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Abstract. Test particle simulations are performed in order a fast shock has emphasized three main points. First, the
to analyze in detail the dynamics of transmitted electronsmajor increase in the electron temperature occurs within the
through a supercritical, strictly perpendicular, collisionlessramp region Bame et al. 1979. Second, the dominant
shock. In addition to adiabatic particles, two distinct nona- process responsible for the shape of the electron distribu-
diabatic populations are observed surprisingly: (i) first, antion (and therefore the heating) mainly involves the action
over-adiabatic population characterized by an increase in thef the macroscopic fields, as demonstrated in detail by ex-
gyrating velocity higher than that expected from the conser-perimental measurementSqudder et al.1986ab,c; Feld-
vation of the magnetic momept, and (ii) second, an under- man et al. 1983 and confirmed in self-consistent numeri-
adiabatic population characterized by a decrease in this veeal simulations bySavoini and Lembge(1994. Third, the
locity. Results show that both nonadiabatic populations havemain contribution for the perpendicular heating comes from
their pitch angle more aligned along the magnetic field thanthe “reversible” inflation of the velocity space volume in the
the adiabatic one at the time these hit the shock front. Thepresence of magnetic forcesgldman1985 Krauss-Varban
formation of “under” and “over-adiabatic” particles strongly 1994 Scudder et al1986a Scuddey1995 Hull et al,, 1998
depends on their local injection conditions through the large2001). This last point implies a transverse heating which
amplitude cross-shock potential present within the shockpreserves the value @t /B from upstream to downstream
front. A simplified theoretical model validates these resultsstates.

and points out the important role of the electric field as seen Nevertheless, it has been observed that the adiabaticity
by the electrons. A classification shows that both nonadiamay break down in supercritical shock waves. A compre-
batic electrons are issued from the core part of the upstreamensive statistical study of electron heating versus various
distribution function. In contrast, suprathermal and tail elec-shock parameters has shown a moderate but systematic de-
trons only contribute to the adiabatic population; neverthe-viation from the adiabatic compression rat®cowarz et aJ.
less, the core part of the upstream distribution contributes|989. Scudder et al(19869 have also noted that the con-
at a lower percentage to the adiabatic electrons. Underservation of the fluid quantity, ./ B related to the magnetic
adiabatic electrons are characterized by small injection anmomenty. requires conditions which are not obviously sat-
glesé;,; <90, whereas “over-adiabatic” particles have high isfied at collisionless shocks. Different mechanisms may be
injection angles);,;>90° (wheret;,; is the angle between invoked. The most evident concerns the small-scale turbu-
the local gyrating velocity vector and the shock normal).  |ence present at the shock front whose scattering could effi-

Keywords. Space plasma physics (Charged particle mo-ciently redistribute the energetic electrons, as shown numeri-
tion and acceleration; Numerical simulation studies; Shockc@lly (Krauss-Varban1994 Krauss-Varban et al1993 and
waves) experimentally $cudder et al.19869. Some experimental

(Scudder et a).19869 and numerical resultsveltri et al.,
1992 have even evidenced that wave particle interactions
may “cool” the electrons rather than heat them.

Another possibility is the narrow ramp of certain colli-
sionless shockNewbury and Russelll996 Newbury et al,
1998 Walker et al, 1999, so that electrons do not follow
the magnetic field variations (at least partially) and the mag-
Correspondence td?. Savoini netic moment is not conserved anymore. Even if the spatial
(philippe.savoini@cetp.ipsl.fr) scale of the magnetic and electric field variations inside the

1 Introduction

The current understanding of the electron heating (for a re
view, seeScudder(1995 and the references herein) through
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ramp is not too small, a certain percentage of the transmittedhe magnetic field and brings closer particles in the perpen-
electrons can be demagnetized. As infered theoretically bydicular velocity space. For example, suppose two particles
Cole (1976 in the presence of an electric field gradient, the have the velocity;=v, andv,=v,+8v, respectively. When
effective gyration frequency®l’ differs from the magnetic  including a potentiah¢ in space along thé& field, the con-

gyro-frequencyw.. by the value (given in the normalized co- Servation of the total energy allows us to obtain at the first

ordinates used in this paper): order, the relation :
~ > dE . m -
(wizf)zzwge - = 1) (vp — vl)flnal _ ZeAe(p V(v — vl)lnltla| ) @)

where the electric field gradient along thejirection%‘xi is  Then, the electron trajectories in velocity space become
assumed to be constant within the transition region. Thiscloser depending on the value of the potential diap lead-

means that the scanning of the shock ramp by the electroing to a reduction in the volume occupied by the electrons in
gyromotion may drastically change according to the localthe velocity space, i.e. corresponding to an electron cooling.
strength of théf;x’i gradient with respect to the local field, Such a mechanism is well-known to operate along the mag-
where “local” means that terms of Efjcorrespond to quan- netic field lines where particles are freely accelerated by the

tities “seen” locally by electrons. parallel electrostatic potential but in no way can be invoked
This mechanism has been analyzed in details theoreticallyn the strictly perpendicular cas& (L B).
within the shock front Gedalin et al. 1995ac; Krasnossel- At this stage, in order to avoid any misunderstanding, it

skikh et al, 1995 Balikhin et al, 1998 Ball and Galloway is important to define precisely the use of the words “adia-
1998. All these papers investigate the electron superadiabatic” and “nonadiabatic”. Usually, nonadiabatic behavior
batic heating through the divergence of electron trajectoriesneans that the electron downstream temperature is higher
in the velocity space (i.e. using the Lyapounov coefficientthan the electron heating expected from the magnetic field
y). These authors demonstrate that the cross-shock potemggradient only. If the time/space variations of the magnetic
tial leads to an exponential expansion of close trajectoriesfield are non negligeable within one gyro-periogd£>t..),
In particular, a noticeable percentage of demagnetized eledhe electric field speeds up the particle in such a way that
trons is always formed within the ramp itself and constitutesthe gyrating velocity exceeds the values obtained in the drift
a good candidate for nonadiabatic heating through a shoclkpproximation, leading to nonadiabatic particles. Usually,
front above a certain threshold. More recently, by using self-there are two different ways to introduce the concept of
consistent, full particle simulationsembege et al(2003 adiabaticity which are not totally equivalent. First, as in
have analyzed in detail the mechanisms responsible for th&oodrich and Scudd€t984), adiabaticity is associated with
electron demagnetisation at the shock front, rather than fothe drift approximation or the conservation of the magnetic
cussing on their adiabatic/nonadiabatic behavior. They havanomentu s/, s~1, wherew,; and uys are the upstream
confirmed the important role of the electrostatic field gradi- and the downstream magnetic momenta, respectively (indi-
ent along the shock normal in the demagnetisation processesgdual particles approach). Second, adiabaticity is associated
but recovered only a partial (qualitative) agreement with thewith heating, and conveys the increase in the internal energy
theoretical arguments proposed Bwlikhin et al. (1998. that an assembly of particles should gain, owing to the con-
Despite all these efforts, no detailed analysis has been peservation off’; /B (statistical approach).
formed until now on the criteria intrinsic to the transmitted  The two different representations of the first adiabatic in-
electrons, in order to predict which part of the upstream elecvariant must be used carefully. As a first step, hereinafter
trons can become adiabatic or nonadiabatic. in this paper, we follow the first approach (individual tra-

