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Abstract: The purpose of this paper is to present a simplified model and control law
of the current and temperature profile in a tokamak plasma. Based on a description
of the plasma as a magnetised fluid, the model is expressed in the form of coupled
one dimensional transport-diffusion equations. A simple feedback is used to obtain
a given stationary profile. The numerical simulations are done in the Scilab/Scicos
environment.
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1. INTRODUCTION

A tokamak is a facility in which a plasma is
magnetically confined and heated in order to pro-
duce nuclear fusion reactions. The magnetic con-
finement of the plasma particles in the vacuum
vessel torus is obtained through the combination
of toroidal and poloidal fields produced by exter-
nal coils (see Figure 1) with the additional field
produced by an electrical current flowing along
the plasma ring. This plasma current is generally
firstly generated by induction (the plasma ring
can then be considered as the secondary loop of
a transformer whose primary loop is the ohmic
field coil (see Figure 1)). It allows to heat up the
plasma, which behaves as a resistive conductor.
But, in pratice, ohmic heating and current drive
do not allow to reach the adequate plasma tem-
perature and duration required for future fusion
reactors. Indeed the plasma resistivity decreases
with temperature and technology limits the ohmic
field coil current. Non inductive heating and cur-
rent drive methods were thus developed to take it
over, namely high power microwave or fast neutral
beams injection.
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Fig. 1. Tokamak.

The control of tokamak plasma has a long history
(see (Pironti and Walker, 2005) and related tutori-
als). In particular, four classes of control problems
have been investigated:

• vertical stabilization of the plasma ring,
• control of the plasma ring shape,
• control of the magnetohydrodynamic (MHD)

instabilities,



• control of the current, temperature and den-
sity profiles.

We are here concerned with the latter problem,
which has been studied more recently in (Walker
and al, 2006; Laborde, 2005; Moreau and al, 2006).
The goal is to provide the operating conditions
(in terms of profiles shapes) that are necessary
to achieve advanced confinement schemes able to
increase the fusion power production efficiency.

The profile control approaches cited above are
mainly based on black box linear models where
plasma physics is only used to select the set of
relevant variables and the way they are coupled.
These approaches require the identification of
a MIMO system approximating the distributed
physical system that is highly dependent on the
operating conditions, which makes them costly in
terms of experimentations. The first aim of this
paper is to provide a simple PDE control-oriented
model based on:

• the evolution of the resistive equation aver-
aged on the magnetic surface as explained in
(Blum, 1989),

• the experimental identification of some diffu-
sion coefficients.

The second aim is to provide a simple control
policy depending on the temperature providing a
given current profile improving the fusion reac-
tion. The feedback determines the energy profile
that the set of antennas has to produce or to
approach but does not give explicitly the effective
control to apply.

Numerical experimentation have been performed
in the Scilab-Scicos environment. Based on some
experimental data, from the Tore Supra Toka-
mak the simulation results are compared with
the outputs obtained by a more complex physics
oriented code namely the Cronos software (Basiuk
and al, 2003). Cronos is one of the main plasma
integrated modeling codes, but it cannot be easily
used in real-time or for control purposes.

In the second section, we recall the plasma physics
background and the assumptions made to derive
the distributed control-oriented model. The form
used for the diffusion coefficients and the sources
terms of the PDEs are detailed in the third
section. They have been obtained by simplifying
(Witrant and al, 2007) after a sensibility analysis.

In the last section, the current profile control
problem is set and solved.

2. TOKAMAK PLASMA PHYSICS

We recall here some basic physics background
about the plasma macroscopic description on
which the model is based.

2.1 Plasma magnetohydrodynamics

The dynamics of a plasma is governed by (see
(Blum, 1989; Wesson, 2004)) the MHD equations:

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∇× E = −∂tB, Faraday’s law,

E + ζjn + u × B = ζj, Ohm’s law,

∇.B = 0, B conservation,

∇× B = µ0j, Ampère’s law,

∂tn + ∇.(nu) = ns, particles conservation,

mn u̇ + ∇p = j × B, momentum conservation,
3

2
ṗ +

5

2
p∇.u + ∇.Q = ps, energy conservation,

p = knT, perfect gases law,

where v̇ , ∂tv + v.∇v, E is the electric field, B is
the magnetic field, u is the mean particles velocity,
j is the current density, jn is the non inductive
current density, n is the particles density, p is the
plasma pressure, T is the temperature, Q is the
heat flux, m is the particle mass, µ is the magnetic
permeability, ζ is the resistivity tensor, k is the
Boltzmann constant, ns is the particle source and
ps is the energy source.

