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Summary We present a generalL∞ stability result for a generic finite
volume method for hyperbolic scalar equations coupled witha large class
of reconstruction. We show that the stability is obtained ifthe reconstruc-
tion respects two fundamental properties: the convexity property and the
sign inversion property. We also introduce a new MUSCL technique, the
multislope MUSCL technique, based on the approximations ofthe direc-
tional derivative in contrast to the classical piecewise reconstruction, the
monoslope MUSCL technique, based on the gradient reconstruction. We
show that under specific constraints we shall detail, the twoMUSCL re-
constructions satisfy the convexity and sign inversion properties and we
prove theL∞ stability.
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1 Introduction

L∞ stability plays a fundamental role to provide suitable numerical ap-
proximations computed by a finite volume scheme. For hyperbolic scalar
problem, theL∞ stability is required to prove the convergence of approxi-
mations to the entropy solution when the mesh step goes to zero. It is well-
known that explicit first-order schemes using a monotonone flux function
are stable [9] p. 383, [13] p. 174, but the situation becomes more complex
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for second-order schemes using a reconstruction, for example the popu-
lar MUSCL technique coupled with a cell centered finite volume scheme
(see [9] p. 405, [13] p. 212, [11]). For the one dimensional situation, the
L∞ stability and the Total Variation stability for second-order scheme us-
ing a MUSCL reconstruction have been proved [17], [15]. For higher di-
mensions, the TVD stability condition reduces the method toa first-order
scheme for uniform cartesian meshes [10] while the TVD stability no longer
holds for unstructured meshes [8]. To deal with stability indimension two
or greater, a generalisation of the one dimensional incremental scheme is
introduced for the cartesian grid: the positive coefficientscheme [16], and
generalized to unstructured meshes [12,7] based on the Local Extremum
Diminishing concept. To proveL∞ stability, one has to rewrite the finite
volume scheme as a positive scheme where the coefficients belong to the
interval [0, 1]. Under an appropriate CFL condition, theL∞ stability de-
rives from a convexity argument (see [1] and the references therein).

In this paper, we intend to generalize theL∞ stability result for schemes
coupled with a reconstruction method. We first propose a different defini-
tion of the reconstruction where we only deal with the reconstructed values
instead of considering the whole reconstructed function. We then introduce
two fundamental proprerties: the convexity property and the sign inversion
property. Closely concepts related to the inversion sign property have been
also introduced by [14] using geometrical arguments (see also [3]) but we
manage to avoid the geometrical aspect working directly with the recon-
structed values instead of the collocation points. More recently, a close ver-
sion of the property has been proposed by [3] in the context ofthe classical
MUSCL method. We prove that, under an appropriate CFL condition, a
finite volume scheme with a monotone numerical flux coupled with a re-
construction satisfying the two properties isL∞ stable.

In a second step, we prove that the two properties are satisfied by a
large class of MUSCL methods: the monoslope (classical) MUSCL and the
multislope MUSCL methods. The classical MUSCL technique consists in
two steps: a predicted gradient is computed for each elementof the mesh
using the neighbouring values then it is modified to respect some Maximum
Principle or Total Variation Diminishing constraint [2,11]. The MUSCL
method is referred to as monoslope method since the reconstructed values
at each interfaces are obtained using the same vectorial slope evaluated on
the cell. The new MUSCL method named multislope method consists in
using a specific scalar slope for each interface which corresponds to an
approximation of the directional derivative instead of an approximation of
the gradient [2,4,5]. For a given element, we consider a set of normalized
vectors and we use the neighbouring values to compute the scalar slopes
in each direction which are modified afterwards to respect some stability
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constraint. The main advantage of the mulstislope method isthat we only
deal with one-dimensional problems independently of the space dimension
whereΩ belongs to.

The organization of the paper is as follows. In section 2, we present
a general result forL∞ stability for scalar hyperbolic equations where
the two fundamental properties are introduced. The resultsare given for
schemes based on a Euler forward discretization in time but all the results
hold if one only consider the semidiscrete approximation inspace. Section
3 is dedicated to the multislope MUSCL method where we prove theL∞

stability. In particular, we introduce two new definitions,theα-convexity
of the triangulation and theτlim parameter which are crucial to control the
reconstruction and the limiter. Section 4 deals with theL∞ stability for
the monoslope MUSCL method. We end the section with a comparison
between the monoslope and multislope method in order to showthat the
multislope reconstruction is less sensitive to the stability constraint: for a
given configuration, the multislope method provides non zero slopes while
the monoslope method is reduced to a first-order one.

2 Nonlinear stability : a general result

2.1 Notations and geometrical ingredients

Let Ω be an open bounded polygonal set ofR
2, we denote byTh an un-

structured mesh ofΩ composed of close triangles (cells, control volumes
or elements). We denote byKi, i = 1, . . . , I, the elements of centroid
(gravity center)Bi ∈ Ki whereI represents the number of cells. To handle
the boundary conditions, we add ghost cells in the followingway: if trian-
gleKi has an edgee on∂Ω, we construct the symmetrical triangleKj and
we denote bỹTh the mesh completed with the ghost cells.

For a given elementKi ∈ Th, ν(i) is the index set of the neighbouring
elementsKj ∈ T̃h which share a common edge and we define the sides of
the mesh by

Sij = Ki ∩Kj 6= ∅, j ∈ ν(i)

wherenij = (nij,1, nij,2) is the outward normal vector. Note thatnij =
−nji so the index order is of importance. In the sequel,|Ki| represents the
surface of the element while|Sij | or |BiBj | are the length of the side or the
segment[Bi, Bj ].
We also denote byLij the line such thatSij ⊂ Lij andQij the intersection
point between[Bi, Bj ] andLij (see figure 1). Note thata priori, Qij is not
necessary a point ofSij .
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Fig. 1. Notations and conventions of the mesh elements and edges.