According to the adiabatic theor\érthrop 1963, the  jectories) to define adiabatig.f,/1,s~1) and nonadiabatic
gyrating velocity of a particle moving under the influence of (g5 /u1us#1) electrons. Then, the primary goal of this paper
an increasing (decreasing) magnetic field alone will increases to investigate the respective role of the macroscopic fields
(decrease) in such way that the magnetic momentll be gradient (magnetic and electric fields) and of the injection
conserved or increased. Nevertheless, such a picture is irconditions into the shock front, in order to account for the
complete, especially when electrostatic field gradients ardinal state of individual particles.
self-consistently included in the shock front. In this case, the This paper is structured as follows. Section 2 contains
opposite behavior, leading to a decrease in the gyrating vea brief description of the 2-D full-particle simulations used
locity, is also possible even for a strictly perpendicular shock,to analyse the supercritical collisionless shock. In contrast
as shown in present results. with previous works based on an oblique shotkrikege

For oblique shocks, the macroscopic electrostatic fieldet al, 2003, the present analysis will consider a strictly per-
component parallel to the magnetic field accelerates incidenpendicular shock. Section 3 examines the time behavior of
solar wind electrons through the shock, resulting in a peak irelectron trajectories by using test particle simulations where
f(v) offset alongB in the downstream direction relative to fields profiles are issued from the 2-D full particle simulation
the plasma rest frame. Theoretically, it is simple to show thatresults. Surprisingly, two types of nonadiabatic electrons,
the parallel electric field strongly accelerates particles alongover-adiabatic and under-adiabatic, defineduy/w,s>1
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and <1, respectively, are identified in the transmitted popu- L B B L L I B
lations. Section 4 presents a simplified theoretical model in
order to account the formation of the two types of nonadi-

abatic populations. A parametric study on the conditions of
test particle simulations is presented in Sect. 5 in order to val-
idate the theoretical model, while discussion and conclusions
are summarized in Sect. 6.

2 Numerical conditions

Time

In order to investigate the electron dynamic, a 2-£1/fully

electromagnetic, relativistic particle code, using standard

finite-size particle techniques, is used, whose details have

been given in.embege and Savoinj1992 andSavoini and

Lembege(1994). The use of full-particle code is necessary,

in order to obtain self-consistently the magnetic and electric

field components present at the shock front, and in particular,

the cross-shock potential which is expected to play a major

role in the dynamics of transmitted nonadiabatic electrons.
Basic properties of the numerical code are summarized

as follows. Nonperiodic conditions are applied along the _

x-direction within the simulation box and periodic condi- X

tions are used along thedirection. The plasma simulation

box lengths arel ,=6144 andL,=256, which represents Fig. 1. Time evolution of the magnetic moment rafig/.,.; for the

102 and 43 inertial ion lengthsd/,;), respectively. The same selected particles of Fig. 3 (panels g, h, i) in absence of the

strictly perpendicular collisionless shoc® £,=90°), con- electrostatic field componengf,=0). In order to emphasize the

sidered herein, will allow us to simplify both the theoretical differences wij[h Fig. 3, the same color code for the curves (black,

model of Sect. 4 and the interpretation of the results (wherd©d and blue) is used.

®p, is the angle between the upstream magnetic figlend

the shock normal). ~
Initial plasma conditions (i.e. upstream region) are sum- B,,

marized as follows (all physical parameters are normalised °[

to dimensionless quantities ™ ”): light velocity ¢=3,

upstream magnetic field,=1.5 (then, we have a ratio -
wpe/weeA2), temperature ratio between ion and electron
population?; /T,=1.58, thermal velocityv;j. x,y,.=0.3 for ‘
electrons andyy; »,y,,=0.012 for ions. The ratigg, of the

electron kinetic to the magnetic pressure and the &ilfve- =
locity are 8,=0.24 andv4=0.075, respectively. The shock
propagates in a supercritical regime (=5.14). A detailed
study of the electrons dynamics and trajectories required one
to use a high mass ratio. Nevertheless, at that time, a realistic <<
mass ratiom; /m,.=1840, is still out of reach of 2-D, self- =
consistent, full-particle simulations. Only 1-D shock simula- X
tions manage to include such a realistic mass ratiewer

et al, 19921 Scholer et aJ.2003. As a compromise, a Fig. 2. Enlarged view of the main magnetic field component
high mass ratio is used hereafter in this papey ¢n,=400). By, (x, y) around the shock front at the tim&(a%;l) chosen
This value is high enough to separate the dynamics of elecfor the test particles simulations.

trons and ions, and to obtain more realistic space-charge ef-

fects and electric field gradients at the ramp than for a lower

mass ratio. In terms of this lower mass ratio, we recoverLembege and Savoinil992 Scholer et a].2003 Lee et al,

the main characteristics of a supercritical shock. Figure 12004. Simultaneously, a shock front rippling, evidenced in
shows cyclic self-reformation of the shock front, mainly due Fig. 2, moving along the shock front, is the source of an ad-
to the reflected ion population which accumulated over dis-ditional nonstationarity. For the perpendicular case, the rip-
tance from the ramp until their density was high enoughpling has been identified as instabilities lying in the lower
to form a new shock frontLembege and Dawsqnl987, hybrid range and triggered by cross-field currents supporting

