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Abstract. A new methodology for the inversion of anthro-
pogenic emissions at a local scale is tested. The inversion
constraints are provided by a kriging technique used in air
quality forecast in the Paris area, which computes an an-
alyzed concentration field from network measurements and
the first-guess simulation of a CTM. The inverse developed
here is based on the CHIMERE model and its adjoint to per-
form 4-D integration. The methodology is validated on syn-
thetic cases inverting NOx emission fluxes. It is shown that
the information provided by the analyzed concentrations is
sufficient to reach a mathematically acceptable solution to
the optimization, even when little information is available in
the measurements. As compared to the use of measurements
alone or of measurements and a background matrix, the use
of kriging leads to a more homogeneous distribution of the
corrections, both in space and time. Moreover, it is then pos-
sible to double the accuracy of the inversion by performing
two kriging-optimization cycles. Nevertheless, kriging anal-
ysis cannot compensate for a very important lack of informa-
tion in the measurements.

Keywords. Atmospheric composition and structure
(Pollution-urban and regional; Troposphere-composition
and chemistry; General or miscellaneous)

1 Introduction

Atmospheric pollution is the result of various interacting
processes: emissions, chemistry, transport, mixing and de-
position of gaseous species. At a local scale, i.e. areas
of ∼100×100 km over time periods of a day or a week,
chemistry-transport models are powerful tools to study and
forecast air pollution. Yet the accuracy of simulated con-
centrations largely depends on the quality of the input emis-
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sion inventories (Menut, 2003). These inventories are gen-
erally built through “bottom-up” methodologies that give the
annual spatialization of total emitted masses for species or
families followed by a time distribution derived from typi-
cal profiles for the month, the day of the week (week/week-
end/holiday for example) and the hour (see http://www.
emep.int and http://webdab.emep.int). The emitted masses
of pollutants are usually estimated using some discrete flux
measurements and activity sector statistics. These data are
heterogeneous and necessarily incomplete. Moreover, be-
cause emissions have a large spatial and time variability, the
updating of emitted masses is quite difficult (Kühlwein and
Friedrich, 2000). As a result, the inventories of hourly emis-
sion fluxes often have huge uncertainties and are not adapted
to particular events. They are therefore a major source of un-
certainty on simulated concentrations. Since it would be dif-
ficult today to improve their building methodologies, there
remains the possibility of adding information to existing in-
ventories. The optimization of emissions uses the informa-
tion available in measurements to retrieve the inventory that
gives the best agreement between simulated and measured
concentrations.

Inverse modeling consists of minimizing the difference be-
tween observations and model outputs in order to better esti-
mate model parameters which are allowed to be modified.
These methods are based on algorithms derived from the
field of data assimilation (Talagrand and Courtier, 1987; Ta-
lagrand, 1997) and have only been recently applied to various
problems in the atmosphere (Enting, 2002) and particularly
to the problem of the inversion of emissions with concentra-
tion measurements (Reeves et al., 2004).

Most of the studies available today deal with global or con-
tinental scales which means species with long lifetimes, such
as methane (Hein et al., 1997; Houweling et al., 1999; Wang
and Bentley, 2002), carbon dioxide (Bousquet et al., 1999;
Kaminski and Heimann, 2001; Rödenbeck et al., 2003; Gur-
ney et al., 2005), CFCs (Hartley and Prinn, 1993; Mahowald
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et al., 1997) and carbon monoxide (Bergamaschi et al., 2000;
Pétron et al., 2002, 2004; Wang et al., 2004; Müller and
Stavrakou, 2005) and, at a continental scale, nitrogen oxides
(NOx) (Wang et al., 2004; Konovalov et al., 2005). At a local
scale, only five studies on boundary layer pollution over large
urbanized areas are available. Three of them are based on
the 1992 measurement campaign in the Atlanta area and deal
with the inversion of isoprene (Chang et al., 1996), carbon
monoxide (Chang et al., 1997) and ozone precursors such as
VOCs and NOx (Mendoza-Dominguez and Russell, 2001).
Mulholland and Seinfeld (1995) studied carbon monoxide in
the Los Angeles area. Quélo et al. (2005) inverted NOx emis-
sions in Lille (France).

The problems that arise differ according to the spatio-
temporal scale (Enting, 2002). At a large scale, transport is
the main process linking emissions to concentrations. There-
fore, in all these studies, concentration measurements of the
studied species are used for constraining the inversion of
emissions of the same species. At a local scale, chemical pro-
cesses play a significant part in the resulting concentrations.
The use of ozone measurements to invert the emissions of
precursors, such as VOCs and NOx, has been proved to yield
realistic results, provided that there are a lot of constraints,
as is the case during a measurement campaign, for exam-
ple, in Mendoza-Dominguez and Russell (2001) and Quélo
et al. (2005). Nevertheless, when the measured species are
either the same as the inverted species (Mulholland and Se-
infeld, 1995; Chang et al., 1996, 1997) or are directly linked
to the emissions (as is the case with NOx emissions and NO
or NO2 measurements in Quélo et al. (2005)), errors due to
uncertainties in the chemical processes are reduced.

The features of emissions themselves are very different at
large and small scales. At a large scale, emissions are gen-
erally assumed to be homogeneous on a large area (typically
a continent) (Bousquet et al., 1999; Heimann and Kaminski,
1999) and two approaches are usually used, synthesis and
mass balance (Enting, 2002). Only Kaminski et al. (2001)
studied the impact of sub-grid scale aggregation on CO2 sur-
face fields inversion. Therefore, background error covari-
ances are estimated either through spatial correlation models
or with climatological data (Kasibhatla et al., 2000; Daley,
1996). On the contrary, at a local scale, emissions are not
a continuous process, neither spatially nor temporally. It is
therefore particularly difficult to adda priori information in
the emission space. Through lack of information, Mulhol-
land and Seinfeld (1995) used a diagonal background matrix.

The needs of air quality forecasting have led to the devel-
opment of hybridization techniques between measured and
simulated concentrations, such as optimal interpolation or
kriging. These operating techniques ensure the retrieving of
concentration fields, which takes into account the informa-
tion provided by both the measurements and the validated
structure of the simulated concentration field. The analyzed
concentrations are therefore the “best known” state of infor-
mation in the concentration space. In this study, we test the

possibility of using the analyzed concentrations provided by
a kriging technique used in air quality forecasting, to con-
strain the inversion of emissions in a large urbanized area.
The developed inverse modeling methodology (Sect. 2.3)
uses the adjoint approach that makes it possible to take into
account the nonlinear links between emissions and concen-
trations at a time scale that suits local photooxidant pollution.
The inverse model itself is based on the CHIMERE model
and its adjoint, described in Sects. 2.1. The kriging technique
had been developed previously (Blond et al., 2003; Blond
and Vautard, 2004) and is shortly described in Sect. 2.2. As
a daily forecasting tool, it uses hourly surface measurements
made at the air quality monitoring network of the area and
does not need additional observations, such as are provided
by measurement campaigns. This ensures the portability of
the method to a large set of time periods and urban areas. To
evaluate the feasibility and accuracy of this new methodol-
ogy using kriging constraints, we performed synthetic cases
of inversion as described in Sect. 2.4. We have focused on the
Paris area because (i) the kriging technique has been devel-
oped for and first applied to this urban area in which the fully
developed AIRPARIF network measurement is available and
(ii) it represents a simple type of large urbanized area with a
very dense city in the center of the area (emitting intensely),
surrounded by gradually less urbanized (and less emitting)
suburbs to rural areas. NOx emission fluxes were chosen to
be inverted because (i) they are ozone precursors with large
uncertainties, particularly in their 24-h time profile (Vautard
et al., 2003) and (ii) they are directly linked to NO concentra-
tions which are measured by AIRPARIF and can be analyzed
by kriging. Formal test cases have been run to quantify the
theoretical accuracy of the inverse code (Sect. 3). Then a se-
ries of experiments with realistic synthetic cases, based on a
real pollution event, have been performed to assess the ad-
vantages and limitations of our methodology (Sect. 4).

2 The inverse modeling system

Our inverse modeling system is based on the CHIMERE
model and its adjoint. The inversion constraints are ob-
tained through the use of a kriging technique. These tools
are first presented in this section, followed by the description
of the inverse modeling methodology based on the adjoint
approach.

2.1 CHIMERE and its adjoint

CHIMERE is a chemistry-transport model (CTM) designed
to study pollution within the atmospheric boundary layer
(ABL) (Vautard et al., 2001). It has been applied to long-
term simulations at local and European scales (Schmidt et al.,
2001; Vautard et al., 2001), pollution event studies (Schmidt
and Martin, 2003; Beekmann and Derognat, 2003) and pro-
cesses impact studies (Pison and Menut, 2004). CHIMERE
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is part of the French national air quality forecasting system
Prev’air (http://www.prevair.org/en/). It is also involved in
the City-Delta European project, dedicated to investigating
urban air quality evolution due to urban emission changes
(http://aqm.jrc.it/citydelta/). The model is freely available
on CHIMERE’s website (http://euler.lmd.polytechnique.fr/
chimere/). The adjoint of CHIMERE has been developed
and used for sensitivity studies by Menut et al. (2000a) and
Menut (2003). A complete description of the adjoint theory
and sensitivity use may also be found in Talagrand (1997);
Daescu et al. (2003); Sandu et al. (2003).

