
HAL Id: hal-00330023
https://hal.science/hal-00330023

Submitted on 13 Oct 2008

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Krylov and Safonov Estimates for Degenerate
Quasilinear Elliptic PDEs

François Delarue

To cite this version:
François Delarue. Krylov and Safonov Estimates for Degenerate Quasilinear Elliptic PDEs. Journal
of Differential Equations, 2010, 248, pp.924–951. �hal-00330023�

https://hal.science/hal-00330023
https://hal.archives-ouvertes.fr


Krylov and Safonov Estimates for Degenerate

Quasilinear Elliptic PDEs

François Delarue a,

aLaboratoire de Probabilités et Modèles Aléatoires, Université Paris 7-Diderot,
Case 7012, 2, Place Jussieu, 75251 Paris Cedex 05, France

Abstract

We here establish an a priori Hölder estimate of Krylov and Safonov type for the
viscosity solutions of a degenerate quasilinear elliptic PDE of non-divergence form.
The diffusion matrix may degenerate when the norm of the gradient of the solution
is small: the exhibited Hölder exponent and Hölder constant only depend on the
growth of the source term and on the bounds of the spectrum of the diffusion matrix
for large values of the gradient. In particular, the given estimate is independent of
the regularity of the coefficients. As in the original paper by Krylov and Safonov,
the proof relies on a probabilistic interpretation of the equation.

Key words: Quasilinear elliptic PDE; Degeneracy; p-Laplacian; Hölder estimate;
Stochastic differential equation

1 Introduction

Background and Objective. The original Krylov and Safonov result (see
[17, 18]) says that, given two open balls B1 ⊂ B2 ⊂ Rd of same center and of
radii 1 and 2 and given a solution u in C(B2)∩W 2,d

loc (B2) of an elliptic equation
of non-divergence type

−Tr(A(x)D2u(x)) + 〈b(x), Du(x)〉+ f(x) = 0 for a.e. x ∈ B2,

A, b and f being bounded and measurable and A being also uniformly ellip-
tic, u fulfills on the ball B1 a universal Hölder estimate whose exponent and
constant only depend on the dimension d, on the upper bounds of A, b and
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f , on the lower bound of A and on the supremum norm of u on B2. Obtained
in the late 70’s, this result may be seen as the counterpart for equations of
non-divergence form of the older De Giorgi and Nash estimates (see [9, 22])
established in the 50’s for the solutions of divergence form equations.

In a series of works, due among others to Serrin [25] and Ladyzhenskaya et
al. [19], De Giorgi and Nash estimates have been shown to hold for quasilin-
ear elliptic equations of divergence type admitting degeneracies of p-Laplace
type, p > 2, that is for equations driven by the p-Laplace operator ∆p(u) =
div(|Du|p−2Du), or, more generally, by a second order operator of the form
div(A(x,Du)), the growth of A(x,Du) being controlled from above and from
below by |Du|p−1, again with p > 2. The purpose of this article is to prove
a similar result for quasilinear elliptic equations of non-divergence form. Pre-
cisely, the main result is

Theorem 1.1 Let A : Rd × R × Rd → Sd(R) (set of symmetric matrices of
size d) and f : Rd × R× Rd → R be continuous coefficients satisfying 1 :

∀y ∈ R, ∀x, z, ξ ∈ Rd,

Λ−1λ(z)|ξ|2 ≤ 〈ξ, A(x, y, z)ξ〉 ≤ Λλ(z)|ξ|2,

|f(x, y, z)| ≤ (1/2)Λ(1 + λ(z))(1 + |z|),
(H1)

for some Λ ≥ 1 and some continuous mapping λ : Rd → R+ for which there
exist positive reals λ0 and M (positive means in (0,+∞)) such that λ(z) ≥ λ0

for |z| ≥ M . Let B2 be a ball of Rd of radius 2 and u : B2 → R be a bounded
and continuous viscosity solution of

−Tr(A(x, u(x), Du(x))D2u(x)) + f(x, u(x), Du(x)) = 0, x ∈ B2. (1.1)

Then, u is Hölder continuous on B1. Moreover, there exist two constants β
and C, only depending on d, Λ, λ0 and M , such that |u(x) − u(y)| ≤ C|x −
y|β(1 + supB2

(|u|)) for any x, y ∈ B1.

To the best of our knowledge, this result is new: divergence form equations
excepted, all the estimates we know for the viscosity solutions of possibly
degenerate fully non-linear elliptic PDEs take into account the moduli of con-
tinuity of the coefficients. (See, among others, Barles and Da Lio [2], Ishii
and Lions [12], Jakobsen and Karlsen [13] and Katsoulakis [15].) Here, the
final Hölder bound doesn’t depend on the regularity of A and f (despite
A and f are assumed to be continuous). Obviously, Theorem 1.1 applies to
the p-Laplace operator, p > 2, which expands in a non-divergence form as
∆p(u) = |Du|p−2Tr[(Id+(p−2)|Du|−2DuDu∗)D2u]. (Id is the identity matrix
of size d.) Indeed, ∆p fulfills (H1) with λ(z) = |z|p−2 and Λ = p− 1.

1 The coefficient 1/2 related to the growth of f in (H1) is purely cosmetic: when λ
is [0, 1]-valued, |f(x, y, z)| ≤ Λ(1 + |z|).
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Before we discuss the strategy of the proof, we say a little bit more about
the equation itself. We first emphasize that (1.1) fulfills a maximum principle
under Assumption (H1): the supremum norm of the solution u on B2 may be
bounded in terms of the parameters Λ, λ0 andM and of the supremum of |u| on
the boundary of B2 (see e.g. Serrin and Pucci [24, Thm 2.3.2], the proof being
easily adapted to viscosity solutions). On the contrary, (H1) is not sufficient
to guarantee a strong Harnack inequality of the form supB1

(u) ≤ C infB1(u)
when u is non-negative and f is zero: think of d = 1, u(x) = 1 + cos(πx)
and λ(z) = 0 for |z| ≤ π. Concerning the assumptions, we emphasize that the
continuity property of the coefficients A, f and λ in the statement could be
relaxed: this would demand an additional effort which seems useless here. On
the opposite, the optimality of (H1) is to be understood: is it possible to require
(H1) only for ξ = z as for divergence form equations? The possible extension
of the result to fully non-linear equations of the form F (x, u,Du,D2u) = 0
on the model of the works of Caffarelli [4] and Caffarelli and Cabré [5] on
Krylov and Safonov estimates for uniformly elliptic non-linear PDEs is also to
be considered. Finally, we emphasize that we haven’t been able to adapt the
approach to parabolic equations: the problem is to fit the time and space scales
properly in the method developed below. This seems to be quite challenging:
when the equation degenerates, the natural diffusive scaling between time
and space breaks down since the solution locally generates its own scaling
according to the values of the diffusion coefficient. Similar difficulties occur
for parabolic equations of divergence form: we refer to the series of papers by
DiBenedetto, Urbano and Vespri mentioned in their common work [10] for an
overview of the method used in that case.

Strategy. As in the original work of Krylov and Safonov for linear equations,
the strategy of the proof relies on a probabilistic interpretation of the quasi-
linear PDE. Indeed, when A and f are independent of y and z, i.e. when the
equation is linear, the original proof consists in introducing a diffusion process
X, solution to the Stochastic Differential Equation (SDE for short)

dXt = σ(Xt)dWt, t ≥ 0,

where W is a d-dimensional Wiener process and σ a continuous version of
the square root of the matricial mapping 2A. (In the linear framework, (H1)
ensures that A is elliptic so that the above equation is weakly solvable, see
Stroock and Varadhan [26].)

The basic idea of Krylov and Safonov follows from a key observation in the
theory of diffusion processes: the generator of a diffusion process enjoys some
smoothing property if the paths of the corresponding process sufficiently visit
the surrounding space with a non trivial probability. The argument may be
understood as follows in the simple case when f vanishes and u is smooth:
in such a framework, (u(Xt))t≥0 is a martingale. In particular, u(x) may be
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expressed as the expectation E[u(Xx
τ )] for any well-controlled stopping time

τ . (Here, the exponent x indicates the initial position of the diffusion process.)
As a consequence, u(x) may be understood as a mean over the values of u in
a neighborhood of x: since X visits the surrounding space around x, almost
all the values of u in the neighborhood of x have a role in the computation of
the expectation. Obviously, the same is true for any point y very close to x:
both u(x) and u(y) may be expressed as expectations over the values of u in
the neighborhood of x (and thus of y). Therefore, u(x) and u(y) are close if
the values of u in both expectations are averaged with quite similar weights:
this is the case if the way the process visits the surrounding space has some
uniformity with respect to the starting point. The method also applies when
the source term f is non-zero. In this case, the probabilistic representation
formula has the form

u(x) = E
[
u(Xx

τ ) +
∫ τ

0
f(Xx

s )ds
]
. (1.2)

In the specific Krylov and Safonov theory, the point is to bound from below
the probability that the diffusion process X hits a Borel subset of non-zero
Lebesgue measure included in B2 (or in a smaller ball) before leaving it. Ob-
viously, the ellipticity property plays a crucial role: indeed, if the diffusion
matrix A degenerates on an open subset of B2, there is no chance for X to
move inside along the directions of degeneracy.

To handle the possible degeneracies in the non-linear framework, the idea we
here develop is the following. When A and u are smooth, we can define X
similarly as above by setting:

dXt = σ(Xt, u(Xt), Du(Xt))dWt, t ≥ 0,

(x, y, z) 7→ σ(x, y, z) being a smooth version of the square root of 2A. (We do
not discuss the existence of this smooth version at this stage of the paper.)
When |Du| is large, the assumption (H1) turns into an ellipticity condition, so
that the Krylov and Safonov theory applies. Anyhow, because of the possible
degeneracies of A(x, y, z) for |z| small, the process may not move inside the
part of the space where the gradient |Du| is small. In what follows, we specifi-
cally show that we can force the stochastic system on the areas of degeneracy
by an additional drift to push it towards the desired Borel subset. Precisely,
we will show the following

Theorem 1.2 Let σ : Rd → Rd×d be a Lipschitz continuous mapping such
that

∀x, ξ ∈ Rd, Λ−1λ̂(x)|ξ|2 ≤ 〈ξ, a(x)ξ〉 ≤ Λλ̂(x)|ξ|2, a(x) = σσ∗(x), (H2)

for some Λ ≥ 1 and some mapping λ̂ : Rd → [0, 1]. Let (Ω,F , (Ft)t≥0,P)
also denote a filtered probability space satisfying the usual conditions endowed
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with an (Ft)t≥0 Brownian motion (Wt)t≥0, α be a positive real and Q1 be
some hypercube of Rd of radius 1. (For our purpose, we prefer hypercubes to
Euclidean balls.)

Then, for any µ in (0, 1), there exist some positive constants ε(µ), R(µ) and
(Γp(µ))1≤p<2, only depending on d, α, Λ and µ (and not on λ̂ in (H2) and
on Q1), such that, for any ρ in (0, 1) and x0 in Qρ/8 (hypercube of Rd of
same center as Q1 but of radius ρ/8), we can find an integrable d-dimensional
(Ft)t≥0 progressively measurable process (bt)t≥0 such that both (bt)t≥0 and the
process X, solution to the SDE

Xt = x0 +
∫ t

0
bsds+

∫ t

0
σ(Xs)dBs, t ≥ 0,

fulfill


∀t ≥ 0, λ̂(Xt) ≥ α⇒ bt = 0,

∀p ∈ [1, 2), E
∫ +∞

0
|bt|pdt ≤ Γp(µ)ρp−2,

and, for any Borel subset V ⊂ Qρ (hypercube of same center as Q1 but of
radius ρ)

|Qρ \ V | < µ|Qρ| ⇒ P{TV < (R(µ)ρ2) ∧ SQρ} ≥ ε(µ),

TV being the first hitting time of V and SQρ the first exit time from Qρ by X.
(| · | here stands for the Lebesgue measure.)