°
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the large field gradients at the froritgmbege and Savoini Three distinct classes of transmitted electrons are identi-
1992. These kind of instabilities are well-known to be of fied (adiabatic, “over-adiabatic” and “under-adiabatic” parti-
secondary importance on the global transmitted electron dyeles namely, whose main features are summarized in Fig. 3.
namic (for the formation of local, flat-topped distributions), Panel (a), used as reference, shows the time evolution of
both experimentallycudder et al.1986ab,c) and numeri-  thex position of the particles (thin line) crossing the shock
cally (Lembkege and Savoinil992 and will be excluded for  front (thick line). Panels (b) and (c) evidence the local
simplicity in the present analysis. magnetic and electrostatic fields seen by the particle versus
A numerical test particle approach has been used basetime. Panels (d, e, f) represent the corresponding time varia-
on all field components along the shock normal only and istion of the perpendicular velocity component. The change
summarized as follows. All secondary shock features whichin V; can be evidenced by the amplitude of the oscilla-
complicate the analysis have been eliminategtaweraging tions, which shows that all electrons gain (or lose) perpen-
all field components issued from 2-D, full-particle simula- dicular energy only during their crossing of the shock ramp
tions (suppression of the shock front rippling) and by con- (56505,; <7<58005,.). During this time period, particles
sidering a given time only (suppression of the front self- also undergo the effect of the electrostatic field present in
reformation). In contrast with the self-consistent simulationsthe shock front. One striking feature is that no electron can
where both particle and electromagnetic field dynamics aréde considered as demagnetized, as define@ddg (1976,
coupled, test particle simulations follow individual particles Balikhin et al. (1998 and Lembage et al.(2003, and so,
within pre-computed electromagnetic fields. Then, we onlyeven if the spatial widths of both thE and B fields at
solve a particle pusher, following this set of first-order cou- the shock ramp are comparableg,~Lp,. Indeed, an en-

pled differential equations: larged view of the velocity space (not shown here) evidences
that all particles regardless of whether they are “adiabatic”,
dr - (3) “under-" or “over-adiabatic” roughly suffer the same number
dt of gyrations &21) when crossing the ramp. The three se-
dv _ glE +v x B], (4) lected electrons differ from each other by their magnetic mo-
dt ment variation between upstream and downstream regions,
where E=E(%,5) and B=B(%,y). Presently, onlyx- i.e. their ratiopgs/wwys, shown in panels (g, h and i). The

profiles along the shock normal are concerned, as explainedMe range spent by the electron during the ramp crossing
above. At late time?@G.Z&T);l), a shock profile has been (defined in panel b) has been reported in all panels (colored
chosen from the 2-D, full particle simulation at the end of Orange area). 1;helfoot region is almost absent (the simula-
a self-reformation cycle, where the foot is almost absent, tglion timer=6.28x ; has b.een chosen fgr sucha reas_on) and
avoid any interaction of the incoming electrons with the foot ©Nly éads to anincrease in the fluctuations of, but with-
pattern. As a consequence, only the macroscopic fields at th@ut modifing the mean value of this parameter. The impact
ramp will control the time evolution of the particles through ©f this shock precursor will be not discussed in this paper.
the shock front. Such a test particle method is quite appro- 1he main differences between these particles can be de-
priate to montain control of the initial particle locations both Scribed as follows: _

in the real and velocity space (phase space dependance anal-() “Adiabatic electron (panel (g) of Fig. 3). As the par-

. . N » ; ; ) -1
ysis). We will see that these initial conditions have a strongticle goes into the shock front%5650v,,,), the fluctua-
impact on the electron dynamics. tions of the ratiqu/u,s increases but the main value remains

around 1. At the time the electron goes further into the down-

stream region?(;SQOGB;j), it reaches a time-averaged value
3 Numerical results: a single test particle approach of ~1.2 until the end of the simulation.

(ii) “Over-adiabatic” electron (panel (h) of Fig. 3).

At initial time, the (stationary) shock front is moving with This process does not seem efficient for the period
a velocity V,,=0.38 along thex-axis (corresponding to 56565;61<?<56905;61, which corresponds to the first part
M 4=5.14 in the 2-D full particle simulations). Electron test of the ramp. Itis in this particular region (whevet >0) that
particles are at rest in the solar wind frame at some dis1embege et al(2003 2004 have observed the demagnetiza-
tance upstream from the shock frotk£200A). It is im- tion process of the incoming electrons for an oblique shock.
portant to point out that all test particles are at the same We will see in Sect. 5 that such a process does not seem to
location. Electrons are distributed over a velocity sphere ofbe a good candidate to explain the present “over-adiabatic”
radiusvshei=0.26, so that only the phase angles differ from electrons in a strictly perpendicular shock. Then, the mag-
one particle to the other. As a reference, the valyg=0.52 netic moment ratiqu/u,s continues to rise up almost to 4
corresponds to the thermal velocity defined in the upstreanin the second part of the ramp (WwheveE <0) and reaches
electron distribution used in the full particle PIC simulation. its maximum value //u,s~9) when the particle leaves the
As a consequence, all electrons see exactly the same shodvershoot and stabilizes around 7, further downstream.
profile, but their velocity components relative to the shock (iii) “Under-adiabatic” behavior (panel (i) of Fig. 3). We
profiles and associated pitch angles will differ (phase anglesbserve that the ratig/u,s remains around 1, during the
effects). first part of the shock ramp. As the electron penetrates into
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Fig. 3. Main characteristics versus time of selected electrons illustrating the three different types of transmitted electron populations (test
particles simulation). All particles see the same macroscopic fields and have roughly the same trg@ctecpordinate of the particles

(thin black line) and mean-position of the shock front (thick pink linefb) and(c) time history of theﬁtZ andflx fields seen by the different
electrons.(d) to (f) and(g) to (i) show the time history of the perpendicular velocity and of the momentumudijiq s respectively, where
M:mvi/ZB andB is thelocal magnetic field seen by the particle. Black (panels d, g), red (panels e, h) and blue (panels f, i) colored plots are
used in order to identify the so-called adiabatic, over-adiabatic and under-adiabatic electrons respectively defipgd.hw1, >1, <1

(nus anduyg are, respectively, the upstream and the downstream value of the magnetic momentum).

the shock ramp aE%SGSQB;el, the magnetic momenta ra- fraction of the first part of the ramp, and then, can be re-
tio suffers a drastical drop t@/u,s~0.15 which takes place lated to the impact of the shock on the particle dynamic.
during a short time range of several electron cyclotron pe-On the other hand, the “over-adiabatic” behavior is a much
riods (Akloagel, where&‘);el is the local electron gyrofre- slower process, occurring within both the ramp itself and a
quency, i.e. within the first half of the ramp too). A close part of the downstream region. Obviously, the slow per-
look of the perpendicular velocity (panel f) evidences thatpendicular energy changes involve other mechanisms. One
this drop is essentially driven by a decrease in theam-  possibility concerns the wave-particle interactions. It is out
plitude and not by a poor magnetic compression of a demagef the scope of this paper to investigate such wave activi-
netized electron. This indicates that the “under-adiabatic™ties. Nevertheless, it is important to bear in mind that in
process does not involve the magnetic field components, buself-consistent 2-D, full particle simulations (even integrated
rather the action of the space-charge electric figld Fi- along they-direction), electric and magnetic fluctuations are
nally, as the particle goes further into the downstream regionpresent (along the-direction). Such a fluctuation can effi-
the ratiou /s remains roughly constant. This particle is a ciency scatter particles, as demonstrate&agimabadi et al.
good example of “under-adiabatic” behavior, although some(1992 and Krauss-Varban(1994 with the use of Monte-
similar particles exhibit the slight increase in their magnetic Carlo simulations.
moment ratiou /s in the downstream region. For them,  The “under-adiabatic” population is the most surprising
other downstream mechanisms have to be invoked which aréeature of a strictly perpendicular collisionless shock. In or-
out of the scope of this paper. der to investigate the role of the macroscopic electric field,
The comparison of “under-” and “over-adiabatic” elec- another test particle run has been performed, in which the
trons allows us to point out that the underlying processessame electrons have been followed in absence of the longi-
are not spatially correlated. Under-adiabatic behavior takesudinal electric field £;,). Figure 4 shows, respectively, the
place systematically within a very short time, within a time evolution of the magnetic momenta ratigu, s for the
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(a)