2.2 The kriging technique

In this section, we briefly describe the INK kriging technique
which has been previously proposed and applied by Blond
et al. (2003) to produce realistic ozone and NO concentra-
tion maps using surface ozone measurements and simulated
concentration fields. The reader is referred to Blond et al.
(2003) for further details about the performance of this krig-
ing technique compared to other mapping techniques.

The aim of kriging is to provide an estimate, called
the analysis,ya

t,h(s) of the value of a concentration field
yt,h(s) at any locations, at day t (t=1, . . . , T ), and hour
h (h=1 . . . , 24). A set ofK spatially distributed measure-
ment valuesyo

t,h(sk), wherek=1, ..., K andsk is the location
of the k-th monitoring station, is available, together with a
prior estimate of the concentration fieldyb

t,h(s), which is of-
ten called the first-guess field and corresponds here to con-
centrations simulated by CHIMERE. In this setting,ya

t,h(s)

is given by:

ya
t,h(s) = yb

t,h(s) +

K∑
k=1

λk
t,h(s)(y

o
t,h(sk) − yb

t,h(sk)) . (1)

Equation (1) shows that the analyzed field is a correction
of the CHIMERE simulation by a linear combination of
the innovationsXt,h(sk)=yo

t,h(sk)−yb
t,h(sk). Theλk

t,h(s) are
weighting functions that have to be determined.

Under the assumptions (i) that measured and simulated
concentrations are independent variables and (ii) that the
concentration to be analyzed is an intrinsically stationary
variable, the weighting functions are solutions of the follow-
ing system:

∀k = 1, . . . , K,∑K
l=1 λl

t,h(s)γt,h(sk, sl) − µ = γt,h(sk, s)∑K
l=1 λl

t,h(s) = 1 ,

(2)

where µ is a Lagrangian coefficient for the minimization
and γt,h(sk, sl)=

1
2E(X(sk)−X(sl))

2 is the semi-variance
function (E(.) denotes the statistical mean). The semi-
variance depends on the distance betweensk and sl ,
so thatγt,h(sk, sl)=γt,h(‖sk−sl‖)=γt,h(r) is the semivar-
iogram functionwith r=‖sk−sl‖. γt,h(r) is modeled by

building an experimental variogramγ exp
t,h with the measured

and simulated concentrations available at hourh on day
t . First, distance classes are built with a length interval
L and a toleranceτ . Over each distance classe, the vari-
ance 1

2E(Xt,h(sk)−Xt,h(sl))
2 is then computed. Thirdly,

these variances are plotted versus the mean distance of the
class. This experimental variogram gives an estimation of
γt,h(sk, sl) atσ o2

t,h(sk), whereσ o2
t,h(sk) is the observation error

variance, assumed to be homogeneous and constant in time,
e.g.σ o2

t,h(sk)=σ o2
h . Finally, the experimental variogram is fit-

ted by an exponential model with a nugget effect, where the
nugget is ideally equal toσ o2

h . In practice,σ o2
h is the max-

imum variance over all the measurements available at hour
h on dayt . At last, analysis “variances”σ a(s) can also be
computed with:

σ a2(s) = γt,h(s, s) −

K∑
l=1

λl
t,h(s)γt,h(s, sl) − µ.

The INK technique described here is used together with
CHIMERE by AIRPARIF, the Paris area air quality network,
for mapping daily forecasts (available at http://www.airparif.
org). The layout of the measurement network of the Paris
area has led to choosing a length intervalL=5 km and a tol-
eranceτ=4 km.

2.3 The inverse modeling methodology

2.3.1 The adjoint approach

Inverse modeling consists of minimizing the distance be-
tween observations, which are classically measurements, and
are in our new approach kriging-analyzed values and simu-
lated concentrations. This distance is represented by a cost
functionJ , depending on the emission fluxes to be inverted
which form the vectore. The aim of the optimization is then
to minimizeJ with regard toe.

In the adjoint approach, the value ofJ is computed by the
forward model and its gradient with respect toe, ∂J / ∂e,
is computed by the adjoint in one backward-in-time run. A
minimizer then uses the gradient to compute corrected emis-
sions that minimizeJ and∂J / ∂e. The minimization code
used is N1QN3 (Gilbert and Lemaréchal, 1989). It uses
a limited memory, quasi-Newton method to solve uncon-
strained minimization problems. The principle consists of
determining a descent direction and a step-size along this di-
rection at each iteration. The direction is computed using
an approximation of the Hessian and the gradient of the cost
function ∂J / ∂e at the current point. The step-size is ob-
tained by a line-search procedure and must satisfy Wolfe’s
conditions.

The forward-adjoint simulation cycle is iterated until a
minimal distance and the final optimized emissions are ob-
tained. In practice, the iterations stop when the precision
given for the stopping criterion is reached.
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2.3.2 The convergence criteria

The convergence criteria is a key point in inverse modeling
studies. For this study, we mixed several types of conver-
gence criteria, in order to ensure the quality of our results.

First, we use a “numerical” convergence criteria, entirely
dependent on the N1QN3 minimizer used. This criterion is
the ratio between the current norm of the gradient and its
norm at the initial point, i.e. with the first-guess emissionseb.
The convergence is then considered as obtained at the current
point when the norm of the gradient has been decreased in the
chosen proportion. In order to be more physically consistent
with the specific problem of local pollution, we combine this
criteria with more physical ones.

The convergence criterion is considered to be reached
when (i) the difference between the predicted concentrations
from one iteration to the next is less than 10−2 ppb and (ii)
the adjustments in the emission parameters made by the op-
timization algorithm from one iteration to the next becomes
less than 1%.

Thus, convergence is reached when

‖gk‖

‖gb‖
< epsg

with ‖gi‖ the norm of the gradient at the current pointk and
at the initial pointb andepsg is a specified value. Ideally,
the optimization should stop when‖gk‖≈0, with

‖gk‖ =

√√√√dim∑
n=1

(
∂J

∂Xn

)2

≈

√√√√dim∑
n=1

(
1J

1Xn

)2

.

The assumption (ii) gives∀n, 1Xn≥10−2, i.e. ∀n,
1

1Xn
≤102. Moreover, ∀n, 1J=J (Xn+1Xn)−J (Xn)=∑N

i=1 wi(Yi(Xn + 1Xn))
2
− Yi(Xn)

2) with Yi(Xn)=

ysim(i, Xn)−ya(i, Xn), Yi being concentrations. Assump-
tion (i) then gives ∀i, Yi(Xn+1Xn))

2
−Yi(Xn)

2<104,
so that ∀n, 1J ≤ 10−4

×
∑N

i=1 wi . Finally, we obtain
‖gk‖≈0 when ‖gk‖≤

√
dim×

∑N
i=1 wi×10−2. For bet-

ter precision, the inversions have been performed with
epsg = ‖gb‖×

√
dim×

∑N
i=1 wi×10−3. Since this rough

way of estimating a physically consistent value forepsg

might not be totally “mathematically correct”, we have then
tried and validated it as much as possible on academic cases.
Note that this definition of the convergence criterion value is
also suited to cases without kriging, for which

∑N
i=1 wi is

reduced toN equal to the number of available measurements
instead of the total number of cells.

Finally, a maximal number of iterations authorized for the
optimization was also defined so that the computing time re-
mains reasonable, i.e. less than twelve hours on an ordinary
PC. Note that the kriging analysis in itself takes less than
5 min for 24 h and that an adjoint integration is around four
times longer than a forward simulation (which runs in less

than 10 min for one day). If the optimization does not con-
verge before one of these numbers is reached, the optimiza-
tion stops at this point.

2.3.3 The cost function

In a classical framework, the cost function is expressed with
(Talagrand, 1997):

J (e) = (e−eb)
T B−1 (e−eb) +

(
ysim−yo

)T R−1 (
ysim−yo

)
,(3)

where the first term represents the quadratic distance between
the first-guesseb and the currente and the second term rep-
resents the quadratic distance between the measuredyo con-
centrations and the matching simulated concentrationsysim.
The matricesB and R contain, respectively, the variances
and covariances of the background errors and the observa-
tion errors. Variances of the measurements are then the di-
agonal terms of matrixR. The weight of each difference
between measured and simulated concentration is therefore
inversely proportional to the reliability of the measurement.
Each vector may contain components corresponding to sev-
eral hours which makes it possible to optimize the emissions
of a multi-hour time-window by taking into account their im-
pact on concentrations during a longer period.

In the new methodology tested in this study, the use of
kriging analysis to constrain the inversion leads to a cost
function in the form of:

J (e) =
(
ysim − ya

)T R′−1 (
ysim − ya) , (4)

whereya contains the analyzed concentrations matching all
the simulated concentrationsysim and R′ is the matrix of
analysis covariances. Since the kriging technique only pro-
vides us with the variances of the analyzed concentrations,
R′ is taken to be diagonal. Moreover, information oneb is
embedded in the analyzed concentrations, since they depend
on the simulated concentration field. Therefore, the penal-
ization term expressed with theB matrix is not used as such
in our cost function. This study tests the practicability and
limitations of this formulation ofJ that avoids the problem
of the estimation ofB.

