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Summary We present a generdl®™ stability result for a generic finite
volume method for hyperbolic scalar equations coupled witarge class
of reconstruction. We show that the stability is obtainethd reconstruc-
tion respects two fundamental properties: the convexigperty and the
sign inversion property. We also introduce a new MUSCL tégim, the

multislope MUSCL technique, based on the approximationghefdirec-

tional derivative in contrast to the classical piecewiseorsstruction, the
monoslope MUSCL technique, based on the gradient recantistnu We

show that under specific constraints we shall detail, the M#SCL re-

constructions satisfy the convexity and sign inversionpprtes and we
prove theL> stability.
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1 Introduction

L°° stability plays a fundamental role to provide suitable ntios ap-
proximations computed by a finite volume scheme. For hygieriscalar
problem, thel.*° stability is required to prove the convergence of approxi-
mations to the entropy solution when the mesh step goesao lzés well-
known that explicit first-order schemes using a monotoname fiinction
are stable [9] p. 383, [13] p. 174, but the situation becomesrmomplex
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for second-order schemes using a reconstruction, for ebathp popu-
lar MUSCL technique coupled with a cell centered finite volustheme
(see [9] p. 405, [13] p. 212, [11]). For the one dimensionalation, the
L*° stability and the Total Variation stability for second-erdscheme us-
ing a MUSCL reconstruction have been proved [17], [15]. Fghbr di-
mensions, the TVD stability condition reduces the method fost-order
scheme for uniform cartesian meshes [10] while the TVD $tglmio longer
holds for unstructured meshes [8]. To deal with stabilitglimension two
or greater, a generalisation of the one dimensional incnéahescheme is
introduced for the cartesian grid: the positive coefficisciheme [16], and
generalized to unstructured meshes [12,7] based on thd Exti@mum
Diminishing concept. To prové > stability, one has to rewrite the finite
volume scheme as a positive scheme where the coefficieraag@ the
interval [0, 1]. Under an appropriate CFL condition, tt&° stability de-
rives from a convexity argument (see [1] and the refereniceetn).

In this paper, we intend to generalize th® stability result for schemes
coupled with a reconstruction method. We first propose awdifit defini-
tion of the reconstruction where we only deal with the retartted values
instead of considering the whole reconstructed functioa.thén introduce
two fundamental proprerties: the convexity property arelstgn inversion
property. Closely concepts related to the inversion sigiperty have been
also introduced by [14] using geometrical arguments (see [&]) but we
manage to avoid the geometrical aspect working directiy whie recon-
structed values instead of the collocation points. Moreméy, a close ver-
sion of the property has been proposed by [3] in the contettie€lassical
MUSCL method. We prove that, under an appropriate CFL camita
finite volume scheme with a monotone numerical flux coupleth &ire-
construction satisfying the two properties/is® stable.

In a second step, we prove that the two properties are sdtibfiea
large class of MUSCL methods: the monoslope (classical) KU&nd the
multislope MUSCL methods. The classical MUSCL techniquestsis in
two steps: a predicted gradient is computed for each eleofehie mesh
using the neighbouring values then it is modified to respattesMaximum
Principle or Total Variation Diminishing constraint [2,]1IThe MUSCL
method is referred to as monoslope method since the recotetrvalues
at each interfaces are obtained using the same vectorjz sialuated on
the cell. The new MUSCL method named multislope method stsdn
using a specific scalar slope for each interface which cpamrds to an
approximation of the directional derivative instead of gp@ximation of
the gradient [2,4,5]. For a given element, we consider afsebonalized
vectors and we use the neighbouring values to compute thar stapes
in each direction which are modified afterwards to respentesstability



L stability of the MUSCL methods 3

constraint. The main advantage of the mulstislope methdithiswe only
deal with one-dimensional problems independently of tleesmlimension
where(2 belongs to.

The organization of the paper is as follows. In section 2, wnes@nt
a general result fol.*>° stability for scalar hyperbolic equations where
the two fundamental properties are introduced. The resukisgiven for
schemes based on a Euler forward discretization in time Ibtheresults
hold if one only consider the semidiscrete approximatiosgace. Section
3 is dedicated to the multislope MUSCL method where we proeel £°
stability. In particular, we introduce two new definitiortee a-convexity
of the triangulation and the;,, parameter which are crucial to control the
reconstruction and the limiter. Section 4 deals with fIf€ stability for
the monoslope MUSCL method. We end the section with a comsqari
between the monoslope and multislope method in order to shaivthe
multislope reconstruction is less sensitive to the stgbdonstraint: for a
given configuration, the multislope method provides nom zopes while
the monoslope method is reduced to a first-order one.

2 Nonlinear stability : a general result
2.1 Notations and geometrical ingredients

Let £2 be an open bounded polygonal setRf, we denote byZ;, an un-
structured mesh of? composed of close triangles (cells, control volumes
or elements). We denote bi;, i = 1,...,1, the elements of centroid
(gravity center)B; € K; wherel represents the number of cells. To handle
the boundary conditions, we add ghost cells in the followiay: if trian-
gle K; has an edge on 042, we construct the symmetrical triangle; and
we denote bﬁ the mesh completed with the ghost cells.