5200 5400 5600 5800 6000 6200 6400

time

Fig. 4. Time evolution of the magnetic moment ratig 1, s for the
same selected particles of Fig. 3 (panels g, h, i) in absence of the b

s > : (b)
electrostatic field componenkf,=0). In order to emphasize the E . r T T T T
differences with Fig. 3, the same color code for the curves (black, ;
red and blue) is used.

same “under-adiabatic” (blue line), “adiabatic” (black line) —oosf 3
and “over-adiabatic” (red line) particles defined in Fig. 3. Of : ]
course, this simplified simulation neglects many features of i ]
a real collisionless shock. Nevertheless, some information et} E
can be deduced: First, the adiabatic particle exhibits no no- ] :
ticeable change in the ratjo/u, in the two casesH;, in- E . . . . .

cluded/excluded). Even if the individual trajectory is not the ° ' z ? * * °
same, the magnetic momemntdoes not depend on the elec- time

tric field component, in agreement with the adiabatic theory.

Second, the “over-adiabatic” (red) particle appears to have (c) 3

an adiabatic behavior. This confirms that (i) thg. field \

can extract some electrons from the adiabatic “soup” to force 150 >
these electrons to reach an overadiabatic level, and (ii) that E
any turbulence at the shock front is not necessary in order to =

obtain some overadiabatic electrons. Third, the most striking
feature is that the under-adiabatic electron behavior totally
disappears, which clearly evidences the key role of the elec-
trostatic field component.

Since all electrons see the same shock profile, one has to
determine how the electrostatic field contributes to the for-
mation of these different electron populations, and to identify
the main parameter connecting this field to fhevariation 1
and to the velocity phase angle in the velocity space. For this
purpose, a simple theoretical model is discussed in the nextig. 5. (a) Sketch of the two-dimensional simulation shock front
section. where the injection angle;,,; is defined between the normalof

the shock front (along) and the local gyrating perpendicular ve-
locity. The upstream magnetostatic fieBj, is outside the simu-
4 Theoretical model lation plane.(b) Enlarged view of time history of the electrostatic
field component seen by the injected particles (thin line), within the
In a first approach, we followCole (1976, where the mag-  ramp. A bestfitis performed with dorder polynom to get the,
netic field is supposed to be constant. This restrictive ap-coefficients used in our theoretical model and is represented by the
proximation has the avantage of simplicity and allows someSauares(c) plot of the quantitys (Eq. 5) versus the injection angle
analytical solutions. This approach is valid as long as ong’inj @ndv_ (gyrating velocity). The ad!al_oatlc I‘|‘ne (th'fk line) sep-
considers only transmitted particles which suffer nonadia-2'¢S (€ two nonadiabatic populations: (i) the “under-" (blue dashed
. . lines) and the (ii) “over-adiabatic” electrons (red thin lines).
batic processes on a time scale smaller than the magnetic
field changes at the shock front. However, in contrast with
Cole’s model, the electric field gradiewtE is not supposed

15 20
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to be constant at the ramp. Instead, the self-consistent time (ii) The quantity J(v,, 6;,;) is almost independent of

varying electric field seen by the particles (frahd C simu-  the v, parameter, except for the very small values. When

lations) is injected into the analytical equations. v <0.01, all transmitted particles lie in the domais-0, i.e.
Consider the motion of a charged particle of masand  their perpendicular gyrating velocity increases. This can be

chargeyg in an homogeneous magnetic fieBi-£ B,e;) and in understood if one keeps in mind that the quangitgtrongly

an electric field gradientf=E;e,). The equation of motion depends on the particle gyromotion via the velocitiesind

is vy, as described in the Appendix. When becomes very

dy =N small, the gyromotion term in EqsA2, A3) exhibits only
md—:q[z ant"e, +v x B,], the contribution of the electric field, and then are always pos-

t .y
-0 itive.
. trons are almost independent of the upstream perpendicular

Ep(t)= "i: g velocity forv; >0.3, and are defined only for injection angles

A= = ne around 90. Nevertheless, the lack of magnetic field gradient

. o in the model does not allow one to deduce relevant informa-
When Ey, (t) is known and the magnetic field is assumed 10 tion on this particular population.

be constant, this equation can be easily solved and allows |, is clear that such a simple model cannot describe in

us to determine all velocity components (vy andv;). AS el the electron dynamics at the shock front. Our model
described in the Appendix, perpendicular velocitigsand o\ erestimates the “under-adiabatic” population as compared
vy are a function of two independent parameters: (i) theiry, the gthers, mainly because no magnetic compression is in-
gyrating velocity V. (in the particle’s frame) and (iin;  ¢juded @,=cre). Nevertheless, in this paper, we appeal to
defined in Fig. 5a WhICh is the. injection” angle defined be- o global behavior of the transmitted electrons rather than
tween the perpendicular velocity. and the normak to the ¢ exact amount of perpendicular gyrational kinetic energy
shock front at the time the particle hits the leading edge ofgain (joss) at the shock front. At that point, the model can
t_he front. This angle is an .|mportant feature in the |nterac—he|p us to emphasize the role of two parameters, namely the
tion of the electrons with fields at the shock front. Then, initial perpendicular velocity ; and the local injection angle

itis useful to compute the quantify (in the moving refer- 4. This |ast quantity plays a key role in understanding the
ence frame of the shock) which is the difference between the 1 ation of “under-” and “over-adiabatic” electrons.