2.4 Synthetic cases for evaluating the new methodology

Our inverse modeling system and methodology are evaluated
using synthetic cases. This synthetic approach is commonly
used in data assimilation validation (Elbern and Schmidt,
1999; Cirpka and Kitanidis, 2001).

Figure 1 displays the principle of our synthetic inversion
procedure. First, an emission inventory is built and is as-
sumed to be thetrue emission inventory. A forward simula-
tion is then run to compute the true concentrations. Through
a selection of stations, a small number of true concentrations
is retrieved to be used as measurements. The true values may
be perturbed in order to acknowledge observation and other
errors. Otherwise, the generation of measurements by use of
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the model avoids the problem of differences between simu-
lated and measured concentrations which are due to numeri-
cal diffusion or to representativity of the measurements with
regard to the size of the model cell.

Secondly, the first-guess emission inventory is generated
by perturbing the true inventory. The perturbation consists
of varying the intensity of the chosen emission fluxes. A
forward simulation is run to compute the first-guess concen-
trations.

The kriging is performed with the measurements and the
first-guess concentration field, as described in Sect. 2.2. The
analyzed concentrations and their variances are then used, as
described in Sect. 2.3, as constraints for the inversion.

The inversion of the first-guess inventory is performed.
The resulting optimized emission inventory can then be com-
pared to the true inventory, in order to quantify the accuracy
of the inverse modeling methodology. Note that in practice,
the optimized emission inventory is actually a correction of
the first-guess inventory: the fluxes are rescaled by correction
coefficientsδi , so that for each inverted fluxi, ei=δi×ei,b.

This synthetic procedure focuses on emission fluxes: all
other parameters and particularly meteorological parameters
are not perturbed to simulate the first-guess. Therefore, a
poor estimation of these parameters or of diagnostic vari-
ables, such as the boundary layer height, does not interfere
with the error on the emission inventory. Future studies will
have to test the optimization of emission inventories when
taking other influential parameters into account at the same
time.

The first part of the evaluation of our modeling system
deals with the theoretical accuracy of the inverse code and is
performed through very simple formal synthetic cases. Re-
alistic synthetic cases are then used to assess the advantages
and limitations of our methodology using kriging constraints,
as compared to a classical approach.

3 Testing the inverse code on formal synthetic cases

3.1 Mesh and meteorology

The domain coincides roughly with the Paris area from 1.3
to 3.3◦ E and from 48.1 to 49.4◦ N. The mesh is constituted
by 10×10 cells for 5 vertical levels, thicknesses of which are
fixed through time. The first level is 20 m thick. The top four
levels have increasing heights determined so as to include up
to 300 m above the maximum boundary layer height and the
cells interfaces heights are, respectively, 20, 65, 200, 630,
2000 m AGL.

The meteorological conditions represent a “classical”
summer weather favorable to high photooxidant pollution
episodes: high temperatures, low winds and no clouds are
prescribed. Wind and temperature are horizontally uniform.
The vertical profile of wind is computed using the value pre-
scribed at the surface (4 m.s−1) and the logarithmic law in

Pison et al.: Inverse modeling of emissions 5

pared to the true inventory in order to quantify the accuracy
of the inverse modeling methodology. Note that in practice,
the optimized emission inventory is actually a correction of
the first-guess inventory: the fluxes are rescaled by correction
coefficientsδi so that for each inverted fluxi, ei = δi × ei,b.

Fig. 1. Principle of the evaluation of the inverse modeling method-
ology with synthetic cases. The bold-dashed area contains the steps
of the inverse modeling methodology itself, which would be per-
formed in a real-case study.

This synthetic procedure focuses on emission fluxes: all
other parameters and particularly meteorological parameters
are not perturbed to simulate the first-guess. Therefore, a
poor estimation of these parameters or of diagnostic vari-
ables such as the boundary layer height does not interfere
with the error on the emission inventory. Future studies will
have to test the optimization of emission inventories when
taking other influential parameters into account at the same
time.

The first part of the evaluation of our modeling system
deals with the theoretical accuracy of the inverse code and is
performed through very simple formal synthetic cases. Re-
alistic synthetic cases are then used to assess the advantages
and limitations of our methodology using kriging constraints
as compared to a classical approach.

3 Testing the inverse code on formal synthetic cases

3.1 Mesh and meteorology

The domain coincides roughly with Paris area from 1.3 to
3.3◦ E and from 48.1 to 49.4◦ N. The mesh is constituted
by 10× 10 cells for 5 vertical levels, thicknesses of which
are fixed through time. The first level is 20 meters thick.

The top four levels have increasing heights determined so as
to include up to 300 m above the maximum boundary layer
height and the cells interfaces heights are respectively 20, 65,
200, 630, 2000 m AGL.

The meteorological conditions represent a ”classical”
summer weather favorable to high photo-oxidant pollution
episodes: high temperatures, low winds and no clouds are
prescribed. Wind and temperature are horizontally uniform.
The vertical profile of wind is computed using the value pre-
scribed at the surface (4 m.s−1) and the logarithmic law in
the boundary layer. The mean value of the 2-meter tem-
perature is prescribed (22◦ C); a sinusoidal variation is ap-
plied to model a typical diurnal cycle (minimum 13◦ C and
maximum 31◦ C values reached at 04:00 and 12:00); a re-
alistic vertical profile is built by applying a linear decrease
of 6 K.km−1 with a temperature inversion of 2 K at the
boundary layer height. The evolution of the boundary layer
height,h, is sinusoidal during the day (with a maximum of
h=1700 m at 15:00) and constant during the night (h=300 m).

3.2 Emissions

The emission inventory consists in two sources, dis-
played as 1 and 2 onFigure 2, which emit the
whole set of 16 emitted model species. The propor-
tion of the fluxes of the species are realistic. The
maximum intensity of the fluxes of the main species
are 1014molec.cm−2.s−1 of CO, 1013molec.cm−2.s−1 for
NC4H10 and NO, 1012molec.cm−2.s−1 for C2H4, C2H6,
C3H6, HCHO, NO2, OXYL, SO2. For each source, the emis-
sions are constant atEmax between 07:00 and 11:00 a.m.
and atEmax/10 for the rest of the day. The emitted NOx

are constituted of a constant ratio of 90% of NO and 10% of
NO2.

The first-guess inventory is an under-estimate of the true
one by 20% during the five hours of maximum intensity. The
two formal cases discussed here consist in the inversion of
NOx emissions during a six-hour time window from 7 to
12 a.m.. The correction coefficient that should be retrieved
by the inversion is then 1.25 for the first five hours and 1. for
the last one. The difference between the first-guess and the
true inventory leads to differences in simulated NOx concen-
trations, which are indicated onFigure 2for NO.

3.3 Formal test case 1: theoretical accuracy of the inverse
code

For this first test case, the two measurements stations (a) and
(a’) are available (seeFigure 2). These stations deliver ”per-
fect” measurements of NO i.e. the inversion code must the-
oretically retrieve the original values. This case is a perfect
case for the inversion: all the needed information is provided
with no error or uncertainty. Only the errors due to the model
may influence the results.

The optimization of the two-term cost function reaches the
convergence. The retrieved correction coefficients for both
sources are 1.25 for the five perturbed hours of the time win-

Fig. 1. Principle of the evaluation of the inverse modeling method-
ology with synthetic cases. The bold-dashed area contains the steps
of the inverse modeling methodology itself, which would be per-
formed in a real-case study.

the boundary layer. The mean value of the 2-meter tempera-
ture is prescribed (22◦C); a sinusoidal variation is applied to
model a typical diurnal cycle (minimum 13◦C and maximum
31◦C values reached at 04:00 and 12:00); a realistic verti-
cal profile is built by applying a linear decrease of 6 K.km−1

with a temperature inversion of 2 K at the boundary layer
height. The evolution of the boundary layer height,h, is si-
nusoidal during the day (with a maximum ofh=1700 m at
15:00) and constant during the night (h=300 m).

3.2 Emissions

The emission inventory consists of two sources, dis-
played as 1 and 2 on Fig. 2, which emit the whole
set of 16 emitted model species. The proportion of
the fluxes of the species are realistic. The maxi-
mum intensity of the fluxes of the main species are
1014 molec.cm−2.s−1 of CO, 1013 molec.cm−2.s−1 for
NC4H10 and NO, 1012 molec.cm−2.s−1 for C2H4, C2H6,
C3H6, HCHO, NO2, OXYL, SO2. For each source, the emis-
sions are constant atEmax between 07:00 and 11:00 and at
Emax/10 for the rest of the day. The emitted NOx consist of
a constant ratio of 90% of NO and 10% of NO2.

The first-guess inventory is an underestimate of the true
one by 20% during the five hours of maximum intensity. The
two formal cases discussed here consist of the inversion of
NOx emissions during a six-hour time window from 07:00
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(a) NO concentrations as simulated with the true inventory

(b) Differences between NO concentrations as simulated with the
first-guess and the true inventories

Fig. 2. NO surface concentrations and differences (ppb) for the
formal test cases at 10 a.m.

dow and 1. for the last unperturbed hour which is very close
to the true emissions. This shows that the accuracy of the
inverse model, in an ideal situation, is very high.