Comments. Theorem 1.2 may be a bit complicated to understand at first
sight. We first emphasize that (H2) is not a strict ellipticity assumption since
λ̂ may vanish: what is important is that, at any x, all the eigenvalues of a(x)
behave in the same way. In the specific case when the matrix a is uniformly
non-degenerate, the mapping λ̂ in the statement may be assumed to be equal
to 1 without loss of generality. Choosing α = 1 in the statement, we observe
that the drift (bt)t≥0 given by Theorem 1.2 is then always zero, so that X is
simply the solution of the SDE dXt = σ(Xt)dWt, t ≥ 0, with x0 ∈ Qρ/8 as
initial condition. Theorem 1.2 then says that the probability of hitting a Borel
subset V of Qρ before leaving the ball Qρ is bounded from below by a constant
only depending on d and Λ and on the proportion of V in Qρ: this exactly
fits the original Krylov and Safonov result. (See [17].) When σ degenerates,
Theorem 1.2 says that we can force the stochastic system by an additional drift
to preserve the Krylov and Safonov result. The connection with Theorem 1.1
may be understood as follows: when u is a strong solution of the PDE (1.1),
we choose a(x) in the statement of Theorem 1.2 as 2A(x, u(x), Du(x)): under
(H1), it satisfies (2Λ)−1λ(Du(x)) ≤ 〈ξ, a(x)ξ〉 ≤ 2Λλ(Du(x)), with λ as in the
statement of Theorem 1.1. The term λ(Du(x)) then plays the role of λ̂(x) in
Theorem 1.2 (forget for the moment the fact that λ̂ has to be [0, 1]-valued):
by choosing α in the statement of Theorem 1.2 equal to λ0 given by (H1) in
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Theorem 1.1, we deduce that |Du(Xt)| ≥ M ⇒ λ(Du(Xt)) ≥ λ0 ⇒ λ̂(Xt) ≥
α ⇒ bt = 0. In other words, the resulting drift (bt)t≥0 just acts when the
gradient is small, i.e. is bounded by M .

Of course, adding a non-zero drift in the SDE satisfied by (Xt)t≥0 breaks down
the natural connection with the PDE (1.1). Actually, still assuming that u is
smooth, a simple application of the Itô formula shows that, for (Xt)t≥0 as in
the previous paragraph, (1.2) becomes

u(x0) = E
[
u(Xτ ) +

∫ τ

0

(
f(Xs)− 〈bs, Du(Xs)〉

)
ds
]
. (1.3)

Again, τ is a well-controlled stopping time and x0 is some initial condition as in
the statement of Theorem 1.2. Here is the main issue: the best bound we have
on (Du(Xt))t≥0 in such problems holds in L2(Ω, L2([0, τ ],Rd)) (think of the Itô
isometry or refer to the more general results on Backward SDEs in which such
controls are frequently used, see Pardoux [23] or Delarue [8]); moreover, by
Theorem 1.2, the drift (bt)t≥0 is just Lp(Ω, Lp([0, τ ],Rd)) integrable for 1 ≤ p <
2. Therefore, without any additional information on (bt)t≥0, there is no hope
to give a sense to (1.3). Anyhow, because of its specific construction, (bt)t≥0

vanishes for |Du(Xt)| ≥ M , so that (|〈bt, Du(Xt)〉|)t≥0 is always bounded by
(M |bt|)t≥0. The Lp(Ω, Lp([0, τ ],Rd)) controls, 1 ≤ p < 2, we have on (bt)t≥0

are then sufficient to see (1.3) as a variation of (1.2). It is then possible to
derive the estimates for u as in the original paper by Krylov and Safonov 2 .

Organization of the Paper. In Section 2, we show how to deduce Theorem
1.1 from Theorem 1.2. In Section 3, we prove Theorem 1.2 when the proportion
of V inside Qρ is large enough: we call this step “attainability of large sets”.
This is the core of the proof. It is the equivalent of the first step in the
Krylov and Safonov proof: large sets are there shown to be attainable with
a non-zero probability by an application of the Krylov inequality. We then
complete the proof of Theorem 1.2 in Section 4 by proving that small sets
are also attainable: as in the original proof, we first prove that small balls are
attainable. Combining the attainability of small balls and the attainability of
large sets, we complete the proof.

2 Application of Theorem 1.2 to Degenerate Elliptic Equations

We first show how to derive Theorem 1.1 from Theorem 1.2. Dividing (1.1) by
1+λ(Du(x)), we can assume λ to be [0, 1]-valued in the whole demonstration.
(Obviously, this doesn’t change the values of Λ and M and just turns λ0 into

2 The form (1.3) explains why the strong Harnack inequality fails. The term
(〈bs, Du(Xs)〉)0≤s≤τ behaves as a non-trivial source term.
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λ0/(1 + λ0).) For notational simplicity, we also restrict the proof to the case
when A and f are independent of y: the argument is completely similar when
A and f do depend on y. We thus write (1.1) under the form

−Tr(A(x,Du(x))D2u(x)) + f(x,Du(x)) = 0, x ∈ B2. (2.1)

Compared with the original argument given by Krylov and Safonov, the main
difference in the application of the probabilistic estimate follows from the
interpretation of the underlying PDE. In the paper by Krylov and Safonov,
the PDE is understood in the strong sense, i.e. the solution u is assumed to
be in C(B2) ∩W 2,d

loc (B2). We here consider the equation (2.1) in the viscosity
sense. The idea to recover the strong framework is classical in the theory of
viscosity solutions and consists of a regularization by infimum and supremum
convolutions. We refer to the articles by Lasry and Lions [21], Crandall et al.
[6] and Jensen [14] for the original ideas. Basically, the infimum and supremum
convolutions permit both to regularize a given solution of (2.1) and to keep the
original structure of the PDE. Following [21], we thus define for any bounded
and uniformly continuous function w on the whole Rd, ε > 0 and x ∈ Rd

wε(x) = sup
y∈Rd

[
w(y)− 1

2ε
|x− y|2

]
, wε(x) = inf

y∈Rd

[
w(y) +

1

2ε
|x− y|2

]
.

The main result in [21] says that, for any positive δ and ε, (wε+δ)δ belongs
to C1,1(Rd) (i.e. is continuously differentiable on Rd with Lipschitz continuous
derivatives) and uniformly converges towards w as δ and ε tend to zero. The
point is thus to prove that, when w satisfies a given second order PDE in the
viscosity sense, (wε+δ)δ is a viscosity subsolution of some PDE similar to the
original one. The proof of the following result is inspired from the paper [6]:

Proposition 2.1 Let A and f be coefficients independent of y fulfilling (H1)
with respect to some Λ ≥ 1, λ : Rd → [0, 1], λ0 ∈ (0, 1] and M > 0. Let
u : B2 → R be also a continuous viscosity solution of the PDE (2.1). Setting
w = (ũε+δ)δ for δ > 0 and ε > 0 and for some arbitrarily chosen bounded and
uniformly continuous extension ũ of u to the whole Rd, there exists θ ∈ (0, 1)
such that, for δ = θε and for ε small enough, w satisfies:

−Tr(Aε(x,Dw(x))D2w(x))+f(x+εDw(x), Dw(x)) ≤ 2(Λ+M) a.e. x ∈ B3/2,

where B3/2 is the ball of same center as B2 but of radius 3/2 and Aε : Rd×Rd →
Sd(R) is a smooth function (i.e. C∞ with bounded derivatives of any order)
satisfying inf{〈ξ, Aε(x, z)ξ〉, x, z, ξ ∈ Rd, |ξ| = 1} > 0 as well as Assumption
(H1) with respect to Λ and to some mapping λε : Rd → (0, 2] such that λε(z) ≥
λ0 for |z| ≥M + 1.

Proof. By Lasry and Lions [21], there exists some constant K ≥ 0 (K depends
on u but is independent of δ and ε) such that |Dw(x)| ≤ Kε−1/2 for any
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x ∈ B3/2. We deduce that for ε small enough, x + εDw(x) belongs to B2 for
any x ∈ B3/2.

Choose now some x̂ ∈ B3/2 at which D2w(x̂) exists. Assume first that w(x̂) =
ũε(x̂). Since w ≥ ũε on the whole Rd (see [21]), (Dw(x̂), D2w(x̂)) ∈ D2,+ũε(x̂)
(see Crandall, Ishii and Lions [7] for the standard definition of D2,+). By
Crandall et al. [6, Prop 4.3], we deduce that (Dw(x̂), D2w(x̂)) ∈ D2,+u(x̂ +
εDw(x̂)), so that, by (2.1)

−Tr
(
A(x̂+ εDw(x̂), Dw(x̂))D2w(x̂)

)
+ f

(
x̂+ εDw(x̂), Dw(x̂)

)
= 0. (2.2)

Suppose now that w(x̂) > ũε(x̂). By [6, Prop 4.4], 1/δ is an eigenvalue of
D2w(x̂) (and is in fact the largest one) and, by [6, Prop 4.5], the other eigen-
values are greater than or equal to −1/ε. In particular, for any y ∈ B3/2,

− Tr
(
A(y,Dw(x̂))D2w(x̂)

)
+ f

(
y,Dw(x̂)

)
≤ λ(Dw(x̂))

(
−Λ−1δ−1 + (d− 1)Λε−1

)
+ Λ(1 + |Dw(x̂)|).

We now choose δ = ε/(dΛ2), so that, for any y ∈ B3/2,

−Tr
(
A(y,Dw(x̂))D2w(x̂)

)
+f

(
y,Dw(x̂)

)
≤ Λ

[
−λ(Dw(x̂))ε−1 +1+ |Dw(x̂)|

]
.

(2.3)
We know that λ(Dw(x̂)) ≥ λ0 for |Dw(x̂)| ≥M , so that the above right-hand
side is less than Λ(−λ0ε

−1 + 1 + Kε−1/2) for |Dw(x̂)| ≥ M . Otherwise, it is
less than Λ(1 +M). Choosing ε small enough, we deduce from (2.2) and (2.3)
that in any case

−Tr
(
A(x̂+ εDw(x̂), Dw(x̂))D2w(x̂)

)
+ f

(
x̂+ εDw(x̂), Dw(x̂)

)
≤ Λ(1 +M).

We finally smooth the diffusion coefficient using a standard mollifier. We know
that the norm of D2w(x̂) is less that some constant C(ε) ≥ 1. Then, we can
find a smooth matricial function Aε : Rd × Rd → Sd(R) such that

sup
|x|≤2,|z|≤Kε−1/2

|Aε(x, z)− A(x, z)| ≤ ε/C(ε).

It is clear that Aε fulfills (H1) with respect to Λ and to some mapping λε :
Rd → [0, 1] obtained by mollification of the original mapping λ. In particular,
for ε small enough, λε(z) ≥ λ0 if |z| ≥M+1. Changing Aε into Aε+[ε/C(ε)]Id,
we can assume that the lowest eigenvalue of Aε(x, z) is greater than or equal
to ε/C(ε) for any (x, z) ∈ Rd × Rd. This changes λε into λε + ε/C(ε): for ε
small enough, the new λε is thus (0, 2]-valued. For this final choice of Aε,

−Tr
(
Aε(x̂+εDw(x̂), Dw(x̂))D2w(x̂)

)
+f

(
x̂+εDw(x̂), Dw(x̂)

)
≤ 2ε+Λ(1+M).