2.2 Time Constants

In order to rovide a model appropriate for plasma
control studies, it is important to understand
the time constants associated with the different
physical phenomena at stake. We can bring out
four time constants:

• The Alfvén time τA = a(µ0mn)1/2/B0,
where a is the minor radius of the plasma
ring and B0 the toroidal magnetic field at
the vacuum vessel center, is of the order of
10−6s in present tokamaks.

• The density diffusion time τn = a2/D, where
D is the particle diffusion coefficient, for
modern tokamaks, is in the range 0.1s-1s;

• The heat diffusion time τ = na2/K, where
K is the thermal conductivity coefficient is
also in the range 0.1s-1s (3.4s for ITER);

• The resistive diffusion time constant τr =
µ0a

2/ζ is of few seconds (100s-3000s for
ITER).

The Alfvén time scale is used to describe the MHD
instabilities phenomena, which are not considered
here. Our model is focused on the dynamics of the
resistive behavior of the plasma but a dynamical
temperature species (electrons and ions) model is
given. Due to the bad knowledge of the dynam-
ics of species densities and the fact that online
measurements are available, we suppose that they
are given explicitly (in practice we use a filtered
version of the ones given by the Cronos software).
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Fig. 2. Magnetic Surface.

2.3 Axisymmetry assumption

Due to the quasi symmetry of the magnetic config-
uration around the main axis of the facility, some
simplified expressions can be derived.

From the conservation of B, it follows that there
exists A such that B = ∇ × A with A =
(Ar, Aϕ, Az). Due to the axis symmetry, A is
independent of the toroidal angle ϕ. Therefore
Br = −(1/r)∂z(rAϕ) and Bz = (1/r)∂r(rAϕ). In
the following rAϕ will be denoted Ψ.

Denoting by D(r, z) the horizontal disk centered
on the z-axis with its boundary passing trough
the point M (with coordinates (r, z)) the Stoke’s
formula applied to D and the field B :

2πΨ = 2πrAϕ =

∫

∂D

A =

∫

D

∇× A =

∫

D

B ,

gives the interpretation of Ψ as the poloidal mag-
netic flux. Similarly, applying Stoke’s to D and
the field j, using Ampère’s law and denoting rBϕ

by f we have:

2πf = 2πrBϕ =

∫

D

∂B =

∫

D

∇× B = µ0

∫

D

j .

From Ampère’s law and the definition of Ψ we
have:

jϕ =
∂zBr − ∂rBz

µ0
= LΨ , −

1

µ0

[

∂z
∂zΨ

r
+∂r

∂rΨ

r

]

To sum up,

B =
(

−
∂zΨ

r
,
f

r
,
∂rΨ

r

)

, (1)

j =
(

−
∂zf

µ0r
, LΨ,

∂rf

µ0r

)

. (2)

2.4 Magnetic Surfaces and Associated Quantities

We are interested in the dynamics of the current
density profile, i.e., phenomenas at the resistive
time scale. At this time scale, we can consider that
the momentum equation is at the equilibrium i.e. :

∇p = j × B .

This equation yields B.∇p = 0 and j.∇p = 0, and
therefore the magnetic field lines and the current

lines lie in the so called magnetic surface which
are surfaces of constant pressure. The magnetic
surfaces form a set of nested toroids as in Figure 2.
The torus symmetry implies that ∂ϕp = 0. The
magnetic field B being orthogonal to ∇p we
have −∂rp∂zΨ + ∂zp∂rΨ = 0 which means that
∇p is proportional to ∇Ψ, thus Ψ is constant
on a magnetic surface. We can show using the
orthogonality of j with ∇p that f is constant on
the magnetic surfaces, as it has been done for Ψ.

Using (1),(2) and the colinearity of ∇Ψ, ∇f , and
∇p

∇p = j × B =
LΨ

r
∇Ψ −

f

µ0r2
∇f,

which gives the plasma equilibrium Grad-Shafranov
equation :

LΨ = r∂Ψp +
1

2µ0r
∂Ψ(f2) .

Given that many physics quantities are constant
over magnetic surfaces, it was found very useful
to define an averaging method of any quantity
over a magnetic surface in order to finally get
1D quations. In the following of this section the
magnetic surface will be indexed by the parameter
ρ.

We define (see (Blum, 1989)) 〈A〉 , ∂V

∫

V
AdV

with V the volume inside the magnetic surface.