3.4 Formal test case 2: a simple example of lack of infor-
mation

This second test case is a restricted version of the first one:
only the station (a’) delivers perfect measurements. Since the
wind direction is constantly North-East, the single informa-
tion located in (a’) integrates the effects of both sources.

The optimization of the one-term cost function converges.
The results for both sources are displayed onFigure 3.

Source #2, in which station (a’) is available, is almost per-
fectly retrieved by the inversion: the coefficient for perturbed
hours varies between 1.25 and 1.27. Nevertheless, it reaches
1.14 for the last unperturbed hour. The intensity of source
#1 is almost not modified by the inversion: the correction for
perturbed hour varies between 1.01 and 1.03 and is 1.0 for
the last hour of the time window.

Fig. 3. Correction coefficients for sources 1 and 2 at each hour of
the time window for Test Case #2

Although station (a’) is located downwind source #1, the
influence of this source on the measured concentrations is
not very large because of the distance (see map of concen-
trations onFigure 2) and because of the very strong effect of
source #2. The information provided by station (a’) is then
not relevant to source #1 that is therefore almost unchanged
by the optimization. A slight overestimate of the intensity
of source #2 is nevertheless necessary to get the right mea-
sured concentrations at station (a’) by compensating for the
under-estimate of source #1. At the last hour, source #1 is
not under-estimated anymore but source #2 remains over-
estimated because the response in concentrations is shifted
in time with respect to emissions (transport).

The formal test-cases have shown that the theoretical accu-
racy of the inversion code is high. In practice, the quality of
the results depends chiefly on the availability of information.
The inversion of the second test case underlines two linked
effects: (i) first, the over-correction of the source that has
the strongest impact on the measurement whereas the other
source is left unmodified;(ii) then, the persistence of this
over-correction through time because of the time necessary
to transport the information from the source to the measure-

Fig. 2. NO surface concentrations and differences (ppb) for the
formal test cases at 10:00 .

to 12:00 . The correction coefficient that should be retrieved
by the inversion is then 1.25 for the first 5 h and 1.00 for the
last one. The difference between the first-guess and the true
inventory leads to differences in simulated NOx concentra-
tions, which are indicated on Fig. 2 for NO.

3.3 Formal test case 1: theoretical accuracy of the inverse
code

For this first test case, the two measurements stations (a) and
(a′) are available (see Fig. 2). These stations deliver “perfect”
measurements of NO, i.e. the inversion code must theoreti-
cally retrieve the original values. This case is a perfect case
for the inversion: all the needed information is provided with
no error or uncertainty. Only the errors due to the model may
influence the results.

The optimization of the two-term cost function reaches the
convergence. The retrieved correction coefficients for both
sources are 1.25 for the five perturbed hours of the time win-
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trations onFigure 2) and because of the very strong effect of
source #2. The information provided by station (a’) is then
not relevant to source #1 that is therefore almost unchanged
by the optimization. A slight overestimate of the intensity
of source #2 is nevertheless necessary to get the right mea-
sured concentrations at station (a’) by compensating for the
under-estimate of source #1. At the last hour, source #1 is
not under-estimated anymore but source #2 remains over-
estimated because the response in concentrations is shifted
in time with respect to emissions (transport).

The formal test-cases have shown that the theoretical accu-
racy of the inversion code is high. In practice, the quality of
the results depends chiefly on the availability of information.
The inversion of the second test case underlines two linked
effects: (i) first, the over-correction of the source that has
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source is left unmodified;(ii) then, the persistence of this
over-correction through time because of the time necessary
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Fig. 3. Correction coefficients for sources 1 and 2 at each hour of
the time window for Test Case #2.

dow and 1.00 for the last unperturbed hour, which is very
close to the true emissions. This shows that the accuracy of
the inverse model, in an ideal situation, is very high.

3.4 Formal test case 2: a simple example of a lack of infor-
mation

This second test case is a restricted version of the first one:
only the station (a′) delivers perfect measurements. Since the
wind direction is constantly northeast, the single information
located in (a′) integrates the effects of both sources.

The optimization of the one-term cost function converges.
The results for both sources are displayed in Fig. 3. Source
#2, in which station (a′) is available, is almost perfectly re-
trieved by the inversion: the coefficient for perturbed hours
varies between 1.25 and 1.27. Nevertheless, it reaches 1.14
for the last unperturbed hour. The intensity of source #1 is
almost not modified by the inversion: the correction for the
perturbed hour varies between 1.01 and 1.03 and is 1.0 for
the last hour of the time window.
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Although station (a′) is located downwind from source #1,
the influence of this source on the measured concentrations
is not very large because of the distance (see map of con-
centrations on Fig. 2) and because of the very strong effect
of source #2. The information provided by station (a′) is
then not relevant to source #1, which is therefore almost un-
changed by the optimization. A slight overestimate of the
intensity of source #2 is nevertheless necessary to obtain the
right measured concentrations at station (a′) by compensat-
ing for the underestimation of source #1. At the last hour,
source #1 is not underestimated anymore but source #2 re-
mains overestimated because the response in concentrations
is shifted in time with respect to the emissions (transport).

The formal test cases have shown that the theoretical ac-
curacy of the inversion code is high. In practice, the quality
of the results depends chiefly on the availability of informa-
tion. The inversion of the second test case underlines two
linked effects: (i) first, the over-correction of the source that
has the strongest impact on the measurement, whereas the
other source is left unmodified; (ii) then the persistence of
this over-correction through time because of the time neces-
sary to transport the information from the source to the mea-
surement.

4 Testing the kriging-constrained methodology on real-
istic synthetic cases

4.1 Description of the cases

To test the inverse modeling methodology using kriging con-
straints, realistic synthetic cases are performed. Contrary to
the previous formal test cases, realistic synthetic cases are
based on a real pollution event which occurred on 7 August
1998 in the Paris area and is described in detail by Menut
(2003). The domain mesh covers a 150×150 km area with
25×25 cells over 11 vertical levels. The meteorology used
here corresponds to the ECMWF data that were used to fore-
cast the event.

4.1.1 Emissions

The emission inventory used in our study has been elabo-
rated by AIRPARIF for the ESQUIF field campaign of the
summer of 1998, as described in Vautard et al. (2003). It
includes the hourly 6×6 km fluxes of sixteen anthropogenic
emitted species: carbon monoxide, sulfur dioxide, methane,
nitrogen oxides, speciated in 10% of NO2 and 90% of NO,
HONO, and non-methanic VOCs speciated into ten sub-
families according to various studies (Theloke et al., 2000,
2001; Schmitz et al., 2000; Rudd and Marlowe, 1998; Hassel
et al., 2000). It constitutes the true inventory that will have
to be retrieved by the inversion (see Fig. 1).

The first-guess emission inventory is obtained by perturb-
ing the true inventory, so that NOx emissions of the morning
traffic peak from 08:00 to 09:00 in the city (displayed on
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4 Testing the kriging-constrained methodology on real-
istic synthetic cases

4.1 Description of the cases

To test the inverse modeling methodology using kriging con-
straints, realistic synthetic cases are performed. Contrary to
the previous formal test cases, realistic synthetic cases are
based on a real pollution event that occurred on the 7th of
August 1998 in the Paris area and is described in details by
Menut (2003). The domain mesh covers a 150×150 km area
with 25×25 cells over 11 vertical levels. The meteorology
used here corresponds to the ECMWF data that were used to
forecast the event.

4.1.1 Emissions

The emission inventory used in our study has been elaborated
by AIRPARIF for the ESQUIF field campaign of the sum-
mer of 1998 as described inVautard et al. (2003). It includes
the hourly 6×6 km fluxes of sixteen anthropogenic emitted
species: carbon monoxide, sulfur dioxide, methane, nitrogen
oxides speciated in 10% of NO2 and 90% of NO, HONO and
non-methanic VOCs speciated into ten sub-families accord-
ing to various studies(Theloke et al., 2000, 2001; Schmitz
et al., 2000; Rudd and Marlowe, 1998; Hassel et al., 2000).
It constitutes the true inventory that will have to be retrieved
by the inversion (seeFigure 1).

The first-guess emission inventory is obtained by perturb-
ing the true inventory so that NOx emissions of the morn-
ing traffic peak from 8 to 9 a.m. in the city (displayed on
Figure 4) are over- or underestimated by a given percentage
εE ranging from -70 to +100% and representing the emis-
sion error to correct. This corresponds to a realistic range
for emission inventories:Kühlwein and Friedrich (2000)es-
timate that the uncertainty may be as high as 35% for an-
thropogenic sources andBeekmann and Derognat (2003)and
Sillman et al. (2003)propose a factor of 2 to 3 for biogenic
sources.