This completes the proof. 2

8



We are now in position to complete the proof of Theorem 1.1. According to
Gilbarg and Trudinger [11, Lem 8.23], it is sufficient to prove

Proposition 2.2 Under the assumptions of Proposition 2.1, there exist two
constants γ ∈ (0, 1) and C ≥ 0, only depending on d, Λ, λ0 and M , such that
for any ρ ∈ (0, 1), for any hypercubes Qρ/8 and Qρ of same center and of radii
ρ/8 and ρ, with Qρ/8 ⊂ Qρ ⊂ B3/2 (B3/2 being the ball of same center as B2

in the statement of Theorem 1.1 but of radius 3/2)

osc
Qρ/8

(u) ≤ γosc
Qρ

(u) + Cρ(1 + sup
Qρ

(|u|)) (osc
Qr

(u) = sup
Qr

(u)− inf
Qr

(u)).

Proof. We set m− = infQρ(u) and m+ = supQρ(u). Changing u into −u if
necessary, we can assume that |{x ∈ Qρ : u(x) ≤ (m+ +m−)/2}| ≥ (1/2)|Qρ|.
We also consider w given by Proposition 2.1, with ε and δ as in the state-
ment of the proposition. Changing λε into λε/4, Λ into 4Λ and λ0 into λ0/4,
we can assume that λε is (0, 1/2] valued. Then, we can apply Theorem 1.2
to aε(x) = 2Aε(x,Dw(x)). Indeed, since Aε is smooth and uniformly non-
degenerate and Dw is Lipschitz continuous, the symmetric square root σ of
aε is also Lipschitz continuous: (H2) in Theorem 1.2 is then easily checked
with λ̂(x) = 2λε(Dw(x)). Obviously, the hypercubes to which the theorem is
applied are Qρ/8 and Qρ and the initial condition x0 is some arbitrary point
in Qρ/8. Moreover, the parameters α and µ are respectively chosen equal to
λ0 and to 1/2. The resulting processes are denoted by (bt)t≥0 and (Xt)t≥0 and
the constants R(1/2) and ε(1/2) are denoted by R0 and ε0.

We then consider V = {x ∈ Qρ : u(x) ≤ (m+ + m−)/2}. Using the notations
of Theorem 1.2, we also define τ as the sopping time TV ∧ (R0ρ

2) ∧ SQρ . We
wish to apply Itô’s formula to (w(Xt))t≥0. The point is that w is not in C2(Rd)
but in C1,1(Rd). Since the diffusion matrix of X is uniformly elliptic, we have
in mind to apply the Itô-Krylov formula that holds for functions with Sobolev
derivatives (see [16, Sec 2.10]). There is then another problem: it requires the
drift (bt)t≥0 to be bounded. We thus define, for any n ≥ 1, the Itô process

Xn
t = x0 +

∫ t

0
σ(Xs)dWs +

∫ t

0
bs1{|bs|≤n}ds.

Since (bt)t≥0 belongs to L1(Ω×R+), it is clear that E[supt≥0 |Xn
t −Xt|] tends to

0 with n. Expanding (w(Xn
t ))t≥0 and taking the expectation (τ is bounded):

w(x0) = E[w(Xn
τ )]

− E
∫ τ

0

[
(1/2)Tr(aε(Xs)D

2w(Xn
s )) + 〈bs, Dw(Xn

s )〉1{|bs|≤n}
]
ds.

Since w is a subsolution of the regularized version of (1.1), see Proposition
2.1, −(1/2)Tr(aε(X

n
s )D2w(Xn

s )) ≤ −f(Xn
s + εDw(Xn

s ), Dw(Xn
s ))+2(Λ+M).

9



Hence

w(x0) ≤ E[w(Xn
τ )] + E

∫ τ

0

[
3Λ + 2M + Λ|Dw(Xn

s )|

− 〈bs, Dw(Xn
s )〉1{|bs|≤n} +Kε|Xn

s −Xs|
]
ds,

(2.4)

where Kε is a constant depending on the Lipschitz constant of aε and on
the bound of D2w. It is then plain to let n tend to +∞ in (2.4). The only
problem is to get an estimate for the integral of Dw(Xn

s ). Setting v = w −
infB2(w), it is easily checked that v2 satisfies −Tr(Aε(y,Dw(y))D2(v2)(y)) +
2〈Aε(y,Dw(y))Dw(y), Dw(y)〉+ 2v(y)f(y+ εDw(y), Dw(y)) ≤ 4v(y)(Λ +M)
for a.e. y ∈ B3/2. Repeating the proof of (2.4) for v2 and letting n tend to
+∞, we obtain

v2(x0) + E
∫ τ

0
〈aε(Xs)Dw(Xs), Dw(Xs)〉ds

≤ E[v2(Xτ )] + 2E
∫ τ

0
v(Xs)

[
3Λ + 2M + Λ|Dw(Xs)| − 〈bs, Dw(Xs)〉

]
ds.

Recall that 〈aε(Xs)Dw(Xs), Dw(Xs)〉 ≥ 2Λ−1λ0|Dw(Xs)|2 if |Dw(Xs)| ≥M+
1. Moreover, |Dw(Xs)| ≥ M + 1 ⇒ λ̂(Xs) ≥ λ0 = α ⇒ bs = 0. It is plain to
deduce that there exists a constant C, only depending on Λ, λ0 and M , such
that:

E
∫ τ

0
|Dw(Xs)|2ds ≤ E[v2(Xτ )] + CE

∫ τ

0

(
1 + v2(Xs) + v(Xs)|bs|

)
ds.

By the bounds we have on τ (τ ≤ R0ρ
2) and (|bt|)t≥0 (see Theorem 1.2), we can

bound the right-hand side by C(1 + supQρ(v
2)) and thus by C(1 + supQρ(w

2))
(up to a new value of C possibly depending on d). Plugging this bound in (2.4)
(with n→ +∞ and with the same trick as above to bound 〈bs, Dw(Xs)〉), we
obtain (the value of C may vary from line to line)

w(x0) ≤ E[w(Xτ )] + CE
∫ τ

0

[
1 + |Dw(Xs)|

]
ds

≤ E[w(Xτ )] + CE(τ) + E
[
τ 1/2

(∫ τ

0
|Dw(Xs)|2ds

)1/2]
ds

≤ E[w(Xτ )] + Cρ(1 + sup
Qρ

(|w|))

since τ ≤ R0ρ
2. We finally let ε tend to 0: w tends to u, uniformly on B3/2.

Hence,
u(x0) ≤ E[u(Xτ )] + Cρ(1 + sup

Qρ

(|u|)).

The result is now clear: with probability greater than or equal to ε0, Xτ is
in V so that u(Xτ ) ≤ (m+ + m−)/2; when Xτ is not in V , u(Xτ ) ≤ m+.
Thus, u(x0) ≤ ε0(m+ + m−)/2 + (1 − ε0)m+ + Cρ(1 + supQρ(|u|)). Finally,
u(x0)−m− ≤ (1− ε0/2)(m+−m−) +Cρ(1 + supQρ(|u|)). This is true for any
x0 ∈ Qρ/8 so that oscQρ/8(u) ≤ (1− ε0/2)oscQρ(u) + Cρ(1 + supQρ(|u|)). 2
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3 Proof of Theorem 1.2: Attainability of Large Sets

We now prove Theorem 1.2 when the proportion of V is large enough. The
strategy is the following. If there is enough noise in the system, then the
probability of hitting a given Borel subset is bounded away from zero: this is
the standard Krylov and Safonov theory. If the noise is too small, we build a
drift b to push the process towards the desired area.

The following notations are useful: (Ω,F , (Ft)t≥0,P) is a filtered probability
space enjoying the usual conditions endowed with an (Ft)t≥0 Brownian motion
(Wt)t≥0. For any stopping time T , ET stands for E[·|FT ]. (In particular, E0

means E[·|F0].) For a square integrable F0-measurable random variable ξ :
Ω → Rd and for two Rd and Rd×d-valued progressively-measurable processes
(bt)t≥0 and (σt)t≥0, (bt)t≥0 and (σt)t≥0 being square integrable, Iξ(b, σ) denotes
the Itô process: Xt = ξ +

∫ t
0 bsds+

∫ t
0 σsdWs. When (bt)t≥0 and/or (σt)t≥0 also

depend in a Lipschitz way on a spatial argument in Rd, i.e. b : Ω×R+×Rd →
Rd and/or σ : Ω×R+×Rd → Rd×d, Sξ(b, σ) denotes the solution of the SDE :
Xt = ξ+

∫ t
0 b(s,Xs)ds+

∫ t
0 σ(s,Xs)dWs. Finally, for z ∈ Rd, ‖z‖ denotes the `∞

norm of Rd, i.e. ‖z‖ = supi∈{1,...,d} |zi|, and, for ρ > 0, Q(z, ρ) is the hypercube

of center z and radius ρ: |Q1| = 2d is the volume of Q(0, 1). (Remind by the
way that ‖ · ‖ ≤ | · | ≤ d1/2‖ · ‖, | · | being the Euclidean norm.)

3.1 Noisy Systems

We first provide a very simple rule to determine whether the noise inside the
system is sufficient to attain a Borel subset of large measure.

Proposition 3.1 Let (bt)t≥0 and (σt)t≥0 be two progressively-measurable pro-
cesses with values in Rd and Rd×d such that ‖bt‖ ≤ ρ−1, Λ−1λtId ≤ at ≤ ΛλtId,
at = σtσ

∗
t , t ≥ 0, for some constants ρ > 0 and Λ ≥ 1 and some progressively

measurable process (λt)t≥0 with values in [0, 1]. Let (Xt)t≥0 also denote the Itô
process IX0(b, σ) for a square-integrable F0-measurable random variable X0.

Then, for every η ∈ (0, 1), there exist two positive constants µ(η) and ε(η),
ε(η) ∈ (0, 1), only depending on d, η and Λ (and not on ρ), such that, for
any hypercube Q3ρ of radius 3ρ and any Borel subset V ⊂ Q3ρ satisfying
|Q3ρ \ V | ≤ µ(η)ρd, P0{TV < ρ2 ∧ SQ3ρ} ≥ ε(η) a.e. on the event {X0 ∈
Qρ,E0[

∫ ρ2
0 λsds] ≥ ηρ2}. (TV stands for the first hitting time of V and SQ3ρ

for the first exit time from Q3ρ by X. Qρ is the hypercube of same center as
Q3ρ but of radius ρ.)

We establish a first version of Proposition 3.1:
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Lemma 3.2 Keep the notations and assumptions of Proposition 3.1 but allow
(‖bt‖)t≥0 to be bounded by 3ρ−1 instead of ρ−1. Then, for all R ∈ (0, 1), η ∈
(0, 1), there exist two positive constants µ(η) and ε(η), only depending on d,
η and Λ (and not on ρ and R), such that, for any Borel subset V ⊂ Qρ

satisfying |Qρ \ V | ≤ µ(η), P0{TV < (ρ2R) ∧ SQρ} ≥ ε(η) a.e. on the event

{E0[
∫ (ρ2R)∧SQρ
0 λsds] ≥ ηρ2}. (Obviously, SQρ is the first exit time from Qρ by

X. We also notice that X0 ∈ Qρ on the above event.)

We clearly see the difference between the two statements. In Lemma 3.2, the
noise has to be evaluated before the exit time from the hypercube Qρ. In
Proposition 3.1, the exit phenomenon is forgotten. We now prove Lemma 3.2.

Proof (Lemma 3.2). By a scaling argument, we can assume that ρ = 1. In-
deed, it is plain to establish the result for (Xt)t≥0 once it is proven for the pro-

cess (X̂t = ρ−1Xρ2t)t≥0. Clearly, (X̂t)t≥0 satisfies Iρ−1X0
((ρbρ2t)t≥0, (σρ2t)t≥0)

and fulfills the assumptions of Lemma 3.2 with ρ = 1. In the whole proof, we

put ourselves on the event {E0[
∫ R∧SQ1
0 λtdt] ≥ η}. Since λ is [0, 1]-valued and

R ≤ 1, the noise between 0 and R ∧ SQ1 is away from zero with a non-zero
probability:

η ≤ E0

[∫ R∧SQ1

0
λtdt

]
≤ η2P0

{∫ R∧SQ1

0
λtdt ≤ η2

}
+ P0

{∫ R∧SQ1

0
λtdt > η2

}
= η2 + (1− η2)P0

{∫ R∧SQ1

0
λtdt > η2

}
.