Remark 1We easily extend the notation for the three dimensional geome-
tries where the mesh is composed of tetrahedron and|Ki|, |Sij |, |BiBj |
stand for the volume, the surface and the length respectively.

We consider a general scalar hyperbolic problem cast in the conservative
form

∂tu+ ∂x1f1(u) + ∂x2f2(u) = 0 (1)

wheref1 andf2 areC1 real value functions defined onR. Of course the
definition domain off1 andf2 can be reduced to the admissible domain of
the solutionu but we skip this point for the sake of simplicity.
In the sequel, we shall only consider the reflexion boundary condition

∂nu = 0 on∂Ω, (2)

while we assumeu(., t = 0) = u0 onΩ whereu0 stands for the solution at
the initial timet = 0.

2.2 Generic first-order monotone scheme

For a given timetn and a cellKi ∈ Th, we denote by

un
i ≈

1

|Ki|

∫

Ki

u(., tn) dx

an approximation of the mean value ofu on cellKi at time tn. For any
ghost cellKj which shares the sidee ∈ ∂Ω with triangleKi ∈ Th, we set
un

j = un
i in order to satisfy the reflexion boundary condition (2). It results

that
{ui; Ki ∈ T̃h} = {ui; Ki ∈ Th}. (3)

For any sideSij, we denote byg(α, β, nij), α, β ∈ R the numerical
flux accrossSij in the directionnij. We detail the conditions required by
the numerical flux:
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(a) function g is continuous, differentiable with respect to the first and the
second argument and∂1g, ∂2g are continuous functions;

(b) the numerical flux is consistent with the physical flux(f1, f2):

g(α,α, nij) = f1(α)nij,1 + f2(α)nij,2; (4)

(c) the numerical flux is monotone:

∂1g(α, β, nij) ≥ 0, ∂2g(α, β, nij) ≤ 0. (5)

Note that the consistancy implies the conservation property

∑

j∈ν(i)

|Sij |

|Ki|
g(α,α, nij) = 0. (6)

The flux conservation accross the interface is usualy satisfied by the numer-
ical flux:

g(α, β, nij) = −g(β, α, nji)

but this last condition is not necessary to provide the stability of the scheme
and only relation (6) is required. Non-conservative numerical flux may be
also considered.

If we have an approximationun
h =

∑

Ki∈Th

un
i 1Ki

at timetn, the generic

first order explicite finite volume scheme provides an approximation at time
tn+1 = tn +∆t by

un+1
i = un

i −∆t
∑

j∈ν(i)

|Sij |

|Ki|
g(un

i , u
n
j , nij). (7)

2.3 Reconstruction

Nonlinear stabilityi.e.L∞ stability for first-order scheme is well-established
if one satisfies an appropriate CFL condition [9,13]. We intend to define a
general framework to obtain the nonlinear stability when weapplied a re-
construction procedure to enhance the approximation accuracy. To this end
we use a more general definition of the reconstruction operator where we
only focus on the reconstructed values on the sides instead of providing a
complete reconstruction (classically a linear piecewise reconstruction) on
the whole domain.

A reconstruction is an operator which gives new values on both sides
of Sij using the valuesui on the cellsKi ∈ T̃h. Formally, we define the
reconstruction operatorR by

(ui)Ki∈
fTh

R
→ (uij)Ki∈Th, j∈ν(i) (8)
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Usually, the valuesuij anduji correspond to an approximation ofu at a
collocation pointXij on the sideSij. Note that we employ the ghost cells
in order to realise the reconstruction on the boundary sidesof Ω.

Assume that we have an approximationun
i for all Ki ∈ Th, we extend

the solution on the ghost cells as we define in paragraph 2.2 and the re-
construction providesun

ij andun
ji on each sideSij. We then compute an

approximationun+1
i with the generic second-order scheme

un+1
i = un

i −∆t
∑

j∈ν(i)

|Sij|

|Ki|
g(un

ij , u
n
ji, nij). (9)

We now introduce the two fondamental assumptions on the reconstruc-
tion operator to obtain theL∞ stability. We only present the situation for
the two-dimensional case but the extension to the multi-dimensional case
is straigthforward. In the sequel, we use the following notations :

∆iju = uij − ui, ∆jiu = uji − uj (10)

∆̃iju = uij − uj , ∆̃jiu = uji − ui (11)

Note that we have the identityui +∆iju = uj + ∆̃iju

Definition 1 (Convexity property) The reconstruction has the convexity
property if for anyKi ∈ Th andj ∈ ν(i), there existsθij ∈ [0, 1] such that

uij = (1 − θij)ui + θijuj. (12)

Using definition of∆iju and∆̃iju we get

∆iju = θij(uj − ui), ∆̃iju = (1 − θij)(ui − uj). (13)

In particular, we deduce that ifui = uj, the convex reconstruction as-
sumption yieldsuij = ui. Note thatθij = 0 corresponds to a first-order
reconstruction.

Remark 2Relation (12) does not implies thatuij only depends onui and
uj . Indeed, as we shall see in the sequel, coefficientsθij depend on the other
values ofuk, k ∈ ν(i) ∪ ν(j).

For anyKi ∈ Th, we say thatui is a discrete local maximum (resp. discrete
local minimum) if ui ≥ uj, ∀j ∈ ν(i) (resp.ui ≤ uj, ∀j ∈ ν(i)). We
introduce a complementary definition to the convexity property.

Definition 2 (Degeneracy at the Extrema property)The reconstruction
degenerates at the discrete local extrema if coefficientsθij satisfy the con-
dition : if ui is a discrete local extremum thenθij = 0 for all j ∈ ν(i) i. e.
we find again a first-order scheme at the extrema.
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We recall that the scheme (9) is a Local Diminishing Extrema scheme (LED
scheme) if we have (see [12,7]):

– if un
i is a discrete local maximum thenun+1

i ≤ un
i ;

– if un
i is a discrete local minimum thenun+1

i ≥ un
i .