Denoting v′ = ∂ρV, it can be shown that:

〈∇.A〉 = ∂V〈A.∇V〉 =
1

v′
∂ρ(v

′〈A.∇ρ〉) ,

A particular indexing choice of the magnetic sur-
face corresponds to the following definition of ρ :

ρ ,

√

Φ

πB0
, (3)

where B0 is the toroidal magnetic field at the
vacuum vessel center (which is assumed to be
constant) and

Φ ,

∫

S

BdS =
1

2π

∫

V

Bϕ

r
dV =

1

2π

∫

V

f

r2
dV ,

(4)
where S denotes a poloidal section of a magnetic
surface and V the volume enclosed by this mag-
netic surface.

It has the dimension of a length. In a first approx-
imation, it can be seen as the mean geometrical
radius of the magnetic surface since the toroidal
field applied from outside the plasma is very large
compared with the toroidal field (produced by the
plasma by the diamagnetic and/or paramagnetic
effects).

The security factor is defined by

q , −
1

2π

∂Φ

∂Ψ
.



Higher values of q lead to greater plasma stability,
and specific q profiles can be related to higher core
confinement thus it is an important output plasma
variable.

2.5 Resistive Diffusion Equation

Note that since Ψ and f are constant on each
magnetic surface there exists Ψ̄ and f̄ such that
Ψ(r, z) = Ψ̄(ρ(r, z)) and f(r, z) = f̄(ρ(r, z)).

It can be shown after some calculation (see (Blum,
1989; Imbeaux and al, 2006)) that

∂tΨ̄ = −
〈E.B〉

f 〈1/r2〉

Now, using Ohm’s law we have 〈E.B〉 = η〈(j −
jn).B〉

Therefore we obtain (see (Blum, 1989; Imbeaux
and al, 2006)) :

∂tΨ̄ =
ηf̄

µ0c3
∂ρ

(c2

f̄
∂ρΨ̄

)

+
η〈jn.B〉

f̄〈1/r2〉
, (5)

with

c2(ρ) = v′〈|∇ρ|2/r2〉, c3(ρ) = v′〈1/r2〉 .

Using (4) and (3) we have :

∂ρΦ =
f̄v′

2π
〈1/r2〉 = 2πρB0 ,

and therefore

f̄ =
4π2ρB0

c3
.

Substituting f̄ by its value in (5) we obtain the
resistive equation :

∂tΨ̄ =
ηf̄

µ0c2
3

∂ρ

(c2c3

ρ
∂ρΨ̄

)

+
ηv′〈jn.B〉

4π2ρB0
. (6)

By symmetry, the boundary condition at ρ = 0 is

∂ρΨ̄(0) = 0 . (7)

The boundary condition at ρ = ρmax is obtained
by computing I, the total toroidal plasma current
(see (Blum, 1989; Imbeaux and al, 2006)) which
gives :

∂ρΨ̄(ρmax) =
−2πµ0I

c2
. (8)

Note that V = Ψ̇ can also be used as a boundary
condition.

In the sequel, we will assume that the magnetic
surfaces are time constant, that S is a disk, and
that ε , ρ/R (where R is the major radius) is
small.

3. RESOLUTION OF THE DIFFUSION
RESISTIVE MODEL

In this section we specify the resistive equation
by making some assumption on magnetic surface
shapes and by giving empirical formula for the
resistivity η, bootstrap current and lower hybrid
current which drive the non inductive profile.
Only two sources of non inductive current are
considered here the bootstrap and lower hybrid
currents. We solve the corresponding resistive
equation using the ODE solver of Scilab-Scicos
and compare the results obtained with those com-
puted by Cronos. The model proposed here is
a simplified version of the model introduced in
(Witrant and al, 2007). The simplification has
been obtained empirically by studying the sensi-
bility of the parameters introduced and studying
their contribution to error with results obtained
by Cronos on three shots.

3.1 Geometric Hypotheses

In the following we write the diffusive equation
under the cylindric hypothesis. We consequently
assume that ε = a/R is small and that the cor-
responding poloidal sections are circular. Under
these assumptions we have :

v′ = 4π2Rρ, c2 = c3 =
4π2ρ

R
, 〈|∇ρ|2〉 = 1 ,

ηv′〈jn.B〉

4π2ρB0
= ηRjn .

e electric electron charge
i ion electron charge

me electron mass

mi average ion mass (kg)
Z effective ion electron charge ratio

µ0 permeability of free space (H/m)
ε0 permittivity of free space (F/m)
R major radius of the plasma (m)

a minor radius of the plasma
B0 toroidal magnetic field at the plasma center

I total plasma current (A)

V loop voltage

Table 1. Primitive Constants

During the heating process, antennas are used
(here the numerical experiments will be done only
with the lower hybrid antenna (LHCD)) and the
dynamic equation of the magnetic flux is :