4.1.2 Measurements

The measurement stations are those of the AIRPARIF net-
work. Their locations and characteristics are displayed in
Menut et al. (2000b). The true concentrations computed by
the simulation run with the true inventory (seeFigure 1) are
interpolated at the location of the stations. The measure-
ments of NO or ozone concentrations then generated are ob-
tained by randomly perturbing the true concentrations using a
factorεm representing the ’possible instrumental error’. We
define ranges fromεm of ±0 (perfect measurements) to 10
and 15%. This highest value corresponds to the maximum
uncertainty given by AIRPARIF for monitoring instruments.
The variances of the measurements (needed for theR matrix,

Fig. 4. True emission inventory: NO fluxes at 9 a.m. on the 7th of
August 1998. x = perturbed fluxes in the first-guess inventory.

see Section 2.3.3) are computed with the generated measure-
ment value by using real uncertainty functions provided by
AIRPARIF.

4.2 Inversion test cases

NOx emissions in the city from 8 to 9 a.m. are to be inverted
with hourly measurements available from 9 a.m. to 17 a.m..
Several series of inversions are run to test various aspects of
the new methodology:

• the quality of the constraints and particularly the interest of
the use of our kriging-constrained approach (cases named
k-) compared to the use of measurements alone (cases
named m-) or measurements plus a background matrix

• the quality of the first-guess emission inventory
• the relevance of the information contained in the con-

straints: The chemical species used as constraints are ei-
ther NO or ozone.

To quantify the quality of the results, an indicator for es-
timating whether the difference between optimized and true
concentrations or emissions is smaller than the difference be-
tween first-guess and truth is defined: At one time and one
location, the score is given by:

scorex = (1− xopt − xtrue

xfg − xtrue
)× 100 (5)

with xopt, the optimized value ofx, xtrue the true value and
xfg the first-guess value,x being an emission flux. The value
of the score then gives the change in percentage of the dif-
ference between first-guess and reality due to the optimiza-
tion. A positive score indicates that the difference between
simulation and truth is reduced whereas a negative score in-
dicates that after optimization, the difference between simu-
lation and truth has been increased. A perfect optimization
would give a score of 100% indicating that the difference be-
tween first-guess and truth has been reduced to zero by the
optimization.

Fig. 4. True emission inventory: NO fluxes at 09:00 on 7 August
1998; x= perturbed fluxes in the first-guess inventory.

Fig. 4) are over- or underestimated by a given percentage
εE , ranging from –70 to +100% and representing the emis-
sion error to correct. This corresponds to a realistic range
for emission inventories: K̈uhlwein and Friedrich (2000) es-
timated that the uncertainty may be as high as 35% for an-
thropogenic sources and Beekmann and Derognat (2003) and
Sillman et al. (2003) proposed a factor of 2 to 3 for biogenic
sources.

4.1.2 Measurements

The measurement stations are those of the AIRPARIF net-
work. Their locations and characteristics are displayed in
Menut et al. (2000b). The true concentrations computed by
the simulation run with the true inventory (see Fig. 1) are in-
terpolated at the location of the stations. The measurements
of NO or ozone concentrations then generated are obtained
by randomly perturbing the true concentrations using a factor
εm which represents the “possible instrumental error”. We
define ranges fromεm of ±0 (perfect measurements) to 10
and 15%. This highest value corresponds to the maximum
uncertainty given by AIRPARIF for monitoring instruments.
The variances of the measurements (needed for theR matrix,
see Sect. 2.3.3) are computed with the generated measure-
ment value by using real uncertainty functions provided by
AIRPARIF.

4.2 Inversion test cases

NOx emissions in the city from 08:00 to 09:00 are to be
inverted with hourly measurements available from 09:00 to
17:00 . Several series of inversions are run to test various
aspects of the new methodology:

• the quality of the constraints and particularly the interest
of the use of our kriging-constrained approach (cases
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The results for the eight optimized fluxes (four at each of
the two hours of the time window) are summarized by com-
puting the average over the eight individual scores. These
average scores are listed inTable 1.

A number of cases did not converge i.e. the maximal num-
ber of iterations was reached before the convergence criterion
could be matched. For these cases, the decrease of the norm
of the gradient through the iterations performed by the op-
timizer is not steep enough. The difference between cases
that do and do not converge is illustrated onFigure 5by the
evolution of the norm of the gradient for the k-cases using
NO constraints withεE =+50% andεm =10% or 0%. The
comparison between the two cases (Figure 5) shows that for
the last three iterations, the norm is decreased by 54 then
77% (total decrease of more than 89%) in the first case and
only by 1.6 then 18% for the latter (total decrease of less than
20%).

Fig. 5. Evolution of the norm of the gradient through the opti-
mizer’s iterations for k-cases using NO constraints with the first-
guess inventory +50% andεm =10% (converging) orεm =0%
(non-converging).

4.3 Interest of the new approach

4.3.1 Maximum use of information in the concentration
space

The use of analyzed NO concentrations as constraints to in-
vert NOx emissions is a situation in which the measurements
may provide maximum information. The influence of an er-
ror on NOx emissions on NO concentrations is maximum at
the same location and time and immediately downwind (Fig-
ure 6). The stations are indeed located immediately above
and around the emission places (Figure 6). Nevertheless, the
total number of relevant constraints is not sufficient: for the
+100% inventory that has the largest differences with reality,
at 9 a.m., less than 10 measurements are meaningful i.e. lo-
cated where the difference is significant (Figure 6). Finally,
only 6 out of 21 m-cases reach convergence whereas 19 out
of 21 k-cases do (Table 1, top half). Moreover, a closer ex-
amination of the 6 converging cases show that they all reach

the same optimum, which explains that the score is higher
whenεE is larger.

Fig. 6. Differences (ppb) between NO surface concentrations ob-
tained with the true emission inventory and with the first-guess in-
ventory +100% at 9 a.m.

When ozone concentrations are used as constraints, the in-
formation about NOx emissions is more spread out, in space
and time. An error on NOx emissions during the morning
traffic peak leads to a wrong estimation of ozone concentra-
tions at various locations: in the city at the emission time but
also in the plume eight hours later (Figure 7). It should be
noted that, since ozone concentrations are the result of vari-
ous processes, they are not directly linked to emissions. As
displayed onFigure 7, a change of +100% in NOx emissions
leads to variations of less than 15% in the afternoon ozone
concentrations, at an hour of highest sensitivity. The infor-
mation on the NOx emitted during the morning in the city
is then principally contained in ozone concentrations in the
ozone plume formed in the afternoon. To get at least part of
these lacking bits of information, kriging is necessary since
very few meaningful measurements are available (Figure 7).
Finally, with ozone constraints, no m-cases reaches conver-
gence whereas 13 out of 21 k-cases do (Table 1, bottom half).

Finally, the use of kriging makes it possible to use part
of the information contained the structure of the first-guess
simulation. This additional information, as compared to the
information provided by measurements alone, is sufficient to
reach a mathematically acceptable solution to the optimiza-
tion, even when no information is available in the measure-
ments.

4.3.2 Impact of the new approach

To assess the impact of the use of kriging as compared to
the classical method, cases for which convergence is reached
both when using kriging and measurements are particularly
studied. For these cases, the variances associated to the av-
erage scores (Section 4.2) is computed and displayed inTa-
ble 1.

Fig. 5. Evolution of the norm of the gradient through the opti-
mizer’s iterations for k-cases using NO constraints with the first-
guess inventory +50% andεm=10% (converging) orεm=0% (non-
converging).

named k-) compared to the use of measurements alone
(cases named m-) or measurements plus a background
matrix;

• the quality of the first-guess emission inventory;

• the relevance of the information contained in the con-
straints: the chemical species used as constraints are ei-
ther NO or ozone.

To quantify the quality of the results, an indicator for es-
timating whether the difference between optimized and true
emissions is smaller than the difference between first-guess
and truth is defined: at one time and one location, the score
is given by:

scorex = (1 −
xopt − xtrue

xfg − xtrue

) × 100 (5)

with xopt , the optimized value ofx, xtrue the true value and
xfg the first-guess value, withx being an emission flux.
The value of the score then gives the change in percentage
of the difference between first-guess and reality, due to the
optimization. A positive score indicates that the difference
between simulation and truth is reduced, whereas a nega-
tive score indicates that after optimization, the difference be-
tween simulation and truth has been increased. A perfect
optimization would give a score of 100%, indicating that the
difference between first-guess and truth has been reduced to
zero by the optimization.

The results for the eight optimized fluxes (four at each of
the two hours of the time window) are summarized by com-
puting the average over the eight individual scores. These
average scores are listed in Table 1.

A number of cases did not converge, i.e. the maximal num-
ber of iterations was reached before the convergence criterion
could be matched. For these cases, the decrease in the norm
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ror on NOx emissions on NO concentrations is maximum at
the same location and time and immediately downwind (Fig-
ure 6). The stations are indeed located immediately above
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total number of relevant constraints is not sufficient: for the
+100% inventory that has the largest differences with reality,
at 9 a.m., less than 10 measurements are meaningful i.e. lo-
cated where the difference is significant (Figure 6). Finally,
only 6 out of 21 m-cases reach convergence whereas 19 out
of 21 k-cases do (Table 1, top half). Moreover, a closer ex-
amination of the 6 converging cases show that they all reach

the same optimum, which explains that the score is higher
whenεE is larger.
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When ozone concentrations are used as constraints, the in-
formation about NOx emissions is more spread out, in space
and time. An error on NOx emissions during the morning
traffic peak leads to a wrong estimation of ozone concentra-
tions at various locations: in the city at the emission time but
also in the plume eight hours later (Figure 7). It should be
noted that, since ozone concentrations are the result of vari-
ous processes, they are not directly linked to emissions. As
displayed onFigure 7, a change of +100% in NOx emissions
leads to variations of less than 15% in the afternoon ozone
concentrations, at an hour of highest sensitivity. The infor-
mation on the NOx emitted during the morning in the city
is then principally contained in ozone concentrations in the
ozone plume formed in the afternoon. To get at least part of
these lacking bits of information, kriging is necessary since
very few meaningful measurements are available (Figure 7).
Finally, with ozone constraints, no m-cases reaches conver-
gence whereas 13 out of 21 k-cases do (Table 1, bottom half).