The LED property means that the maximum (resp. minimum) can not in-
crease (resp. decrease). It is not enough to prove theL∞ stability for a total
discretizated scheme but a scheme which does not satisfy theLED property
is disqualified since theL∞ stability implies the LED property.

Proposition 1 If R is a reconstruction which satisfies the convexity prop-
erty and degenerates at the extrema then the scheme (9) equipped with a
monotone flux is LED.

Proof We write the genereric scheme in the following way

un+1
i = un

i −∆t
∑

j∈ν(i)

|Sij|

|Ki|
g(un

i +∆n
iju, u

n
i + ∆̃n

jiu, nij).

On the other hand, the conservation property (6) yields

∑

j∈ν(i)

|Sij|

|Ki|
g(un

i , u
n
i , nij) = 0.

We introduce the function

hij(ξ) = g(un
i + ξ∆n

iju, u
n
i + ξ∆̃n

jiu, nij).

Functionhij in continuous differentiable on the intervalle[0, 1] with hij(0) =

g(un
i , u

n
i , nij) andhij(1) = g(un

i + ∆n
iju, u

n
i + ∆̃n

jiu, nij). It results that
there exists an intermediate valueξ0 such that

g(un
i +∆n

iju, u
n
i + ∆̃n

jiu, nij) − g(un
i , u

n
i , nij) = h′ij(ξ0).

We then obtain

g(un
i +∆n

iju, u
n
i + ∆̃n

jiu, nij) − g(un
i , u

n
i , nij) =

∂1g(û
n
ij , ū

n
ji, nij)∆

n
iju+ ∂2g(û

n
ij , ū

n
ji, nij)∆̃n

jiu, (14)

where∂1g and∂2g stand for the partial derivatives in function of the first
and second argument whilêun

ij = un
i + ξ0∆

n
iju andūn

ji = un
i + ξ0∆̃

n
jiu.

We give the proof for a local maximum and we assume thatun
i ≥ un

j

for all j ∈ ν(i). Then we haveθn
ij = 0 hence∆n

iju = 0 thanks to relation
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(13). Note thata priori coefficientsθji do not vanish and we still have
∆̃n

jiu = (1 − θn
ji)(uj − ui) . The generic scheme then rewrites

un+1
i = un

i −∆t
∑

j∈ν(i)

|Sij |

|Ki|
∂2g(û

n
ij , ū

n
ji, nij)(1 − θn

ji)(uj − ui).

The monotony of the flux implies that∂2g(ûij , ūji, nij) ≤ 0 while the con-
vexity of the reconstruction yields1 − θn

ji ≥ 0. It results from the discrete
local maximum assumption that

∂2g(û
n
ij , ū

n
ji, nij)(1 − θji)(uj − ui) ≥ 0.

Henceun+1
i ≤ un

i . ⊓⊔
We now introduce the second fundamental assumption on the recon-

struction operator first introduced by [3] for the particular case of the piece-
wise linear reconstruction.

Definition 3 (Inversion Sign property) The reconstructionR has the sign
inversion property if there exist a constantCω and coefficientsωijk ≥ 0,
for anyKi ∈ Th, j ∈ ν(i), k ∈ ν(i) which realize

uij − ui = ∆iju = −
∑

k∈ν(i)

ωijk(uk − ui), (15)

with ∑

j∈ν(i)

ωijk ≤ Cω. (16)

The expression ”sign inversion” is motivated by the change of sign between
the left-hand side termuij−ui and the quantitiesωijk(uk−ui) with ωijk ≥
0 in the right-hand side term.

Remark 3A similar idea has been introduced by [14] but the coefficientsα
andβ (we use the notations of [14], p 532) are defined in function ofthe
collocation pointsxijl whereuijl are supposed to be approximated. In our
presentation, coefficientωijk do not necessarily depend on the mesh even
if in practice there are strongly linked to the geometry. Furthermore, we do
not require that the reconstruction is a second-order (or more) method since
we only deal with the stability. The sign inversion propertywe use here
has been first proposed by [3] in the monoslope MUSCL reconstruction
context.

Proposition 2 If the reconstruction operatorR satisfie the convexity and
the sign inversion properties, then the reconstruction degenerates at the
discrete local extrema.
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Proof Assume thatui is a discrete local maximum, thenuk − ui ≤ 0 for
all k ∈ ν(i). It results from relation (15) thatuij −ui ≥ 0 for anyj ∈ ν(i).
On the other side, the convex property yieldsuij = (1 − θij)ui + θijuj

henceuij − ui = θij(uj − ui) ≤ 0 sinceuj − ui ≤ 0. Consequently, we
haveuij = ui andθij = 0. From proposition 1, we deduce that the scheme
has the LED property. ⊓⊔

We now deal with the definition of a positive (coefficients) scheme [16,
12,7]. The generic scheme (9) can be written as a positive scheme if we
have

un+1
i = un

i +∆t
∑

j∈ν(i)

αn
ij(u

n
j − un

i ), (17)

whereαn
ij are non negative coefficients depending on the approximation un

h

at timetn and the mesh characteristics. If one can prove that the coefficients
αn

ij are uniformly bounded by a constant, we shall see that under an appro-

priate CFL condition,un+1
i is obtained as a convex combinaison ofun

j and
un

i and we get theL∞ stability of the scheme. In the sequel, we define the
characteristic length of the meshTh by

h = min
Ki∈Th
j∈ν(i)

|Ki|

|Sij |
. (18)

The following proposition gives an estimate for coefficientsαn
ij.