We deduce P0

{∫ R∧SQ1

0
λtdt > η2

}
≥ η/(1 + η). We then apply [16, Thm 2,

Sec 2, Chp 2] with F (c, a) = c and ct = 3 for all t ≥ 0. Almost surely,

E0

[∫ SQ1

0
exp(−3t)det1/d(at)1Q1\V (Xt)dt

]
≤ C|Q1 \ V |1/d,

for some constant C only depending on d (and which may vary from line
to line). Allowing C to depend on Λ, we can write (recall that R ≤ 1 and

at ≥ Λ−1λtId) E0[
∫ R∧SQ1
0 λt1Q1\V (Xt)dt

]
≤ C|Q1 \ V |1/d, so that

η2P0

{
TV ≥ R ∧ SQ1 ,

∫ R∧SQ1

0
λtdt > η2

}
≤ C|Q1 \ V |1/d. (3.1)

Having in mind the inequality P(B1) ≤ P(B1 ∩ B2) + 1− P(B2), B1, B2 ∈ F ,

we deduce from the bound P0{
∫ R∧SQ1
0 λtdt > η2} ≥ η/(1 + η) and from (3.1):

P0{TV ≥ R ∧ SQ1} ≤ Cη−2|Q1 \ V |1/d + 1/(1 + η).

If |Q1 \ V | ≤ [η3/(2C(1 + η))]d, then P0{TV < R ∧ SQ1} ≥ η/[2(1 + η)]. 2
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Proof (Proposition 3.1.) We are now in position to complete the proof of
Proposition 3.1. We thus put ourselves on the event:

X0 ∈ Qρ, E0

[∫ ρ2

0
λsds

]
≥ ηρ2. (3.2)

Since X0 ∈ Qρ, it is clear that SQ3ρ < ρ2 ⇒ sup0≤t≤ρ2 ‖
∫ t∧SQ3ρ

0 σsdWs‖ +∫ ρ2
0 ‖bs‖ds ≥ 2ρ⇒ sup0≤t≤ρ2 |

∫ t∧SQ3ρ

0 σsdWs| ≥ ρ. (Indeed, ‖bt‖ ≤ ρ−1, t ≥ 0.)

By Doob’s maximal inequality, P0{SQ3ρ < ρ2} ≤ ρ−2E0[
∫ ρ2∧SQ3ρ

0 Tr[as]ds]. By
the specific structure of (at)t≥0, Tr(at) ≤ dΛλt for any t ≥ 0, so that

P0{SQ3ρ < ρ2} ≤ dΛρ−2E0

[∫ ρ2∧SQ3ρ

0
λsds

]
.

In particular, if

E0

[∫ ρ2∧SQ3ρ

0
λsds

]
< ηρ2/(2dΛ), (3.3)

then P0{SQ3ρ < ρ2} < η/2, so that (3.2) together with the bound λt ≤ 1,
t ≥ 0, yield

E0

[∫ ρ2∧SQ3ρ

0
λsds

]
≥ E0

[∫ ρ2

0
λsds

]
− ρ2P0{SQ3ρ < ρ2} > ηρ2/2.

Therefore, (3.3) is impossible. In particular, there exists a constant c > 1, only
depending on d and Λ, such that

E0

[∫ ρ2∧SQ3ρ

0
λsds

]
≥ ηρ2/c = η/(9c)(3ρ)2.

We finally apply Lemma 3.2 to the hypercube Q3ρ with R = 1/9 (we note
that ‖bt‖ ≤ ρ−1 = 3(3ρ)−1). For |Q3ρ \ V | ≤ µ(η/9c), P0{TV < ρ2 ∧ SQ3ρ} ≥
ε(η/(9c)). 2

3.2 Remarkable Points in Large Sets

The point now is to understand what happens when the noise is too small.
As already explained, we aim at pushing the process by a well-chosen drift
towards the Borel subset V . The question is: towards which part of V do we
have to push the process? A possible strategy consists in forcing the process
X to go to the neighborhood of some remarkable point x in V , given by

Lemma 3.3 There exist two universal constants q0 > 0 and K0 ≥ 0, only
depending on d, such that, for any Borel subset V ⊂ Q(0, 1) satisfying |Q(0, 1)\
V | ≤ q0, there exists x ∈ Q(0, 1/8) ∩ V such that, for any ρ ∈ (0, 3/4),
|Q(x, ρ) \ V | ≤ K0|Q(0, 1) \ V |1/2ρd.
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What Lemma 3.3 says is the following: if the proportion of V inside Q(0, 1)
is large enough, then we can find some point x close to zero such that the
proportion of V inside any neighborhood of x is also large. Of course, this
result is close to the Lebesgue theorem: for a.e. point z ∈ V , we know that
|Q(z, ρ)|−1|Q(z, ρ)∩V | tends to one as ρ tends to zero, so that the proportion
of V inside any small neighborhood of z is large. Lemma 3.3 is in fact a bit
stronger: the lower bound for the proportion of V inside a given neighborhood
of x doesn’t depend on the radius of the neighborhood.

Proof (Lemma 3.3). We admit for the moment the following version (pay
attention, in what follows, the sets we consider are small sets whereas they
are large sets in the statement of Lemma 3.3):

Lemma 3.4 There exist three universal constants q1 ∈ (0, 1), K1 ≥ 0 and
δ ∈ (0, 1/2), only depending on d, such that, for any Borel subset U ⊂ [0, 1]d

satisfying |U | ≤ q1, there exists y ∈ [δ, 1 − δ]d ∩ U{ such that, for any ρ > 0,
|U ∩Q(y, ρ)| ≤ K1|U |1/2ρd.

We then apply Lemma 3.4 to U = {z ∈ [0, 1]d, (1/8)z ∈ V {}, i.e. U =
8([0, 1/8]d ∩ V {). Then, |U | = 8d|[0, 1/8]d ∩ V {| ≤ 8d|Q(0, 1) \ V |. Therefore,
with q1, K1 and δ as above, for |Q(0, 1) \ V | ≤ 8−dq1,

∃y ∈ [δ, 1− δ]d ∩ U{ : ∀ρ > 0, |U ∩Q(y, ρ)| ≤ K1|U |1/2ρd. (3.4)

Set x = (1/8)y ∈ [δ/8, 1/8− δ/8]d ∩ ((1/8)U{) ⊂ Q(0, 1/8) ∩ V . For ρ < δ/8,
|Q(x, ρ) \ V | = |Q(x, ρ) ∩ V {| = 8−d|Q(y, 8ρ) ∩ (8V {)| = 8−d|Q(y, 8ρ) ∩ U |
since Q(y, 8ρ) ⊂ [0, 1]d. Therefore, for ρ < δ/8 and |Q(0, 1) \V | ≤ 8−dq1, (3.4)
yields

|Q(x, ρ) \ V | ≤ 8−dK1|U |1/2(8ρ)d ≤ 8d/2K1|Q(0, 1) \ V |1/2ρd. (3.5)

Finally, for δ/8 ≤ ρ < 3/4, Q(x, ρ) ⊂ Q(0, 1) so that

|Q(x, ρ) \ V | ≤ |Q(0, 1) \ V | ≤ (8/δ)d|Q1|1/2|Q(0, 1) \ V |1/2ρd. (3.6)

By (3.5)-(3.6), we set q0 = 8−dq1 and K0 = max(8d/2K1, (8/δ)
d|Q1|1/2). 2

Proof (Lemma 3.4). We start by a simple lemma (below, U is as in the
statement of Lemma 3.4):

Lemma 3.5 Let p be an integer greater than 3 and E be the square E =
[1/p, 1/p+ 1/2)d ⊂ (0, 1)d. For any integer n ≥ 1, we denote by Cn the collec-
tion of hypercubes Rn(`1, . . . , `d) included in E of the form Rn(`1, . . . , `d) =∏d
i=1[1/p + `i/2

n, 1/p + (`i + 1)/2n), 0 ≤ `i < 2n−1, 1 ≤ i ≤ d, and we put
Mn(x) =

∑
B∈Cn [(|U ∩ B|/|B|)1B(x)] for any x ∈ Rd. (Mn(x) is the propor-

tion of U inside the hypercube containing x.) Then, |F | ≥ 1/2d−|U |1/2, where
F = {x ∈ E : supn≥1Mn(x) ≤ |U |1/2}.
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Proof (Lemma 3.5). We endow E with the Borel σ-algebra G = B(E) and
with the probability measure µ = 2d| · |. For any n ≥ 1, we also denote by Gn
the σ-subalgebra of G generated by the collection Cn. (It is in fact an algebra
since its cardinality is finite). It is well seen that the sequence (Gn)n≥1 is a
filtration and that, on E, the sequence (Mn)n≥1 coincides with the martingale
(E(1U∩E|Gn))n≥1, where E stands for the expectation associated with µ. By
Doob’s maximal inequality, for every ε > 0, µ{x ∈ E : supn≥1Mn(x) > ε} ≤
ε−1µ(U ∩ E). Choosing ε = |U |1/2, we deduce that |F | ≥ |E| − |U |−1/2|U ∩
E|. 2

To complete the proof of Lemma 3.4, we let p vary: we choose p = p1, . . . , pd+1,
(pi)1≤i≤d+1 being odd integers such that 3 ≤ p1 < p2 < · · · < pd+1. (The pre-
cise value of p1 is chosen later.) The resulting quantities E, F , (Mn)n≥1 and
(Rn(`))`∈{0,...,2n−1−1}d in Lemma 3.5 now depend on i: to indicate the depen-
dence, we write Ei, F i, (M i

n)n≥1 and (Ri
n(`))`∈{0,...,2n−1−1}d , i ∈ {1, . . . , d+ 1}.

We also denote by q1 a real in (0, 1) whose value has to be determined: in what
follows, |U | is always less than q1. By Lemma 3.5, for any i ∈ {1, . . . , d + 1},
|F i| ≥ 1/2d − q1/2

1 .

It is clear that F i ⊂ Ei ⊂ D = [1/pd+1, 1/2+1/p1)
d for each i ∈ {1, . . . , d+1}.

Then, for each i ∈ {1, . . . , d+ 1}, |D \ F i| = (1/2 + 1/p1 − 1/pd+1)
d − |F i| ≤

q
1/2
1 + c/p1, where c is a constant only depending on d. Hence,

|
d+1⋂
i=1

F i| ≥ |D| −
d+1∑
i=1

|D \ F i| ≥ 1/2d − (d+ 1)q
1/2
1 − (d+ 1)c/p1.

Finally,

|
d+1⋂
i=1

F i ∩ ([0, 1]d \ U)| = |
d+1⋂
i=1

F i|+ |[0, 1]d \ U | − |
d+1⋂
i=1

F i ∪ ([0, 1]d \ U)|

≥ 1/2d − (d+ 1)q
1/2
1 − (d+ 1)c/p1 + (1− q1)− 1

≥ 1/2d − (d+ 2)q
1/2
1 − (d+ 1)c/p1.

Assuming that (d+ 2)q
1/2
1 ≤ 1/2d+2 and (d+ 1)c/p1 ≤ 1/2d+2, we deduce that⋂d+1

i=1 F
i ∩ U{ is not empty: we choose y inside. Of course, y belongs to each

Ei, i ∈ {1, . . . , d+1}. In particular, for any n ≥ 1 and i ∈ {1, . . . , d+1}, there
exists one and only one hypercubeRi

n of the formRi
n(`), ` ∈ {0, . . . , 2n−1−1}d,

such that y ∈ Ri
n. Since y belongs to F i for each i ∈ {1, . . . , d + 1}, we have,

for any n ≥ 1 and i ∈ {1, . . . , d+ 1}, |U ∩Ri
n| ≤ |U |1/22−dn.