For a given elemenk’; € 7y, v(i) is the index set of the neighbouring

elementsk; € 7, which share a common edge and we define the sides of
the mesh by

Sl-j:KiﬁKj;é@, jev(i)

wheren;; = (n;j1,ni;,2) is the outward normal vector. Note thaf; =
—nj; SO the index order is of importance. In the sequigl;| represents the
surface of the element whil&;;| or | B; B;| are the length of the side or the
segmentB;, B;].

We also denote by,;; the line such tha$;; C L;; and@);; the intersection
point betweenB;, B;] and L;; (see figure 1). Note that priori, Q;; is not
necessary a point df;;.
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Fig. 1. Notations and conventions of the mesh elements and edges.

Remark 1We easily extend the notation for the three dimensional geom
tries where the mesh is composed of tetrahedron |&0d |.S;;|, | B; B,
stand for the volume, the surface and the length respegtivel

We consider a general scalar hyperbolic problem cast inghsearvative
form
Ou+ O, f1(u) + Oy f2(u) =0 @)
where f; and f, areC'! real value functions defined dR. Of course the
definition domain off; and f5 can be reduced to the admissible domain of
the solutionu but we skip this point for the sake of simplicity.
In the sequel, we shall only consider the reflexion boundandiion

Oywu=0 ondf2, (2

while we assume(.,t = 0) = u° on 2 whereu? stands for the solution at
the initial timet = 0.

2.2 Generic first-order monotone scheme

For a given timeg™ and a cellK; € 7, we denote by

.
ul' & —— u(.,t") dx
K K, S

an approximation of the mean value @fon cell K; at timet™. For any
ghost cellK; which shares the sidec 042 with triangle K; € 7j,, we set
uy = u;' in order to satisfy the reflexion boundary condition (2).dsults
that .
{uis K; € Tn} = {us; Ki € Tn}. 3

For any sideS;;, we denote by(a, 3,n;), a, 5 € R the numerical
flux accrossS;; in the directionn;;. We detail the conditions required by
the numerical flux:
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(a) function g is continuous, differentiable with respect to the first ane t
second argument ari] g, d»¢g are continuous functions;
(b) the numerical flux is consistent with the physical flyk, f2):

gla, a,nig) = fi(a)nij1 + fa(a)ngo; (4)
(c) the numerical flux is monotone:
dg(e, B,nij) 20, dagles, B,mi5) < 0. (5)
Note that the consistancy implies the conservation prgpert
jezy%) %g(a,a,mj) =0. (6)

The flux conservation accross the interface is usualy sadi&fy the numer-
ical flux:
g(a,ﬂ,nij) = _g(ﬂ7a7njl)

but this last condition is not necessary to provide the Btaloif the scheme
and only relation (6) is required. Non-conservative nueerflux may be
also considered.

If we have an approximation, = »  u}'lx, at timet", the generic

KiETh

first order explicite finite volume scheme provides an apipnation at time
"t = + At by

uftt = ul — At Z | ]‘g(uz S UGS M) (7)
jev(i)

2.3 Reconstruction

Nonlinear stabilityi.e. L°° stability for first-order scheme is well-established
if one satisfies an appropriate CFL condition [9,13]. Went¢o define a
general framework to obtain the nonlinear stability whenapelied a re-
construction procedure to enhance the approximation acgufo this end
we use a more general definition of the reconstruction opekghere we
only focus on the reconstructed values on the sides instepmbaiding a
complete reconstruction (classically a linear piecewemnstruction) on
the whole domain.

A reconstruction is an operator which gives new values om lsales
of S;; using the values;; on the cellsK; € ﬁ Formally, we define the
reconstruction operatd® by

R
(ui) g, ez = (Uij) KieT,, jewli) (8)
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Usually, the values:;; andu;; correspond to an approximation ofat a
collocation pointX;; on the sideS;;. Note that we employ the ghost cells
in order to realise the reconstruction on the boundary sfies.

Assume that we have an approximatigh for all K; € 7, we extend
the solution on the ghost cells as we define in paragraph 21Zrenre-
construction provides;; andu?; on each side5;;. We then compute an

approximationuz.hLl with the generic second-order scheme

S
uftt = — At Y ‘K7| g(uly,ulls, nij). 9)
jev(i)

We now introduce the two fondamental assumptions on thenstea-
tion operator to obtain thé>° stability. We only present the situation for
the two-dimensional case but the extension to the multiedisional case
is straigthforward. In the sequel, we use the following tiotes :

Aiju = Ujj — Uj, Ajiu = Uj; — Uj (10)

Aiju = uij — uj, Ajiu = ujz- — Uy (11)
Note that we have the identity; + A;ju = u; + Agju

Definition 1 (Convexity property) The reconstruction has the convexity
property if for anyK; € 7, andj € v(i), there exist9;; € [0, 1] such that

U5 = (1 — HU)UZ + Hijuj. (12)
Using definition ofA;;u andZ;u we get
Aiju = Hij(uj — ’LLZ'), Z;u = (1 — 9”)(ul — Uj). (13)

In particular, we deduce that #f; = u;, the convex reconstruction as-
sumption yieldsu;; = u;. Note thatf;; = 0 corresponds to a first-order
reconstruction.