Proposition 3 We suppose thatR is a reconstruction which satisfies the
convexity and the sign inversion properties. We also suppose that g is a
numerical flux satisfying properties (a)-(d) of the subsection 2.2. Assume
that |un

i | ≤ M for all Ki ∈ Th then there exists a constantK(M) and
coefficientsαn

ij ≥ 0 with

αn
ij ≤

K(M)

h
(1 + Cω), ∀Ki ∈ Th, j ∈ ν(i) (19)

such that we can write the scheme as a positive scheme (17).

Proof Using the expression (14) introduced in proposition 1, we can rewrite
the scheme as

un+1
i = un

i −∆t
∑

j∈ν(i)

|Sij |

|Ki|

(
∂1g(û

n
ij , ū

n
ji, nij)∆

n
iju+ ∂2g(û

n
ij , ū

n
ji, nij)∆̃n

jiu
)
.

For the sake of simplicity, we introduce the notation

Aij = ∂1g(û
n
ij , ū

n
ji, nij), Bij = ∂2g(û

n
ij , ū

n
ji, nij)
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where we skip the time index. Using the convexity property and the sign
inversion property of the reconstruction, we write

un+1
i = un

i −∆t
∑

j∈ν(i)

|Sij|

|Ki|

−Aij

∑

k∈ν(i)

ωijk(u
n
k − un

i ) +Bij(1 − θji)(u
n
j − un

i )


 .

After permutation of the summation and the indexesj andk for Aij and
ωijk, we get

un+1
i = un

i +∆t
∑

j∈ν(i)

(un
j − un

i )


 ∑

k∈ν(i)

|Sik|

|Ki|
Aikωikj




−∆t
∑

j∈ν(i)

(un
j − un

i )
|Sij |

|Ki|
Bij(1 − θji).

We obtain the scheme (17) setting

αn
ij =


 ∑

k∈ν(i)

|Sik|

|Ki|
Aikωikj


−

|Sij|

|Ki|
Bij(1 − θji). (20)

Sinceωikj ≥ 0 andθji ∈ [0, 1], we deduce from the flux monotony as-
sumption thatAij ≥ 0 andBij ≤ 0, henceαn

ij ≥ 0. We now have to pro-
duce a uniform estimation for the coefficients. Since the approximationsun

i

are uniformly bounded byM , the valueŝun
ij and ūn

ji are also bounded by
M and the continuity of∂1g(., ., nij) and∂2g(., ., nij) with the monotony
yield

0 ≤ Aik ≤ K(M), 0 ≤ −Bij ≤ K(M)

with
K(M) = sup

−M≤α,β≤M
|n|=1

(
|∂1g(α, β,n)|, |∂2g(α, β,n)|

)
. (21)

We then deduce using (16) thatαn
ij ≤

K(M)

h
(1 + Cω). ⊓⊔

We conclude the section with the main theorem

Theorem 1Let u0
i be the initial approximation at timet = 0 such that

|u0
i | ≤M uniformly and assume that the following CFL condition holds

∆t

h
≤

1

3K(M)(1 + Cω)
(22)

whereK(M) is given by relation (21) andCω by relation (16). Thenun
i is

uniformly bounded byM at any timetn.
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Proof We prove the theorem by induction. Att = t0 = 0, the property
holds by assumption. Let now consider thatun

i is uniformly bounded byM
at timetn, we show that the same property holds forun+1

i . Indeed, scheme
(17) can be written in the following form

un+1
i =


1 −∆t

∑

j∈ν(i)

αn
ij


un

i +
∑

j∈ν(i)

∆tαn
iju

n
j .

Since#ν(i) = 3, we have

0 ≤ ∆t
∑

j∈ν(i)

αn
ij ≤ 3∆t

K(M)

h
(1 + Cω) ≤ 1.

We obtain a similar inequality for∆tαn
ij and we deduce thatun+1

i is a

convex reconstruction of the neighbouring values at timetn, henceun+1
i is

bounded byM . ⊓⊔

Remark 4Extension of the theroem to the three-dimensional case withtetra-
hedron is straigthforward and the CFL condition becomes

∆t

h
≤

1

4K(M)(1 + Cω)

since#ν(i) = 4.

3 Multislope Muscl reconstruction

We present a new MUSCL technique based on the approximationsof the
directional derivatives. The main ingerdient is the barycentric coordinates
which provide a powerful tool to manipulate the geometricaldata of the
mesh such as the centroı̈d points.

3.1 The fundamental decomposition

We introduce an assumption on the mesh which guarantees thatan admis-
sible reconstruction.

Definition 4 Let α ∈ [0, 1], the triangulation isα-convex if for anyKi ∈
Th, there exist barycentric coordinatesρij, j ∈ ν(i)

∑

j∈ν(i)

ρij = 1, Bi =
∑

j∈ν(i)

ρijBj (23)

such thatα ≤ ρij.
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Remark 5The definition means thatBi lies in the triangle formed by the
three pointsBj andα controls the distance betweenBi and the triangle
edges. An extension for the three-dimensional geometries is straigthfor-
ward if we employ tetrahedron cells. The notion ofα-convexity is similar
to the definition of aB−uniform triangulation (see [6], [14], p 533) but the
mesh characterization we use here is based on the barycentric coordinates.

Assuming that there is no degenerated element which is the case ifα > 0,
we can define the normalized vectors (see figure 2)

tij =
BiBj

|BiBj|
. (24)

b

b

b

b

Bj1

Bj2

Bj3

tij1

tij2

tij3

bc

bc

bc

Qij1

Qij2

Qij3

Fig. 2. Definition of vectortij .

We now introduce the fundamental decomposition which is themain
tool to construct the multislope method.