We wish to prove that, for each n ≥ 1, y is in the interior of one of the
(d+ 1) hypercubes (Ri

n)1≤i≤d+1. What we say is the following. For n ≥ 1 and
i ∈ {1, . . . , d + 1}, we have Ri

n = Ri
n(`i) for some `i ∈ {0, . . . , 2n−1 − 1}d. To

simplify the notations, we set ki = `i1, the first coordinate of `i. We notice that,
for i, j ∈ {1, . . . , d+1}, i < j, 1/pi+ki/2n and 1/pj +kj/2n are to be different
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(otherwise, 1/pi = 1/pj +h/2n for some integer h ≥ 1, i.e. 2n(pj−pi) = hpipj:
this is absurd since pj cannot divide 2n(pj−pi)). Hence, |1/pi+ki/2n−1/pj−
kj/2n| = |2n(pj − pi) + (ki − kj)pjpi|/(2npipj) ≥ 1/(2npipj) ≥ 1/(2np2

d+1).

Now, we can find a permutation i1, . . . , id+1 of 1, . . . , d + 1 such that y1 ≥
1/pi1 + ki1/2n > 1/pi2 + ki2/2n > · · · > 1/pid+1

+ kid+1/2n (y1, . . . , yd are the d
coordinates of y). We denote the permutation (i1, . . . , id+1) by (i1,1, . . . , i1,d+1).
Similarly, for each j ∈ {2, . . . , d}, we can find a permutation ij,1, . . . , ij,d+1 of
1, . . . , d+ 1 such that

yj ≥ 1/pij,1 + `
ij,1
j /2n > 1/pij,2 + `

ij,2
j /2n > · · · > 1/pij,d+1

+ `
ij,d+1

j /2n.

It is clear that
⋂d
j=1{ij,2, . . . , ij,d+1} is not empty (the cardinality of the com-

plementary in {1, . . . , d + 1} is at most equal to d). We choose s in it. It is
also clear that 1/pi1,1 + ki1,1/2n > 1/ps + ks/2n, so that 1/pi1,1 + ki1,1/2n ≥
1/ps + ks/2n + 1/(2np2

d+1) (because of the minimal distance between two of
those reals). Finally, we have y1 ≥ 1/ps + ks/2n + 1/(2np2

d+1) and, more
generally, yj ≥ 1/ps + `sj/2

n + 1/(2np2
d+1), j ∈ {1, . . . , d}. We deduce that∏d

j=1(yj − 1/(2np2
d+1), yj] is included in Rs

n. (Recall that y ∈ Rs
n.) Hence,

∣∣∣U ∩ d∏
j=1

(yj − 1/(2np2
d+1), yj]| ≤ |U ∩Rs

n| ≤ |U |1/22−dn.

The same may be shown for each
∏d
j=1[yj, yj + εj/(2

np2
d+1)), (ε1, . . . , εd) ∈

{−1, 1}d (for possibly different values of s). Finally, |U ∩Q(y, 1/(2np2
d+1))| ≤

2d|U |1/22−dn. This is true for all n ≥ 1.

Choose now ρ ∈ (0, 1/(2p2
d+1)). We can find n ≥ 1 such that 1/(2n+1p2

d+1) <
ρ ≤ 1/(2np2

d+1). We then write |U ∩ Q(y, ρ)| ≤ |U ∩ Q(y, 1/(2np2
d+1))| ≤

2d|U |1/22−dn ≤ 4dp2d
d+1|U |1/2ρd. The inequality is still true when ρ > 1/(2p2

d+1):
|U ∩Q(y, ρ)| ≤ |U |1/2 ≤ 4dp2d

d+1|U |1/2ρd. 2

3.3 Forcing the System by a Drift

We now prove the main result of this section. Under suitable assumptions on
the coefficients, we can build a drift to force the system to hit, with a non-zero
probability, a prescribed Borel subset of large measure.

Proposition 3.6 Let σ : Rd → Rd×d be a Lipschitz continuous mapping such
that a = σσ∗ fulfill (H2) in Theorem 1.2 with respect to some Λ ≥ 1 and
λ : Rd → [0, 1]. (No confusion being possible with Theorem 1.1, we forget the
“hat” on λ.) Let α be in (0,+∞). Then, there exist positive constants µ0, ε0,
R0 and (Γp)1≤p<2, only depending on d, α and Λ (and not on λ), such that,
for any ρ ∈ (0, 1), any hypercubes Qρ/8 ⊂ Qρ ⊂ Rd of same center and of radii
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ρ/8 and ρ and any square integrable F0-measurable random variable X0 with
values in Rd, there exists an integrable d-dimensional progressively-measurable
process (bt)t≥0 such that both (bt)t≥0 and the process X, equal to SX0((bt)t≥0, σ),

fulfill


∀t ≥ 0, λ(Xt) ≥ α⇒ bt = 0,

∀p ∈ [1, 2), E0

∫ +∞

0
|bt|pdt ≤ Γpρ

2−p,

and, for any Borel subset V ⊂ Qρ satisfying |Qρ \ V | ≤ µ0|Qρ|, P0{TV <
(R0ρ

2) ∧ SQρ} ≥ ε0 a.e. on the event {X0 ∈ Qρ/8}. (As usual, TV is the first
hitting time of V and SQρ the first exit time from Qρ by X.)

Proof. By a scaling argument, we can assume ρ = 1. (See the proof of Lemma
3.2.) In the whole proof, δ denotes a small real (at least less than 1/4). By
o(1), we mean a function of δ that only depends on d, α and Λ (and not on
λ) and that tends to zero as δ tends to zero. Changing the values of X0 if
necessary, we can assume that X0 ∈ Q1/8 a.e. We also assume |Q1 \ V | ≤ q0,
q0 being given by Lemma 3.3. Then, we can find a constant K0 > 0, only
depending on d, and x∞ ∈ Q1/8 ∩ V such that, for any r ∈ (0, 3/4),

|Q(x∞, r) \ V | ≤ K0|Q1 \ V |1/2rd. (3.7)

Step 1. Construction of b and X. We first define the following local dy-
namics. For a finite stopping time T and two FT -measurable random variables
N : Ω → Z and Y0 : Ω → Rd, we define the drift bT,Y0,N

t = δ−2N(x∞ − Y0),
T ≤ t ≤ T + δ2n. For a smooth function ψ : R → [0, 1], matching 1 on
(−∞, α/2] and vanishing on [α,+∞), we then solve the SDE

Y T,Y0,n
t = Y0+

∫ t

T
ψ(λ(Y T,Y0,N

s ))bT,Y0,N
s ds+

∫ t

T
σ(Y T,Y0,N

s )dWs, T ≤ t ≤ T+δ2N .

With these notations at hand, we can define (Xt)t≥0 as follows.

Step 1a. Initialization. We set T0 = 0 (initial time). We know that X0 ∈
Q(x∞, 1/4) since both x∞ and X0 are in Q1/8. If X0 6= x∞, there exists a
random integer n0 ∈ N such that X0 ∈ Q(x∞, δ

n0) \ Q(x∞, δ
n0+1). We set

T1 = δ2n0 and Xt = Y 0,X0,n0
t for t ∈ [0, T1]. If X0 = x∞, we choose bt = 0 for

t ≥ 0 and (Xt)t≥0 = SX0(0, σ) and we set Tk+1 = +∞ and nk = +∞ for any
k ≥ 0 : in this case, the construction is over.

Step 1b. Stop after one step. Assume n0 < +∞ (otherwise the construction is
over). If XT1 = x∞, we choose bt = 0 for t ≥ T1, define (Xt)t≥T1 as the solution
of Xt = XT1 +

∫ t
T1
σ(Xs)dWs, t ≥ T1, and set Tk+1 = +∞ and nk = +∞ for

any k ≥ 1: the construction is over.
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Step 1c. Iteration. Assume n0 < +∞ and XT1 6= x∞. Then, there exists a
random integer n1 ∈ Z such that XT1 ∈ Q(x∞, δ

n1) \ Q(x∞, δ
n1+1). We then

set T2 = T1+δ2n1 and Xt = Y
T1,XT1

,n1

t for t ∈ [T1, T2]. We then apply Step 1b to
XT2 : if XT2 = x∞, we choose bt = 0 for t ≥ T2, define (Xt)t≥T2 as the solution
of Xt = XT2 +

∫ t
T2
σ(Xs)dWs, t ≥ T2, and set Tk+1 = +∞ and nk = +∞

for any k ≥ 2. In this case, the construction is over. Otherwise we perform
another iteration. And so on...

Step 1d. Notations. Obviously, the random times (Tk)k≥0 are stopping times.
(In short, for any k ≥ 0, Tk ≤ Tk+1 and Tk+1 is FTk measurable.) We introduce
four additional stopping times. We denote by S the first exit time of X from
the hypercube Q(x∞, 3/4) and we set

τ = τ1 ∧ τ2,


τ1 = inf

{
k ≥ 0, nk = +∞},

τ2 = inf
{
k ≥ 0, ETk

[∫ Tk+1

Tk

λ(Xs)ds
]
≥ δ2nk+4

}
.

(3.8)

(These are discrete stopping times with respect to the filtration (FTk)k≥0.) We
may explain the role of these stopping times as follows. Using the definition
of τ1, we are first able to summarize the dynamics of (Xt)t≥0. If t ∈ [Tk, Tk+1)
with k ≥ τ1, then dXt = σ(Xt)dWt. If t ∈ [Tk, Tk+1) with 0 ≤ k < τ1, then
Tk+1 = Tk + δ2nk and

dXt = δ−2nkψ(λ(Xt))(x∞ −XTk)dt+ σ(Xt)dWt

= (Tk+1 − Tk)−1ψ(λ(Xt))(x∞ −XTk)dt+ σ(Xt)dWt.
(3.9)

The stopping time τ2 permits to evaluate the noise inside the system and the
exit time S to draw a security ball around x∞: we will show that the process
(Xt)t≥0 hits V before S with a non-zero probability. In this framework, we
notice that, for any k ≥ 0, nk ≥ 0 for Tk < S. Moreover,

∀0 ≤ k < τ1,

nk+1 = +∞⇔ XTk+1
= x∞,

nk+1 = `⇔ δ`+1 ≤ ‖XTk+1
− x∞‖ < δ`, ` ∈ Z.

(3.10)

Step 1e. Strategy. The strategy now consists in proving that, with a non-zero
probability, in a finite time less than S, either there is enough noise in the
system or the process X hits x∞. In both cases, X hits V before leaving
the hypercube Q(x∞, 3/4) with a non-zero conditional probability. (The word
“conditional” means “conditionally to each of both cases”.)

The reason why we expect such a behavior may be explained as follows. At a
given time Tk < S, 0 ≤ k < τ1, XTk is in the hypercube Q(x∞, δ

nk), nk ≥ 0.

If there is enough noise in the system, i.e. ETk

[∫ Tk+δ2nk
Tk

λ(Xs)ds
]
≥ δ2nk+4, we

intend to apply Proposition 3.1 with ρ = δnk and η = δ4: by the specific con-
struction of x∞, the proportion of V inside the hypercube Q(x∞, 3δ

nk) may
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be chosen as close to 1 as desired by choosing |Q1 \ V | as small as necessary.
Therefore, we expect the process X to hit V between times Tk and Tk+1 with a
non-zero conditional probability. (The word “conditional” means “condition-
ally to FTk”.) If the noise in the system is less than δ2nk+4, XTk+1

is expected
to belong to the hypercube Q(x∞, δ

nk+1) with a high conditional probability:
by the specific construction of X, XTk+1

− x∞ is equal to

XTk+1
− x∞ = δ−2nk

∫ Tk+1

Tk

[ψ(λ(Xt))− 1](x∞ −XTk)dt+
∫ Tk+1

Tk

σ(Xt)dWt.