gyration velocity before and after the particles hit the shock From this simple theoretical model, the two different pop-

frlontr.] Aj_?fummg thbat the magnt(ajtlc field is consg@whis sim- ulations strongly depend on the electron position of the Lar-
ply the difference between the downstream and the upstrear, . o4 radius circle at the time it hits the leading edge

magnetic moment when transmitted particles undergo the of the shock front (i.e. injection angle,;), as reported

effect of the electric f'el(E”‘_ only. : in Fig. 5. To obtain a first insight, we have reported in
For the electron population, we have the relation Fig. 6 (bottom), the gyrating velocity (in the particle ref-
S, Oinj)=v2 — v2 =2 + vfy)gyrational— V2, . (5)  erence frame moving at the guidipg center veIoc_ity) of the
particles in Fig. 3 at the injection time. The velocity gy-
Figure 5b shows the electric field (thick line) seen by roradius decreases (“under-adiabatic” electron) or increases
the particles as these cross the shock. This corresponds {eover-adiabatic” electron) during the first gyration within
a fraction of the first part of the ramp (Fig. 1), just after the ramp. As the particles go deeper into the ramp, they see a
hitting the shock front, where electrons suffer a drastictime increasing electric field. Consider an electron at rest in
change in their magnetic moment. The time evolution of thethe upstream region whose trajectory is represented in Fig. 6.
electric field of Fig. 5b is fitted by a 4th order polynom with Then, in the dashed area (no dashed area) of the top panel,
chi-square goodness of fit equal t&£107°. Using these  the electron moves in the direction (opposite direction) of the
values in Eq.%), the dependence ofversus;,; andv, has  electrostatic field and then loses (gain) perpendicular kinetic
been plotted in Fig. 5¢. The valués<0 (dotted lines) and  energy. This process essentially occurs within the first gyra-
JI>0 (thin lines) determine the region where “under-" and tion as the electron penetrates the shock ramp and is injected
“over-adiabatic” electrons can be, respectively, identified.into anothern | velocity gyroradius. Slightly later, the elec-
In this model, “adiabatic” particles are characterized by thetron will see roughly the same field profiles and will gain/lose
thick line (3=0) separating the two nonadiabatic popula- the same amount of energy through the magnetic and electric
tions. This figure allows one to stress three main points.  field gradients, and the resulting motion (increase or decrease
of v ) will be amplified.
(i) First, the 3<0 region spreads frony;,;~0° to
0;,j~90°. No “under-adiabatic” electrons exist féy,; >90°
for any perpendicular velocity value. In contrast, the “over-5 Multiple test particle approach
adiabatic” population is clearly separated from the “under-
adiabatic” one and is observed for higher injection anglesSince the injection anglé;,; is an important parameter to
(6inj>90°). account for the existence of an “under-adiabatic” particle,
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Fig. 6. Sketch of the electron trajectory (in the reference frame mov-Fig. 7. (a) A spherical shell of 580 electrons (test particles) is
ing with the particle) when the particles hit the shock front (injec- |ocated atx=200A, upstream from the front of the moving su-
tion time) for the nonadiabatic behavior. All nonadiabatic particles percritical collisionless shock. The shell is aligned along the up-
with a perpendicular gyrating velocity (velocipf andvp) inthe  stream magnetic fieldH,), (b) reference frame used for the spher-
left part of the plot (blue frame) will suffer a “under-adiabatic” be- ical shell (radiusvsper), () initial upstream locationd,, ¢,) of
havior from the electrostatic field present in the ramp. Conversely.electrons versus their final state in the downstream region. This
the particles (velocityz andvg) in the right part of the plot (red  downstream state is indicated by the color code identifying the adi-
frame) will be “over-adiabatic” under the action of the shock ramp abatic (black), “under-" (blue) and “over-adiabatic” (red) electrons,
electrostatic field. The green arrow represents the direction of theys used in Fig. 1. We compute the mean valug df the down-
supercritical shock propagation. At the bottom, an enlarged viewstream region over lots of gyrations, from the overshoot to the end
of the velocity space (several electron gyroperiogy is plotted of the simulation.
before and after the particle hits the shock ramp. The gyromotion
around the injection time (i.e. in the upstream region just before
the electron enters the ramp) and the first full gyration performedgy|ts is directly possible. In order to simplify the representa-
within th_e ramp are indi_cated, respectively, by a thick orange ”netion of the particles in the velocity space, we have projected
and a thick dotted blue fine. the spherical shell on the plafig ¢,, where the phase angles
0, andg, are, respectively, defined by the angle between the
vectorv and the plane perpendicular By and by the angle
we have performed similar test particle simulations and anapetween the projection af in the perpendicular plane and
lyzed a spherical shell (in the velocity space) of 580 individ- the direction of the shock normal(see Fig. 7b).
ual electrons (Fig. 7a) instead of one test particle. A caveat A spherical shell of radiusshei=0.26 is used at the same
is the fact that herein, the electrons do not fill the whole position as the previous test particles of Sec&azQOOZ)
maxwellian upstream distribution, but instead only one par-por a7,~5.14, the number of nonadiabatic electrons rep-
ticular part or shell (they have the safigel). The depen-  yesents about 44% of the total transmitted electrons (for

dence on the shell radiugney will be analyzed by launching 9, —90°, no incoming electrons are reflected), with 26%
a run with different shell radii as discussed later. “over-adiabatic” and 18% “under-adiabatic”.

N o N
=100 Y 100

by

Our approach enables us to cover all different gyrating ve- Figure 7c¢ represents locations of components of the up-
locities fromv ,=0 to vshell, i.€. to analyze the impact of the stream electrons (each dot stands for an individual particle).
phase angles in the velocity space. Indeed, in a strictly perin this configuration, only 2 electrons have a velocity exactly
pendicular shock, all particles which belong to the same ringaligned along the magnetic fieBl for exactly6,=+90° and
in the velocity space will have the sariie when they hitthe  ¢,=0° (v,/=Usher). Note that the colors used are similar to
shock front. Simultaneously, since a ring covers different in-those in previous figures. Figure 7c allows one to emphasize
jection angles frond;,,;=0° to 180", a comparison between three important points.
the theoretical model (Fig. 5¢) and the present simulation re-
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() Even for a high Mach numbeM 4~5.14, adiabatic
electrons form almost half of the total transmitted electrons
(about 56%). These electrons are initially localized within
the range-50° <0, <50 for all values of the angle,. This
means that an adiabatic electron is defined by a high perpen-
dicular velocity component, or, in other words, by an ini-
tial pitch anglefz;=(B, v) (defined by the angle between
the magnetic field and the velocity vector) within the range
40° <0, <13 (5, =90°—6,). Itis important to emphasize
that since the adiabatic population is not dependent on the
angleg,, it is also nondependent on the injection anglg
(linked to¢,). Then the initial pitch angle determines which
particle will have an adiabatic or a nonadiabatic behavior but
is not a relevant parameter to distinguish between the “under-
" and “over-adiabatic” populations.

(i) The “over-adiabatic” electrons represent a smaller
population. They are localized at high (|6,|>50° and
—80°<¢,<80), i.e. have a small, initial Larmor gyroradius
(their velocity is mainly aligned along the magnetic field).

3693

do not exhibit any strong dependency versus val-

ues (note that the shock velocity corresponds to about
v,2~0.38). In summary, the “under-adiabatic” pop-
ulation has an initial perpendicular velocity spreading
within a largev; range (005<v, <0.26). This means
that v, is definitively not relevant for identifying the
“under-adiabatic” population.