Proposition 4 LetTh be aα-convex triangulation, then we have the funda-
mental decomposition

tij =
∑

k∈ν(i)
k 6=j

βijktik (25)

with

βijk = −
ρik|BiBk|

ρij|BiBj|
, if k 6= j. (26)

Proof Using the barycentric coordinates we have
∑

j∈ν(i)

ρijBiBj = 0 hence,

for j ∈ ν(i) fixed

ρijBiBj = −
∑

k∈ν(i)
k 6=j

ρikBiBk.
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Using the definition oftij , we deduce immediately

ρij |BiBj |tij = −
∑

k∈ν(i)
k 6=j

ρik|BiBk|tik.

Divided byρij |BiBj| and the proposition is proved.⊓⊔
Note thatα ≤ ρij and0 ≤ ρik ≤ 1 − α so we get the following estimation

0 < −βijk ≤
1 − α

α

|BiBk|

|BiBj|
. (27)

Remark 6Coefficientsβijk are similar to coefficientsdijk proposed in [14],
p. 532 but we here use the normalized directionstij instead of the vectors
BiBj because vectorstij are more suitable to build the multislope MUSCL
method.

The now introduce the following mesh parameter.

Definition 5 LetTh be a triangulation, we define

τlim = inf
Ki∈Th
j∈ν(i)

|BiBj |

|BiQij|
. (28)

Proposition 5 We haveτlim ∈ [1, 2]. Moreover, ifτlim > 1 then

|BiBj|

|BiQij |
≤

τlim
τlim − 1

. (29)

Proof SinceQij ∈ [Bi, Bj ] we have|BiQij | + |QijBj| = |BiBj| hence

1

2
|BiBj | ≤ max(|BiQij|, |QijBj|) ≤ |BiBj |.

It results that

1 ≤ min

(
|BiBj|

|BiQij |
,
|BiBj |

|BjQij|

)
≤ 2.

Taking the minimum over all the sides and we get the estimation τlim ∈
[1, 2].

Assume now thatτlim > 1, then|BiQij| 6= 0 for all Ki ∈ Th, j ∈ ν(i).
On the other hand we haveτlim|BiQij| + τlim|QijBj| = τlim|BiBj| and
using the fact thatτlim|QijBj| ≤ |BiBj| we get

τlim|BiQij| + |BiBj | ≥ τlim|BiBj|.

We deduce the estimation (29) dividing by|BiQij|. ⊓⊔
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3.2 The limiters

We recall the notion of limiter functions following the Jameson notation
[12] adding some slight modifications.

Definition 6 A limiter is a functionL : R × R → R such that

1. for all p, q ∈ R, if pq ≤ 0 thenL(p, q) = 0;
2. for all p ∈ R, L(p, p) = p;
3. for all p, q, α ∈ R, L(αp, αq) = αL(p, q).

Since the limiterL is a1−homogeneous function, there exists a function
ψ : R → R such that

∀p, q ∈ R, q 6= 0 L(p, q) = ψ

(
p

q

)
q. (30)

and we have

L(p, q) = qL

(
p

q
, 1

)
= pL

(
1,
q

p

)
.

Moreover the conditionL(p, q) = 0 if pq ≤ 0 leads toψ(r) = 0 if r < 0.
At last the conditionL(p, p) = p leads toψ(1) = 1.

Definition 7 We say that the limiter is symmetric if

∀p, q ∈ R, L(p, q) = L(q, p). (31)

We say that the limiter is bounded byC ≥ 0 if

∀p, q ∈ R, |L(p, q)| ≤ Cmin(|p|, |q|). (32)

Assume thatL is symmetric then we have

ψ

(
p

q

)
q = L(p, q) = L(q, p) = ψ

(
q

p

)
p.

Settingr = p/q and we get the relation

rψ

(
1

r

)
= ψ(r) (33)

Proposition 6 Assume thatL is bounded then we have

0 ≤ ψ(r) ≤ C, and 0 ≤ ψ(r) ≤ Cr. (34)
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Proof From (32), we deduce with relation (30) that for allp, q

ψ

(
p

q

)
|q| = |L(p, q)| ≤ C|q|.

Hence we deduce withr = p/q thatψ(r) ≤ C. On the other hand we can
write

ψ

(
p

q

)
|q| = |L(p, q)| ≤ C|p|

and dividing byq we get the second estimation.
Note that in the case thatL is symmetric, the conditionψ(r) ≤ C implies
directly the estimationψ(r) ≤ Cr thanks to relation (33). ⊓⊔

Remark 7We do not assume that the limiter isa priori symmetric. Indeed,
we shall see that, in the limiting routine, the slopep has to be favoured. To
produce such a behaviour, the limiter has to be asymmetric.

Remark 8If L is a bounded limiter, the associated functionψ has to satisfy
the properties

0 ≤ ψ(r) ≤ min(C,Cr) and ψ(1) = 1.

It results thatψ belongs to a specific domain (Harten, Sweby, Van-Leer
domain) controlled by the constantC. We shall present in the next section
some useful limiters.

3.3 The limited slopes

The multislope MUSCL method consists in computing reconstructed val-
uesuij anduji at the collocation pointQij:

uij = ui + pij |BiQij |, uji = uj + pji|BjQij|,

wherepij andpji are approximations of the directional derivative ofu fol-
lowing the directionstij and tji respectively. Slopespij and pji have to
be designed such that we maintain theL∞ stability. We present here the
construction of the scalar slopes.

Definition 8 (downstream and upstream slopes)We define the downstream
slopes from pointBi in direction tij,, j ∈ ν(i) by

p+
ij =

uj − ui

|BiBj|
(35)

and the upstream slopes by

p−ij =
∑

k∈ν(i)
k 6=j

βijk p
+
ik. (36)
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Note that the definition can be easily extended to the three-dimensional case
if we employ tetrahedron cells.

Remark 9Let us consider an observer located at pointBi looking in direc-
tion tij. The valuep+

ij represents the coefficient of the slope that the ob-

server can see in front of him (the downstream slope) whilep−ij represents
the slope behind him (the upstream slope).

