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Abstract

This paper deals with a computational strategy suitable for the sim-
ulation of coupled problems, in presence of heterogeneities and when dif-
ferent precision levels are required for the different physics. To deal with
micro heterogeneities, an adaptation of the classical periodic homogeniza-
tion procedure is used, with the asymptotic development approach, but
only one direction of periodicity can be taken into account. The appli-
cation concerns an axisymmetric reinforced filtration device, modelled as
a steady state thermo-poroelastic structure, for which thermal and fluid
problems are described only at the (homogenized) macroscopic level, while
the structure is described up to the micro scale. The relocalization has
to take edge effects into account since scales are not well separated. The
influence of the discretization on the micro scale is studied numerically.

This is a postprint of an article published in its final form as: David
Dureisseix, David Néron, A multiscale computational approach with field
transfer dedicated to coupled problems, International Journal for Multi-
scale Computational Engineering 6(3):233-250, Begell House, 2008. DOI:
10.1615/IntJMultCompEng.v6.i3.40. URL: Journal homepage.
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1 Introduction

Multiphysics coupled problems often lead to different models or different dis-
cretizations. This may arise from the different engineering teams that focus on
different phenomena, or because spatial (and temporal) scales may be different
for each physics. In such cases, tools for coupling these models or discretizations
are mandatory. They are classically associated to a partitioning technique as a
solution strategy [23, 14, 15, 13, 8], that allows modularity in the treatment of
the different physics, and avoids extra numerical cost that can be associated to
the coupling in a monolithic resolution.

In this article, we are concerned with the case where the spatial phenomenon
scales of interest are different for the different physics. When heterogeneities are
involved, the previous coupling tools must take into account the scale coupling
as well. Multigrid methods often provide such scale coupling when coupled to
the modelling phase [2, 16]. The approach used herein is more related to domain
decomposition [21].

To illustrate the topic of this article, let us consider the filtration device made
of porous ceramic on Figure 1. To increase the flow rate, several design variables
can be optimized: increasing the filtration surface by increasing inner diameter
D or length 2L, reducing the hydraulic resistance by diminishing thickness e,
increasing the inflow pressure pd. Each solution (except for the length increase
that leads to an increase in axial bulk) leads to an increase in the orthoradial
tensile stress σθθ for which the material does not exhibit a high resistance.

Figure 1: Filtration device

A design improvement in this case is to embed a reinforcement material
when casting the device: for instance steel wires in the orthoradial direction as
illustrated in Figure 1.

To check the integrity of such a structure, an axisymmetric thermo-poroelastic
model can be used for the ceramic and a thermo-elastic model for the wires (the
inflow temperature is T0 + θd, T0 being the reference temperature). Since the
designer is mostly interested in the local stresses, and in the global flow rate that
can be obtained, it will be of interest to describe the various physics with dif-
ferent finite element meshes: a fine mesh dedicated to capture local stresses for
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the elastic part, and a coarse mesh for both the fluid and the thermal problems.
Such meshes are depicted in Figure 2 (half of the radial section is considered
due to symmetry), and one can notice that the selected coarse mesh is unable to
capture the effect of the reinforcement. Therefore, fluid and thermal problems
have to use an homogenized macroscopic model, while the elastic problem may
rely on the microscopic description of the ‘composite’ steel / ceramic structure.

Figure 2: Finite element meshes of both the fluid and the thermal problems (a),
of the porous solid (b), of the reinforcements (c), of the total solid problem and
of a typical cell (d)

This article is therefore structured as follows: Section 2 will recall the ref-
erence problem; Section 3 will discuss the design of the homogenized model;
Section 4 will introduce the field transfer procedure, based on the technique
designed in [12, 25] and adapted herein to axisymmetric problems with partly
homogenized models in a coupled physics problem. Finally, Section 5 will report
numerical results and discussion on the model coupling procedure.

2 Reference problem

We recall herein the steady state governing equations of a saturated thermo-
poroelastic medium Ω [22, 10]. For a more complete presentation in the case of
an evolution problem, the reader can refer to [25]. This kind of porous material
model can be obtained from the underlying microstructure by homogenization
[11]. Nevertheless, we won’t consider this scale description herein. The micro
scale will correspond only to the description of the composite structure made of
a porous material and steel reinforcements; the macro scale will correspond to
the homogenization of these two constituents.

When the temperature is T0 + θ, with small variations from reference abso-
lute temperature T0, and with small perturbations, the state of the material is
described at each point of the structure with the following parameters:

• for the solid part: the strain ε associated to the stress σ;
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• for the fluid part: the pore pressure p associated to the Darcy velocity w;

• for the thermal part: the temperature θ associated to the generalized heat
source R and the thermal flux q

th
.

Actually, in order to have positive material characteristics, we prefer to deal
with W = −w, the opposite of Darcy velocity, and Y = −q

th
/T0. The gradients

involved are: Z = grad p, the gradient of the pore pressure, and X = grad θ,
the gradient of the temperature.