Finally, the use of kriging makes it possible to use part
of the information contained the structure of the first-guess
simulation. This additional information, as compared to the
information provided by measurements alone, is sufficient to
reach a mathematically acceptable solution to the optimiza-
tion, even when no information is available in the measure-
ments.

4.3.2 Impact of the new approach

To assess the impact of the use of kriging as compared to
the classical method, cases for which convergence is reached
both when using kriging and measurements are particularly
studied. For these cases, the variances associated to the av-
erage scores (Section 4.2) is computed and displayed inTa-
ble 1.

Fig. 6. Differences (ppb) between NO surface concentrations ob-
tained with the true emission inventory and with the first-guess in-
ventory +100% at 09:00 .

of the gradient through the iterations performed by the opti-
mizer is not steep enough. The difference between cases that
do and do not converge is illustrated in Fig. 5 by the evo-
lution of the norm of the gradient for the k-cases using NO
constraints withεE=+50% andεm=10% or 0%. The com-
parison between the two cases (Fig. 5) shows that for the last
three iterations, the norm is decreased by 54 and then 77%
(total decrease of more than 89%) in the first case and only
by 1.6 and then 18% for the latter (total decrease of less than
20%).

4.3 Interest of the new approach

4.3.1 Maximum use of information in the concentration
space

The use of analyzed NO concentrations as constraints to in-
vert NOx emissions is a situation in which the measurements
may provide maximum information. The influence of an er-
ror on NOx emissions on NO concentrations is maximum
at the same location and time, and immediately downwind
(Fig. 6). The stations are indeed located immediately above
and around the emission places (Fig. 6). Nevertheless, the
total number of relevant constraints is not sufficient: for the
+100% inventory which has the largest differences with real-
ity, at 09:00 , less than 10 measurements are meaningful, i.e.
located where the difference is significant (Fig. 6). Finally,
only 6 out of 21 m-cases reach convergence, whereas 19 out
of 21 k-cases do (Table 1, top half). Moreover, a closer ex-
amination of the 6 converging cases show that they all reach
the same optimum, which explains that the score is higher
whenεE is larger.

When ozone concentrations are used as constraints, the in-
formation about NOx emissions is more spread out, in space
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Table 1. Average scores of optimizations (in %) (and matching variances) for NOx inversion with two types of NO or ozone constraints;
x = convergence not reached.Pison et al.: Inverse modeling of emissions 9

Measured Type of Quality of Quality of first-guess emission inventoryεE

species constraints meas.εm -70% -50% -20% +20% +50% +70% +100%

NO

measure-
ments
alone

0 53.8 (10.9) 35.4 (21.3) x x x x x
10 49.3 (9.9) 29. (19.4) x -77.4 (121.4) x x x
15 57. (14.4) x x x x x x

kriging
0 29.8 (7.7) 29.1 (1.2) 30.3 28.8 x x 21.9
10 31.6 (2.7) 31.4 (0.5) 32.7 26.8 (0.7) 25.7 25.3 21.
15 29.7 (8.7) 30.2 42.8 17.4 26.2 22.2 20.9

ozone

measure-
ments
alone

0 x x x x x x x
10 x x x x x x x
15 x x x x x x x

kriging
0 x 8.3 7.3 5.7 0.6 x x
10 x 10.9 13.8 x -4.1 x x
15 3.5 3.1 x 10.9 12.4 8.5 6.8

Table 1. Average scores of optimizations (in %) (and matching variances) for NOx inversion with two types of NO or ozone constraints.
x = convergence not reached.

Fig. 7. Differences (ppb) between ozone surface concentrations ob-
tained with the true emission inventory and with the first-guess in-
ventory +100% at 4 p.m.

The average difference with true emissions is roughly de-
creased by 45.1 to 59.3% (and increased for one case) with
measurements alone and by 26.8 to 31.6% with kriging. Nev-
ertheless, the higher variances of the m-cases (9.9 to 121.4%
compared to less than 9% with kriging, seeTable 1) indicate
that with measurements alone, the corrections of the fluxes
are not well distributed, neither in space nor in time.

The m-case in whichεm =10% andεE =-50% illustrates
the detailed distribution of corrections obtained with three
approaches:(i) with measurements alone,(ii) with measure-
ments and a background matrixB =identity through lack
of information,(iii) with the kriging constraints. The differ-
ences between the eight optimized and true fluxes are dis-
played onTable 2. The heterogeneous distribution of the
corrections when using measurements alone is shown in the
South-West part of the city for example: the optimized NO
flux is only 13.9% underestimated at 8 a.m. but more than
37% overestimated at 9 a.m.. As shown on the middle panel

of Table 2, adding theB matrix leads to a slight homoge-
nization of the space and time distribution of the corrections
compared to the m-case. Finally, when using kriging, the
corrections are homogeneously distributed and the first-guess
difference of 50% with the true fluxes is reduced to an aver-
age 34.3%.

Exp. 08:00 09:00

Measurements -75.7 -56.3 -33.4 -37.2
-56.3 -26.6 -33.1 +7.4

meas+ [B=1] -69.3 -16.6 -35.2 12.4
-51.4 -27.7 -38.3 -14.6

Kriging -34.8 -26.5 -35.4 -39.9
-35.5 -33.3 -34.0 -35.1

Table 2. Difference in % between the optimized and the true
fluxes for three types of inversion constraints withεE=-50% and
εm=10%.

Too big a change on some fluxes compared to other opti-
mized fluxes may indicate either that the first-guess inventory
does not have the same quality everywhere or or that the in-
formation is not well distributed (see the formal test case 2,
Section 3.4). In this synthetic case, the difference with the
true inventory is the same for all fluxes and the last case is
encountered. The interest of using kriging constraints then
depends on how the inventory is to be optimized. At a lo-
cal scale, the first-guess inventory may be assumed to have
been established with a reliable layout so that rural and urban
cells must retain their relative characteristics. To optimize
the inventory as a whole, the corrections should therefore be
distributed as homogeneously as possible, which is strongly
favored by the use of kriging.

and time. An error in NOx emissions during the morning
traffic peak leads to a incorrect estimation of ozone concen-
trations at various locations: in the city at the emission time
but also in the plume eight hours later (Fig. 7). It should
be noted that, since ozone concentrations are the result of
various processes, they are not directly linked to emissions.
As displayed in Fig. 7, a change of +100% in NOx emis-
sions leads to variations of less than 15% in the afternoon
ozone concentrations, at an hour of highest sensitivity. The
information on the NOx emitted during the morning in the
city is then principally contained in ozone concentrations in
the ozone plume formed in the afternoon. To obtain at least
part of these lacking bits of information, kriging is neces-
sary, since very few meaningful measurements are available
(Fig. 7). Finally, with ozone constraints, no m-cases reaches
convergence, whereas 13 out of 21 k-cases do (Table 1, bot-
tom half).

Finally, the use of kriging makes it possible to use part of
the information contained in the structure of the first-guess
simulation. This additional information, as compared to the
information provided by measurements alone, is sufficient to
reach a mathematically acceptable solution for the optimiza-
tion, even when no information is available in the measure-
ments.

4.3.2 Impact of the new approach

To assess the impact of the use of kriging as compared to
the classical method, cases for which convergence is reached
both when using kriging and measurements are studied in
particular. For these cases, the variances associated with the
average scores (Sect. 4.2) is computed and displayed in Ta-
ble 1.

The average difference with true emissions is roughly de-
creased by 29 to 57% (and increased for one case) with mea-
surements alone and by 26.8 to 31.6% with kriging. Never-
theless, the higher variances of the m-cases (9.9 to 121.4%
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Table 1. Average scores of optimizations (in %) (and matching variances) for NOx inversion with two types of NO or ozone constraints.
x = convergence not reached.

Fig. 7. Differences (ppb) between ozone surface concentrations ob-
tained with the true emission inventory and with the first-guess in-
ventory +100% at 4 p.m.

The average difference with true emissions is roughly de-
creased by 45.1 to 59.3% (and increased for one case) with
measurements alone and by 26.8 to 31.6% with kriging. Nev-
ertheless, the higher variances of the m-cases (9.9 to 121.4%
compared to less than 9% with kriging, seeTable 1) indicate
that with measurements alone, the corrections of the fluxes
are not well distributed, neither in space nor in time.