LetL be a bounded limiter we then define the reconstructionR by

pij = L(p+
ij , p

−

ij), uij = ui + pij |BiQij|. (37)

We have a second-order reconstruction in the following sense.

Proposition 7 The reconstruction is consistent for linear function : ifu ∈
P1 is a first-order polynomial function and defineui = u(Bi) for all Ki ∈

T̃h thenuij = u(Qij) for all Ki ∈ Th andj ∈ ν(i) .

Proof Functionu write u(X) = u(Bi) + a.BiX for anyX ∈ R. The
downstream slopes then are

p+
ij =

uj − ui

|BiBj|
=
a.BiBj

|BiBj|
= a.tij .

On the other hand, we have for the upstream slopes using the fundamental
decomposition (25)

p−ij =
∑

k∈ν(i)
k 6=j

βijk p
+
ik = a.

∑

k∈ν(i)
k 6=j

βijk tik = a.tij .

It results thatpij = p+
ij = p−ij = a.tij and we get

uij = u(Bi) + a.tij |BiQij | = u(Bi) + a.BiQij.

Henceuij = u(Qij). ⊓⊔

Remark 10The multislope method is based on the two slopesp+
ij andp−ij

but they do not play the same role.p+
ij is the predicted slope that should be

used if no limiter is employed whereasp−ij is used to modify the predicted

slope in order to preserve the stability thereforep+
ij and p−ij do not play

a symmetric role. Moreover, sinceQij belongs to the segment[Bi, Bj ],
we obtain a better approximation computinguij with p+

ij thanp−ij. These

reasons motivate the interest to an asymmetric limiterL(p+
ij, p

−

ij) which
favouresp+

ij.
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Proposition 8 Let Th be aα-convex triangulation and assume thatL is a
bounded limiter with the boundC = τlim. Then the reconstruction has the
convexity and sign inversion properties with

Cω =
2

α
.

Proof To prove the convexity property, we have to show that

uij ∈ [min(ui, uj),max(ui, uj)].

Let p+
ij , p

−

ij be given by relations (35) and (36). Ifp+
ijp

−

ij ≤ 0, the limiting
procedure yieldspij = 0 henceuij = ui. Let us now consider the other
situation wherep+

ijp
−

ij > 0 and assume, for example, thatui > uj such that

p+
ij > 0. By definition we writeuij = ui + pij |BiQij| ≥ ui. On the other

hand, using the fact thatL is bounded byτlim, we can write0 ≤ pij ≤
τlimp

+
ij hence

uij = ui + pij
|BiQij |

|BiBj|
|BiBj | ≤ ui + p+

ij|BiBj |τlim
|BiQij|

|BiBj |

≤ ui + p+
ij|BiBj | = uj .

We now deal with the sign inversion property. One more time, if p+
ijp

−

ij ≤
0, the limiting procedure yieldspij = 0 hence we haveuij = ui and we
setωijk = 0 for all k ∈ ν(i). Assume now thatp+

ijp
−

ij > 0 and consider the

case wherep+
ij > 0, we can write

uij = ui + p−ijψ

(
p+

ij

p−ij

)
|BiQij| = ui + ψ

(
p+

ij

p−ij

)
∑

k∈ν(i)
k 6=j

βijkp
+
ik.|BiQij|.

Settingψij = ψ

(
p+

ij

p−ij

)
, we have noting thatuk − ui = p+

ik|BiBk|

uij = ui + ψij

∑

k∈ν(i)
k 6=j

βijk

|BiQij |

|BiBk|
p+

ik.|BiBk| = ui −
∑

k∈ν(i)
k 6=j

ωijk(uk − ui)

where we have set

ωijk = −ψijβijk

|BiQij|

|BiBk|
.

Since we haveβijk ≤ 0 andψij ≥ 0, we deduce thatωijk ≥ 0. Further-
more, we have with relation (26)

∑

j∈ν(i)

ωijk =
∑

j∈ν(i)
j 6=k

ψij
ρik|BiBk|

ρij|BiBj|

|BiQij|

|BiBk|
=
∑

j∈ν(i)
j 6=k

ψij
ρik

ρij

|BiQij|

|BiBj |
.
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where we stateωijj = 0 by convention.
The limiter is bounded byτlim, then we get

∑

j∈ν(i)

ωijk ≤
∑

j∈ν(i)
j 6=k

ρik

ρij

≤
2

α

becauseα ≤ ρij, ρik ≤ 1 and#ν(i) = 3. Hence we get the sign inversion

property withCω =
2

α
. ⊓⊔

Remark 11A similar proof is obtained for the three-dimensional situation
and we have the estimate

Cω =
3

α
.

Theorem 2Let Th be a α-convex triangulation. Then the finite volume
scheme (9) based on the reconstruction (37) and a limiter (30) bounded
by τlim is L∞ stable under the CFL condition

∆t

h
≤

α

6K(M)
(38)

Proof The reconstruction satisfies the convexity and sign inversion proper-
ties withCω = 2

α
. Theorem (1) yields that the scheme isL∞ stable under

the CFL constraint
∆t

h
≤

1

3K(M)(1 + Cω)

UsingCω = 2
α

and we get estimation (38).⊓⊔
In the three-dimensional case, we obtain the CFL condition

∆t

h
≤

α

12K(M)

Corollary 1 LetR be a reconstruction and assume that there exists a lim-
iter L bounded byτlim such that we can write

uij = ui + L(p+
ijp

−

ij)|BiQij |.

Then the finite volume scheme (9) isL∞ stable under the CFL condition
(38).

To end this section, we propose some limiters which are bounded byτlim.
The first one is the minmod limiter, symmetric bounded byC = 1:

minmod(p, q) =

{
0, if pq ≤ 0,
sign(p)min(|p|, |q|), if pq > 0.