2.1 Constitutive relations

The constitutive relations are the following. First, the Hooke law is:

σ = Dε− bpI− 3αKbθI (1)

where D is the Hooke operator of the drained skeleton; for an isotropic behavior,
it depends only on two coefficients, for instance, Young modulus E and Poisson
coefficient ν. α is the thermal (lineic) expansion coefficient of the skeleton.
Kb = 1

3E/(1 − 2ν) is the bulk modulus of the drained skeleton. b is Biot
coefficient: b = 1 − Kb/Ks, where Ks is the bulk modulus of the solid phase
(solid grains).

Second, Darcy and Fourier laws read:

W = HZ and Y =
k

T0
X (2)

where k is the thermal conductivity; as a first approximation, it can be chosen as
k = (1−n)kS+nkF , n being the porosity, kS and kF the thermal conductivities
of the solid and fluid phases. H = K/µF is the permeability of the porous
medium; K is the intrinsic permeability of the skeleton, and µF is the dynamic
viscosity of the fluid phase.

Finally, following [10], the thermodynamic framework leads to the thermal
source:

R = −
ρF cF

T0
W ·X −

1

H

( 1

T0
− 3αF

)
W 2 (3)

where ρF , cF and αF are the specific mass, the specific heat and the thermal ex-
pansion coefficient of the fluid phase. The two nonlinear terms in R correspond
to the heat convectively transported by the fluid, and to the viscous dissipation.

As an example of material characteristics of the problem that is under consid-
eration, Tables 1 and 2 reports the parameter values. To avoid bad conditioning
of the problem to solve, a new unit system is used, in order to have a unitary
order of magnitude for E, T0, H and Cd/T0: lengths are in meters (L = m),
masses in 7 108 kg (M = 7 108 kg), durations in seconds (S = s) and temper-
atures in 293 K (T = 293 K). Table 1 also gives the values in this new unit
system.

The loadings on medium Ω consist of:
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Young modulus of the skeleton E = 20 GPa = 28.57 M L−1 S−2

Poisson coefficient of the skeleton ν = 0.2
Bulk modulus of the skeleton Kb = 11.11 GPa = 15.87 M L−1 S−2

Biot coefficient b = 0.7
Porosity n = 0.2
Intrinsic perm. of the skeleton K = 2 10−13 s m2 = 2 10−13 S L2

Dynamic viscosity of the fluid µF = 0.001 Pa s = 1.43 10−12 M L−1 S−1

Permeability of the porous media H = 2 10−10 m3 s kg−1 = 0.14 L3 S M−1

Thermal conductivity of the solid kS = 85 W m−1 K−1 = 3.56 10−5 M L S−3 T−1

Thermal conductivity of the fluid kF = 0.61 W m−1 K−1 = 2.55 10−7 M L S−3 T−1

Thermal cond. of the porous media k = 68 W m−1 K−1 = 2.85 10−5 M L S−3 T−1

Specific mass of the fluid ρF = 1 000 kg m−3 = 1.43 10−6 M L−3

Specific heat of the fluid cF = 4 182 J kg−1 K−1 = 1.23 106 L2 S−2 T−1

Thermal exp. coef. of the skeleton α = 8 10−6 K−1 = 2.34 10−3 T−1

Thermal exp. coef. of the fluid αF = 2.6 10−4 K−1 = 7.62 10−2 T−1

Reference temperature T0 = 293 K = 1 T

Table 1: Material characteristics (porous ceramics)

Young modulus E = 200 GPa = 285.7 M L−1 S−2

Poisson coefficient ν = 0.3
Bulk modulus Kb = 167 GPa = 79.36 M L−1 S−2

Thermal conductivity k = 20 W m−1 K−1 = 8.48 10−6 M L S−3 T−1

Thermal expansion coefficient α = 10.9 10−6 K−1 = 3.2 10−3 T−1

Table 2: Material characteristics (steel reinforcement)
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• prescribed displacement Ud on a first part ∂1Ω of the boundary ∂Ω and
traction force F d on the complementary part ∂2Ω of ∂Ω;

• prescribed pore pressure pd on another part ∂3Ω of the boundary and fluid
flux wd on the complementary part ∂4Ω of ∂Ω;

• prescribed temperature θd on another part ∂5Ω of the boundary and, fi-
nally, thermal flux gd on the complementary part ∂6Ω of ∂Ω.

For sake of simplicity, we assume that there are no body force, no fluid source
and no thermal source, except R.

Once the constitutive relations are settled for the material behavior, the
conservation principles have to be established: the momentum conservation for
the solid, the mass conservation for the fluid, and the heat equation. These are
the global admissibility relations.