Remark 2Relation (12) does not implies that; only depends om; and
u;. Indeed, as we shall see in the sequel, coefficigntdepend on the other
values ofuy, k € v(i) Uv(j).

ForanyK; € 7;, we say that; is a discrete local maximum (resp. discrete
local minimum) ifu; > w;, Vj € v(i) (resp.u; < uj, Vj € v(i)). We
introduce a complementary definition to the convexity prope

Definition 2 (Degeneracy at the Extrema property)The reconstruction
degenerates at the discrete local extrema if coefficiéptsatisfy the con-
dition : if ; is a discrete local extremum théf, = 0 for all j € v(7) i. e.
we find again a first-order scheme at the extrema.
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We recall that the scheme (9) is a Local Diminishing Extreoteesne (LED
scheme) if we have (see [12,7]):

— if u? is a discrete local maximum therf ™ < u?;
— if w7 is a discrete local minimum therf" ! > w2,

The LED property means that the maximum (resp. minimum) aarim
crease (resp. decrease). It is not enough to provéthstability for a total
discretizated scheme but a scheme which does not satisfyeiberoperty
is disqualified since thé° stability implies the LED property.

Proposition 1If R is a reconstruction which satisfies the convexity prop-
erty and degenerates at the extrema then the scheme (9)pegupith a
monotone flux is LED.

Proof We write the genereric scheme in the following way

S __
ultt =l — At Z |‘[g|‘g(u2" + Ajju, it + A, ngj).
jevi) T

On the other hand, the conservation property (6) yields

Z |KZ|9(UZ s ui'snij) = 0.
Jev(i)

We introduce the function

hij(€) = g(ui" + AT u, ut + §ATu, Nij)-

Functionh;; in continuous differentiable on the intervallg 1] with h;;(0) =

g(uj uft i) andh;;(1) = g(ui + Afu, u + Au, ng;). It results that

17 )

there exists an intermediate valgesuch that

g(u? + Azu>u? + A;LZU,??,Z]) - g(u?>u?vnij) = h‘;j(£0)

We then obtain

n n n n n n _

whered; g andd,g stand for the partial derivatives in function of the first
and second argument whilg}, = u;' + {oAj;u andu}; = u;' + fozgu.

We give the proof for a local maximum and we assume tifat> 7
forall j € v(i). Then we havé};, = 0 henceA};u = 0 thanks to relation
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(13). Note thata priori coefficientsd;; do not vanish and we still have
Alu = (1 —6%)(u; — u;) . The generic scheme then rewrites

Sij o
uftt = ul — At Z ||KJ\| Oag(ts, s, mig) (1 — 07) (uj — uy).

199 YJi0
jev(i)

)

The monotony of the flux implies thabg (i, @j:, n;;) < 0 while the con-
vexity of the reconstruction yields — 67, > 0. It results from the discrete
local maximum assumption that

Dag (i, Wy, mig) (1 — 05i) (ug — u;) > 0.

Henceu!™ <w?. O

We now introduce the second fundamental assumption on tran+e
struction operator first introduced by [3] for the partiautase of the piece-
wise linear reconstruction.

Definition 3 (Inversion Sign property) The reconstructiorR has the sign
inversion property if there exist a constafit, and coefficientsv;;, > 0,
forany K; € 7;,, j € v(i), k € v(i) which realize

wij —up = Ajju = — Y wigr(ug —w), (15)
kev(q)
with
> wijk < Cu (16)
jev(i)

The expression "sign inversion” is motivated by the charigggn between
the left-hand side term,; —u; and the quantities; , (v, —u;) with w; 5, >
0 in the right-hand side term.

Remark 3A similar idea has been introduced by [14] but the coeffident
and g (we use the notations of [14], p 532) are defined in functiothef
collocation pointsr;; whereu;;; are supposed to be approximated. In our
presentation, coefficient;;;, do not necessarily depend on the mesh even
if in practice there are strongly linked to the geometry.tRermore, we do
not require that the reconstruction is a second-order (oehroethod since
we only deal with the stability. The sign inversion propevtg use here
has been first proposed by [3] in the monoslope MUSCL recoatstm
context.

Proposition 2 If the reconstruction operatoR satisfie the convexity and
the sign inversion properties, then the reconstructionetiegates at the
discrete local extrema.
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Proof Assume that; is a discrete local maximum, then, — u; < 0 for
all k € v(i). It results from relation (15) that;; —u; > 0 forany;j € v(i).
On the other side, the convex property yields = (1 — 6;;)u; + 0;5u;
henceu;; — u; = 6;;(u; —u;) < 0 sinceu; — u; < 0. Consequently, we
haveu;; = u; and6;; = 0. From proposition 1, we deduce that the scheme
has the LED property. O

We now deal with the definition of a positive (coefficientsheme [16,
12,7]. The generic scheme (9) can be written as a positivensehf we
have

u?“ =uy + At Z i (uf —ug), a7)
jev(i)

wherea;’; are non negative coefficients depending on the approximajo

at timet” and the mesh characteristics. If one can prove that the cigeifts

a;; are uniformly bounded by a constant, we shall see that undeppro-
priate CFL conditiony? ! is obtained as a convex combinaisonugfand

uy and we get the > stability of the scheme. In the sequel, we define the
characteristic length of the me§h by

K,
JGV(})L Y

(18)

The following proposition gives an estimate for coefficeaf;.