∂tΨ̄ = Rη(Te)
(

jb(∂xPe, ∂xΨ̄) + jh + cj
1

x
∂x(x∂xΨ̄)

)

,

∂xΨ̄(t, 0) = 0, ∂xΨ̄(t, 1) = −cII(t),

(9)
where :

• −cj
1
x∂x(x∂xΨ̄), denoted jϕ(Ψ̄, t), is the toroidal

current plasma profile,



v 2π2a2R plasma ring volume

cj 2π2/µ0v
cI Rµ0/2π

cq a2B0

cD 0.09me/mi

cτ 4.8 1014i/e(1000e)1.5

cχ
e 2.510−4a/eB0

cχ
i

2.510−4a/eB0

cη

Z
3.37 10−33Z(0.73 + 0.27Z)/(0.53 + 0.47Z)

cη 10 (estimated)

cb 0.70R
√

x

cη
x 8 + 10

√

x(1 − x)

Table 2. Derived constants.

(r, ϕ, z) cylindric coordinates
Ψ̄ magnetic flux profile of the poloidal field
Φ magnetic toroidal flux

A magnetic potential

B magnetic field
jb bootstrap current density profile

jh hybrid current density profile
jϕ toroidal current density profile
q safety factor profile

q∗ wanted safety factor profile
Te electron temperature profile(J)

ne cn
e (2 −

√

1 + 3x2) + cν
e electron density profile

Pe neTe electron pressure profile
Ti ion temperature profile(J)

ni cn
i (2 −

√

1 + 3x2) + cν
i ion density profile

Pi niTi ion pressure profile
τe electron collision time
τi ion collision time
η plasma resistivity profile
χe electronic temperature diffusion

χi ion temperature diffusion
ε a/R inverse aspect ratio
ρ magnetic surface coordinate

x ρ/a normalized magnetic surface coordinate
V volume inside the magnetic surface

Table 3. Main notations

• jh is the current deposit coming from the
lower hybrid effect antenna,

• jb is the bootstrap current described later,
• cj is a constant,
• I is a total plasma current.

3.2 Resistivity

There exist many models of resistivity. It turns
out that, in view of the numerical results shown
in subsection 3.8, the following simple formula :

η = cη
Zcη

x/T 3/2
e . (10)

is sufficiently accurate for our purpose. More pre-
cise formulas are given in (Wesson, 2004) Section-
14.10. The difference with the one we use here is
not significant on the current profile on the Tore
Supra shots on which we test our model.

3.3 Temperature Profile

To determine the resistivity we need a tempera-
ture model. We use the following simplified dy-
namics for describing the electronic temperature
Te and ion temperature Ti evolutions :

3

2
∂t(neTe) = 1/(a2x)∂x(xχe∂xTe) −

cDne(Te − Ti)

τei

+ cηηjϕ(jϕ − jb − jh) + ρhjh ,

3

2
∂t(niTi) = 1/(a2x)∂x(xχi∂xTi) −

cDne(Ti − Te)

τei
,

with
τei = cτT 1.5

e /ni ,

χe = cχ
e neq

2∂xTe , χi = cχ
i niq

2∂xTi .,

where the species densities ne and ni are supposed
to be given (in fact provided by Cronos software).

To improve this model a term of radiating loss will
be added in future numerical experiments.

3.4 Bootstrap Current

The bootstrap current comes from a complex
mechanism where some particles do not follow the
magnetic field but are trapped in a plasma zone.
The contribution of the electron (only considered
here) to the induced current is given by :

jb(∂xPe, ∂xΨ̄) = cb
∂xPe

∂xΨ̄
.

In (Wesson, 2004) Section-14.12 we can find more
precise formulas where the bootstrap depends not
only of Pe but also Pi, Te and Ti in the future
we will look more precisely to the influence of the
other terms.

3.5 Lower Hybrid Current Drive

To be able to evaluate the quality of the proposed
model for the plasma control, we need to compare
the result obtained with experiments. For that
the lower hybrid heating antenna deposit used is
a simplified version of the one given in (Witrant
and al, 2007). In the control part we will not used
this particular current deposit but will consider an
arbitrary coupled current-heating deposit that the
set of antennas available will have to approximate.

3.6 Security Factor

The security factor can be rewritten as :

q(t, x) =
−cqx

∂xΨ̄(t, x)
. (11)

Typically, we control the plasma current density
profile using the heating antenna source jh and the



flux variation at the plasma edge I. We would like
to obtain and stabilize a specified security factor
profile q∗ appropriate for fusion conditions, under
the constraint of securing the plasma stability.