2.2 Solid admissibility

Concerning the solid problem, one must have a compatible strain field ε that
equals the symmetric part of the gradient of a displacement field U . This dis-
placement field should be regular and equals the prescribed displacement Ud on
a first part ∂1Ω of the boundary ∂Ω of the domain (the corresponding set of
fields U is denoted with U). The stress field should also balance the external
prescribed forces F d on the complementary part ∂2Ω of the domain and should
also satisfy the momentum conservation. Therefore, one should have:

ε =
( ∂U
∂M

)
sym

and U ∈ U

divσ = 0 in Ω and σn = F d on ∂2Ω

(4)

2.3 Fluid admissibility

Concerning the fluid problem, the pressure gradient should derive from a regular
pore pressure field that equals the prescribed values pd on another part of the
boundary ∂3Ω (the corresponding set of fields p is denoted with P). The fluid
flux must equal the prescribed values on the complementary part ∂4Ω of the
boundary and satisfy conservation of fluid flow. Therefore, one should have:

Z = grad p and p ∈ P
divW = 0 in Ω and W · n = wd on ∂4Ω

(5)

2.4 Thermal admissibility

Concerning the thermal problem, one must have a temperature gradient X aris-
ing from a regular temperature field θ that equals the prescribed value θd on
another part ∂5Ω of the boundary (the corresponding set of fields θ is denoted
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with T ). The thermal flux must equal the prescribed values on the comple-
mentary part ∂6Ω of the boundary and satisfy the energy balance of the first
thermodynamic principle. Therefore, one should have:

X = grad θ and θ ∈ T
R = div Y in Ω and Y · n = −gd/T0 on ∂6Ω

(6)

Note that the admissibility conditions (4), (5) and (6) are all decoupled
for each physics, while constitutive relations (1), (2), (3) lead to an elasticity
problem coupled with both the fluid and the temperature, and a thermal prob-
lem coupled with the fluid quantities. Finally, the fluid flow is a stand-alone
problem. For this steady state problem, this is therefore a one-way (or weak)
coupling. Note that it would become a strong coupling for the transient case
[25].

3 Scale expansion of the unknowns and homog-
enization procedure

The homogenization of the behavior model for a material that exhibits an het-
erogeneous microstructure usually aims to replace the micro description of a
representative volume element (RVE) with heterogeneities, by an equivalent
homogeneous volume filled with an homogenized material. The equivalence is
often understood as an identical energy when both are subjected to uniform
loadings.

Several approaches can be used, and the one that is selected herein is related
to the periodic homogenization in order to avoid artificial micro edge effects
when testing the response of the heterogeneous RVE, which is in this case an
elementary ‘cell’ that can reproduce the whole microstructure by tiling.

Apart from providing the homogenized behavior, such procedures also lead to
the so-called ‘localization operators’ that enable a post-treatment of the macro-
scopic solution to reach local values in the solution on each RVE independently.

Nevertheless, these relocalized solutions are known to get less accuracy in
boundary areas where macroscopic edge effects occur, and as a consequence,
when the scales are not well separated. In these cases, when a more accu-
rate solution is required, specific procedures may be used, such as edge effect
corrections [28, 1, 17] or iterative procedures, some being based on domain de-
composition [20, 21].

In the problem we are interested in, limitations of the periodic homogeniza-
tion came from the lack of scale separation, because only one cell is located
in the thickness direction (see Figure 2), and the axisymmetrical character of
the problem that prevents the periodicity of the solution in the radial direction.
Therefore, only 1-directional periodicity in the axial direction will be considered.

The resulting material behavior is not expected to give accurate local results,
but one must recall that only the total flow rate is the quantity of interest for
the coarse discretization. The classical periodic homogenization [27, 4] defines
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the scale ratio ε as the ratio between the RVE size and the structure size. When
it is assumed to be small, two variables describing the position in the considered
domain are used: a ‘slow’ variable x and a fast variable y which is rescaled as
y = x/ε and is intended to locate the position within the microscale description
of the cell Y (see Figure 3, left).

Figure 3: Two-scale description of the structure

A development with respect to ε is performed for the considered unknowns.
If periodicity happens only in one direction, ez, the fast variable should be
restricted to z = y · ez. In this case, the classical asymptotic development
leads to the homogenized behavior in the axial direction only, on each vertical
segment Γ (see Figure 3, right), parametered by r = x · er. This is suited
to the case of a thin lamination (when the length of the segment Γ is small
with respect to the thickness e). Since this is not the case herein, we wish
to maintain the homogenization on the whole cell Y . We therefore take some
distance from the homogenization assumptions, and keep y as the fast variable.
As a consequence, since periodicity is not valid in the radial direction er, natural
boundary conditions will be prescribed directly on the cell, and edge effects will
be present. In the following developments their consequences will be outlined
whenever they will appear. Note that, when these boundary conditions are
null fluxes, no residual appears, which is often the case for the well studied 2D
periodicity conditions of composite plates, see [6] for instance, and references in
[19]. This won’t be the case in this article.

Moreover, with the target application of this article, we won’t consider the
asymptotic development of displacement field U , because the solid part will be
modelled directly up to the microscale, and because it does not influence the
fluid and thermal part due to the loose coupling.

