of convection. Since the duration
of the energy structure is shorter than the estimated ion
travel time from the source to the satellite (∼15 min for
a 200 eV O+), the associated electric field burst must
also of short in duration. As shown in Fig. 3, many
energy bursts are detected successively during a 15 min
time interval. Both the low energy particles outside the
bursts and the more energetic particles inside the bursts
should have experienced the large-scale E field changes.
In this case the average electric field experienced by the
ions inside and outside the burst would be quite similar
and could not account for their difference in energy.

ii) A localised pulse of convection in a fixed and restricted
region between the source and the spacecraft. Here as

well, the enhancement of the electric field cannot be
long-lasting, otherwise, it will produce a long-lasting
ion structure. The effect of such a burst on the ion tra-
jectories is shown in Fig. 2 (blue points and squares).
Because the bursts are short in duration, compared to
the particle time of flight, their effect on particle trajec-
tories are weak. They would lead to a source region
located at high latitude corresponding to ions with high
energies (147 eV for O+ and 36 eV for H+). This is in
contradiction with the energy-latitude repartition of the
ions inside the source as deduced from the trajectories
of the ions detected just before and after the peaks.

iii) A localized pulse of convection in a region moving at
a velocity comparable to that of the ions. In this case,
the ions see a long-lasting electric field enhancement.
The corresponding trajectory is plotted in red in Fig. 2.
In this case, the particle’s energy at the source is sig-
nificantly higher than the energy of particles detected
just near the peaks and their mirror point are located
at lower latitudes which is in agreement with the prop-
erties of the source region deduced from the study of
particle characteristics outside the bursty events.

Thus, of the three hypothesis discussed above, the third is
the most likely to explain the observations. Such convection
changes propagating from the cusp in the antisunward direc-
tion have been discussed by Cowley (1992) in the framework
of magnetic reconnection at the dayside magnetopause. Ac-
cording to Cowley’s model, the flow modification is first ini-
tiated in the noon sector and then spreads toward the dawn
and dusk sectors with an expansion velocity from noon of a
few km s−1, a velocity which is comparable with the convec-
tion velocity. As proposed by Cowley (1992), this region of
enhanced flow is not necessarily extending perpendicularly
to the direction of the background convection and attenuates
as it propagates. This can explain why during the 12 Novem-
ber 2001 event the convection pulses are detected by space-
craft 3 only for the first three structures and why spacecraft 1
doesn’t detect them. Experimentally, a very detailed study of
the correlation between southward turnings of the IMF and
polar cap convection changes was reported by Jayachandran
and MacDougall (2000) using ground measurements from
a chain of Canadian Advanced Digital Ionosondes (CADI).
CADI gives the convection velocity from Doppler measure-
ments. Jayachandran and MacDougall distinguished be-
tween two kinds of responses: i) an initial response propa-
gating at the Alfv́en velocity, i.e. detected nearly simultane-
ously over the entire polar cap, and ii) if the change in IMF is
rapid enough, a step in the convection propagating antisun-
ward above the polar cap at the convection velocity.

Finally, it must be stressed that the ion beams shown in
Fig. 1 are apparently flowing closer to the magnetic field dur-
ing the bursts of convection. However, in the plasma frame,
ions detected inside and between the energy structures are
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Fig. 10.The solar wind IMFBz component from the ACE spacecraft during typical polar cap crossings when Cluster encountered ionospheric
ion beams.

quasi-field-aligned, due to the mirror force, and their appar-
ent pitch-angle differs in the satellite frame due to the effect
of convection velocity. Indeed, for “high energy” ions, the
convection velocity is small compared to the parallel velocity
and thus ions appears as field-aligned in the spacecraft frame.

For low energy ions, the convection velocity (∼10 km/s) is
not negligible compared to the parallel velocity. Thus, when
detected in the spacecraft frame such ions will appear as less
field-aligned. For example, the pitch-angle of a 50 eV O+

ion aligned to the magnetic field in the plasma frame will be
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Fig. 11. 18 May 2003.(A) Pitch-angle distribution from HIA for all ions.(B) Energy-time spectrogram from HIA for all ions.(C) Energy-
time spectrogram from PEACE. From top to bottom: downgoing electrons, electrons perpendicular to the magnetic field and upgoing
electrons.(D) Ion perpendicular velocity (blue) and parallel velocity (black) computed from HIA.