Proposition 3We suppose thak is a reconstruction which satisfies the
convexity and the sign inversion properties. We also supploat g is a
numerical flux satisfying properties (a)-(d) of the subsec®.2. Assume
that |u}'| < M for all K; € 7, then there exists a constaaf()/) and
coefficientsy}; > 0 with

K(M)
ij — h

such that we can write the scheme as a positive scheme (17).

(1 + Cw)> VKZ € 7717 ] S V(Z) (19)

Proof Using the expression (14) introduced in proposition 1, wereavrite
the scheme as

u) +1 _ ul — At Z |K | <8lg(u”, ul;, nig) Alsu + O2g(tgs, U ﬂ,nij)Ajiu) )
jevi)

For the sake of simplicity, we introduce the notation

AZ] - 8lg(uzj7 jz)nij)7 ’L] - 829(”2]7 jz?n’ij)
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where we skip the time index. Using the convexity propertg #me sign
inversion property of the reconstruction, we write

|SZ]|
—u — At Z T

jev(s)

—Ajj wijk(uy — u') + Bij(1 — 65:) (u] — uj')
kev(i)

After permutation of the summation and the indeyeandk for A;; and
Wijk, We get

Sik
u?+1:u?—|—At Z U —U Z ‘ 24‘ zszk]

jev(i) kev(i)
—At Z (uj —u; ) |KJ‘ Blj(l — 931)
jev(i) ’

We obtain the scheme (17) setting

S; Sy
s = Z | "f' Aipwikj —||K7|‘Bij(1—9ji). (20)
k@() Kil !

Sincew;; > 0 andd;; € [0, 1], we deduce from the flux monotony as-
sumption that4;; > 0 andB;; < 0, hencea% > 0. We now have to pro-
duce a uniform estimation for the coefficients. Since the@amationsu;'
are uniformly bounded by/, the valuesi;; andu?; are also bounded by
M and the continuity 0B, g(., ., n;;) anddqg(., ., n;;) with the monotony
yield

with
KM) = swp_(101g(e. B,0)],1029(0 B0)]). (D)
—]\/I‘%{‘x:,[igl\/l
We then deduce using (16) thaff; < @(1 +Cy,). O

We conclude the section with the main theorem

Theorem 1Let u! be the initial approximation at timeé = 0 such that
|u?| < M uniformly and assume that the following CFL condition holds
At 1
h — 3K(M)(1+C.,)
whereK (M) is given by relation (21) and’,, by relation (16). Then. is
uniformly bounded by/ at any timet™.

(22)
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Proof We prove the theorem by induction. At= t° = 0, the property
holds by assumption. Let now consider thtis uniformly bounded by\/
at timet”, we show that the same property holdsi@r“. Indeed, scheme
(17) can be written in the following form

1 n
ul = [1- At g ai; | wit + E Ataguy.
jev(v) Jjev(d)

Since#v(i) = 3, we have

K(M)
0< At ) o < BAt——(1+Cy) < 1.
jev(i)
We obtain a similar inequality for\ta}; and we deduce that? ™! is a
convex reconstruction of the neighbouring values at ﬁﬁ)ehenceu?“ is
bounded byM. O

Remark 4Extension of the theroem to the three-dimensional casetetith-
hedron is straigthforward and the CFL condition becomes
a1
h —4K(M)(1+C,)

since#v(i) = 4.

3 Multislope Muscl reconstruction

We present a new MUSCL technique based on the approximatitiee
directional derivatives. The main ingerdient is the bangde coordinates
which provide a powerful tool to manipulate the geometridata of the
mesh such as the centroid points.

3.1 The fundamental decomposition

We introduce an assumption on the mesh which guaranteearttatmis-
sible reconstruction.

Definition 4 Leta € [0, 1], the triangulation isa-convex if for anyk; €
Ty, there exist barycentric coordinates;, j € ()

> pii=1,  Bi= > piB; (23)
jev(d) jev(i)

such that < p;;.
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Remark 5The definition means thaB; lies in the triangle formed by the
three pointsB; and a controls the distance betweés; and the triangle
edges. An extension for the three-dimensional geometsiedtraigthfor-
ward if we employ tetrahedron cells. The notioncetonvexity is similar
to the definition of aB—uniform triangulation (see [6], [14], p 533) but the
mesh characterization we use here is based on the baryceotnidinates.

Assuming that there is no degenerated element which is geita > 0,
we can define the normalized vectors (see figure 2)
B;B;

B.B,| (24)

tl'j:‘

<,
4?

Fig. 2. Definition of vectort;;.