(3.11)
When the noise is small, the conditional expectation of the distance between
XTk+1

and x∞ knowing FTk is less than (have in mind ‖x∞ − XTk‖ ≤ δnk ,
Tk+1 − Tk = δ2nk , ψ(r) = 1 for r ≤ α/2 and Tr(a(x)) ≤ dΛλ(x))

ETk

[
‖XTk+1

− x∞‖2
]

≤ 2ETk

[∫ Tk+1

Tk

1{λ(Xt)>α/2}dt

]
+ 2ETk

[∫ Tk+1

Tk

Tr[a(Xt)]dt

]

≤
[
4/α + 2dΛ

]
ETk

[∫ Tk+1

Tk

λ(Xt)dt

]
≤
[
4/α + 2dΛ

]
δ2nk+4.

(3.12)

With a high conditional probability, nk+1 is thus expected to be larger than
nk+1. Therefore, if the noise in the system is always small, (nk)k≥0 is expected
to be at least of linear growth with a non-zero probability. In this case, XTk →
x∞ as k → +∞ and the sequence (Tk)k≥0 decays at a geometric rate so that
limk→+∞ Tk is finite: X hits x∞ ∈ V in a finite time. The first step of the proof
is thus clear: we have to investigate the growth of the sequence (nk)k≥0.

Step 2. Growth of (nk∧τ )k≥0 up to the exit time.

Step 2a. Stochastic comparison. For 0 ≤ k < τ and Tk < S, we deduce from
(3.10) that, for any ` ≥ 0, {nk+1 = nk − `} = {δnk−`+1 ≤ ‖XTk+1

− x∞‖ <
δnk−`}. By (3.12), on the event {τ > k} ∩ {Tk < S}, for any integer ` ≥ 0,

PTk{nk+1 = nk − `} ≤ Cδ−2(nk−`+1)δ2nk+4 = Cδ2(1+`), C = 4/α + 2dΛ.

We thus compare the conditional law of nk+1 − nk knowing FTk with the law
of some variable ξk+1 with values into {` ∈ Z : ` ≤ 1} such that

Q{ξk+1 = −`} = Cδ2(1+`), ` ≥ 0, Q{ξk+1 = 1} = 1− Cδ2/(1− δ2),

ξk+1 being defined on another probability space (Ξ,A,Q). (Of course, for δ
small enough, 1− Cδ2/(1− δ2) ≥ 0.)

For ` ≤ 0, we have Q{ξk+1 = `} ≥ PTk{nk+1 − nk = `} on the event {τ >
k}∩{Tk < S}. This is nothing but saying that the conditional law of nk+1−nk
knowing FTk is stochastically less than the law of ξk+1 on the event {τ >
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k} ∩ {Tk < S}. Indeed, for a non-increasing function f : R → R, it is easily
checked that EQ[f(ξk+1)] ≥ ETk [f(nk+1 − nk)] on {τ > k} ∩ {Tk < S}.

We now consider a sequence (ξk)k≥1 of I.I.D. random variables with the same
law as above. For f non-increasing and non-negative, we have, for any k ≥ 0,

E0

[
f(nk+1); τ > k, Tk < S

]
= E0

[
ETk [f(nk+1)]; τ > k, Tk < S

]
≤ E0

[
EQ[f(nk + ξk+1)]; τ > k, Tk < S

]
≤ E0

[
EQ[f(nk + ξk+1)]; τ > k − 1, Tk−1 < S

]
.

(T−1 = 0). Noting that the function y 7→ EQ[f(y+ ξk+1)] is non-increasing, an
induction yields E0[f(nk+1); τ > k, Tk < S] ≤ E0[EQ[f(n0 +ξ1 + · · ·+ξk+1)]] ≤
EQ[f(ξ1 + · · ·+ ξk+1)] a.s. since n0 ≥ 0 (a.s.). Choosing f = 1(−∞,a], a ≥ 0, we
finally obtain

∀k ≥ 0, P0{nk+1 ≤ a, τ > k, Tk < S} ≤ Q{ξ1 + · · ·+ ξk+1 ≤ a} (a.s.).

Step 2b. Deviation inequality. Choosing a = (k + 1)/2 and applying Lemma
3.7 below, there exists δ1 > 0, only depending on C (and thus on d and Λ),
such that, for δ ∈ (0, δ1),

∀k ≥ 0, P0{nk+1 ≤ (k + 1)/2, τ > k, Tk < S} ≤ δ(k+1)/2. (3.13)

Noting that {τ > k + 1} ⊂ {τ > k} and {Tk+1 < S} ⊂ {Tk < S}, we also
have for δ ∈ (0, δ1)

∀k ≥ 1, P0{nk ≤ k/2, τ > k, Tk < S} ≤ δk/2. (3.14)

In what follows, we assume δ ∈ (0, δ1) so that (3.13) and (3.14) hold.

Step 3. Exit time. We now evaluate the exit time S. For 0 ≤ k < τ and
Tk ≤ t < Tk+1, (3.9) yields

‖Xt − x∞‖ =
∥∥∥ Tk+1 − t
Tk+1 − Tk

(XTk − x∞)

+ δ−2nk

∫ t

Tk

(ψ(λ(Xs)− 1)(x∞ −XTk)ds+
∫ t

Tk

σ(Xs)dWs

∥∥∥.
Therefore, following (3.12), for 0 ≤ k < τ and Tk < S,

∃t ∈ (Tk, Tk+1] : ‖Xt − x∞‖ ≥ 3/4

⇒ sup
Tk≤t≤Tk+1

[
δ−nk

∫ t

Tk

1{λ(Xs)>α/2}ds+
∥∥∥∫ t

Tk

σ(Xs)dWs

∥∥∥] ≥ 3/4− ‖XTk − x∞‖,

(3.15)
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so that (have in mind ‖ · ‖ ≤ | · |)

S ≤ Tk+1 ⇒ sup
Tk≤t≤Tk+1

[
δ−nk

∫ t

Tk

1{λ(Xs)>α/2}ds+
∣∣∣∫ t

Tk

σ(Xs)dWs

∣∣∣] ≥ (3/4−δnk)+.

By (3.12) and by Doob’s maximal inequality, for k ≥ 0, we have on the event
{Tk∧τ < S} (of course, Tk∧τ is a stopping time)

PTk∧τ{S ≤ T(k+1)∧τ} ≤ Cδ2nk+4[(3/4− δnk)+]−21{k<τ}. (3.16)

(With the same C as above, i.e. C = 4/α + 2dΛ.) Setting νk = δ2nk+4[(3/4−
δnk)+]−21{k<τ} (+∞ · 0 = 0), we deduce

P0{S > T(k+1)∧τ} ≥ E0[(1− Cνk)+1{S>Tk∧τ}]. (3.17)

Since δ < 1/4, we deduce from (3.14) that, for any k ≥ 1 (below, use that
νk 6= 0⇒ k < τ , use also that nk > k/2 implies νk ≤ 4δk+4)

P0{νk > 4δk+4, Tk∧τ < S} = P0{νk > 4δk+4, τ > k, Tk < S}
≤ P0{nk ≤ k/2, τ > k, Tk < S} ≤ δk/2.

(3.18)

Plugging (3.18) into (3.17), we have P0{S > T(k+1)∧τ} ≥ (1−4Cδk+4)+P0{S >
Tk∧τ} − δk/2. By induction, we deduce that, for any k ≥ 1, P0{S > Tk∧τ} ≥∏k−1
i=1 (1 − 4Cδi+4)+P0{S > T1∧τ} −

∑k−1
i=1 δ

i/2 ≥ ∏+∞
i=1 (1 − 4Cδi+4)+P0{S >

T1∧τ}− o(1). (Remind that o(1) is purely deterministic.) Following (3.15) and
(3.16) (with the bound ‖X0 − x∞‖ ≤ 1/4), P0{S > T1∧τ} ≥ 1 − C(3/4 −
‖X0− x∞‖)−2δ4 ≥ 1− 4Cδ4. We deduce that, for any k ≥ 0, P0{S > Tk∧τ} ≥∏+∞
i=0 (1− 4Cδi+4)+ − o(1) = 1− o(1). Letting k → +∞, we obtain:

P0

(⋂
k≥0

{S > Tk∧τ}
)
≥ 1− o(1), i.e. P0

{
∃k ≥ 0 : S ≤ Tk∧τ

}
≤ o(1). (3.19)

We are then able to get rid of the event {Tk < S} in (3.13). Summing (3.13)
over k ≥ 0, we obtain P0{∃0 ≤ k < τ : nk+1 ≤ (k + 1)/2, Tk < S} ≤ o(1). In
light of (3.19), we deduce P0{∃0 ≤ k < τ : nk+1 ≤ (k + 1)/2} ≤ o(1), so that

P0

(⋂
k≥0

{nk∧τ ≥ (k ∧ τ)/2}
)
≥ 1− o(1). (3.20)

(In fact, we have added the case k = 0 in the above intersection. This just
follows from the relationship n0 ≥ 0.)

Step 5. Conclusion We now complete the proof. To this end, we set R =
1 +

∑
k≥0 δ

k = 1 + 1/(1 − δ). This will be the “R0” appearing in the final
statement.

The idea is the following. With high probability (see (3.19)), the exit time
is greater than all the times (Tk∧τ )k≥0 so that the exit phenomenon can be
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forgotten. Now, if τ is infinite, then the process (Xt)t≥0 converges towards
x∞ ∈ V in time less than R on the event {∀k ≥ 0, nk ≥ k/2}. If τ is finite,
there are two cases. If τ = τ1, then XTτ = x∞ and the process hits x∞ in
time less than R on the event {∀k ≥ 0, nk ≥ k/2}. If τ = τ2, then the process
hits V with a non-zero conditional probability between Tτ2 and Tτ2+1 under
the action of the noise. Again, the hitting time is less than R on the event
{∀k ≥ 0, nk ≥ k/2}.

Step 5a. Case a: τ = +∞. On the event {τ = +∞}∩{∀k ≥ 0, nk ≥ k/2, Tk <

S}, we have, for any k ≥ 0, Tk ≤
∑k−1
`=0 δ

2n` < R − 1. Therefore, the non-
decreasing sequence (Tk)k≥0 converges towards some finite real T∞. It is clear
that T∞ ≤ S and T∞ ≤ R − 1. Moreover, for any k ≥ 0, |XTk − x∞| ≤ δnk ≤
δk/2, so that XT∞ = x∞ ∈ V . In particular, T∞ < S. We deduce (with Tτ = T∞
on {τ = +∞})

P0{TV ≤ Tτ < R ∧ S, τ = +∞}
≥ P0

(
{τ = +∞} ∩ {∀k ≥ 0, nk∧τ ≥ (k ∧ τ)/2, Tk∧τ < S}

)
.

(3.21)

Step 5b. Case b: τ = τ1 < +∞. The argument is almost the same as above. On
the event {τ < +∞}∩{∀k ∈ {0, . . . , τ}, nk ≥ k/2, Tk < S}, Tτ ≤

∑τ−1
k=0 δ

2nk <
R. Moreover, on the event {τ = τ1 < +∞}, XTτ = XTτ1

= x∞ ∈ V . Therefore,

P0{TV ≤ Tτ < R ∧ S, τ = τ1 < +∞}
≥ P0

(
{τ = τ1 < +∞} ∩ {∀k ≥ 0, nk∧τ ≥ (k ∧ τ)/2, Tk∧τ < S}

)
.