(39)
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We define a class ofτ -limiter for τ ∈]1, 2] which are an extension of clas-
sical limiter for the one-dimensional problem:

theτ -Bee limiter (see [12]) is a symmetric limiter bounded byτ

LSB(p, q) = q × max(0,min(1, τr),min(r, τ)), r =
p

q
;

theτ -Van Leer limiter is a symmetric limiter bounded byτ

LV L(p, q) = q ×





r + (τ − 1)r

(τ − 1) + r
, if r ≥ 1,

r + (τ − 1)r

1 + (τ − 1)r
, if 0 ≤ r ≤ 1,

0, if r ≤ 0;

theτ -Van Alabada limiter is a symmetric limiter bounded byτ

LV A(p, q) = q ×





r + (τ − 1)r2

(τ − 1) + r2
, if r ≥ 1,

r + (τ − 1)r2

1 + (τ − 1)r2
, if 0 ≤ r ≤ 1,

0, if r ≤ 0;

theτ -minmod limiter is an asymmetric limiter bounded byτ

τ -minmod(p, q) = q ×

{
0, if r ≤ 0,
min(τ, r), if r > 0.

Note that all theτ -limiters converge to the minmod limiter whenτ con-
verges to1. The minmod limiter does not depend ofτ and it is a good
candidate to provide stability when the mesh is strongly deformed.

4 Monoslopes Muscl reconstruction

We now deal with the classical linear piecewise reconstruction. For a given
set (ui)Ki∈

fTh
, we define on eachKi ∈ Th the functionuh(X) = ui +

ai.BiX for all X ∈ Ki whereai ∈ R
2 depends onui anduj , j ∈ ν(i). We

then define the reconstructionR by the operator

(ui)Ki∈
fTh

R
→ (uij)Ki∈Th,j∈ν(i)

whereuij are defined by

uij = ui + ai.BiQij . (40)
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To provide the stability, slopesai have to satisfy a specific constraint to keep
the scheme from producing oscillations. To this end, we introduce two close
subsets ofR2 named the stability domains (TVD and MP domain) which
characterize the stability condition that the slopes have to respect.

Definition 9 LetKi ∈ Th andui, uj ∈ R, j ∈ ν(i).
We define the Total Variation Diminishing domain for elementKi (TVDi

domain)

TVDi = {a ∈ R
2; min(ui, uj) ≤ ui + a.BiBj ≤ max(ui, uj), j ∈ ν(i)}.

(41)
We define the Maximum Principle domain for elementKi (MPi domain)

MPi = {a ∈ R
2; min(ui, uj) ≤ ui + a.BiQij ≤ max(ui, uj), j ∈ ν(i)}.

(42)

An extension to the three-dimensional situation is clear. Moreover, we have
TVDi ⊂ MPi.

Proposition 9 If ai ∈ TVDi or ai ∈ MPi then the reconstruction has the
convexity property.

Proof Let ai ∈ TVDi, since|ai.BiQij| ≤ |ai.BiBj | we deduce that

uij ∈ [min(ui, uj),max(ui, uj)].

If ai ∈ MPi, we have immediately by definitionuij ∈ [min(ui, uj),max(ui, uj)].
Henceuij can be written as a convex combinaison betweenui anduj . ⊓⊔
We now prove the invesion sign property. We first deal with theTVD do-
main.

Proposition 10LetTh be aα-convex triangulation. Ifai ∈ TVDi then the
reconstruction has the sign inversion property with

Cω =
2

α
.

Proof Using the fundamental decomposition (25), we write

uij = ui + ai.|BiQij |tij = ui + ai.



∑

k∈ν(i)
k 6=j

βijk|BiQij |tik




= ui +
∑

k∈ν(i)
k 6=j

βijk

|BiQij |

|BiBk|
ai.BiBk.

Sinceai ∈ TVDi we have

min(0, uk − ui) ≤ aik.BiBk ≤ max(0, uk − ui),∀k ∈ ν(i).
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Assume first thatuk 6= ui, we then have

0 ≤
aik.BiBk

uk − ui

≤ 1.

On the other hand, ifuk = ui, we haveaik.BiBk = uk − ui = 0 and we
adopt the convention

aik.BiBk

uk − ui
= 1.

We then deduce with relation (26)

uij = ui −
∑

k∈ν(i)
k 6=j

ωijk(uk − ui).

where

ωijk =
ρik|BiBk|

ρij |BiBj|

|BiQij |

|BiBk|

ai.BiBk

uk − ui

=
ρik

ρij

|BiQij|

|BiBj|

ai.BiBk

uk − ui

≥ 0.

SinceTh is aα-convex triangulation and|BiQij| ≤ |BiBj|, we have

∑

j∈ν(i)
j 6=k

ωijk ≤
∑

j∈ν(i)
j 6=k

ρik

ρij

≤
2

α
= Cω. ⊓⊔

To prove the sign inversion property with the MP domain we need a restric-
tion on the mesh.

Proposition 11LetTh be aα-convex triangulation and assume that
τlim > 1. If ai ∈ MPi then the reconstruction has the sign inversion prop-
erty with

Cω =
2

α(τlim − 1)
.

Proof As in propostion (10), we write

uij = ui −
∑

k∈ν(i)

ωijk(uk − ui).

where

ωijk =
ρik|BiBk|

ρij|BiBj|

|BiQij |

|BiQik|

ai.BiQik

uk − ui

≥ 0.

On one hand, sinceai ∈ MPi we have

0 ≤
ai.BiQik

uk − ui
≤ 1.
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On the other hand we have with relation (29)

|BiBk|

|BiQik|
≤

τlim
τlim − 1

, τlim
|BiQij|

|BiBj |
≤ 1,

and we get

ωijk ≤
ρik

ρij

1

τlim − 1
.