3.1 Fluid problem homogenization

The development of the pore pressure field is:

p(x, y) =
∑
i>0

εipi(x, y) (7)
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where all quantities are supposed to be periodic with respect to the y variable.
The gradient is easily obtained, once the derivation with respect to the position
M is recalled as: ∂

∂M = ∂
∂x + 1

ε
∂
∂y and using subscripts x and y to denote

derivatives with respect to the corresponding variables x and y:

Z(x, y) =
1

ε
Zy(p0) +

∑
i>0

εi(Zx(pi) + Zy(pi+1)) (8)

Using constitutive relation (2), where all material coefficients are supposed
to be periodic functions of y only:

W (x, y) =
1

ε
HZy(p0) +

∑
i>0

εiW i(x, y) (9)

where W i = H(Zx(pi) + Zy(pi+1)).
Boundary conditions are supposed to be smooth, and to depend only on the

slow variable, i.e. pd(x), wd(x).
Fluid admissibility conditions (4) can be developed as well. The expansion

of the divergence reads:

divW =
1

ε2
divyHZy(p0) +

1

ε
(divxHZy(p0) + divyW 0)+

+
∑
i>0

εi(divxW i + divyW i+1) (10)

The various terms in this development can be identified with respect to the
order of the scale ratio ε. This is done in the following. At this point, one
can notice that the fluid cell is not defined at the reinforcement positions since
these are impervious, Figure 4. Therefore, null fluid flux is prescribed at the
ceramic / steel interface ∂4Y .

Figure 4: Fluid cell problem (Ȳ ) and thermal cell problem (Y )

ε−2 terms to get information on p0. This problem reads:

divyHZy(p0) = 0, HZy(p0) · n |∂4Y = 0, p0 |∂3Y = pd (11)
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which indicates that p0 is a function of x only. Therefore Zy(p0) = 0 and p0

and Zx(p0) will be denoted with pM and ZM , the macroscopic pore pressure
and pressure gradient.

ε−1 terms to get information on p1. The local pore pressure p1(x, y) possesses
periodicity property on ∂perY . In our case, ∂perY is the upper and lower part
of the boundary ∂Y , see Figure 4. On the remaining part of the cell boundary,
direct boundary conditions have to be prescribed.

The space of fields p1 that verify periodicity conditions on ∂perY and p1 = 0

on ∂3Y is denoted with P#
0 . The problem is therefore:

p1 ∈ P#
0 (12a)

divyW 0 = 0 in Y and W 0 · n = wd on ∂4Y (12b)

The variational formulation corresponding to (12b) is:

∀p?1 ∈ P
#
0 ,

∫
Y

p?1 divyW 0dY = 0 = −
∫
Y

grad
y
p?1 ·W 0dY +

∫
∂Y

p?1W 0 · ndS

(13)
The integral on the boundary is null on ∂3Y . With W 0 = H(ZM + Zy(p1)),
which is periodic in axial direction, the integral on ∂perY is null as well. There-
fore, there only remains the residual term:∫

∂4Y

p?1wddS (14)

This term arises from the direct imposition of boundary conditions on the cell
boundary. It traduces an edge effect in the cell if wd 6= 0. The modelling choice
we select here is to discard this term; therefore, prescribed fluxes are taken into
account only at the macroscopic scale.

Therefore, one has p1 ∈ P#
0 such that:

∀p?1 ∈ P
#
0 ,

∫
Y

grad
y
p?1 ·H grad

y
p1dY = −

∫
Y

grad
y
p?1 ·HZMdY (15)

This problem leads to a unique solution in pore pressure gradient which
depends linearly on the macroscopic gradient:

Zy(p1) = LF (y)ZM (16)

where LF is the localization operator for the fluid problem.

ε0 terms to get information on the homogenized behavior. This problem
reads:

divxW 0 + divyW 1 = 0 (17)

with W 1 periodic and verifying W 1 · n = 0 on ∂4Y . Here, we choose to express
the average of (17) on the elementary cell. We define the average on the 3D
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axisymmetric cell Y (whose radial section is Y, see Figure 5) as the component-
per-component average in the local basis (er, eθ, ez), which is equivalent to the
average on section Y weighted by the current radius r:

〈•〉 =
1

vol(Y )

∫
Y

• dY =
1∫
Y rdY

∫
Y
• rdY (18)

Figure 5: 3D cell Y and its radial section Y

Therefore, with:∫
Y

divyW 1dY =

∫
∂Y

W 1 · ndS =

∫
∂3Y

W 1 · ndS (19)

(17) leads to:

divx〈W 0〉 = − 1

vol(Y )

∫
∂3Y

W 1 · ndS (20)

This term is also a residual term due to edge effect. We choose again to discard
it. Therefore, the macroscopic Darcy velocity is WM = 〈W 0〉 and its expression
is:

WM = 〈W 0〉 = 〈H(ZM + Zy(p1))〉 = 〈H(I + LF )〉ZM (21)

The corresponding homogenized permeability tensor is:

HM = 〈H(I + LF )〉 (22)

3.2 Thermal problem homogenization

The development of the temperature field and its gradient are:

θ(x, y) =
∑
i>0

εiθi(x, y)

X(x, y) =
1

ε
Xy(θ0) +

∑
i>0

εi(Xx(θi) +Xy(θi+1))
(23)

Constitutive relations (2) and (3) read:

Y (x, y) =
1

ε

k

T0
Xy(θ0) +

∑
i>0

εiY i(x, y)

R(x, y) =− 1

ε
H
ρF cF
T0

Xy(θ0) · (ZM + Zy(p1)) +
∑
i>0

εiRi(x, y)

(24)
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where, in particular:

Y i =
k

T0
(Xx(θi) +Xy(θi+1))

R0 =−
ρF cF

T0
(ZM + Zy(p1)) · (Xx(θ0) +Xy(θ1) +Xy(θ0))+

− (
1

T0
− 3αF )H(ZM + Zy(p1))2

(25)

With a similar expression as previously for the fluid, the divergence can be
developed for the heat equation, and the various terms in the development are
identified as in the following.