3.7 Scilab/Scicos Implementation

This partial differential equation model has been
solved numerically using the free software Scilab.
The equation is solved using the default ode solver
of Scilab. The state derivatives are approximated
by appropriate finite difference matrices. The sim-
ulation is done by a script function or imple-
mented using the Scicos block-diagram editor (see
Figure3). The ode solver uses multistep formulas
and the numerical results are obtained within a
few seconds.
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Fig. 3. Scicos Diagram for Magnetic Flux Integra-
tion.

3.8 Numerical Results

The numerical results obtained are compared to
those obtained by the Cronos software from exper-
imental datas coming from a typical Tore Supra
shot. Cronos is a set of Matlab programs dedi-
cated to the simulation and the experimental data
processing of the plasma transport phenomenon.
It contains the description of the actuator inter-
action with the plasma. The simulation obtained
by the simplified model described here uses the
Cronos data for the unmodeled states (the species
densities).

Figure-4-5 compares the Cronos and the proposed
model simulation results. We see that the model
seems to give enough information to have an
overview of the tracking control quality.

4. CURRENT DENSITY PROFILE CONTROL

In this section we describe how to stabilize the
security profile around a specific value which cor-
responds to an improved temperature profile for
the fusion purpose. For that we can use several
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Fig. 4. Current profile at the shot end (red line
model, blue dotted line Cronos).
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Fig. 5. Electron pressure profile at the shot end
(red line model, blue dotted line Cronos).

heating and current deposit antennas. Each an-
tenna has its specific profile deposit. We suppose
that with all these means we are able obtain any
current shape deposit. Clearly, this is a strong
hypothesis only suitable for a preliminary study.
This hypothesis means that any shape can be
approximated with the available antennas.

4.1 Remarks on tracking control

Let us consider the following linear system
{

ẋ = Ax + By + u

ẏ = Cx + Dy + Eu

and let us suppose that we want that the state x
tracks asymptotically x∗ that is :

lim
t→∞

x(t) = x∗

The feedback

u = −(Ax∗ + By),

leads to the closed loop system :
{

ẋ = A(x − x∗)

ẏ = Cx − EAx∗ + (D − EB)y

which achieves the desired tracking. Of course the
above control is valid only if both A and D −EB
are asymptotically stable.

Necessary and sufficient condition for tracking
control models with more natural assumptions



are given in (Francis, 1977) and (Isidori and
Byrnes, 1990) but are difficult to implement in
the plasma model.

4.2 Security factor profile tracking

We can apply the tracking feedback of the pre-
vious section to the plasma magnetic flux in (9)
where Ψ̄ play the role of x and (Te, Pe) the role of
y and jh the role of u. Moreover, let us suppose
that we want a specific security profile q∗ which
corresponds to Ψ̄∗ defined up to an additive con-
stant.

Let us take for example :

q∗ = cg max
[

1, e3(x−0.3)
]

,

where cg is chosen in such way that the magnetic
flux boundary condition at x = 1 is satisfied.

Since asymptotically in time ∂tΨ = V where V is
the loop voltage, we obtain a q∗ tracking control
called jh as a feedback on the pressure from (9) :

jh = −jb[∂xPe,
−cqx

q∗
]−cj

1

x
∂x[x∂x[

−cqx

q∗
]]+

V

Rη[Te]

This control is easy to implement because it does
not need a model for the temperature and the
pressure. This point is very useful since, for the
time being, there does not exist good model for
these quantities.

To slow down the influence of the tracking feed-
back we use a time varying gain G(t) starting from
zero at time 0 and converging to one with time
going to infinity.

Governed by this feedback the magnetic flux ad-
mits the dynamics :

∂tΨ̄ = Rη(Te)
(

jb + G(t)jh + cj
1

x
∂x(x∂xΨ̄)

)

.

We observe numerically (with the simplify tem-
perature and densities model) that the desired
equilibrium is stable see Figure-6. The current
profile obtained is not smooth because the target
is not smooth. More smooth current profile can
be obtained. The sensibility of the current and the
pressure with the security factor target is high and
will be explore in future work.

5. CONCLUSION

Based on a resistive model of the current in the
plasma a simple tracking of a desired security
factor profile has been obtained. The simulation
results are encouraging. The next step is to gener-
ate the current deposit determined by the tracking
feedback using the available antennas. The sensi-
bility analysis of the security factor with respect

Pressure

Courant฀density

Desired฀Security฀factor

Security฀factor

Fig. 6. Comparison of the security factor and the
target at final time.

to the control shape deposit will be an important
issue since the available shape space obtained
using the existing antenna set is limited. Other
validations of the proposed feedback with better
models will be also an important issue. Finally, a
proof of stability of the closed loop nonlinear PDE
system would be very useful.
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