We now introduce the fundamental decomposition which isntizén
tool to construct the multislope method.
Proposition 4 Let7;, be aa-convex triangulation, then we have the funda-
mental decomposition

tij= > Biktin (25)
kev(i)
Py
with BB,
Pik| DiDg| . .
Bijk = —— 751 Tk#J. (26)
’ pij| BiBj|

Proof Using the barycentric coordinates we haE pi; BiBj = 0 hence,
jev(i)
for j € v(1) fixed
pijBiBj = — Z pikBi By

kev(i)
k#j
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Using the definition of;;, we deduce immediately

pij| BiBjlti; = — Z pik| Bi Bt
kev(i)
Py

Divided by p;;| B; B;| and the proposition is proved.O

Note thato < p;; and0 < p;;, < 1 — a so we get the following estimation

1 — «|B; By
a  [BiBj|

0 < —Bijk < (27)

Remark 6Coefficientss;;;, are similar to coefficients, ;,, proposed in [14],
p. 532 but we here use the normalized directiopsnstead of the vectors
B; B; because vectorg; are more suitable to build the multislope MUSCL
method.

The now introduce the following mesh parameter.

Definition 5 Let 7}, be a triangulation, we define

_ .. |BiBj
Tlim = Klireﬂ;h BiQ| (28)
Jjev (i)
Proposition 5We havery;,,, € [1,2]. Moreover, ifry;,,, > 1 then
| B; Bj| < _Tim (29)

|BiQij| ~ Tiim — 1

Proof SinceQ;; € [B;, B;] we have|B;Q;;| + |Qi; Bj| = |B;B;| hence
1
5|BiBj| < max(|B;iQyl, |Qi; Bjl) < |BiBj-

It results that

1 < min < |BiBj| |B;Bj] ) <.

|BiQij|" | B;jQij
Taking the minimum over all the sides and we get the estimatig, €
[1,2].

Assume now thaty;,, > 1, then|B;Q;;| # 0 for all K; € Tp,, j € v(i).
On the other hand we ha\ﬂ%m|BZQ”| + Tlim|Qz’ij| = Tlim|BiBj| and
using the fact thaty;,,|Q;; B;| < |B;B;| we get

Tiim| BiQij| + |BiBj| > Tiim|BiBjl.

We deduce the estimation (29) dividing y;Q;;|. O
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3.2 The limiters

We recall the notion of limiter functions following the Jaso® notation
[12] adding some slight modifications.

Definition 6 A limiter is a functionL : R x R — R such that

1. forall p,q € R, if pg < 0 thenL(p, q) = 0;
2.forallp € R, L(p,p) = p;
3.forallp,q,a € R, L(ap, aq) = aL(p, q).

Since the limiterL is a1—homogeneous function, there exists a function
1 : R — R such that

Vp,q€R, ¢q#0 L(p,q) =% <§) q. (30)

L(p,q) = qL (g 1) = pL (1, %) .

Moreover the conditior.(p, ¢) = 0 if pg < 0 leads toy(r) = 0if r < 0.
At last the conditionL(p, p) = p leads toy(1) = 1.

and we have

Definition 7 We say that the limiter is symmetric if
Vp,q €R, L(p,q) = L(q,p). (31)
We say that the limiter is bounded by> 0 if
Vp.g €R, |L(p,q)| < Cmin(|p], [q]). (32)

Assume that_ is symmetric then we have

(8 <§) q=L(p,q) = L(q,p) =2 (g) p.

p

Settingr = p/q and we get the relation

o (3) =v) @)

Proposition 6 Assume thaL is bounded then we have

0<¥(r)<C, and 0<y(r)<Cr (34)
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Proof From (32), we deduce with relation (30) that for ally

0 (S) lq| = |L(p,q)| < Clq|.

Hence we deduce with = p/q thaty(r) < C. On the other hand we can
write

0 (g) lq| = |L(p,q)| < Clp|

and dividing byg we get the second estimation.
Note that in the case thdtis symmetric, the conditiogy(r) < C implies
directly the estimation)(r) < Cr thanks to relation (33). O

Remark Ve do not assume that the limiterdgpriori symmetric. Indeed,
we shall see that, in the limiting routine, the slgpkas to be favoured. To
produce such a behaviour, the limiter has to be asymmetric.

Remark 8f L is a bounded limiter, the associated functiphas to satisfy
the properties

0<%¢(r) <min(C,Cr) and (1)=1.

It results thaty) belongs to a specific domain (Harten, Sweby, Van-Leer
domain) controlled by the constaGt We shall present in the next section
some useful limiters.

3.3 The limited slopes

The multislope MUSCL method consists in computing recamcséd val-
uesu;; andu; at the collocation poin€;;:

uij = u; + pig| BiQijl,  uji = uj + pjyi| B;Qijl,

wherep;; andp;; are approximations of the directional derivativewofol-
lowing the directionst;; andt;; respectively. Slopeg;; andp;; have to
be designed such that we maintain th® stability. We present here the
construction of the scalar slopes.
Definition 8 (downstream and upstream slopesiVe define the downstream
slopes from poinB; in directiont,;,, j € v(i) by

+ Uj — Uy

p.. =
Y |BiBjl

(35)

and the upstream slopes by

Py =Y Bijkpi (36)
kev(i)
Rt
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Note that the definition can be easily extended to the thieemsional case
if we employ tetrahedron cells.