ε−2 terms to get information on θ0. This problem reads:

divy
k

T0
Xy(θ0) = 0,

k

T0
Xy(θ0) · n |∂6Y = 0, θ0 |∂5Y = θd (26)

which indicates that θ0 is a function of x only. Therefore Xy(θ0) = 0 and θ0

and Xx(θ0) will be denoted with θM and XM , the macroscopic temperature
and temperature gradient.

ε−1 terms to get information on θ1. As for the fluid, the space of regular fields
θ1 that verify periodicity conditions on ∂perY and θ1 = 0 on ∂5Y is denoted with

T #
0 . The problem is therefore:

θ1 ∈ T #
0 (27a)

divy Y 0 = 0 in Y and Y 0 · n = gd on ∂6Y (27b)

Then, the variational formulation corresponding to (27b) is:

∀θ?1 ∈ T
#

0 ,

∫
Y

θ?1 divy Y 0dY = 0 = −
∫
Y

grad
y
θ?1 ·Y 0dY +

∫
∂Y

θ?1Y 0 ·ndS (28)

As previously, the integral on the boundary is null on ∂5Y and ∂perY . The
residual term which will be neglected here is:∫

∂6Y

θ?1gddS (29)

Therefore, one has θ1 ∈ T #
0 such that:

∀θ?1 ∈ T
#

0 ,

∫
Y

grad
y
θ?1 ·

k

T0
grad

y
θ1dY = −

∫
Y

grad
y
θ?1 ·

k

T0
ZMdY (30)

As previously, the unique solution in temperature gradient depends linearly
on its macroscopic gradient:

Xy(θ1) = LT (y)XM (31)

where LT is the localization operator for the thermal problem.
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ε0 terms to get information on the homogenized behavior. This problem
reads:

divx Y 0 + divy Y 1 = R0 (32)

with Y 1 periodic and verifying Y 1 · n = 0 on ∂6Y . Here, we choose again to
express the average of (32) on the elementary cell. Therefore, with:∫

Y

divy Y 1dY =

∫
∂Y

Y 1 · ndS =

∫
∂5Y

Y 1 · ndS (33)

(32) leads to:

divx〈Y 0〉 = 〈R0〉 −
1

vol(Y )

∫
∂3Y

Y 1 · ndS (34)

The last term is the second residual due to edge effects. It will be neglected in
the following.

Therefore, the macroscopic heat flux is YM = 〈Y 0〉. Its expression is:

YM = 〈Y 0〉 = 〈
k

T0
(XM +Xy(θ1)〉 = 〈

k

T0
(I + LT )〉XM (35)

and the homogenized conductivity tensor is:

kM = 〈k(I + LT )〉 (36)

Moreover, the macroscopic dissipation is RM = 〈R0〉. Its expression is:

〈R0〉 =− ZM · 〈[H(I + LF )]T
ρF cF
k

[
k

T0
(I + LT )]T 〉︸ ︷︷ ︸

cM

XM+

− ZM · 〈[H(I + LF )]T
1

H
(

1

T0
− 3αF )[H(I + LF )]T 〉︸ ︷︷ ︸

dM

ZM

=− ZM · cMXM − ZM · dMZM

(37)

The macroscopic effect of the convection is stored in tensor cM while the
macroscopic dissipation lies in tensor dM .

4 Field and scale transfer for the coupled prob-
lem solution

Due to the choice of modeling for the aforementioned filtration problem, the
coarse mesh for fluid and thermal problems is assumed to capture the macro-
scopic quantities only. Therefore homogenized behavior are used for each of
these physics.

On the other hand, the fine mesh for the elastic problem may capture the
local micro stresses and the micro heterogeneous behavior is used for it.
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4.1 Fluid problem

The homogenized fluid problem consists in searching for fluid unknowns satis-
fying to:

• the constitutive relation:

WM = HMZM (38)

• the admissibility conditions:

ZM = grad pM and pM ∈ P
divWM = 0 in Ω and WM · n = wd on ∂4Ω

(39)

Introducing P0 the vector space corresponding to P, the variational formu-
lation of the second condition reads:

∀p? ∈ P0,

∫
Ω

grad p? ·WMdΩ =

∫
∂4Ω

p?wddS (40)

Together with the constitutive relation, the problem is to find pM ∈ P such
that:

∀p? ∈ P0,

∫
Ω

grad p? ·HM grad pMdΩ =

∫
∂4Ω

p?wddS (41)

Once discretized with finite elements, this leads to a linear system of the
form:

HpM = w (42)

where H is the (macroscopic) permeability matrix and w the generalized fluid
flux.