(3.22)

Step 5c. Case c: τ < +∞, τ2 < τ1. We start as above. On the event {τ <
+∞} ∩ {∀k ∈ {0, . . . , τ}, nk ≥ k/2, Tk < S}, Tτ ≤ Tτ+1 =

∑τ
k=0 δ

2nk < R.
Therefore,

P0{TV < Tτ+1 ∧ S ≤ R ∧ S, τ < +∞, τ2 < τ1}
≥ P0

(
{τ < +∞, τ2 < τ1} ∩ {∀k ≥ 0, nk∧τ ≥ (k ∧ τ)/2, Tk∧τ < S}

∩ {∃t ∈ (Tτ , Tτ+1) : Xt ∈ V, ∀s ∈ (Tτ , t], Xs ∈ Q(x∞, 3/4)}
) (3.23)

We now apply Proposition 3.1. On the event {τ < +∞, τ2 < τ1} ∩ {∀k ≥
0, nk∧τ ≥ (k ∧ τ)/2, Tk∧τ < S} (which is in FTτ ), we deduce from (3.8):

ETτ

[∫ Tτ+1

Tτ
λ(Xs)ds

]
≥ δ2nτ+4. (3.24)

We also have ‖XTτ−x∞‖ < δnτ (see (3.10)). In the specific case when τ = 0 and
nτ = 0, the bound ‖XTτ − x∞‖ = ‖X0− x∞‖ < 1/4 is more useful. Moreover,
by (3.9), the drift (bt)Tτ≤t≤Tτ+1 is bounded by (Tτ+1−Tτ )−1‖XTτ−x∞‖ ≤ δ−nτ .
If τ = 0 and nτ = 0, (‖bt‖)Tτ≤t≤Tτ+1 is bounded by 1 and thus by 4.

Therefore, we can apply Proposition 3.1 with ρ = ρτ , where ρτ = δnτ for nτ ≥ 1
(on the above event, nτ is always greater than 1 when τ ≥ 1) and ρτ = 1/4

22



for n0 = 0 and τ = 0. In light of (3.24), we choose η = δ4 (when τ = 0 and
n0 = 0, δ2nτ = 1 ≥ 1/16 = ρ2). We note from (3.7) that |Q(x∞, 3ρτ ) \ V | ≤
3dK0|Q1 \V |1/2ρdτ . Therefore, with µ and ε given by Proposition 3.1, we have,
for 3dK0|Q1 \ V |1/2 ≤ µ(δ4),

PTτ
{
∃t ∈ (Tτ , Tτ+1) : Xt ∈ V, ∀s ∈ (Tτ , t], Xs ∈ Q(x∞, 3ρτ )

}
≥ ε(δ4)

on the event {τ < +∞, τ2 < τ1}∩{∀k ≥ 0, nk∧τ ≥ (k∧ τ)/2, Tk∧τ < S}. Since
δ < 1/4, ρτ is always less than 1/4 on the event {τ < +∞, τ2 < τ1} ∩ {∀k ≥
0, nk∧τ ≥ (k ∧ τ)/2, Tk∧τ < S}, so that Q(x∞, 3ρτ ) ⊂ Q(x∞, 3/4). By (3.23),
we finally obtain, for 3dK0|Q1 \ V |1/2 ≤ µ(δ4),

P0{TV < Tτ+1 ∧ S ≤ R ∧ S, τ < +∞, τ2 < τ1}
≥ ε(δ4)P0

(
{τ < +∞, τ2 < τ1} ∩ {∀k ≥ 0, nk∧τ ≥ (k ∧ τ)/2, Tk∧τ < S}

)
.

(3.25)

Step 5d. Putting cases a, b and c together. By (3.21), (3.22) and (3.25), we
have P0{TV < R ∧ S, TV ≤ Tτ+1} ≥ ε(δ4)P0{∀k ≥ 0, nk∧τ ≥ (k ∧ τ)/2, Tk∧τ <
S} for 3dK0|Q1 \ V |1/2 ≤ µ(δ4). By (3.19) and (3.20), we can choose δ small
enough such that the probability P0{∀k ≥ 0, nk∧τ ≥ (k ∧ τ)/2, Tk∧τ < S} is
greater than 1/2.

Step 6. Integrability of the drift. We choose δ and V as above. By the
previous step, we know that the process X hits V before Tτ+1 ∧ S with a
non-zero probability. Therefore, we can kill the drift after Tτ+1 ∧ S. It is thus
enough to prove the integrability of (bt1{t<Tτ+1∧S})t≥0. By (3.9) and (3.10), we
have, for any p ∈ [1, 2),

E0

[∫ Tτ+1∧S

0
‖bt‖pdt

]
≤
∑
k≥0

E0

[
1{k≤τ,Tk<S}

∫ Tk+1

Tk

‖bt‖pdt
]

≤
∑
k≥0

E0

[
δ(2−p)nk1{k≤τ,Tk<S}

]
(bt = 0 for t ≥ Tτ1)

≤ 1 +
∑
k≥0

E0

[
δ(2−p)nk1{k<τ,Tk<S}

]
(Tk < S ⇒ nk ≥ 0).

Now, for any k ≥ 0, E0[δ
(2−p)nk1{k<τ,Tk<S}] ≤ δ(2−p)k/2 + P0{nk ≤ k/2, k <

τ, Tk < S}. By (3.14), PT0{nk ≤ k/2, k < τ, Tk ≤ S} ≤ δk/2. Setting Γp =

1 + 1/(1− δ(2−p)/2) + 1/(1− δ1/2), this proves that E0

∫ Tτ+1∧S
0 ‖bt‖pdt ≤ Γp.

Step 7. Proof of the deviation inequality. It remains to prove

Lemma 3.7 Let C be a positive real and (ξk)k≥1 a sequence of I.I.D. random
variables with values in Z such that, for any k ≥ 1,

Q{ξk = −`} = Cδ2(1+`), ` ≥ 0, Q{ξk = 1} = 1− Cδ2/(1− δ2),
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on some probability space (Ξ,A,Q). (With δ small enough so that the law is
well defined.) Then, there exists δ0 > 0, only depending on C, such that for

δ ∈ (0, δ0), Q
{
ξ1 + · · ·+ ξk ≤ k/2

}
≤ δk/2.

Proof. It is well seen that EQ[ξ1] = 1 − o(1) > 1/2 for δ small enough. It
is thus enough to bound from below the Cramer transform H of ξ1 given
by H(t) = supλ∈R[λt − ln(φ(λ))], t ∈ R, with φ(λ) = EQ[exp(λξ1)]. For
λ > ln(δ2), φ(λ) = Cδ2/(1 − exp(−λ)δ2) + exp(λ)[1 − Cδ2/(1 − δ2)]. Choos-
ing λ = ln(2δ2), φ(ln(2δ2)) = [2(C + 1) + o(1)]δ2. Hence, for t = 1/2,
H(t) ≥ −(1/2) ln(δ2) − ln(2(C + 1) + o(1)). For δ less than some δ0 > 0,
we obtain H(t) ≥ −(1/4) ln(δ2) and t < EQ[ξ1], so that Q{ξ1 + · · · + ξk ≤
kt} ≤ exp(−kH(t)) = exp(k ln(δ2)/4) = δk/2. 2

4 Attainability of Small Sets

4.1 Attainability of a Small Ball

Following the standard Krylov and Safonov proof, we first prove that we can
force the process X by an additional drift to let it hit a ball of small radius.

Lemma 4.1 Keep the assumptions and notations of Proposition 3.6. Then,
for any β ∈ (0, 1), there exist positive constants ζ(β), r(β) and (γp(β))p∈[1,2)

only depending on d, α, µ and Λ, such that, for any hypercube Q1 of Rd

of radius 1, any square integrable F0-measurable random variable X0 with
values in Rd, any ρ ∈ (0, 1) and any z ∈ Q1−ρβ (hypercube of same cen-
ter as Q1 but of radius 1 − ρβ), we can find a d-dimensional progressively-
measurable process (bt)t≥0 such that (bt)t≥0 together with the process (Xt)t≥0

equal to SX0((bt)t≥0, σ)

fulfill


∀t ≥ 0, λ(Xt) ≥ α⇒ bt = 0,

∀p ∈ [1, 2), E0

[∫ +∞

0
|bt|pdt

]
≤ γp(β)ρ2−p,

and P0{TQ(z,ρβ) < (r(β)ρ2)∧SQ1} ≥ ζ(β) a.e. on the event {X0 ∈ Q1−ρβ, ‖X0−
z‖ ≤ ρ}. (TQ(z,ρβ) is the first hitting time of the hypercube Q(z, ρβ) and SQ1

the first exit time from the hypercube Q1 by X.)

Proof. As already explained in the proof of Proposition 3.6, we can assume
that X0 ∈ Q1−ρβ ∩ Q(z, ρ) (a.s.). It is also sufficient to perform the proof for
small values of β. As in the proof of Proposition 3.6, we consider a smooth
function ψ with values in [0, 1], matching 1 on (−∞, α/2] and 0 on [α,+∞).
We set bt = ρ−2β−3(z−X0)1[0,ρ2β3](t), t ≥ 0, and we consider (Xt)t≥0 solution
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of

Xt = X0 +
∫ t

0
ψ(λ(Xs))bsds+

∫ t

0
σ(Xs)dWs, t ≥ 0.

The Lp bounds, 1 ≤ p < 2, of the drift easily follow. It thus remains to bound
from below the probability of hitting Q(z, ρβ). Define to this end Q as the
probability on (Ω,F) admitting

Z = exp
(∫ ρ2β3

0
(1− ψ(λ(Xs)))〈σ−1(Xs)bs, dWs −

1− ψ(λ(Xs))

2
σ−1(Xs)bsds〉

)
as density with respect to P. We emphasize that the inverse of σ is well defined
when λ is non-zero: we have |σ−1(Xs)bs|2 ≤ Λρ−4β−6|X0 − z|2λ−1(Xs) ≤
2dΛρ−2β−6α−1 when λ(Xs) ≥ α/2. Setting Q0 = Q[·|F0], we have, for any

event A ∈ F , Q0(A) ≤ E0(Z
2)1/2P1/2

0 (A) ≤ exp(2dΛβ−3α−1)P1/2
0 (A) (a.s.).

It is thus sufficient to prove the result under Q. By Girsanov’s theorem, the

process (Ŵt = Wt −
∫ t∧(ρ2β3)
0 (1 − ψ(λ(Xs)))σ

−1(Xs)bsds)t≥0 is an (Ft)t≥0-
Brownian motion under Q. We write

Xt = X0 +
∫ t

0
bsds+

∫ t

0
σ(Xs)dŴs, t ≥ 0.

Hence, Xρ2β3 = z +
∫ ρ2β3

0 σ(Xs)dŴs, so that

Q0{‖Xρ2β3 − z‖ ≥ ρβ} ≤ ρ−2β−2EQ
0 [|Xρ2β3 − z|2] ≤ dΛβ. (4.1)

Now, for any t ∈ [0, ρ2β3], Xt = (1− tρ−2β−3)X0 + tρ−2β−3z +
∫ t
0 σ(Xs)dŴs,

so that ‖Xt‖ ≤ 1− ρβ + ‖
∫ t
0 σ(Xs)dŴs‖. By Doob’s maximal inequality

Q0{SQ1 ≤ ρ2β3} ≤ Q0

{
sup

0≤t≤ρ2β3

∥∥∥∫ t

0
σ(Xs)dŴs

∥∥∥ ≥ ρβ
}
≤ dΛβ. (4.2)

By (4.1) and (4.2), we deduce that Q0{SQ1 > ρ2β3, ‖Xρ2β3 − z‖ < ρβ} ≥
1−2dΛβ (a.s.). For β < 1/(4dΛ), this is greater than 1/2, so that Q0{TQ(z,ρβ) <
(β3ρ2) ∧ SQ1} ≥ 1/2. 2

4.2 Proof of the Main Result

We are now in position to complete the proof of Theorem 1.2. Again, we can
assume ρ to be equal to 1. We then follow the original proof by Krylov and
Safonov. To this end, we remind the reader of the following lemma of measure
theory (see [3, Prop (7.2)]). (We adopt the same convention as in [3]: if Q is
an open hypercube with z as center and ρ > 0 as radius, then Q̂ denotes the
closed hypercube with z center and 3ρ as radius).