The m-case in whichεm =10% andεE =-50% illustrates
the detailed distribution of corrections obtained with three
approaches:(i) with measurements alone,(ii) with measure-
ments and a background matrixB =identity through lack
of information,(iii) with the kriging constraints. The differ-
ences between the eight optimized and true fluxes are dis-
played onTable 2. The heterogeneous distribution of the
corrections when using measurements alone is shown in the
South-West part of the city for example: the optimized NO
flux is only 13.9% underestimated at 8 a.m. but more than
37% overestimated at 9 a.m.. As shown on the middle panel

of Table 2, adding theB matrix leads to a slight homoge-
nization of the space and time distribution of the corrections
compared to the m-case. Finally, when using kriging, the
corrections are homogeneously distributed and the first-guess
difference of 50% with the true fluxes is reduced to an aver-
age 34.3%.

Exp. 08:00 09:00

Measurements -75.7 -56.3 -33.4 -37.2
-56.3 -26.6 -33.1 +7.4

meas+ [B=1] -69.3 -16.6 -35.2 12.4
-51.4 -27.7 -38.3 -14.6

Kriging -34.8 -26.5 -35.4 -39.9
-35.5 -33.3 -34.0 -35.1

Table 2. Difference in % between the optimized and the true
fluxes for three types of inversion constraints withεE=-50% and
εm=10%.

Too big a change on some fluxes compared to other opti-
mized fluxes may indicate either that the first-guess inventory
does not have the same quality everywhere or or that the in-
formation is not well distributed (see the formal test case 2,
Section 3.4). In this synthetic case, the difference with the
true inventory is the same for all fluxes and the last case is
encountered. The interest of using kriging constraints then
depends on how the inventory is to be optimized. At a lo-
cal scale, the first-guess inventory may be assumed to have
been established with a reliable layout so that rural and urban
cells must retain their relative characteristics. To optimize
the inventory as a whole, the corrections should therefore be
distributed as homogeneously as possible, which is strongly
favored by the use of kriging.

Fig. 7. Differences (ppb) between ozone surface concentrations ob-
tained with the true emission inventory and with the first-guess in-
ventory +100% at 16:00 .

compared to less than 9% with kriging, see Table 1) indicate
that with measurements alone, the corrections of the fluxes
are not well distributed, neither in space nor in time.

The m-case in whichεm=10% andεE=–50% illustrates
the detailed distribution of corrections obtained with three
approaches: (i) with measurements alone, (ii) with measure-
ments and a background matrixB= identity through lack of
information, (iii) with the kriging constraints. The differ-
ences between the eight optimized and true fluxes are dis-
played in Table 2. The heterogeneous distribution of the
corrections when using measurements alone is shown in the
southwest part of the city, for example: the optimized NO
flux is only 13.9% underestimated at 08:00 but more than
37% overestimated at 09:00 . As shown in the middle panel
of Table 2, adding theB matrix leads to a slight homoge-
nization of the space and time distribution of the corrections
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Table 2. Difference in % between the optimized and the true
fluxes for three types of inversion constraints withεE=–50% and
εm=10%.

Exp. 08:00 09:00

Measurements –75.7 –56.3 –33.4 –37.2
–56.3 –26.6 –33.1 +7.4

meas+ [B=1] –69.3 –16.6 –35.2 12.4
–51.4 –27.7 –38.3 –14.6

Kriging –34.8 –26.5 –35.4 –39.9
–35.5 –33.3 –34.0 –35.1

compared to the m-case. Finally, when using kriging, the
corrections are homogeneously distributed and the first-guess
difference of 50% with the true fluxes is reduced to an aver-
age 34.3%.

Too big a change on some fluxes compared to other opti-
mized fluxes may indicate either that the first-guess inventory
does not have the same quality everywhere or that the in-
formation is not well distributed (see the formal test case 2,
Sect. 3.4). In this synthetic case, the difference with the true
inventory is the same for all fluxes and the last case is en-
countered. The interest of using kriging constraints then de-
pends on how the inventory is to be optimized. At a local
scale, the first-guess inventory may be assumed to have been
established with a reliable layout so that rural and urban cells
must retain their relative characteristics. To optimize the in-
ventory as a whole, the corrections should therefore be dis-
tributed as homogeneously as possible, which is strongly fa-
vored by the use of kriging.

4.4 Limitations of the new approach

4.4.1 Iterative procedure: case of NO constraints

After the optimization, the average difference between first-
guess and true NOx emissions is decreased by less than 50%
when using NO kriging constraints (Table 1). Since NO con-
centrations are directly and almost linearly linked to NOx
emissions, this reduction may seem not satisfying. The in-
version provides not only the optimized emissions but also
the matching optimized concentrations (Fig. 1).

The new concentration field could then be used to perform
a new kriging analysis in place of the first-guess but still to-
gether with the measurements (see Fig. 1). A second inver-
sion, constrained by the new analyzed concentrations, could
follow. The results of the optimization could be refined by
iterating several kriging-inversion cycles. To test this possi-
bility, two kriging-inversion cycles were run for the k-cases
using NO concentrations. When a case had not reached con-
vergence at the first cycle, the second one was performed
from the preceding stopping point.
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After the optimization, the average difference between first-
guess and true NOx emissions is decreased by less than 60%
when using NO kriging constraints (Table 1). Since NO con-
centrations are directly and almost linearly linked to NOx

emissions, this reduction may seem not satisfying. The in-
version provides not only the optimized emissions but also
the matching optimized concentrations (Figure 1).

The new concentration field could then be used to perform
a new kriging analysis in place of the first-guess but still to-
gether with the measurements (seeFigure 1). A second in-
version, constrained with the new analyzed concentrations
could follow. The results of the optimization could be refined
by iterating several kriging-inversion cycles. To test this pos-
sibility, two kriging-inversion cycles were run for the k-cases
using NO concentrations. When a case had not reached con-
vergence at the first cycle, the second one was performed
from the preceding stopping point.

Figure 8illustrates the impact of the cycles on the analyzed
and simulated concentrations with the example of the South-
West cell of the four containing optimized fluxes. After the
first inversion, the average difference between simulated con-
centrations (named ”optimized 1st”) and constraints (named
”constraint 1st”) is decreased. The inversion is then cor-
rectly performed regarding the decrease of the cost function.
But because kriging makes use of the first-guess simulation,
constraints are shifted toward the first-guess concentrations
(Figure 8) and not as close to the true concentrations as pos-
sible. After the second kriging analysis performed with the
same measurements and the first optimized concentrations,
the second constraints (named ”constraint 2nd”) are closer
to the truth (Figure 8). The second optimized concentrations
(named ”optimized 2nd”) are finally closer to the truth than
the first optimized.

The average scores after the first and second optimization
are displayed onFigure 9 for all first-guess and measure-
ments qualities.

First, it should be noted that the quality of the measure-
ments has no significant impact: a smaller value ofεm does
not systematically lead to a higher score, either after the first
or the second optimization (Figure 9). Moreover, the prin-
ciple of kriging implies that any additional measurement,
whatever its uncertainty, increases the quality of the analy-
sis.

After the second cycle, 19 cases out of 21 reach conver-
gence. For 16 cases, the average scores are increased as
compared to the first optimization and range from 46 to 86%
(Figure 9). For 2 cases (εm =0% andεE =+50 and +70%),
the second optimization converges whereas the first cycle
had stopped after too many iterations; moreover, the aver-
age scores then reached are higher than 60% (Figure 9). The
quality of the inventory does not constitute a limitation in
the realistic range of -50 to +100%: only the cases corre-

Fig. 8. Times series of NO concentrations for the true inventory,
the first-guess +100% inventory and the analysis obtained with
εm=10% in the South-West part of the city for the first and second
optimizations.

Fig. 9. Average scores (%) after a first and then a second cycle of
kriging-optimization using NO constraints.

sponding toεE =-70% either do not converge at the second
optimization or reach a ”false” optimum.

4.4.2 Lack of information: case of ozone constraints

The average scores of all k-cases using ozone constraints
are less than 15% (Table 1). As explained in Section 4.3.1,
this is due to the lack of measurements in the ozone plume.
This leads the kriging technique to rely heavily on the val-
ues computed by the first-guess simulation: the analysis are
very close to the first-guess concentrations, as displayed on
Figure 10. Therefore, the optimized emissions are also very
close to the first-guess ones. With optimized concentrations
almost equal to the first-guess concentrations, the performing
of kriging-optimization cycles cannot increase the accuracy
of the inversion.

Fig. 8. Times series of NO concentrations for the true inventory,
the first-guess +100% inventory and the analysis obtained with
εm=10% in the southwest part of the city for the first and second
optimizations.

Figure 8 illustrates the impact of the cycles on the ana-
lyzed and simulated concentrations, with the example of the
southwest cell of the four containing optimized fluxes. Af-
ter the first inversion, the average difference between simu-
lated concentrations (named “optimized 1st”) and constraints
(named “constraint 1st”) is decreased. The inversion is then
correctly performed regarding the decrease of the cost func-
tion. But because kriging makes use of the first-guess simu-
lation, constraints are shifted toward the first-guess concen-
trations (Fig. 8) and not as close to the true concentrations
as possible. After the second kriging analysis was performed
with the same measurements and the first optimized concen-
trations, the second constraints (named “constraint 2nd”) are
closer to the truth (Fig. 8). The second optimized concentra-
tions (named “optimized 2nd”) are finally closer to the truth
than the first optimized.