For this macroscopic problem, the boundary conditions are prescribed clas-
sically. No corresponding term emerges from the underlying microscale because
residual terms in (14) and (20) have been neglected.

With a known pore pressure, the thermal problem can now be solved.

4.2 Thermal problem

The homogenized thermal problem consists in searching for thermic unknowns
satisfying to:

• the constitutive relations:

YM =
kM
T0

XM

RM = −ZM · cMXM − ZM · dMZM
(43)

• the admissibility conditions:

XM = grad θM and θM ∈ T
div YM = RM in Ω and YM · n = gd on ∂6Ω

(44)
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Introducing T0 the vector space corresponding to T , the variational formu-
lation of the second previous condition reads:

∀θ? ∈ T0,

∫
Ω

(θ?RM + grad θ? · YM )dΩ =

∫
∂6Ω

θ?gddS (45)

Together with the constitutive relations, the problem is to find θM ∈ T such
that:

∀θ? ∈ T0,

∫
Ω

(−θ?ZM · cM grad θM + grad θ? · kM
T0

grad θM )dΩ

=

∫
Ω

θ?ZM · dMZMdΩ +

∫
∂6Ω

θ?gddS (46)

Once discretized with finite elements, this leads to a linear system of the
form:

(−cF + c)θM = BT
Rr̄ + g (47)

where cF is a non-symmetric matrix depending on the fluid solution ZM and
representing the advection of the heat due to the flow, c is the conductivity
matrix, g is the generalized thermal flux, BR is a classical matrix used to
compute the generalized flux that equilibrates a given source, here the viscosity
dissipation r̄ = ZTMcMZM .

As previously, for this macroscopic problem, no term due to the boundary
conditions emerges from the underlying microscale because residual terms in
(29) and (34) have been neglected.

Provided that both the fluid an thermal macroscopic problems are solved,
the microscopic elastic problem can be stated.

4.3 Solid problem

With given micro fluid and thermal known quantities, p and θ, the micro elastic
problem consists in:

• the constitutive relation:

σ = Dε− bpI− 3αKbθI (48)

• the admissibility conditions:

ε =
( ∂U
∂M

)
sym

and U ∈ U

divσ = 0 in Ω and σn = F d on ∂2Ω

(49)

Introducing U0 the vector space corresponding to U , the variational formu-
lation of the second previous condition reads:

∀U? ∈ U0,

∫
Ω

Tr[ε(U?)σ]dΩ =

∫
∂2Ω

U? · F ddS (50)
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Together with the constitutive relation, the problem is to find U ∈ U such
that:

∀U? ∈ U0,

∫
Ω

Tr[ε(U?)Dε(U)]dΩ

=

∫
Ω

Tr[ε(U?)(bp+ 3αKbθ)I]dΩ +

∫
∂2Ω

U? · F ddS (51)

Once discretized with finite elements, this leads to a linear system of the
form:

Ku = BT
σ σ̄ + f (52)

where K is the stiffness matrix, f the generalized forces and Bσ the classical
operator that computes the generalized forces that balance an internal stress,
here σ̄ = (bp+ 3αKbθ)I.

The last difficulty is to get σ̄ from macro quantities pM and θM defined on
a different mesh. This is the topic of the next Section.

4.4 Field transfer

With a given pore pressure p and temperature θ defined on the fluid and thermic
mesh, interpreted as macroscopic fields, the objective is to get the microscopic
stress σ̄. This last quantity is defined at the integration points of the solid mesh.
The transfer operator designed in [12] is based on a variational formulation
that embeds an energy equivalence. Its feature is to deal with fields defined at
integration points of non matching meshes without any master / slave approach,
i.e. with a symmetric treatment of field transfer in each direction. Its ability to
deal with strongly and fully coupled problems such as thermo-viscoelasticity or
thermo-poroelasticity has been exemplified in [12, 25], as well as its adaptation
to transfer between different time discretizations in [24].

The pore pressure and temperature to be transferred can easily be expressed
at the integration points of the fluid and thermic mesh. Once they have been
projected, the resulting fields are still macroscopic ones.

The first approach is to use an identity localization operator, i.e. to consider
that the projected fields are also the microscopic fields. If P is the projector,
the internal stress is therefore:

σ̄ = (bPp+ 3αKbPθ)I (53)

Other strategies are possible. For instance, if one gets the averaged gradients
ZM and XM on each cell (they can be extracted from fields Pp and Pθ) the
relocalization operators can be used to get:

σ̄ = [b(Pp+ LFZM ) + 3αKb(Pθ + LTXM )]I (54)

on each cell. Note that with this approach, macro fields Pp and Pθ are not
uniform on each cell. Indeed, due to the lack of scale separation, the edge effects
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are hopefully recovered (at least partly since in any case, the approximation
considering the residual terms (14), (20), (29) and (34) as null has been used)
by the evolution of these fields at the cell level. This approach is currently under
testing, and only the first basic approach will be used in the following.