∼24◦ in the satellite frame for anE×B velocity of 10 km/s.
It is in good agreement with the pitch-angle measured for
similar conditions, for example, during the 12 November
2001 event at 06:15 UT (see Fig. 1).

2.2 Polar cap local beams

Mainly during low geomagnetic activity periods and north-
ward IMF, the Cluster satellites detect ion beams in the en-
ergy range of a few eV to a few keV leaving the polar
ionosphere. These beams are characterized by strongly field-
aligned H+ and O+ ions with similar energies showing the
typical inverted V structure usually observed in the auroral
zone. Examples of IMFBz associated with these polar cap

ion beams are given in Fig. 10. While during some events the
IMF Bz is alternatively positive and negative, these events
are preferentially observed during periods where the IMF
is mostly northward oriented. Such northward IMF condi-
tions are generally associated with polar cap arcs (Zhu et al.,
1997).

Typical measurements of such ion beams taken on 18 May
2003 between approximately 11:05 UT and 11:45 UT are
given in Fig. 11. During this polar cap crossing, the space-
craft encounters multiple outflowing ion beams as evidenced
by the upper panel showing the ion pitch-angle distribution
(in the Northern Hemisphere a 180◦ pitch angle corresponds
to upward flow). Across each extended beam region the ion
energy varies by more than one order of magnitude, whereas
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Fig. 12. 18 May 2003. (A) Energy-time spectrogram from HIA for all ions.(B) Energy-time spectrogram from PEACE for downgoing
electrons.(C) Comparison of the energy of ions (upflowing, back) and electrons (downgoing, red) at maximum of fluxes. The total energy
(upflowing ion energy + downgoing electron energy) is plotted in blue.(D) GSE components of the perpendicular electric field as given by
EDI, spacecraft 1.(E) Electric potential along the spacecraft trajectory (red curve) computed from EDI data and energy of the maximum of
ion fluxes (black curve).

between them almost no ions are detected (panel B). Ions
reach energy of some hundred eVs, corresponding to veloc-
ity antiparallel toB of about 150 km/s for hydrogen, whereas
the perpendicular velocity doesn’t exhibit any related varia-
tion (panel D). These observations indicate that the ions we
observe inside the energy structures have been accelerated
upward in the direction parallel to the magnetic field.

Note that the inverted V structure around 11:30:00 UT is
associated with another population in the energy range from
1 keV to 10 keV, consisting of a hot and isotropic hydrogen
plasma. Because of the composition, pitch-angle and en-
ergy spectral characteristics of this latter population we con-
clude that it originates from the plasma sheet or plasma sheet
boundary layer. Panel C displays electron data as energy
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Fig. 13. 18 May 2003. Electron distribution function at 11:32:21.618 UT for upgoing electrons (black) and downgoing electrons (red)
computed from PEACE data.

spectrograms, from top to bottom: downgoing, perpendic-
ular and upgoing electrons.

During this polar cap crossing, HIA data reveal a suc-
cession of ion acceleration structures related to increases in
the precipitating electron fluxes. On the other hand, during
several crossings of the polar cap, strong fluxes of upgoing
electrons were measured between the ion acceleration struc-
tures, particularly when the energy of the ion beams was
large. Clear examples of such structures are provided in a
companion paper by Teste et al. (2006)1. The polar cap thus
reveals its filamentary nature during northward IMF condi-
tions. However, during the 18 May 2003 event, we do not de-
tect such large upward ionospheric electron fluxes (Fig. 11).
This lack of measurable upward directed electrons can be due
to the fact that they could have a very low energy and be
mixed with the satellite photoelectron population whose en-
ergy range has been removed from Fig. 11. The electric cur-
rent density calculated from FGM magnetic field data, using
a single spacecraft under stationary hypothesis (not shown),
is in agreement with particle data inside the broad ion struc-
tures, i.e. the current is upwardly directed. However, a de-
tailed study of the current sheets associated with those events
is beyond the scope of this paper.