Remark 9.et us consider an observer located at pdmiooking in direc-
tion t;;. The valuepz.*j represents the coefficient of the slope that the ob-

server can see in front of him (the downstream slope) wjijeepresents
the slope behind him (the upstream slope).

Let L be a bounded limiter we then define the reconstrucfoby
pij = L(p35,03;),  wij = wi + pij| BiQij]- (37)
We have a second-order reconstruction in the following eens

Proposition 7 The reconstruction is consistent for linear function uife
[P, is a first-order polynomial function and defimg = «(B;) for all K; €

ﬁthenuij = u(Q;) forall K; € 7, andj € v(i) .

Proof Functionu write w(X) = u(B;) + a.B; X for any X € R. The
downstream slopes then are

+_ U; — U; a.BZ-Bj
v

= = a.t;;.
|BiB;|  |B;iBjl ’

p

On the other hand, we have for the upstream slopes using tigrfoental
decomposition (25)

pi; = Z Bijk iy = a. Z Bijk tik = a.tij.
kewv(i) kev(i)
k#j k#j

It results thap;; = p; = p;; = a.ti; and we get
Ujj = U(BZ) + a.tij|BiQij| = u(B,) + a.BiQij.
Henceu;; = u(Q;;). O

Remark 10The multislope method is based on the two slopgsandp;j
but they do not play the same ro}ﬁ; is the predicted slope that should be
used if no limiter is employed where@% is used to modify the predicted
slope in order to preserve the stability therefqn;? and p;; do not play

a symmetric role. Moreover, sina@;; belongs to the segmeni;, B;],
we obtain a better approximation computing with p;; thanp;;. These

reasons motivate the interest to an asymmetric Iimlt@v;;, p;;) Which
favouresp;’,.
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Proposition 8 Let 7;, be aa-convex triangulation and assume thatis a
bounded limiter with the boun@' = 7;,,,. Then the reconstruction has the
convexity and sign inversion properties with

2
Co="=.
(0%

Proof To prove the convexity property, we have to show that
wij € [min(ug, u;), max(u;, uj)l.

Let p;’, p;; be given by relations (35) and (36).1f;p;; < 0, the limiting
procedure yieldsow = 0 henceu;; = u;. Let us now consider the other
situation wherq)upw > 0 and assume, for example, that> u; such that

pl-j > 0. By definition we writeu;; = u; + p;;|B;Qi;| > u;. On the other
hand, using the fact that is bounded byr;,,,, we can write0 < p;; <
n,»mpjj hence

| BiQij|
| B; Bj|

| Bi Q5|
| B; B |
< u; +p;;|BZB]| = Uu;.

|BB|<uz+p |BB |lem

Ujj = Ui + Pij

We now deal with the sign inversion property. One more '[Irhﬁ:r b;; <
0, the limiting procedure yieldg;; = 0 hence we have,;; = v; and we
setw;;x = 0 for all k € v(i). Assume now that;p:. > 0 and consider the

case where;’ >0, we can write

+
_ b Py
uij = u; + pi;Y (p”) |BiQij| = wi + v <£> > Bikpih| BiQil.

1j 1j ) kev(i)
k#j

ijZ]

ng

Settingy;; = v < ) we have noting that, — u; = p;.'];|Bin|

ij

B;Q
Wij = Ui + Vi E Bijk |‘ BZJ\| Py | BiBi| = ui — g wijk (U — ;)
kev (i) kev(i)
k#j k#j

where we have set
| BiQij|
|BiB|
Since we haves; ;. < 0 andy;; > 0, we deduce thab;;;, > 0. Further-
more, we have with relation (26)

pir| Bi Br| | BiQij] pik | BiQij|
Z Wijk = Z ij Z Yij—
jev(s) jEv(i) pij| BiBj| |BiBi| jery P |B:B;|

J#k -k

wijk = =i Bijk
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where we statey;;; = 0 by convention.
The limiter is bounded byy;,,,, then we get

Zwijkﬁ Z Pik <

— — P
€ jev(i)
Jev(i) A

SEEN

becausexr < p;;, pir < 1 and#v(i) = 3. Hence we get the sign inversion

. 2
property withC,, = o O
Remark 11A similar proof is obtained for the three-dimensional sitora
and we have the estimate

Theorem 2Let 7;, be a «-convex triangulation. Then the finite volume
scheme (9) based on the reconstruction (37) and a limitey (@nded
by 1, is L*° stable under the CFL condition

At o
<

W = GKQD) 9

Proof The reconstruction satisfies the convexity and sign ingerproper-
ties withC,, = % Theorem (1) yields that the schemeli¥ stable under

the CFL constraint
At 1

h ~ 3K(M)(1+C)

UsingC,, = % and we get estimation (38).0
In the three-dimensional case, we obtain the CFL condition

a .«
h = 12K (M)

Corollary 1 LetR be a reconstruction and assume that there exists a lim-
iter L bounded by;,,, such that we can write

uij = ui + L(p;p;;)| BiQijl.

Then the finite volume scheme (9)Ii¥° stable under the CFL condition
(38).