A simple projection from fluid and thermic mesh onto solid mesh is therefore
required. The extension of the previously mentioned projector to the axisym-
metric case is easy to perform:

• If the field to project is defined at integration points, its values are ex-
trapolated to the nodes of each element independently (with a least square
approach) to allow its interpolation on each element;

• The resulting field is projected to the elements of the target mesh using an
average extraction procedure (similar to a weighted residual). For instance
if pF is defined on the elements of the mesh ΩF , its projection pS onto the
mesh ΩS is such that:

∀p?S defined on ΩS ,

∫
ΩS

pSp
?
SdΩ =

∫
ΩF

pF p
?
SdΩ (55)

Unlike classical mortar approaches [5, 3, 7], dealing with element per ele-
ment interpolations for p?S also avoids the globality of the projection (55).
It can be performed on a 1-layer element neighborhood basis, due to the
cross product on the right hand side;

• Finally, the resulting field pS can be interpolated to the integration points
of the target mesh, for each element independently.

The overall procedure is denoted with the application of the projector P. Con-
cerning axisymmetric problems, and for scalar fields, the integral in (55) should
be interpreted as the integral on the 3D volume. On the radial section, this is
transformed into:

∀p?S defined on ΩS ,

∫
ΩS

pSp
?
SrdS =

∫
ΩF

pF p
?
SrdS (56)

Therefore, the axisymmetric version can be interpreted as a weighted general-
ization of the previously used transfer, using the current radius r as weight.

5 Numerical results

The goal of this Section is to assess the feasibility of the proposed strategy. To
quantify the results obtained in each case, a ‘reference’ solution is also computed,
on the single mesh for all the involved physics. The convergence when refining
the solid mesh is also tested, for which a fixed reference solution is obtained
with a direct coupled approach on a single refined mesh.
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5.1 Test case description

The considered problem is the previously mentioned reinforced filtration device.
The inflow has the pressure pd and the relative temperature θd, while the outflow
has null pressure and temperature. Apart from the symmetry condition on
half of the radial section, the upper part of the boundary is assembled with an
external metallic part, supposed to be impervious and for which the temperature
decreases radially with the following model:

θ(r) = θd(1− ζ)e−6ζ with ζ = (r − ri)/(re − ri) (57)

Concerning the solid part, the external pressures lead to mechanical forces, and
the upper part of the boundary is clamped. These boundary conditions are
depicted in Figure 6.

Figure 6: Fluid, thermal and structural problems

The characteristic values for the considered problem are reported in Table 3.
The Nusselt number Nu is defined as the ratio of the heat convectively trans-
ported by the fluid and the heat supplied by conduction. The Brinkman number
Br is the ratio of the heat source due to the viscous dissipation and the heat
supplied by conduction. Depending on their relative value with respect to 1, for
a particular application, the last two nonlinear terms in R (3) can sometimes
be neglected. Their order of magnitude can be estimated as:

Nu =
ρF cF

k
Hpd and Br =

H
(

1
T0
− 3αF

)
k
T0
θd

p2
d (58)
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Length L = 2.5 m
Inner diameter D = 1 m
Thickness e = 0.25 m
Wire diameter d = 5.6 cm
Implantation diameters D1 = 1.11 m and D2 = 1.39 m
Pitch l = 13.9 cm
Inflow pressure pd = 1.5 MPa
Inflow relative temperature θd = 80 K
Nusselt number (radial direction) Nu = 18.5
Brinkman number (radial direction) Br = 0.064

Table 3: Geometrical characteristics and boundary conditions

The small value of Brinkman number indicates that the dissipation term in
(3) could have been neglected, but the value of Nusselt number confirms that
the convective term should be taken into account.

Several simulations are performed: the fluid and thermic mesh is kept con-
stant, see Figure 2, with n = 189 3-node triangles, and several solid meshes are
tested: nS = 2084, 4810, 7682, 10842, 15358 6-node straight-edge elements.
The solutions will be referred to as cases 1 to 5, respectively.

5.2 Localization operators and homogenized material co-
efficients

The relocalization operators are computed numerically on a generic cell, meshed
at the microscale. They are illustrated in Figures 7 and 8 (the post-treatment
has been performed with the plotting facilities of gmsh c© software [26]). The first
Figure (lower part) gives the localized gradients Zy(p1) and Xy(θ1) for a unitary
macro gradient in the radial direction er, while the second Figure corresponds
to a unitary macro gradient in the axial direction ez. In the present case,
direct imposition of boundary conditions on the cell leads to a unique localized
pore pressure p1 and temperature θ1. Therefore, two additional relocalization
operators L̃F and L̃T can be defined with p1 = L̃FZM and θ1 = L̃TXM . These
last two operators are also illustrated on the upper part of Figures 7 and 8.
Each of these Figures correspond to the micro mesh of case 1.

The homogenized material characteristics given by the finest cell mesh (case
5) are recalled in Table 4.