Lemma 4.2 Let (q, ν) ∈ (0, 1)2. If V ⊂ Q1 and |V | ≤ q|Q1|, then there exists
a finite family (Ci)i∈I of pairwise disjoint open hypercubes, all included in Q1,
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such that: (1) for each i ∈ I, |V ∩Ci| > q|Ci|, (2) |V | ≤ q(|D ∩Q1|+ ν) with
D =

⋃
i∈I Ĉi.

(Pay attention, in [3, Prop (7.2)], Q(0, 1) stands for an hypercube of volume
1.) The statement of [3, Prop (7.2)] is in fact slightly different. In [3, Prop
(7.2)], the family I is countable so that ν can be chosen equal to zero, that
is |V | ≤ q|D ∩ Q1|. We thus show that Lemma 4.2 with I countable and
ν = 0 implies our own version of Lemma 4.2: by choosing (In)n≥1 a sequence
of increasing sets of indices such that #(In) = n, n ≥ 1, and ∪n≥1In = I,

we clearly have |D ∩ Q1| ≤ |Dn ∩ Q1| +
∑
i 6∈In |Ĉi|, Dn = ∪i∈InĈi, n ≥ 1.

By choosing n large enough, we obtain the desired result. (Of course, the
sum

∑
i∈I |Ĉi| is finite since

∑
i∈I |Ĉi| ≤ 3d

∑
i∈I |Ci| ≤ 3d|Q1| < +∞.) The

advantage is the following: in our own version of Lemma 4.2, D is closed.

Step 1. Initialization. Proposition 3.6 says that Theorem 1.2 holds true for
µ ≤ µ0. We now establish Theorem 1.2 for |Q1 \ V |/|Q1| ∈ (µ0, µ1], with µ1 =
µ0(1+(1−µ0)

2). (It is clear that the mapping x ∈ (0, 1) 7→ x(1+(1−x)2) is an
increasing mapping from (0, 1) onto itself and that it is above x ∈ (0, 1) 7→ x.)
We then apply Lemma 4.2 with q = 1−µ0 and ν = (µ2

0|Q1|/2)∨(1/2) ∈ (0, 1).
For the resulting D, we have |D ∩ Q1| ≥ |V |/q − ν ≥ [(1 − µ1)/(1 − µ0) −
µ2

0/2]|Q1| = (1− µ0 + µ2
0/2)|Q1|.

Set now E = D ∩ Q(1−µ2
0/2)1/d ⊂ Q1. Then |E| ≥ |D ∩ Q1| + |Q(1−µ2

0/2)1/d| −
|Q1| ≥ (1 − µ0)|Q1|. By Proposition 3.6, we can find a d-dimensional (Ft)t≥0

progressively measurable process (b0t )t≥0 such that


∀t ≥ 0, λ(X0

t ) ≥ α⇒ b0t = 0

∀p ∈ [1, 2), E0

∫ +∞

0
|b0t |pdt ≤ Γp

 and P0{T 0
E < R0 ∧ S0

Q1
} ≥ ε0,

where T 0
E is the first hitting time of E and S0

Q1
the first exit time from Q1

by (X0
t )t≥0, equal to SX0((b

0
t )t≥0, σ). (Here, X0 is some F0-measurable random

variable with values in Q1/8: it may be x0 as in the statement of Theorem 1.2.)

Step 2. Hitting intermediate sets. We define τ0 = T 0
E ∧ R0 ∧ S0

Q1
. If

T 0
E < R0 ∧ S0

Q1
, then X0

τ0
belongs to E since E is closed. In particular, there

exists i ∈ I such that X0
τ0

belongs to Ĉi. We then denote by xi the center

of Ci and by si its radius: Ĉi is the closed hypercube with xi as center and
3si as radius, so that ‖X0

τ0
− xi‖ ≤ 3si. Since X0

τ0
belongs to E, we also have

X0
τ0
∈ Q(1−µ2

0/2)1/d ⊂ Q1−(1−(1−µ2
0/2)1/d)si since si ∈ (0, 1). Setting ρi = 3si and

β = min([1 − (1 − µ2
0/2)1/d]/3, 1/48), we have ‖X0

τ0
− xi‖ ≤ ρi, X

0
τ0
∈ Q1−ρiβ

and xi ∈ Q1−ρiβ since Q(xi, ρiβ) ⊂ Q(xi, si) = Ci ⊂ Q1. (The term 1/48 may
be explained as follows: ρiβ ≤ si/16 so that Q(xi, ρiβ) ⊂ Q(xi, si/8). The
factor 1/8 is the same as in Proposition 3.6.) Following the proof of [3, Thm
(7.4)], we denote by C∗i the closed hypercube of center xi and radius si/16.
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We now apply Lemma 4.1 to z = xi, ρ = ρi and β as above, i ∈ I. For any
i ∈ I, we can find a d-dimensional (Fτ0+t)t≥0 progressively-measurable process
(b1,it )t≥0 such that, (b1,it )t≥0 together with (X1,i

t )t≥0, solution of the SDE

X1,i
t = X0

τ0
+
∫ t

0
b1,is ds+

∫ t

0
σ(X1,i

s )dW 1
s , W 1

t = Wτ0+t −Wτ0 , t ≥ 0,

fulfill 
∀t ≥ 0, λ(X1,i

t ) ≥ α⇒ b1,it = 0,

∀p ∈ [1, 2), Eτ0

[∫ +∞

0
|b1,it |pdt

]
≤ γp(β)ρ2−p

i ,
(4.3)

and

Pτ0{T
1,i
C∗i
< (ρ2

i r(β)) ∧ S1,i
Q1
} ≥ ζ(β) (4.4)

a.e. on the event {X0
τ0
∈ E ∩ Ĉi}, where T 1,i

C∗i
, i ∈ I, is the first hitting time

of the hypercube C∗i and S1,i
Q1

the first exit time from the hypercube Q1 by
(X1

t,i)t≥0. Without loss of generality, we can assume that I is a subset of N∗.
Therefore, at time τ0, we can define I0 = inf{i ∈ I : X0

τ0
∈ Ĉi} (with I0 = +∞

if X0
τ0
6∈ ⋃i∈I Ĉi). We then set:

∀t ≥ 0, b1t =
∑
i∈I

1{I0=i}b
1,i
t , X1

t =
∑

i∈I∪{+∞}
1{I0=i}X

1,i
t ,

where (X1,+∞
t )t≥0 is the solution of the SDE dX1,+∞

t = σ(X1,+∞
t )dW 1

t , t ≥ 0,
X1,+∞

0 = X0
τ0

. It is clear that (X1
t )t≥0 is (Fτ0+t)t≥0 progressively measurable

and solves the SDE

X1
t = X0

τ0
+
∫ t

0
b1sds+

∫ t

0
σ(X1

s )dW 1
s , t ≥ 0,

and that the pair (b1t , X
1
t )t≥0 fulfills (4.3) with γp(β)32−p instead of γp(β)ρ2−p

i .
(In short, ρi ≤ 3 for every i ∈ I.) Moreover, setting F =

⋃
i∈I C

∗
i , we deduce

from (4.4) that Pτ0{T 1
F < (9r(β)) ∧ S1

Q1
} ≥ ζ(β) a.e. on {X0

τ0
∈ E}, T 1

F being
the first hitting time of F and S1

Q1
the first exit time from Q1 by (X1

t )t≥0.

Step 3. Hitting the prescribed Borel subset. We set τ1 = T 1
F ∧ (9r(β))∧

S1
Q1
. It is a stopping time for the filtration (Fτ0+t)t≥0. If τ 1

1 < (9r(β)) ∧ S1
Q1

,
then X1

τ1
belongs to F and thus to some Q(xi, si/8), i ∈ I. For each i ∈ I,

|V ∩Q(xi, si)| = |V ∩Ci| > (1−µ0)|Q(xi, si)|, so that we can apply Proposition
3.6. For any i ∈ I, we can find a d-dimensional (Fτ0+τ1+t)t≥0 progressively-
measurable process (b2,it )t≥0 such that (b2,it )t≥0 together with (X2,i

t )t≥0, solution
of the SDE

X2,i
t = X1

τ1
+
∫ t

0
b2,is ds+

∫ t

0
σ(X2,i

s )dW 2
s , W 2

t = Wτ0+τ1+t −Wτ0+τ1 , t ≥ 0,
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fulfill 
∀t ≥ 0, λ(X2,i

t ) ≥ α⇒ b2,it = 0,

∀p ∈ [1, 2), E
∫ +∞

0
|b2,it |pdt ≤ Γps

2−p
i ,

(4.5)

and

Pτ0+τ1{T
2,i
V < (R0s

2
i ) ∧ S

2,i
Ci
} ≥ ε0 (4.6)

a.e. on the event {X1
τ1
∈ Q(xi, si/8)}, where T 2,i

V is the first hitting time of

V and S2,i
Ci

the first exit time from the hypercube Ci by the process (X2,i
t )t≥0.

At time τ1, we can define I1 = inf{i ∈ I : X1
τ1
∈ C∗i } (with I1 = +∞ if

X1
τ1
6∈ ⋃i∈I C∗i ). Following Step 2, we set

∀t ≥ 0, b2t =
∑
i∈I

1{I1=i}b
2,i
t , X2

t =
∑

i∈I∪{+∞}
1{I1=i}X

2,i
t ,

where (X2,+∞
t )t≥0 is the solution of the SDE dX2,+∞

t = σ(X2,+∞
t )dW 2

t , t ≥
0, X2,+∞

0 = X1
τ1

. As above, (X2
t )t≥0 is (Fτ0+τ1+t)t≥0 progressively measurable

and solves the SDE

X2
t = X1

τ1
+
∫ t

0
b2sds+

∫ t

0
σ(X2

s )dW 2
s , t ≥ 0.

Moreover, the pair (b2t , X
2
t )t≥0 fulfills (4.5) with Γps

2−p
i replaced by Γp. (Indeed,

si ≤ 1.) By (4.6), we also have Pτ0+τ1({T 2
V < R0∧S2

Q1
}) ≥ ε0 a.e. on {X1

τ1
∈ F},

where T 2
V is the first hitting time of V and S2

Q1
is the first exit time from Q1

by (X2
t )t≥0.

Step 4. Conclusion. We finally define:

bt = b0t1{0≤t<τ0} + b1t+τ01{τ0≤t<τ0+τ1} + b2t+τ0+τ11{t≥τ0+τ1}, t ≥ 0.

We define (Xt)t≥0 as SX0((bt)t≥0, σ). Then, P0{TV < (2R0 + 9r(β)) ∧ SQ1} ≥
ε2
0ζ(β), where TV is the first hitting time of V and SQ1 the first exit time from
Q1 by (Xt)t≥0. The integrability of b is easily checked as well as the vanishing
property (i.e. bt = 0 if λ(Xt) ≥ α, t ≥ 0). This proves that Theorem 1.2
holds true for |Q1 \V | ≤ µ1. By induction, we can prove that it holds true for
|Q1\V | ≤ µn, n ≥ 0, where (µn)n≥0 is the sequence given by µn+1 = µn(1+(1−
µn)2). (We emphasize that, for each n ≥ 1, we can apply Proposition 3.6 with
µn instead of µ0 since X0 is chosen random in the above demonstration.) The
sequence (µn)n≥0 is non-decreasing. Since µ0 > 0, the limit µ∞ = limn→+∞ µn
is clearly equal to 1. In other words, we can reach any real µ ∈ (0, 1), such
that |Q1 \ V | ≤ µ, in a finite number of iterations. 2
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