On the other hand, a large part of the “over-adiabatic”
electrons (red dots) are localized around the origin of
the perpendicular velocity space (small initial pitch

angle) and form almost the first circle of our shell

(El%0.05).

Finally, the adiabatic population (black dots) fills the
whole velocity space and no clear separation can be
made between adiabatic and nonadiabatic particles from
this diagnostic.

(iii) About 18% of all transmitted electrons exhibit an
“under-adiabatic” behavior. The initial repartition of these

electrons covers roughly the same broad rafgangles as The important role of the upstream pitch angjg; in sep-

the “over-adiabatic” populatior{>50°). It is interesting to arating adlabatlg and. nonadlab.atlc particle is |Ilpstrated f_rom
Fig. 7c. Nonadiabatic populations are essentially localized

note that when a spherical shell is launched At Before | . .
the present shell (not shown here), the repartition of the «yn" the ranged), >30" andd, <—30°, whereas the adiabatic

der” and “over-adiabatic” populations in the velocity space population lies more or Ie_ss in the rang§80°§9U§30°.
(6, 6, is roughly reversed. This spatial rangeﬁo:acor- Then the nonadiabatic (adiabatic) populations are character-

responds to the distance covered by the shock front durin hEd b{ a gg:allflrcomn?onr?nt of the veIocu)llQ h\;\g/;hverrtflin
half an electron gyro-period (2z..). During this time, the e perpendicular component. (v, >v,/). However, the

spherical shell rotates by 180which changes the locations pltph an.g,l,egﬁ IS |_rrelevant to separate “under-" and “over-
of the nonadiabatic electrons within the velocity space whenad'abat'c populations.
these hit the shock front (i.e. they are coming from the op- [N order to obtain a more quantitative insight into the
posite side of the shell). This feature emphasizes the strorﬁonadiabatic electrons, one must separate both populations
dependance of the nonadiabatic electrons versus the injectidhunder-" and “over-adiabatic” populations) at the injection
angle. time and not versus upstream parameters only. Figure 8b
The understanding of the final downstream state require®!0tS theftas/uus ratio versus the injection angl,;. The
one to investigate the local conditions, in terms of particle MOSt prominent effect concerns the “under-adiabatic” parti-
velocity and magnetic/electric field profiles seen by the par-Cles Whos@;y,; is clearly limited to the range®86;,; <90,
ticles at the injection time. These conditions are summa-Whereas the “over-adiabatic™ pqpulatlon is essentially w!thm
rized in the Fig. 8 which shows characteristic parametersh€ range 69<6;,;<180°. At this stage, we have to point
(i) those defining the electron itself (i.e. the perpendicularOUt that “over-adiabatic” particles exhibit a continuous in-
velocity and associated quantities) and (ji) those describing"€@se in their magnetic moment through the shock after the
the interaction between electrons and the electromagnetifOP Of /s Within the first half of the ramp (see Fig. 3h).
fields (i.e..). Panel (a) shows the locations that the different Then the resulting downstream valug, (and associated ra- -
electron populations (color refers to their downstream adia-i0 #ds/ius) Cannot be used as a precise criterium since it
batic/nonadiabatic state) occupy within the perpendicular vedoes not maintain a hlstory of the local .|nject|on conditions
locity plane 11, 715) at the injection time. Let us keep in 2t the ramp (anglé;,;). This may explain the presence of
mind that all particles have the same velocitigngi=0.26) some “overadlabatu_:” electrons with an injection angle be-
and see exactly the same shock profiles (all magnetic an$PW 90°. More precisely, these electrons spread out over a
electric field components), whereas only the gyrating veloc-Wide angular range (36-6;,j <18C°), but their density de-
ity around the magnetic field (te. component) varies from ~créases when approaching extrema angular valuesafsd
one particle to another (i.e. from one circle to another). Thel80), as shown in Fig. 8b.
following considerations can be made: On the other hand, adiabatic particles are observed for all
possible angles froré;,,;=0° to 18C. Obviously, this pop-
— “Under-adiabatic” electrons (blue dots) are mainly lo- ulation is totally independent of the andig;, which is co-
calized in thev ;>0 direction and are approximately herent with the adiabatic scenario where the gyration energy
distributed along the&y,» direction. However, these is only proportional to the total magnetic field.
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(@ and for a lower mass ration( /m.=42), and the magnetic
momenta ratio diagnostic has not been used at that time. This
(et is in contrast with the present analysis based on a strictly
perpendicular shock and the use of a much higher mass ra-
tio (m; /m,.=400). First, for an oblique shock, demagnetized
electrons suffer a strong acceleration along the magmetic
field. Such an acceleration cannot occur in a strictly perpen-
dicular shock, and the particle dynamic is totally different

R . o whendg, changes from 90to the oblique cas&g, <90°).
Vi Second, the dynamics of the two populations (ions and elec-
(b) trons) are more clearly separated for a higher mass ratio. For

clarifying the situation, we have performed an additional 2-
: D PIC simulation of a strictly perpendicular shock, using
Hus o T ] o Hgy/lys > 1 now a lower mass ration; /m.=42) identical to that used
* o Wy /Uy <1 by Lembege et al(2003. Comparison between both simula-
tions ¢n; /m,.=400 and 42) shows that the maximum ampli-
tude of the electric field gradient measured in the first part of
. the ramp (not shown here) is roughly the sarfeZ0.1).
However, the time which during electrons see the electric
m field is higher form; /m,=400 (A;~15t,,, whereT,, is the
local gyro-period computed inside the first part of the ramp)
than for the low mass ratio\(~67,, for m;/m.=42). As
Fig. 8. (a)Projection of the shell in the local perpendicular velocity a consequence, the low mass ratio overestimates the demag-
plane when the electrons hit the shock front (injection time). The netization process in the final downstream state of the parti-
same color code defined in Fig. 3 is used. P@npshows magnetic 15 Nevertheless, it is important to emphasize that all re-
moment ratiougs /ius VErsus the injection angté,;, defined by o uq including the identification of adiabatic, over-adiabatic
the angle between the gyrating velocity and the shock normal when . .
the particle hits the ramp. and unde_r-ad|abat|c_electr0ns_, are f_uIIy recovered_ fo_r the Ipw
mass ratio. Both kinds of simulations are qualitatively in
good agreement and exhibit the same sensitivity to the in-
jection angles;,;. However, a third question on *how injec-
tion criteria vary for an oblique shock”, in order to evidence

the two nonadiabatic populations, is still unanswered and is
It is the first time, to our knowledge that, “under-adiabatic” ynder active investigation at the present time.