Using theα-convexity of the triangulation, we obtain estimation (11). ⊓⊔
We now give the two stability results where we use the TVD domain or the
MP domain

Theorem 3Let Th be a α-convex triangulation. Then the finite volume
scheme (9) based on the reconstruction (40) such thatai satisfies (41) is
L∞ stable under the CFL condition

∆t

h
≤

α

6K(M)
. (43)

Theorem 4Let Th be a α-convex triangulation. Then the finite volume
scheme (9) based on the reconstruction (40) such thatai satisfies (42) is
L∞ stable under the CFL condition

∆t

h
≤

α

6K(M)
(τlim − 1). (44)

We give here a classical example of reconstruction using themonoslope
MUSCL technique where the slopesai belong to MPi or TVDi (see [11]
for an overview of the classical MUSCL reconstruction).
In R

3, we consider the four points(Bi, ui) and(Bj, uj), j ∈ ν(i). We de-
fine the hyperplanez = π(x1, x2) which contain the three points(Bj , uj),
j ∈ ν(i) and denote bỹai ∈ R

2 the gradient ofπ. Sinceãi does not be-
long to MPi a priori, we modify the slope in the following way. We first
compute a limiter in each direction

φij =





0, if ãi.BiBj(uj − ui) ≤ 0,

min

(
1,
ãi.BiBj

uj − ui

)
, if ãi.BiBj(uj − ui) > 0.

(45)

We then set

ai = min
j∈ν(i)

(φij)ãi ∈ MPi. (46)
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4.1 A comparison between the monoslope and the multislope MUSCL
methods

We present here a comparison between the reconstruction (40) using the
monoslope method (45,46) and the reconstruction (37) usingthe multis-
lope method with the minmod limiter (39). We consider the simple mesh
Th compose of three equilateral triangles whereK1 is the central element
while K2, K3 andK4 are the three neighbouring elements with common
sidesS12,S13,S14 respectively (see figure 3). We also assume that|B1Bj | =
1 for all j ∈ ν(1) = {2, 3, 4}. We denote byu1, . . . , u4 the approximations
of u on each cell.

b

b b

b

B1

B2

B3

B4

S12

S13

S14

Fig. 3. The mesh constituted with four equilateral triangles.

We first deal with the monoslope reconstruction. For elementK1, the
predicted slopẽa1 ∈ R

2 satisfies

ã1.BjBk = uk − uj , j, k ∈ ν(1).

Let j ∈ ν(1), using the barycentric coordinates, we write

B1Bj =
∑

k∈ν(1)
k 6=k

ρ1kBkBj

and we deduce

ã1.B1Bj =
∑

k∈ν(1)
k 6=j

ρ1k(uj − uk) =
∑

k∈ν(1)

ρ1k(uj − uk).

Forj ∈ ν(1), letφ1j be defined by relation (45) and consider the quantities

D1j = ã1.B1Bj(uj − u1) =
∑

k∈ν(1)

ρ1k(uj − uk)(uj − u1).
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Relation (45) yields thatφ1j = 0 if and only if ã1.B1Bj(uj − u1) ≤ 0
which corresponds toD1j ≤ 0.
In the particular case where the triangles are equilateral we haveρ1k = 1

3
and we get

D1j =
1

3

∑

k∈ν(1)

(uj − uk)(uj − u1).

We now proceed using particular values foruj settingu1 = 0, u2 = α > 0,
u3 = −α andu4 = β. A short calculation gives

D12 =
1

3
(3α− β)α.

We then deduce thatD12 ≤ 0 if β ≥ 3α. It result thatφ12 = 0 hence
φi = 0. Vectorai is the null vector and the scheme is reduced to a first-
order one.

We now consider the multislope reconstruction. The downstream slopes
are given by

p+
12 = α, p+

13 = −α, p+
14 = β

while the upstream slopes are given by

p−12 = α− β, p−13 = −α− β, p−14 = 0.

Using the minmod limiter, we found ifβ ≥ 3α

p12 = 0, p13 = −α, p14 = 0.

The scheme does not degenerate sincep13 6= 0. In conclusion we have
obtain a configuration where the monoslope MUSCL method degenerates
i.e. the slope is reduced to zero while the multislope MUSCL method is
still efficient.

5 Conclusion

We have considered a generic finite volume method for hyperbolic scalar
equations coupled with a large class of reconstruction where the numeri-
cal flux across the interface is computed using the reconstructed values to
enhance the scheme and produce more accurate approximations. Based on
two fundamental assumptions, namely the convexity and the sign inversion
properties, we have obtained theL∞ stability when a monotone numerical
flux function is employed.

Two applications of the stability result have been proposed. We have
first introduced the multislope MUSCL technique and show that the two
fondamental properties are satisfied under a specific constraint for the mesh:
the α-convexity. We also show the stability of the monoslope (classical)
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MUSCL methods under a condition on the reconstruction: the MP or TVD
constraints. The principle ingredient employed in the reconstructions is the
use of the barycentric coordinates which are a powerful toolto manipulate
the geometrical data of the mesh. To obtainL∞ stable MUSCL methods,
two characteristic mesh parameters have been brought to thefore: theα pa-
rameter which controls the regularity of the mesh and the CFLcondition;
the τlim parameter which controls the limiters. For the two dimensional
situation, it is rather easy to produce a triangulation which satisfies theα-
convexity (Delaunay triangulation for instance) but the three-dimensional
situation is more complex. All the meshes we have experimented does not
satisfy theα-convexity. Indeed, there always exists a very small number
of cells which provide negative barycentric coordinates. In order to use a
second-order scheme even if the mesh is notα-convex, we cancel the recon-
struction for the cells over which the barycentric coordinates are lower than
a prescribed value ofα and theL∞ stability is then preserved. In practice,
less that1% of the cells are affected.
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