Figure 12 displays additional information for the 18 May
2003 polar cap crossing illustrated in Fig. 11. The top panel
of Fig. 12 shows the corresponding energy spectrogram for
ions and the second panel for precipitating electrons. Panel C

1Teste, A., Fontaine, D., and Maggiolo, R.: CLUSTER obser-
vations of field-aligned currents above the polar cap by northward
IMF, Ann. Geophys., submitted, 2006.

gives the energy at the maximum energy flux for both ions
and electrons. Precipitating electrons with energy of the or-
der of a few hundred eVs are simultaneously detected to-
gether with upflowing ions. The downward acceleration of
electrons is evidenced by Fig. 13, which displays the elec-
tron distribution function at 11:32:21 UT for both downgo-
ing and upgoing electrons during the crossing of the broadest
acceleration structure. Low energy electrons are photoelec-
trons up to the energy step around 20 eV. At higher energies,
the upgoing electron distribution function decreases with en-
ergy. On the contrary, the downgoing electron distribution
function is strongly peaked around 200 eV. This clearly indi-
cates that the electrons are downwardly accelerated.

The simultaneous observation of upflowing ion beams and
downgoing accelerated electrons suggests that the main en-
ergy source for these ion beams is a parallel electric field.
Electric field data (panel D) reveal the presence of converg-
ing electric field structures associated with these ion beams.
Each of the structures is associated with sudden reversals in
the local perpendicular electric field. These perpendicular
electric fields reach values comprised between 2 and 6 mV/m
whereas between the structures the perpendicular electric
field is lower than 0.5 mV/m. Such large converging elec-
tric fields probably do not map to the ionosphere but signals
electrostatic shocks which are associated with parallel elec-
tric fields (see Mozer et al., 1977). The profile of the electric
potential along the spacecraft trajectory has been calculated
during the crossing of the structures using EDI electric field
data (Fig. 12, panel D). The parallel potential was derived
by integrating the observed electric field along the spacecraft
trajectory. We assumed that the parallel potential was zero
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Fig. 14. 26 April 2001. From top to bottom:(A) Ion energetic
distribution function at 15:14:00 UT.(B) Thermal energy versus
peak energy.(D) O+ ions energy versus H+ ions energy.

on the edges of the ion beam. As it is shown in panel E of
Fig. 12, the corresponding electric potential of about 1 kV
fits well the ion energy of the spectra maximum. This re-
sult is consistent with the assumption made above that the
perpendicular potential observed at the spacecraft becomes a
parallel potential below the spacecraft.

Such a current driven parallel electric field, related to the
magnetic mirror force acting on the current carrying parti-
cles, is expected to appear when the particle flux inside the
loss cone is insufficient to carry the field-aligned current (e.g.
Knight, 1973; Bostr̈om, 2003, 2004). Note that the exis-
tence of the same kind of potential drop in the auroral zone

is experimentally well established (e.g. Lyons et al., 1979;
Akasofu, 1981; Ergun et al., 1998). Furthermore, previous
study of polar cap arcs also showed that they are associated
with a parallel potential drop of the order of a few keV (Zhu
et al., 1997).

Using polar satellite data, Mozer et al. (2001) concluded
that a parallel electric field greater than a few hundred volts
extend upward to altitudes of 3.0 to 3.5 Earth radii in the au-
roral zone. Although not excluding the existence of a weak
potential drop above this altitude, these authors suggested
that 3.5RE was the top of the acceleration region. In con-
trast, as we will show below, in the polar cap the parallel
electric field extends at higher altitudes. At the Cluster or-
bit, at radial distances of about 6 Earth radii, the simulta-
neous observation of precipitating electrons and upflowing
ions of similar energies (Fig. 12) indicates that the spacecraft
is crossing the mid-altitude part of the acceleration region.
In panel C of Fig. 12, representing precipitating electron and
upflowing ion energies, we remark that the total accelera-
tion energy (Emax electrons + Emax ions) varies from about
200 eV for the second structure to about 900 eV for the third
structure. For the two last structures, the electron energy is
lower than that of the ions, while for the first two structures
it is equal to the ion energy. If the electron and ion sources
are cold, this clearly indicates that the parallel electric field
altitude distribution varies from one structure to another. Our
hypothesis about the temperature of the source is justified for
ions because the source is the ionosphere. It is also true for
electrons, as showed by PEACE measurements. Indeed, on
the edges of the structure where ion energy is low, the elec-
tron energy falls off to less than 100 eV, which is lower than
the energy of typical energetic polar rain electrons originat-
ing from the solar wind strahl (Fairfield and Scudder, 1985).
These electron energies observed here are in better agree-
ment with those of the halo solar wind electrons as the source
of the polar cap precipitation (Winningham and Heikkila,
1974). We can thus infer that the accelerated electrons ob-
served inside the structure gained a large part of their energy
inside the structure, above the Cluster altitude. This indicates
that a parallel electric field of the order of a few hundred eV
can exist above 5 Earth radii along the polar cap field lines
and that this represents a subsequent part of the total field-
aligned electric field.