particles are identified in strictly perpendicular shock condi-
tions. Such a population cannot be explained theoreticallys.1  Impact of the velocity phase (for a given shell radius)
by the energy conservation because we need an electric com-
ponent parallel to the magnetic field to accelerate particlegn the test particle reference frame, all particles belonging to
alongB (Sect. 1) and another source mechanism needs to bthe same ring within the velocity spacé. , 7,,) have the
invoked. As shown in this paper, the relevant parameter is thgame? |, at the time they hit the shock ramp. Moreover,
injection angle?;,;, the angle between the gyrating velocity since a ring covers different injection angles frépy=0° to
and the normal of the shock when the particle hits the ramp.180°, a comparison between the theoretical model (Fig. 5¢)
Lemb2ge et al.(2003 have recently shown the impor- and the numerical results (Fig. 8b) is directly possible. The
tance of the electric field gradient amplitude within the shockfollowing conclusions can be made.
ramp for the “demagnetization” of the incoming electrons. First, some systematic discrepancy appears concerning the
These authors observe that some transmitted electrons sugdiabatic population even for a strictly perpendicular shock.
fer a slowing down of their effective gyro-frequency within In numerical results, the adiabatic population spreads out
the first part of the ramp. Such demagnetized electrons havwithin the range 0<6;,; <18(°, whereas theory predicts its
been invoked as potential candidates for the nonadiabatiexistence mainly arouné,;~90° for all thermal velocity.
population. However, these results are not recovered in thifs already pointed out in Sect. 5, our model is not appropri-
study, which shows that the electric field seen by the elec-ate to analyze this particular population.
trons varies over a much longer time scale (cover2dz,.) Second, a relatively good agreement is obtained con-
than the local electron gyration period. Then the existencecerning the nonadiabatic electrons. From Fig. 8b, “under-
of the present nonadiabatic electrons cannot be explained bgdiabatic” electrons are observed beléy;~100° while
the “demagnetization” process involved in the positive elec-“over-adiabatic” electrons are localized within a larger range
tric field gradient present in the first part of the ramp. This (50°<6;,; <180 ). From Fig. 5c, “under-adiabatic” (“over-
discrepancy may be explained as follows. The analysis ofdiabatic”) electrons are defined f5; <90°(>90°). At this
Lembkege et al(2003 has been made for an oblique shock point, it is important to emphasize the poor sensitivity of the

Uds wof $° . 4 L4 l"’ds/u'us =1

6 Summary and discussion
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critical valueeﬁl’]?’%QO" to the order of the polynom expan- 1oof T T T !

sion of the electric fieldK, (1)= Y"=0 a,t"). Aplotofthe % [ : ]
quantityS(vsse, 6;n7) (not shown here) for different values of 8o {v“w adiabatic 7]
n (n>1) leads to the conclusion that the two opposite behav- : : / Upstrcam electron distibation

iors (3<0 and3¥ >0, respectively) are always present for any ol : i
value ofn. Only the value of the cutoff{=0), separating I : -

the two populations, has to be refined to fit the numerical re-
sults. As evidenced, both “under-" and “over-adiabatic” pop-
ulations may be considered as a common feature of particles I : ]
injected into an electric field gradient. 201 "oyer-adiabatic" -
Third, the function3(v_, 6;,j) (Fig. 5¢) is nearly insen- I : ]
sitive to the perpendicular velocity for an injection angle in

40

"under-adigbatic"
— :

0
the range 0<6;,;<60°. Since many particles of the spheri- 0.0 l 02 0.4 l AL 1.0 12 1.4
cal shell are lying in this injection angle range, the number B || counistence of eifect of B,
of “under-adiabatic” electrons is high, as evidenced by the dom)|  F and B, dominant

number of blue dots present f@,; <60° in the Fig. 8b. Con-
versely, for 60<6;,; <90°, less particles are able to check Fig. 9. Percentage of adiabatic, “under-” and “over-adiabatic” elec-
simultaneously;,; andv, conditions, and an important re- trons versus the shell radiugpe;. The same color code (black,
duction of blue dots is observed in Fig. 8b. red, blue) defined in Fig. 3 is applied for the three electron popula-
We therefore conclude that the most important parametetions. The middle panel illustrates the upstream electron distribu-
which identifies the“under-adiabatic” electrons is the local tion function and the different values ofne) used for scanning the
injection angle at the time they hit the shock ramp. Even ifdistripution. The vertical green da;hgd I!ne stanqifor the thermal
the physical picture inferred from our oversimplified model Velocity of the upstream electron distribution functify(). Three
cannot directly apply to a real collisionless shock wave, thed'ﬁe.re.nt doma'.ns can be evidenced: (.') at '.OW velocity, the electro-
deduced arguments provide useful insight into the physic static field dominates and no under-adiabatic electrons are observed,

larify th le of the iniecti h i) at intermediate values, both electric and magnetic field influ-
and clarify the role of the injection angl,; to separate the ence the electron dynamic and the three populations are identified,

two nonadiabatic populations. and finally, (iii) for the larger velocity, the impact of the electric

. o field becomes insignificant, where all transmittted electrons suffer
6.2 Impact of the thermal velocity (variation of the sphere 4, adiabatic compression.

radius)

A given spherical shell (fixed radius) allows us to investi- ) . ] .

gate all possible injection angles, but is intrinsically lim- ~ Finally, a closer inspection of Fig. 8 shows that the per-
ited in identifying which part of the upstream distribution ceéntage of “under-adiabatic” (“over-adiabatic”) electrons de-
function is responsible for the different transmitted electron¢reases (increases) drasticallyvagen approaches to 0. This
populations. Then, in order to cover the whole upstreamfeature can_be explalned with the simple theoretical model_of
electron distribution function, we have simulated a series ofS€ct- 3, which evidences that electrons cannot lose gyration
shells with different radii from @1 to 13. Figure 9 sum-  €nergy for very small upstream gyrating velocities. .In other
marizes the results and plots the percentage of adiabatic art{ords, the impact of the electric field becomes dominant for
nonadiabatic populations versus the radius of the §gglf. ~ Very smallv, (through the termg’, andCy, see Eq.A2)
The vertical dashed line represents the value of the ther@nd @A3) in the Appendix), and the resulting energization is
mal velocity of the upstream electron distribution function @ways equal or higher than the adiabatic level. According
(Tineus¥0.52). Clearly, two different velocity domains can © th|_s refult, the d_eep core of the electron dlstnbut!on fgnc-
be defined: (ifshei<ineus Where most transmitted elec- t|on.(|.e.vL<O.Q1) is not able to produce “und.er-adlaba_tlc”.
trons exhibit a nonadiabatic behavior and {iher> Bineus pf':\rtlcles, as evidenced by the decrease of this population in
where almost all particles have approximately an adiabatid™19- 9-