The average scores after the first and second optimizations
are displayed in Fig. 9 for all first-guess and measurements
qualities. First, it should be noted that the quality of the mea-
surements has no significant impact: a smaller value ofεm

does not systematically lead to a higher score, either after
the first or the second optimization (Fig. 9). Moreover, the
principle of kriging implies that any additional measurement,
whatever its uncertainty, increases the quality of the analysis.

After the second cycle, 19 cases out of 21 reached con-
vergence. For 16 cases, the average scores were increased
as compared to the first optimization and range from 46 to
86% (Fig. 9). For 2 cases (εm=0% andεE=+50 and +70%),
the second optimization converges, whereas the first cycle
had stopped after too many iterations; moreover, the average
scores then reached are higher than 60% (Fig. 9). The quality
of the inventory does not constitute a limitation in the realis-
tic range of -50 to +100%: only the cases corresponding to
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not systematically lead to a higher score, either after the first
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whatever its uncertainty, increases the quality of the analy-
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(Figure 9). For 2 cases (εm =0% andεE =+50 and +70%),
the second optimization converges whereas the first cycle
had stopped after too many iterations; moreover, the aver-
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sponding toεE =-70% either do not converge at the second
optimization or reach a ”false” optimum.

4.4.2 Lack of information: case of ozone constraints

The average scores of all k-cases using ozone constraints
are less than 15% (Table 1). As explained in Section 4.3.1,
this is due to the lack of measurements in the ozone plume.
This leads the kriging technique to rely heavily on the val-
ues computed by the first-guess simulation: the analysis are
very close to the first-guess concentrations, as displayed on
Figure 10. Therefore, the optimized emissions are also very
close to the first-guess ones. With optimized concentrations
almost equal to the first-guess concentrations, the performing
of kriging-optimization cycles cannot increase the accuracy
of the inversion.
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εE=–70% either do not converge at the second optimization
or reach a “false” optimum.

4.4.2 Lack of information: case of ozone constraints

The average scores of all k-cases using ozone constraints
are less than 15% (Table 1). As explained in Sect. 4.3.1,
this is due to the lack of measurements in the ozone plume.
This leads the kriging technique to rely heavily on the val-
ues computed by the first-guess simulation: the analysis are
very close to the first-guess concentrations, as displayed in
Fig. 10. Therefore, the optimized emissions are also very
close to the first-guess ones. With optimized concentrations
almost equal to the first-guess concentrations, the performing
of kriging-optimization cycles cannot increase the accuracy
of the inversion.

To try and assess the potential impact of additional mea-
surement stations, five virtual stations (not corresponding to
any actual AIRPARIF site) were added in the plume. Per-
fect ozone measurements generated with these stations were
added to the ones used for the inversion of the k-cases with
εE=–70 to +100%. The same four cases reached convergence
(Table 1). The average scores were increased forεE = –50
and –20% (from 8.3 to 11.6 and from 7.3 to 10.9) and de-
creased forεE=+20 and +50% (from 5.7 to 4.1 and from
0.6 to –2.3). The interest of the additional information thus
seems to depend on the quality of the first-guess inventory.
The added measurements make it possible to better correct
the under-estimation of NOx emissions in the morning in the
city but the overestimation remained poorly corrected. Note
that this rough impact assessment does not constitute a fine
network design study.

Finally, this situation shows that the use of kriging con-
straints cannot compensate for a very important lack of in-
formation in the measurements. Actually, no information is
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Fig. 10. Times series of ozone concentrations for the true inven-
tory, the first-guess +100% inventory and the analysis obtained with
εm=15% for a cell located in the plume.

To try and assess the potential impact of additional mea-
surement stations, five virtual stations (not corresponding to
any actual AIRPARIF’s site) where added in the plume. Per-
fect ozone measurements generated with these stations where
added to the ones used for the inversion of the k-cases with
εE =-70 to +100%. The same four cases reach convergence
(Table 1). The average scores are increased forεE =-50 and
-20% (from 8.3 to 11.6 and from 7.3 to 10.9) and decreased
for εE =+20 and +50% (from 5.7 to 4.1 and from 0.6 to -
2.3). The interest of the additional information thus seems to
depend on the quality of the first-guess inventory. The added
measurements make it possible to better correct the under-
estimation of NOx emissions in the morning in the city but
the overestimation remains poorly corrected. Note that this
rough impact assessment does not constitute a fine network
design study.

Finally, this situation shows that the use of kriging con-
straints cannot compensate a too important lack of informa-
tion in measurements. Actually, no information is created by
kriging. Finally, the use of kriging and even the performing
of kriging-optimization cycles increase the accuracy of the
inversion only when the information contained in the mea-
surements is relevant enough.

5 Conclusion

The main goal of this work is to improve the inversion of
emissions at a local scale using a chemistry-transport model.
In this paper, we thus presented some hypothesis to use an-
alyzed chemical concentrations provided by a kriging tech-
nique. Such a methodology makes it possible to add infor-
mation on the emission first-guess through the concentration
space, thus avoiding the difficulty of addinga priori infor-
mation in the emission space.

The inverse modeling system is based on the CHIMERE
chemistry-transport model and its adjoint (to perform 4D-

integration) and the kriging technique used daily for the fore-
casting of pollution maps in the Paris area.

To evaluate the feasibility and accuracy of this new
methodology, synthetic cases of inversion were performed.
Three aspects were particularly addressed in our testing: the
quality of the constraints, the quality of the first-guess in-
ventory and the relevance of the available information. First,
formal cases have shown that the theoretical accuracy of the
inversion system is high. Then, the interest and limitations of
the new kriging-constrained methodology were tested on re-
alistic synthetic cases based on a real summer pollution event
that occurred in the Paris area. It was shown that the informa-
tion provided by the analyzed concentrations is sufficient to
reach a mathematically acceptable solution to the optimiza-
tion, even when no information is available in the measure-
ments (case of ozone concentrations for which relevant mea-
surements lack in the plume).

When using NO constraints, for which numerous relevant
measurements are available, the use of kriging leads to a
more homogeneous distribution of the corrections, both in
space and time, as compared to the use of measurements
alone or of measurements and a background (identity) ma-
trix. Moreover, it is then possible to double the accuracy of
the inversion by performing two kriging-optimization cycles
(the second kriging being run with the first optimized con-
centrations and the measurements). Nevertheless, the case of
ozone-constrained inversions show that kriging constraints
cannot compensate for a too important lack of information in
measurements.

Two main points have not been addressed in this paper and
should be treated in further studies:(i) problems with longer
time period to invert and therefore bigger size and(ii) the
inversion of emissions and key meteorological parameters
(such as the boundary layer height) together. The realistic
synthetic cases described here only have a size of 8 whereas
a real problem would be at least ten times larger. Even with
the use of kriging, it will probably be necessary to decrease
the size of the problem before the inversion.
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created by kriging. Finally, the use of kriging and even the
performing of kriging-optimization cycles increase the accu-
racy of the inversion only when the information contained in
the measurements is relevant enough.

5 Conclusion

The main goal of this work is to improve the inversion of
emissions at a local scale using a chemistry-transport model.
In this paper, we thus presented some hypothesis to use an-
alyzed chemical concentrations provided by a kriging tech-
nique. Such a methodology makes it possible to add infor-
mation on the emission first-guess through the concentration
space, thus avoiding the difficulty of adding a priori informa-
tion in the emission space.

The inverse modeling system is based on the CHIMERE
chemistry-transport model and its adjoint (to perform 4-D in-
tegration) and the kriging technique used daily for the fore-
casting of pollution maps in the Paris area.

To evaluate the feasibility and accuracy of this new
methodology, synthetic cases of inversion were performed.
Three aspects were particularly addressed in our testing: the
quality of the constraints, the quality of the first-guess in-
ventory and the relevance of the available information. First,
formal cases have shown that the theoretical accuracy of the
inversion system is high. Then, the interest and limitations of
the new kriging-constrained methodology were tested on re-
alistic synthetic cases based on a real summer pollution event
which occurred in the Paris area. It was shown that the infor-
mation provided by the analyzed concentrations is sufficient
to reach a mathematically acceptable solution for the opti-
mization, even when no information is available in the mea-
surements (case of ozone concentrations for which relevant
measurements lack in the plume).
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When using NO constraints, for which numerous relevant
measurements are available, the use of kriging leads to a
more homogeneous distribution of the corrections, both in
space and time, as compared to the use of measurements
alone or of measurements and a background (identity) ma-
trix. Moreover, it is then possible to double the accuracy of
the inversion by performing two kriging-optimization cycles
(the second kriging being run with the first optimized con-
centrations and the measurements). Nevertheless, the case of
ozone-constrained inversions show that kriging constraints
cannot compensate for a very important lack of information
in the measurements.

Two main points have not been addressed in this paper
and should be treated in further studies: (i) problems with
a longer time period to invert and therefore bigger size, and
(ii) the inversion of emissions and key meteorological pa-
rameters (such as the boundary layer height) together. The
realistic synthetic cases described here only have a size of
8, whereas a real problem would be at least ten times larger.
Even with the use of kriging, it will probably be necessary to
decrease the size of the problem before the inversion.
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