5.3 Coupled problems results

Concerning numerical integration, with these elements and an axisymmetric
formulation, polynomials of order 3 have to be integrated for the stiffness. A
cubature scheme with nG = 4 integration points is therefore a good candidate.
Such a scheme that does not involve negative weights has been selected for all
the elements [18, 9] to get identical integration point locations for the reference
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Figure 7: Localization operator for pore pressure (left) and temperature (right),
corresponding to a macroscopic gradient along radial direction

solution (with conforming meshes).
When refining the solid mesh, the projected fields pS = PpM and θS =

PθM may vary slightly, but since the solid mesh is always finer than the other
ones, this variation can be considered as negligible. The previously mentioned
procedure is used to compute the loading σ̄ and to solve the solid problem. Its
post-treatment leads to the maximal principal stress σ.

A reference computation is performed by selecting the solid mesh as a unique
mesh for all the physics (in this case, projector P is the identity), and using the
microscopic heterogeneous material coefficient fields. This produces ‘reference’
pore pressure pref, temperature θref and maximum principal stress σref fields.
Note that they still depend on the refinement selected.

Several indicators can be build: for the fluid and thermic problems,

ηF =
maxΩ |pS − pref|

maxΩ |pS |
and ηT =

maxΩ |θS − θref|
maxΩ |θS |

(59)

Note that the denominator is quasi-constant when refining the solid mesh. Since
pS and θS are linked to the macroscopic fields, the reference fields may exhibit
larger and larger variations and therefore will diverge from the macroscopic
fields when refining, see Table 5.

For the solid quantities, in order to check the convergence with respect to
a fixed reference, a direct computation has been performed on a finer mesh

20



Figure 8: Localization operator for pore pressure (left) and temperature (right),
corresponding to a macroscopic gradient along axial direction

(here, nS = 26602). This produces the ‘target’ maximal principal stress field
σr that can be used as a fixed reference to assess the convergence; maxΩ σ

r =
0.033× 0.7 GPa.

The following errors are used to compare the various solutions:

η =
|maxΩ σ −maxΩ σ

r|
|maxΩ σr|

and ηref =
|maxΩ σref −maxΩ σ

r|
|maxΩ σr|

(60)

Their values are reported in Table 6.
Though convergence is not uniform, the error with the proposed strategy ex-

hibits the same convergence order as the error of the computation with identical
meshes.

Finally, Figures 9, 10 and 11 reports the temperature, pore pressure and
maximal principal stress for the proposed strategy and reference of case 1, as
well as the target solution of case 6.

6 Conclusion

A computational strategy has been proposed and tested for a weakly coupled
problem, a steady state thermo-poroelastic problem, when different meshes and
different scale descriptions are used for the different physics.
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Conductivity tensor kMrr = 0.2408 10−4 M L S−3 T−1

kMrz = kMzr ≈ 0
kMzz = 0.2405 10−4 M L S−3 T−1

Permeability tensor HMrr = 0.1236 L3 S M−1

HMrz = HMzr ≈ 0
HMzz = 0.1232 L3 S M−1

Convection coupling tensor cMrr = 0.1899 L2 T−2 S−1

cMrz = cMzr ≈ 0
cMzz = 0.1868 L2 T−2 S−1

Dissipation coupling tensor dMrr = 0.0833 L3 M−1 T−1 S
dMrz = dMzr ≈ 0
dMzz = 0.0819 L3 M−1 T−1 S

Table 4: Homogenized material coefficients for case 5

case ηT ηF
1 0.0968 0.0727
2 0.0995 0.1017
3 0.1058 0.1122
4 0.1102 0.1171
5 0.1145 0.1198

Table 5: Evolution of fluid and thermic indicators

case nS maxΩ σ maxΩ σref η ηref

1 2084 0.0233 0.0228 0.294 0.309
2 4810 0.0246 0.0238 0.255 0.279
3 7682 0.0255 0.0252 0.227 0.236
4 10842 0.0303 0.0299 0.082 0.094
5 15358 0.0314 0.0310 0.049 0.061
6 26602 0.0330

Table 6: Evolution of maximal principal stresses / 0.7 GPa and corresponding
errors
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0 0.002140.00107
Pore pressure / 0.7 GPa

Figure 9: Pore pressure (case 1, left), reference pore pressure (case 1, middle)
and target pore pressure (case 6, right)

0 0.2730.137
Temperature / 293 K

Figure 10: Temperature (case 1, left), reference temperature (case 1, middle)
and target temperature (case 6, right)

An adaptation to the classical periodic homogenization has been done for
the case where only one direction of periodicity pertains. Edge effects in the
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-0.00224 0.0330.0154
Maximal principal stress / 0.7 GPa

Figure 11: Maximal principal stress (case 1, left), reference field (case 1, middle)
and target field (case 6, right)

transverse directions are taken into account throughout the homogenized fields,
with particular boundary conditions on the microscale cells, and thanks to the
use of a projection between non conforming meshes.

The feasibility of this approach has been exemplified on an axisymmetric
problem, and convergence was studied numerically when the mesh of the physics
described up to the microscale is refined. Comparisons of different relocalization
strategies are currently under development.
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