behavior (we reach an asymptotic slopext@00%). This We have clarified the origin of nonadiabatic behavior of
indicates that the influence of the electrostatic field poten-transmitted electrons by the cross-shock potential at a per-
tial on transmitted electrons decreases as the shell velocitpendicular shock. This effect is a direct result of the injection
increases. In other words, the breakdown of adiabaticityconditions of the electrons in the strong electric field within
is mainly controlled by all electrons (independently of the the shock ramp. It is important to keep in mind that the pro-
phase or injection angle) located in the body of the distri- cesses responsible for the adiabaticity breakdown have been
bution, in agreement with previous theoretical workslg presently analyzed for a strictly perpendicular shock, and
1976 Gedalin et al. 1995h Balikhin et al, 1998. Then  for stationary field profiles, taking into acccount the spatial
suprathermal electron&gel>viheus) and electrons in the variations of the field components along the shock normal
distribution tail do not contribute to the adiabaticity break- direction only. Other intrinsic features, such as the large-
down. scale nonstationarity of the shock front (self-reformation
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abatic). In summary, an appropriate combination of these

parameters, relative particle velocity versus the thermal ve-
o> Voo o<V locity of the upstream distribution function and the upstream
”ur(l(ge:;_)ééifgggi“ pitch angle, may provide an indication as to which part of
adiabatic | [NON adiabatic| _ g " the upstream distribution function will contribute to the adi-

1 = O <O . =180% abatic/nonadiabatic electron populations. However, no up-

' A PP "over-adiabatic" stream parameter will allow one to separate under- and over-

(40°= O, <1309 ) \@40°= Op, = 130°) adiabatic electrons. Therefore, a third key parameter is nec-

P essary: the injection angk,; of the electron velocity pre-
By cisely defined at the time the electron hits the shock ramp (in-

jection time). We observe that particles with a small injection
Fig. 10. Synoptic of the three key parameters (yellow disks) in- angle,6;,; <90°, have mainly a “under-adiabatic” behavior,

volve in the adiabatic/nonadiabatic behavior classification. Thewhereas those with high injection anglés, >90°, have an
pitch angledp, defined approximately two different behaviors, “gyer-adiabatic”’ behavior.

as illustrated by the green portion of the (7) plane: (i) We have focussed the present analysis on the individual
for 40°<6p,<13C, individual u are conserved while (ii) for . . .

40°>6p,, 0p,>13C, they are nonconserved. Among transmit- electrqn dyr.]amlcs (tr.aj(.aCto.ry and VelO.CIty feature_s) gnd. not
ted nonadiabatic electrons, injection anglg; clearly separates on thglrstatlstlcal variation mthg velocny space (distribution

the “under-" and the “over-adiabatic” behavior which appears un-function). Therefore, the analysis of adiabaticity breakdown
der and over 99 respectively. through the notion of temperature (statistical approach) is un-

der active investigation and will be presented in a forthcom-
ing paper.

alongx) and the small-scale nonstationarity/nonuniformity

of the shock front (rippling along) observed in full parti-

cle simulations (see Figs. 1 and 2), have been removed ofPpendix A Equation of motion in the theoritical model
purpose in our test particle simulations. This means that tur-

bulence within the shock front (induced by local microinsta- In our model, we consider a constant magnetic field along
bilities, as observed bgcholer et al(2003) is not a neces- thez axis (B=B,e;), and an electric field aligned along the
sary ingredient for the breakdown of adiabaticity. Thus, theaxis (E=E;e,). The electric field gradient is also along this
higher-order irreversible dissipation provided by wave parti- direction, which is the direction of the shock front normal.
cle interactions has been removed,; in particular, wave partiin order to compare further with our numerical simulations,
cle effects, which cool the electron distribution function (by we use a time power series of Nth order to fit the electric
filling the void of inaccessibility) $cudder et a].1986ha,c) field (obtained in our 2-D full particle simulation) seen by
has been excluded. the electrons through the ramp.

Analysing in detail not only the time evolution of the field ~ The equation of motion of a charged particle of mass
components seen by the electrons but also the quantities chaid chargg in this electromagnetic field configuration is:
acterizing these particles, has led us to the following conclu-
sions. First, a positive magnetic field gradient can only lead 4y n=N ,
to the formation of adiabatic and/or “over-adiabatic” elec- " ;=4 Z ant’ex +v x Bo |,
trons. Only the electric field gradient in the ramp can be n=0
responsible for the formation of “under-adiabatic” electrons.Where the electric field is given by:

Second, three different classes of nonadiabatic/adiabatic par- '
ticles can be defined for directly transmitted electrons, de- N
pending of three key parameters as sketched in Fig. 10. Th ()= i g
first key parameter which allows one to distinguish these ™ "
classes is the relative electron velocity amplitude with re-

spect to the thermal velocity of the upstream distribution.  gjnce the magnetic field is assumed to be constant, this
Only the core of the upstream electron distribution func- equation can be easily solved and allows us to determine
tion (v<v) can have a nonadiabatic behavior, and evenihe velocity componentsu(, vy andv,) versus the initial
in this case, adiabatic particles are always observed wittharameters. In a perpendicular configuration, no acceleration
a velocity not aligned to the field (i.e. a pitch angle in s possible along the direction and we have.=cte=v,..

the range 40<6z, <130°). Suprathermal and tail electrons ajong the other directions, the equation of motion yields to
(v>wvine) have an adiabatic behavior. The second key paramthe system

eter for separating adiabatic/nonadiabatic electrons is the up-
stream pitch angle of the particle for a given shell radius. dve _ g ZniNa " + L By,
Electrons with a parallel velocity component higher (lower) J{)’_V_ m en=0 " " m =
than the perpendicular component will be nonadiabatic (adi- @ —

n=0

_%BOUX



P. Savoini et al.: Electron nonadiabatic behavior 3697

Since we are interested herein only in electrops{e frame moving with the drift velocity, particles perform gyra-
andm=m,), v, becomes the solution of the second order tions with a velocity varying according to the values of the
differential equation: coefficientsCo andC1. Consequently, the first adiabatic in-
variant u is modified. The coefficient€y and C1 are ob-
tained by looking for the best fit of the electric field seen
by injected electrons, as shown in Sect. 4. As far as the
theoretical model is concerned (first part of the ramp) only,
where w..=eB,/m. is the electron cyclotron frequency. the increase in the electric field also leads to two important
Then, the perpendicular velocity components are defined byfeatures: (i) an acceleration along thexis due to the dif-
ference between the foreward (opposite directio&dfand

1 2 downward (direction ofE) particle gyromotion, and (ii) an

—ac [C1+ pew? sinf, ] cos(iolct) (A2)  acceleration in the x B direction due to the Lorentz force,

— £ S =S (BoCu + an) toq as described by EqsAR) and A3).
+v,. SING, + (Tlp [C1+ pew? sing, ]

oy o e nil " (A1)
——2 + vy =4+—w ant"
2 Oy T e L

Ver= —[vo1 cOSH, — C,] sin(w,t)
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