To end this section, we propose some limiters which are bedity 7;;,, .
The first one is the minmod limiter, symmetric bounded®y- 1:

minmodp, q) = {0 fpq < 0, (39)

sign(p) min(|p|, |q|), if pg > 0.
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We define a class af-limiter for 7 €]1, 2] which are an extension of clas-
sical limiter for the one-dimensional problem:

ther-Bee limiter (see [12]) is a symmetric limiter bounded by
p

Lsp(p,q) = ¢ x max(0,min(1, 7r), min(r, 7)), ="
q

ther-Van Leer limiter is a symmetric limiter bounded by

w7 if 7 > 1,
=D+

Lyr(p,q) = qx w, ifo<r<l,
1+ (r—=1)r
0, if r <O0;

ther-Van Alabada limiter is a symmetric limiter bounded by

r4+(r—1r% |

CES e if r>1,
Lya(p,q) =qx § r+(r = 1r?

m, |f0§7"<1,

, if r <0;

the -minmod limiter is an asymmetric limiter bounded by
. 0, if r <0,
T-minmodp, q) = q X

min(r,r), if 7> 0.

Note that all ther-limiters converge to the minmod limiter whencon-
verges tol. The minmod limiter does not depend ofand it is a good
candidate to provide stability when the mesh is stronglypdeéd.

4 Monoslopes Muscl reconstruction
We now deal with the classical linear piecewise reconstsactor a given
set (“i)K-eﬁ’ we define on eacl; € 7;, the functionu,(X) = u; +

a;.B; X forall X € K; wherea; € R? depends om; anduj, j € v(i). We
then define the reconstructiod by the operator

R
(ui) g ez = (i) KT, jev (i)

whereu;; are defined by
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To provide the stability, slopaes have to satisfy a specific constraint to keep
the scheme from producing oscillations. To this end, wedhice two close
subsets ofR? named the stability domains (TVD and MP domain) which
characterize the stability condition that the slopes havespect.

Definition 9 Let K; € 7, andu;, uj € R, j € v(i).
We define the Total Variation Diminishing domain for elem&nt(TVD;
domain)

TVD; = {a € R% min(u;,u;) < u; + a.B;Bj < max(uj, u;),j € v(i)}.
(41)
We define the Maximum Principle domain for elem&p{MP; domain)
MP; = {a € R? min(u;,u;) < u; + a.B;Q;; < max(u;, u;),5 € v(i)}.
(42)
An extension to the three-dimensional situation is clearédver, we have
TVD,; C MP;.

Proposition 91f a; € TVD; or a; € MP; then the reconstruction has the
convexity property.

Proof Leta; € TVD;, since|a;. B;Qi;| < |a;.B; B;| we deduce that
ui; € [min(ug, uj), max(u;, uj)].

If a; € MP;, we have immediately by definitiony; € [min(u;, u;), max(u;, uj)].
Henceu;; can be written as a convex combinaison betwegandw;. 0O

We now prove the invesion sign property. We first deal with T¥D do-
main.

Proposition 10Let 7, be aa-convex triangulation. Ifi; € TVD; then the
reconstruction has the sign inversion property with
2
C, =—.
(67

Proof Using the fundamental decomposition (25), we write

wij = i + a;.|BiQijlti; = wi + ai. | Y BijklBiQujltix
kev(i)
k¢j

Qz]
=u; + E Bzgk : Bsz
kev(i) |B B |

k#j
Sinceq; € TVD; we have

min(0, up — u;) < a;x.B; By, < max(0,uy — u;), Vk € v(i).
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Assume first that:,, # u;, we then have

0< a;-B; By, <

Uk — Uy

1.

On the other hand, i, = u;, we havea;;,.B;B;, = u; — u; = 0 and we
adopt the convention
Uk — Ug
We then deduce with relation (26)
’LLZ']' = U; — Z wijk(uk — ’LLZ)

kev(i)
k#3j

=1.

where

Wi = pik|BiBy| |BiQij| ai-BiBy _ pir |BiQij| ai-BiBy, 0
Y pij|BiBj| |BiBy| ur —ui  pij |BiBj| up —ui

Since7}, is aa-convex triangulation antB;Q;;| < |B;B;|, we have

; 2
E wijk < Pik < 2 _ ¢, O
JE€v(i) sev P o
ik J#k

To prove the sign inversion property with the MP domain wedneeestric-
tion on the mesh.

Proposition 11Let7; be aa-convex triangulation and assume that
m > 1. If a; € MP; then the reconstruction has the sign inversion prop-
erty with

2

Co = a(tim — 1)

Proof As in propostion (10), we write
wy = — Y win(ug — u;).
kev(i)

where

_ pik|BiBi| | BiQij| a;.BiQir
pij| BiBj| | BiQik| wr — u;

On one hand, since; € MP; we have

a;. B;Qix, <

Uk — Usg

> 0.