In order to obtain more information on the ion acceleration
and heating mechanisms, we performed a detailed study of
the ion distribution functions and showed that the ions’ paral-
lel temperature increases as they are accelerated. We present
here the results obtained during an event taken on 26 April
2001. Indeed, during this event, the Cluster spacecraft cross
a broad acceleration structure corresponding to ion energies
up to 1200 eV. Because of the slow variation in the ion en-
ergy at the borders of this structure the distribution functions
are measured with a good accuracy. These upflowing ion
distribution functions can be characterised by a sharp peak
and a fall off at higher energies of the form of exp(-E/E0)
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Fig. 15. 26 April 2001. From top to bottom:(A) Ion pitch-angle distribution from HIA for all ions.(B) Energy-time spectrogram from HIA
for all ions. (C) Electric field spectral density from 0 to 180 Hz from the STAFF instrument.(D) Frequency-time spectrogram for electric
field waves from STAFF in the frequency range from 10 to 3000 Hz.(E) Frequency-time spectrogram for magnetic field waves from STAFF
in the frequency range from 10 to 3000 Hz.

(Fig. 14A). The parallel thermal energy E0 of the ions is cor-
related with their acceleration energy and is about 30% of the
energy of the maximum of flux (Fig. 14B). Reiff (1988) made
the same kind of study in the auroral zone and found similar
results with thermal energies comprised between 20–30% of
the peak energy. Outflowing ions thus reach thermal energies
of the order of a few hundreds of eV, much more than their
ionospheric temperature of about 1 eV. Furthermore, O+ ions
are more energetic than H+ ions, which is inconsistent with a
quasi-static electric field as the only acting mechanism. This
difference in energy is illustrated in Fig. 14, panel C, which

represents the O+ ions energy versus the H+ energy for this
specific event.

Those observations can be due to a two-stage process with
preheating of ions perpendicularly to the magnetic field at
low altitude followed by the acceleration by a parallel elec-
tric field, as proposed by M̈obius et al. (1998). Due to the
mirror force, this perpendicular energy will then be converted
into parallel energy. Because more efficient wave heating of
heavier ions in comparison with protons has been observed
(e.g. Moore et al., 1986), it could explain the energy differ-
ence between oxygen ions and protons. For lower parallel
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electric fields this contribution would represent a larger frac-
tion of the total energy and thus lead to a larger EO+ /EH+

ratios. However, our observations show the opposite be-
haviour, with larger EO+ /EH+ ratios at high energies (Fig. 14,
panel C). Furthermore, the thermal energy is correlated with
the peak energy, indicating that the more the ions are acceler-
ated, the more they are heated. It is thus more likely that ions
are heated while they are accelerated, instead of being heated
before entering the acceleration region. A possible mecha-
nism explaining this heating and energy exchange is a two
stream instability between O+ and H+, due to the separation
of these two populations in velocity space. This mechanism
has been proposed to explain the same kind of observations
in the auroral zone (Reiff et al., 1988; Lundin and Hultqvist,
1989).

In order to detect waves possibly associated with the en-
ergy transfer between O+ and H+, we used wave data col-
lected by the STAFF instrument during this event to iden-
tify wave activity coincident with acceleration and heating
of the ions (Fig. 15). Data from both electric and mag-
netic waves in the frequency range below 3000 Hz are used.
There is very little activity in the magnetic waves, indicating
that the observed waves at frequencies below∼500 Hz are
electrostatic. Note that the electric field spectral density at
low frequency is well correlated with the ion energy profile
(panel C). Such broad-band electrostatic waves, covering the
ion gyrofrequency of the major ion species, are commonly
observed together with perpendicular heating via wave par-
ticle interaction, such as electrostatic ion cyclotron heating
(see review by Andŕe and Yau, 1997). However, such mecha-
nisms preferentially heat ions in the perpendicular direction.
They cannot explain alone the ion distribution function we
observe, which shows heating preferentially in the parallel
direction. This observation of intense electrostatic waves as-
sociated with parallel heating is consistent with energy trans-
fer from the faster H+ to the slower O+ via two-stream insta-
bilities (e.g. Reiff et al., 1988; Krauklis et al., 2001). While
we do not exclude the simultaneous occurrence of other wave
particle interactions, these observations suggest that the two-
stream instability is a plausible mechanism for the required
heating and energy exchange between oxygen ions and pro-
tons while they are accelerated by a parallel electric field.
More work is needed, however, to substantiate this hypothe-
sis.

3 Conclusions

Over the polar cap, the Cluster spacecraft observe O+ and
H+ ion beams with energies up to a few keV. They have
been separated into two distinct categories: polar cusp ion
beams originating from the vicinity of the polar cusp and
“locally accelerated” ion beams. The former ones are as-
sociated with field-aligned O+ and H+ ions with differing

energies (EO+>EH+ ). The second ones are associated with
O+ and H+ ions of similar energies.

During periods of negative or varying IMFBz, ions origi-
nating from the cleft ion fountain are detected above the polar
caps. The ions are heated/accelerated perpendicularly to the
magnetic field at low altitude and then undergo an adiabatic
convection drift above the polar cap. At Cluster altitudes,
the ratio between the average energy of O+ and H+ ions is
about 4. This ratio is interpreted as due to a large spatial ex-
tension of the ionospheric source in the vicinity of the polar
cusp, combined with the characteristic ion energy repartition
inside the source for an antisunward convection: decreasing
energy with increasing latitude. Sudden increases in the up-
flowing ion energy are detected along the Cluster trajectory.
They are probably linked with pulses of the convection elec-
tric field, perhaps triggered by changes in the IMF. These ion
acceleration structures have been shown to drift at a velocity
comparable to the average convection speed.

Inside the polar cap, structures of accelerated ionospheric
ions are observed mainly during prolonged periods of north-
ward IMF. These structures are associated with downward
accelerated electrons. In between the ion structures, up-
ward electron beams with energies up to 50–100 eV can be
recorded (Teste et al., 2006)1. Particle and electric field mea-
surement are consistent with ion acceleration by a quasi-
static parallel electric field. The total potential drop of about
1 kV is distributed along the magnetic field over distances
larger than 5 Earth radii. During their acceleration ions are
heated to thermal energy, reaching a few hundreds eV and
energy is exchanged between ions of different masses, with
heavy ions being more energetic than lighter ones. The in-
volved mechanism could be an ion-ion two-stream instabil-
ity between H+ and O+ ions. The properties of the polar rain
electrons associated with these ion beams suggest that the ion
outflows are associated with weak polar cap arcs.

Altogether these measurements indicate that the polar cusp
is a source of energetic ionospheric plasma and as the cusp is
observed for any orientation of the IMF, this source is contin-
uous. The polar cap is on the contrary an intermittent source
acting mainly when the IMFBz is northward directed. The
associated acceleration mechanism and source region are dif-
ferent but lead to the observation of ions of similar energy at
high altitude above the polar caps. More work is needed to
assess the respective contribution of the cusp and of the po-
lar cap in populating the magnetosphere with tens of eV to
hundreds of eVs ions.

Acknowledgements.The authors are grateful to E. Penou for the
development of the Cluster CIS software. E. Grigorenko thanks
the support by RFBR grant Nr 04-02-17371, 03-02-16967, by grant
HIII-17 39.2003.2, by INTAS Nr 03-51-3738 and YS Fellowship
Nr 03-55-1880 and by Russian Science Support Foundation.

Topical Editor T. Pulkkinen thanks O. W. Lennartsson and an-
other referee for their help in evaluating this paper.

Ann. Geophys., 24, 1665–1684, 2006 www.ann-geophys.net/24/1665/2006/



R. Maggiolo et al.: A study of accelerated ionospheric ion beams above the polar cap 1683

References

Akasofu, S.-I.: Auroral arcs and auroral potential structure, Physics
of auroral arcs formation, Geophysical Monograph, 25, 1–4,
1981.
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Friedel, R. H. W., Moore, T. E., Peterson, W. K.: Outflow from
the ionosphere in the vicinity of the cusp, J. Geophys. Res., 107,
A8, SMP 13–1, 2002.

Volland, H.: A model of the magnetospheric electric convection
field, J. Geophys. Res., 83, 2695–2699, 1978.

Winnigham, J. D. and Heikkila, W. J.: Polar cap auroral electron
fluxes observed with ISIS 1, J. Geophys. Res., 79, 949–957,
1974.
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