Wijk

0< 1.
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On the other hand we have with relation (29)

[BiBr| _ _Tiim - |1BiQy| _ 4
|BiQik| ~ Tiim — 1’ BBy T
and we get
; 1
wijk < Pik

Pij Tiim — 1

Using thea-convexity of the triangulation, we obtain estimation (110
We now give the two stability results where we use the TVD domathe
MP domain

Theorem 3Let 7;, be a «-convex triangulation. Then the finite volume
scheme (9) based on the reconstruction (40) such dhagtisfies (41) is
L stable under the CFL condition

At «o
— <
h = 6K(M)

. (43)

Theorem 4Let 7;, be a a-convex triangulation. Then the finite volume
scheme (9) based on the reconstruction (40) such dhagtisfies (42) is
L stable under the CFL condition

& < ey T =) (44)
We give here a classical example of reconstruction usingribaoslope
MUSCL technique where the slopes belong to MR or TVD; (see [11]
for an overview of the classical MUSCL reconstruction).

In R3, we consider the four pointsB;, u;) and(B;, u;), j € v(i). We de-
fine the hyperplane = 7 (x1, z2) which contain the three pointd3;, u;),

j € v(i) and denote byi; € R? the gradient ofr. Sincea; does not be-
long to MP, a priori, we modify the slope in the following way. We first
compute a limiter in each direction

O, if ZL’ZBZB](u] - ul) S 0,
¢” min (1, u) 5 if CLZ'.BZ'B]'(U]' - ul) >0 (45)
Uj — Uy
We then set

jev(i)
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4.1 A comparison between the monoslope and the multislopg@LU
methods

We present here a comparison between the reconstructignuéy the
monoslope method (45,46) and the reconstruction (37) usiagnultis-
lope method with the minmod limiter (39). We consider the @gnmesh

75, compose of three equilateral triangles whéfeis the central element
while K5, K3 and K are the three neighbouring elements with common
sidesS9, S13, S14 respectively (see figure 3). We also assume|tBaB;| =
1forallj € v(1) = {2,3,4}. We denote by, ..., us the approximations
of u on each cell.

Fig. 3. The mesh constituted with four equilateral triangles.

We first deal with the monoslope reconstruction. For elenféntthe
predicted slop&; € R? satisfies
51.BjBk = U — Uj, J k€ l/(l).
Letj € (1), using the barycentric coordinates, we write
B\Bj = Z p1k B Bj

kev(1)
k#£k

and we deduce

a1.B1Bj = Z pik(u; —ug) = Z pik(u; — ug).

Kev(1) kev(1)
k#j

Forj € v(1), let¢,; be defined by relation (45) and consider the quantities

Dlj = El.BlBj(uj — ul) = Z plk(Uj — uk)(u] — ul).
kev(1)
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Relation (45) yields that;; = 0 if and only if a;.B1Bj(u; — u1) < 0
which corresponds t®;; < 0.

In the particular case where the triangles are equilateeahavep,;, =
and we get

W=

1
Dyj =3 > (= up)(uj — w).
kev(1)

We now proceed using particular values fgrsettingu; = 0, up = o > 0,
ug = —aanduy = (. A short calculation gives
1
—(Ba — :
580 = Bla
We then deduce thab, < 0if 8 > 3a. It result thatps = 0 hence
¢; = 0. Vector a; is the null vector and the scheme is reduced to a first-
order one.

We now consider the multislope reconstruction. The doveastr slopes
are given by

Dip =

Ph=a, plz=-a, piy=20
while the upstream slopes are given by

P =a—pf, p1_3:_05_ﬁa 1y =0.
Using the minmod limiter, we found i > 3«

pi2 =0, pi3z=—a, pia=0.

The scheme does not degenerate singe # 0. In conclusion we have
obtain a configuration where the monoslope MUSCL method riemgges
i.e. the slope is reduced to zero while the multislope MUSCL metiso
still efficient.

5 Conclusion

We have considered a generic finite volume method for hyperlsoalar
equations coupled with a large class of reconstruction eiiee numeri-
cal flux across the interface is computed using the recortetiwvalues to
enhance the scheme and produce more accurate approximaiased on
two fundamental assumptions, namely the convexity andigimeiisversion
properties, we have obtained tfhé° stability when a monotone numerical
flux function is employed.

Two applications of the stability result have been propod#d have
first introduced the multislope MUSCL technique and showt tha two
fondamental properties are satisfied under a specific @nsfor the mesh:
the a-convexity. We also show the stability of the monoslope gsieal)
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MUSCL methods under a condition on the reconstruction: tiediTVD
constraints. The principle ingredient employed in the retauctions is the
use of the barycentric coordinates which are a powerful toohanipulate
the geometrical data of the mesh. To obtaity stable MUSCL methods,
two characteristic mesh parameters have been brought forhieheq pa-
rameter which controls the regularity of the mesh and the €édition;
the 7;;,,, parameter which controls the limiters. For the two dimenalo
situation, it is rather easy to produce a triangulation \Wheatisfies thex-
convexity (Delaunay triangulation for instance) but theedidimensional
situation is more complex. All the meshes we have experiatedbes not
satisfy thea-convexity. Indeed, there always exists a very small number
of cells which provide negative barycentric coordinatesotder to use a
second-order scheme even if the mesh iscnobnvex, we cancel the recon-
struction for the cells over which the barycentric coord@saare lower than
a prescribed value af and theL*° stability is then preserved. In practice,
less thatl % of the cells are affected.
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